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Abstract

A fifth-order implicit Runge–Kutta method and two fourth-order exponential integration methods

equipped with Krylov subspace approximations were implemented for the GPU and paired with

the analytical chemical kinetic Jacobian software pyJac. The performance of each algorithm was

evaluated by integrating thermochemical state data sampled from stochastic partially stirred reac-

tor simulations and compared with the commonly used CPU-based implicit integrator CVODE. We

estimated that the implicit Runge–Kutta method running on a single Tesla C2075 GPU is equiva-

lent to CVODE running on 12–38 Intel Xeon E5-4640 v2 CPU cores for integration of a single global

integration time step of 10−6 s with hydrogen and methane kinetic models. In the stiffest case

studied—the methane model with a global integration time step of 10−4 s—thread divergence and

higher memory traffic significantly decreased GPU performance to the equivalent of CVODE running

on approximately three CPU cores. The exponential integration algorithms performed more slowly

than the implicit integrators on both the CPU and GPU. Thread divergence and memory traffic

were identified as the main limiters of GPU integrator performance, and techniques to mitigate these

issues were discussed. Use of a finite-difference Jacobian on the GPU—in place of the analytical

Jacobian provided by pyJac—greatly decreased integrator performance due to thread divergence,

resulting in maximum slowdowns of 7.11–240.96×; in comparison, the corresponding slowdowns on

the CPU were just 1.39–2.61×, underscoring the importance of use of an analytical Jacobian for

efficient GPU integration. Finally, future research directions for working towards enabling realistic

chemistry in reactive-flow simulations via GPU/SIMT accelerated stiff chemical kinetics integration

were identified.

Keywords: Chemical kinetics, Stiff chemistry, Integration algorithms, GPU, SIMT

∗Corresponding author
Email address: nicholas.curtis@uconn.edu (Nicholas J. Curtis)

Preprint submitted to Combustion and Flame February 15, 2017

ar
X

iv
:1

60
7.

03
88

4v
3 

 [p
hy

si
cs

.c
om

p-
ph

]  
14

 F
eb

 2
01

7



1. Introduction

The need for accurate chemical kinetic models in predictive reactive-flow simulations has driven

the development of detailed oxidation models for hydrocarbon fuels relevant to transportation and

energy generation applications. At the same time, growing understanding of hydrocarbon oxidation

processes resulted in orders of magnitude increases in model size and complexity. Contemporary

detailed chemical kinetic models relevant to jet fuel [1], diesel [2], gasoline [3], and biodiesel [4]

surrogates consist of hundreds to thousands of species with potentially tens of thousands of reactions.

Furthermore, kinetic models for large hydrocarbon fuels tend to exhibit high stiffness that requires

implicit integration algorithms for practical solution.

Reactive-flow modeling codes commonly rely on high-order implicit integration techniques to

solve the stiff governing equations posed by chemical kinetic models. The cost of these algorithms

scales at best quadratically—and at worst cubically—with the number of species in a model [5],

due to repeated evaluation and factorization of the chemical kinetic Jacobian matrix to solve the

associated nonlinear algebraic equations through iterative solutions of linear systems of equations.

Several recent studies [6–8] demonstrated that using even modestly sized chemical kinetic models

can incur severe computation cost for realistic reactive-flow simulations. For example, a single

high-resolution Large Eddy Simulation (LES) realization of a diesel spray—using up to 22 million

grid cells with a 54-species n-dodecane model—for 2ms after start of injection with the common

implicit CVODE solver [9] took 48,000 CPU core hours and up to 20 days of wall clock time [8].

Lu and Law [5] extensively reviewed techniques for reducing the cost of using detailed chemical

kinetic models; however, significant cost savings can be realized by using an analytical Jacobian

formulation, rather than the typical evaluation via finite difference approximations. This analytical

Jacobian approach eliminates numerous chemical source term evaluations, and for a sparse Jacobian

(e.g., formulated in terms of species concentrations) the cost of evaluation can drop to a linear

dependence on the number of species in the model [5].

In this work, our efforts to accelerate simulations with chemical kinetics focus on improving the

integration strategy itself, by developing new algorithms for high-performance hardware accelera-

tors, such as graphics processing units (GPUs) and similar single-instruction multiple-data/thread

(SIMD/SIMT) devices, increasingly available on supercomputing clusters [10–12]. The ultimate

goal of the combustion community is to enable use of detailed kinetic models in realistic reactive-

flow simulations—potentially via use of GPU-accelerated chemical kinetics. However, a clear first

step is to reduce the cost of realistic reactive-flow simulations with small-to-moderate sized model
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to the point where they are practical for iterative design purposes.

1.1. SIMD/SIMT architecture

Central processing unit (CPU) clock speeds increased regularly over the past few decades—

commonly known as Moore’s Law—however, power consumption and heat dissipation issues slowed

this trend recently. While multicore parallelism increased CPU performance somewhat, recently

SIMD/SIMT-enabled processors have gained popularity in high-performance computing due to their

greatly increased floating operation per second count. A SIMD instruction utilizes a vector pro-

cessing unit to execute the same instruction on multiple pieces of data, e.g., performing multiple

floating point multiplications concurrently. In contrast, a SIMT process achieves SIMD parallelism

by having many threads execute the same instruction concurrently. Many different flavors of SIMD/

SIMT processing exist:

• Modern CPUs have vector processing units capable of executing SIMD instructions (e.g., SSE,

AVX2)

• GPUs feature hundreds to thousands of separate processing units, and utilize the SIMT model

• Intel’s Xeon Phi co-processor has tens of (hyperthreaded) cores containing wide-vector units

designed for SIMD execution, with each core capable of running multiple independent threads

Using the SIMD/SIMT parallelism model requires extra consideration to accelerate chemical kinetics

integration.

CUDA Kernel
Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Block (1,1)
Thread  

(0,0)
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(1,0)
Thread  

(2,0)
Thread  

(3,0)
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Shared Memory  / 
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Processing Units
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Figure 1: Example of the CUDA SIMT paradigm. Program calls (kernels) are split into a grid of blocks, which are

in turn composed of threads. Threads are grouped in warps (note: warps are typically composed of 32 threads) and

executed concurrently on streaming multiprocessors. Streaming multiprocessors have registers and L1 cache memory

shared between all executing warps. Figure file is available under CC-BY [13].
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This study used the NVIDIA CUDA framework [14, 15], hence the following discussion will use

CUDA terminology; however, the concepts within are widely applicable to SIMT processing. The

basic parallel function call on a GPU, termed a kernel, is broken up into a grid of thread blocks

as seen in Fig. 1. A GPU consists of many streaming multiprocessors (SMs), each of which is

assigned one or more thread blocks in the grid. The SMs further subdivide the blocks into groups

of 32 threads called warps, which form the fundamental CUDA processing entity. The resources

available on a SM (memory, processing units, registers, etc.) are split between the warps from all the

assigned blocks. The threads in a warp are executed in parallel on CUDA cores (processing units),

with multiple warps typically being executed concurrently on a SM. Thread divergence occurs when

the threads in a warp follow different execution paths, e.g., due to if/then branching, and is a key

performance concern for SIMT processing; in such cases the divergent execution paths must execute

in serial. All threads in a warp are executed even if any thread in the warp is unfinished. When a

divergent path is long and complicated or only a handful of threads in a warp require its execution,

significant computational waste may occur as the other threads will be idle for long periods. A

related concept of waste within a SIMD work unit is described by Stone and Niemeyer [16].

Furthermore, as compared with a typical CPU, GPUs possess relatively small memory caches and

few registers per SM. These resources are further split between all the blocks/warps running on that

SM (Fig. 1). Overuse of these resources can cause slow global memory accesses for data not stored

locally in-cache or can even reduce the number of blocks assigned to each SM. The performance

tradeoffs of various CUDA execution patterns are quite involved and beyond the scope of this

work; for more details we refer the interested reader to several works that discussed these topics in

depth [17–19]. Instead, we will briefly highlight key considerations for CUDA-based integration of

chemical kinetic initial value problems (IVPs).

1.2. GPU-accelerated chemical kinetics

The extent of thread cooperation within a CUDA-based chemical kinetic IVP integration algo-

rithm is a key point that shapes much of implementation. GPU-accelerated chemical kinetic solvers

typically follow either a “per-thread” pattern [20–22], in which each individual GPU thread solves

a single chemical kinetic IVP, or a “per-block” approach [21, 23], in which all the threads in a block

cooperate to solve the ordinary differential equations (ODEs) that comprise a single chemical kinetic

IVP. The greatest potential benefit of a per-thread approach is that a much larger number of IVPs

can theoretically be solved concurrently; the number of blocks that can be executed concurrently
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on each SM is usually around eight, whereas typical CUDA launch configurations in this work con-

sist of 64 threads per block, or 512 sets of IVPs solved concurrently per SM. Unfortunately, the

larger amount of parallelism offered by a per-thread approach does not come without drawbacks.

A per-thread approach may also encounter more cache-misses, since the memory available per SM

must now be split between many more sets of IVPs. This results in expensive global memory loads.

The performance of a per-thread approach can also be greatly impacted by thread divergence, be-

cause different threads may follow different execution paths within the IVP integration algorithm

itself [21, 22]. For example, in a per-thread-based solver each thread in a warp advances its IVP

by one internal integration step concurrently, and here on a step failure the thread simply does not

update the solution vector at the end of the internal time-step. If only a handful of threads in a warp

require many more internal time-steps than the others, they will force the majority of threads to

wait until all threads in the warp have completed the global integration step, wasting computational

resources. Additionally, implicit integration algorithms—which typically have complex branching

and evaluation paths—may suffer more from thread divergence when implemented on a per-thread

basis than relatively simpler explicit integration techniques [21]. The impact of thread divergence

on integrators is typically less severe when following a per-block strategy, since the execution path

of each thread is planned by design of the algorithm. A per-block approach also offers significantly

more local cache memory and available registers for solving an IVP, and thus memory access speed

and cache size are less of a concern. However, in our experience, optimizing use of these resources

requires significant manual tuning and makes it more difficult to generalize the developed algorithm

between different chemical kinetic models—a key feature for potential non-academic applications.

In addition, Stone and Davis [21] showed that a per-thread implicit integration algorithm outper-

forms the per-block implementation of the same algorithm in the best-case scenario (elimination of

thread divergence by choice of identical initial conditions).

Various studies in recent years explored the use of high-performance SIMT devices to accelerate

(turbulent) reactive-flow simulations. Spafford et al. [24] investigated a GPU implementation of

a completely explicit—and thus well suited for SIMT-acceleration—direct numerical simulation

code for compressible turbulent combustion. Using a Tesla C1060 GPU, an order of magnitude

speedup was demonstrated for evaluation of species production rates compared to a sequential CPU

implementation on a AMD-Operton processor; evaluating chemical source terms is much simpler

than chemical kinetics integration on GPUs. Shi et al. [25] used a Tesla C2050 GPU to evaluate

species rates and factorize the Jacobian for the integration of (single) independent kinetics systems,

5



showing order-of-magnitude or greater speedups for large kinetic models over a CPU-based code on

a quad-core Intel i7 930 processor which used standard CHEMKIN [26] and LAPACK [27] libraries for

the same operations; it was not clear how/if the CPU code was parallelized. Niemeyer et al. [20]

implemented an explicit fourth-order Runge–Kutta integrator for a Tesla C2075 GPU, and found a

speedup of nearly two orders of magnitude with a nonstiff hydrogen model when compared with a

sequential CPU-code utilizing a single core of an Intel Xeon 2.66 GHz CPU. In a related work, Shi

et al. [28] developed a GPU-based stabilized explicit solver on a Tesla C2050 and paired it with a

CPU-based implicit solver using a single-core of a quad-core Intel i7 930 that handled integration of

the most-stiff chemistry cells in a three-dimensional premixed diesel engine simulation; the hybrid

solver was 11–46× faster than the implicit CPU solver. Le et al. [29] implemented GPU versions of

two high-order shock-capturing reactive-flow codes on a Tesla C2070, and found a 30–50× speedup

over the baseline CPU version running on a single core of a Intel Xeon X5650. Stone and Davis [21]

implemented the implicit VODE [30] solver on a Fermi M2050 GPU and achieved an order of

magnitude speedup over the baseline CPU version running on a single core of a AMD Opteron 6134

Magny-Cours. They also showed that GPU-based VODE exhibits significant thread divergence,

as expected due to its complicated program flow compared with an explicit integration scheme.

Furthermore, Stone and Davis [21] found that a per-thread implementation outperforms a per-block

version of the same algorithm for ∼104 independent IVPs or more; the per-block implementation

reached its maximum speedup for a smaller number of IVPs (∼103). Niemeyer and Sung [22]

demonstrated an order-of-magnitude speedup for a GPU implementation of a stabilized explicit

second-order Runge–Kutta–Chebyshev algorithm on a Tesla C2075 over a CPU implementation

of VODE on a six-core Intel X5650 for moderately stiff chemical kinetics. They also investigated

levels of thread divergence due to differing integrator time-step sizes, and found that it negatively

impacts overall performance for dissimilar IVP initial conditions in a thread-block. Sewerin and

Rigopoulos [23] implemented a three-stage/fifth-order implicit Runge–Kutta GPU method [31] on a

per-block basis for high-end (Nvidia Quadro 6000) and consumer-grade (Nvidia Quadro 600) GPUs,

as compared to a standard CPU (two-core, four-thread Intel i5-520M) and a scientific workstation

(eight-core, 16-thread Intel Xeon E5-2687W) utilizing a message passing interface for parallelization;

the high-end GPU was at best 1.8× slower than the workstation CPU (16 threads), while the

consumer level GPU was at best 5.5× slower than the corresponding standard CPU (four threads).

While increasing numbers of studies have explored GPU-based chemical kinetics integration,

there remains a clear need to find or develop integration algorithms simultaneously suited for the
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SIMT parallelism of GPUs (along with similar accelerators) and capable of handling stiffness. In

this work we will investigate GPU implementations of several semi-implicit and implicit integration

techniques, as compared with their CPU counterparts and the baseline CPU CVODE [32] algorithm.

Semi-implicit methods do not require solution of non-linear systems via Newton iteration—as re-

quired for implicit integration techniques—and instead solve sequences of linear systems [31]; ac-

cordingly these techniques are potentially better suited for SIMT acceleration due to an expected

reduction of thread divergence (for a per-thread implementation) compared with implicit methods.

Several groups [33, 34] previously suggested so-called matrix-free methods as potential improve-

ments to the expensive linear-system solver required in standard implicit methods. These methods

do not require direct factorization of the Jacobian, but instead use an iterative process to approxi-

mate the action of the factorized Jacobian on a vector. Furthermore, Hochbruck and Lubich [35, 36]

demonstrated that the action of the matrix exponential on a vector obtained using Krylov subspace

approximation converges faster than corresponding Krylov methods for the solution of linear equa-

tions. Others explored these semi-implicit exponential methods for applications in stiff chemical

systems [37, 38] and found them stable for time-step sizes greatly exceeding the typical stability

bounds.

Since GPU-based semi-implicit exponential methods have not been demonstrated in the litera-

ture, we aim to conduct a systematic investigation to test and compare their performance to other

common integration techniques. Finally, we will study the three-stage/fifth-order implicit Runge–

Kutta algorithm [31] investigated by Sewerin and Rigopoulos [23] here to determine the impact of

increasing stiffness on the algorithm and the performance benefits of using an analytical Jacobian

matrix, such as that developed by Niemeyer et al. [39–41].

Recently, implicit methods improved using adaptive preconditioners have shown promise in re-

ducing integration costs for large kinetic models, compared with implicit methods based on direct,

dense linear algebra [42]. These require use of linear iterative methods in addition to the standard

Newton iteration, and thus we expect increased levels of thread-divergence (and integrator perfor-

mance penalties) for the per-thread approach used in this work. However, this area merits future

study.

The rest of the paper is structured as follows. Section 2 lays out the methods and implementation

details of the algorithms used here. Subsequently, Sec. 3 presents and discusses the performance

of the algorithms run using a database of partially stirred reactor thermochemical states, with

particular focus on the effects of thread divergence and memory traffic. Further, this work is a
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starting point to reduce the cost of reactive-flow simulations with realistic chemistry via SIMT-

accelerated chemical kinetics evaluation. Thus, we explore the potential impact of current state-of-

the-art GPU-accelerated stiff chemical kinetic evaluation on large-scale reactive-flow simulations in

Sec. 3, while identifying the most promising future directions for GPU/SIMT accelerated chemical

kinetic integration in Sec. 4. The source code used in this work is freely available [43]. Appendix A

discusses the validation and performance data, plotting scripts, and figures used in creation of this

paper, as well as the supplementary material which includes unscaled plots of integrator runtimes

and characterizations of the partially stirred reactor data for this work.

2. Methodology

In this section, we discuss details of the algorithms implemented for the GPU along with third-

party software used. The generation of testing conditions will be discussed briefly, and the developed

solvers will be verified for expected order of error.

2.1. Integration techniques

Method CPU GPU

CVODE ×
Radau-IIA × ×
exp4 × ×
exprb43 × ×

Table 1: The solvers used in this study, and platforms considered for each.

We investigated GPU implementations of three integration methods in this work, namely Radau-

IIA [31], exp4 [36], and exprb43 [44], comparing them against equivalent CPU versions and a CPU-

only implicit algorithm CVODE [9, 32]. Table 1 lists these solvers and their corresponding platforms.

While we describe important details or changes made in this work, full descriptions of all algorithms

may be found in the cited sources. The pyJac software [39–41] provided subroutines for both

chemical source terms and the analytical constant-pressure, mass-fraction-based Jacobian matrix

used by CPU- and GPU-based algorithms. We evaluated the relative performance impact of using

a finite-difference Jacobian matrix (as compared with an analytical Jacobian) for both platforms

with a first-order finite difference method based on that of CVODE [32]. pyJac also provided the
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chemical source terms used by the finite-difference Jacobian in all cases. We direct readers to our

previous work [40, 41] for verification and performance assessments of pyJac itself.

First, the CVODE solver [9, 32] (part of the SUNDIALS suite [45]) provided the baseline performance

of a typical CPU-based (maximum of fifth-order) implicit integration technique. In addition, we

developed CPU versions of the methods under investigation for direct comparison to the high-order

implicit technique. These include the three-stage/fifth-order implicit Runge–Kutta algorithm [31]

(Radau-IIA), the fourth-order exponential Rosenbrock-like method of Hochbruck et al. [36] (exp4),

and the newer fourth-order exponential Rosenbrock method [44] (exprb43). For the exponential

methods, we used the method of rational approximants [46] paired with the Carathédothy–Fejér

method [47, 48] to approximate the action of the matrix exponential on a vector, as suggested

by Bisetti [37]. This technique relied on the external FFTW3 library [49, 50]. However, unlike the

approach of Bisetti [37], we developed a custom routine based on the algorithm presented by Stew-

art [51] to perform LU decomposition of the Hessenberg matrix resulting from the Arnoldi iteration.

Convergence of the Arnoldi iteration algorithm was computed using the second term of the expo-

nential matrix/vector product infinite series, as suggested in several works [37, 52]. The exponential

integrators used a rational approximant of type (10, 10) as suggested by Bisetti [37]. To ensure high

performance of CPU-based methods, the Intel MKL library version 11.3.2 handled linear algebra

(i.e., BLAS/LAPACK) operations. Next, we developed GPU versions of the Radau-IIA, exp4, and

exprb43 methods. These follow the same descriptions as the CPU versions, but require specialized

implementations of several BLAS and LAPACK methods, mostly related to LU factorization of

the Jacobian or Hessenberg matrices. All GPU routines were developed using the NVIDIA CUDA

framework [14, 15], and a block-size of 64 threads (8 blocks per SM) was found to be most efficient

for all solvers. All solvers used adaptive time-stepping techniques; the Radau-IIA and CVODE in-

tegrators have built-in adaptive time-stepping, while the exponential methods, exp4 and exprb43,

used a standard adaptive time-stepping technique [31]. The adaptive time stepping procedures of

all integrators used absolute and relative tolerances of 10−10 and 10−6 , respectively, throughout the

work. Finally, the Jacobian was reused on a per-thread (per-IVP) basis according to the built-in

rules for the implicit methods, and only recomputed on step failures for the exponential methods.

2.2. Testing conditions

In order to measure the performance of the integrators for realistic conditions, a database of

thermochemical states covering a wide range of temperatures and species mass fractions was gen-
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erated using a previously developed constant-pressure stochastic partially stirred reactor (PaSR)

code [39, 41]. We selected two chemical kinetic models to span the range of model sizes typically

used in high-fidelity simulations: the hydrogen model of Burke et al. [53] with 13 species and 27

reactions, and the GRI-Mech 3.0 model for methane with 53 species and 325 reactions [54]. The

PaSR simulations were performed at the conditions listed in Table 2 for 10 residence times to reach

a statistical steady state; Niemeyer et al. [41] describe the PaSR simulation process in greater de-

tail, which follows approaches used by others [55–57]. The PaSR particles were initialized using the

equilibrium state, and gradually move away from equilibrium conditions due to mixing, inflow, and

outflow. In order to reduce the influence of equilibrium conditions on the solution runtime trends

for small numbers of IVPs, the first 1000 datapoints were removed from each database; this corre-

sponds to a single pairing time, τpair, the time interval at which selected particles in the reactor are

randomly swapped with inflowing particles. At this point in the simulation, ∼ 80 % of the particles

were at or near an equilibrium state, and by the 5000th datapoint only ∼ 20 % of the particles were

near equilibrium. The hydrogen and GRI-Mech 3.0 databases consisted of 899,900 and 449,900 total

conditions, respectively. Further characterization of the PaSR conditions used in this work can be

found in Appendix A and our previous study [41].

Parameter H2/air CH4/air

φ 1.0

Tin 400, 600, and 800K

p 1, 10, and 25 atm

Np 100

τres 10ms 5ms

τmix 1ms 1ms

τpair 1ms 1ms

Table 2: PaSR parameters used for hydrogen/air and methane/air premixed combustion cases, where φ indicates

equivalence ratio, Tin is the temperature of the inflowing particles, p is the pressure, Np is the number of particles in

the reactor, τres is the residence time, τmix is the mixing time, and τpair is the pairing time.

2.3. Solver verification

To investigate the correctness of the developed solvers, the first 10,000 conditions in the hydrogen

database were integrated by each solver using a global time-step size of 10−6 s. The error for
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Figure 2: Maximum error of the three CPU solvers as a function of the total number of internal integration steps

taken (corresponding to decreasing time-step size). Larger square and circle symbols indicate the use of Krylov

subspace approximations with the exponential methods, while the smaller symbols indicate the use of “exact” Krylov

subspaces. Data, plotting scripts, and figure file are available under CC-BY [13].

condition i was then determined using the weighted root-mean-square error

Ei(t) =

∥∥∥∥ yi(t)− ŷi(t)
atol + ŷi(t)× rtol

∥∥∥∥
2

, (1)

where the yi(t) is the solution obtained from the various solvers, atol/rtol are the absolute/relative

tolerances, and ŷi(t) is the “true” solution obtained via CVODE using the same global time-step of

∆t = 10−6 s and absolute/relative tolerances of 10−20 and 10−15, respectively; note that the more

stringent tolerances were used only to obtain the “true” solution. The maximum error over all

conditions:

|E| = max
i=1,...,10,000

{Ei(t)} (2)

was then used to measure the error of each solver. The error measurement used the same tolerances

as for the performance testing (atol = 10−10 and rtol = 10−6, respectively). The constant internal

time-step size was then varied from 10−6–10−11 s—corresponding to 100–105 internal integration

steps—to measure the convergence rates of the three solvers used in this study.

Figure 2 shows the convergence of error for the CPU solvers with decreasing internal time-step

size, shown as increasing number of integration steps taken. The error of the Radau-IIA integrator
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drops nearly four orders of magnitude when changing from a single internal time step of 10−6 s

to ten internal time steps of 10−7 s each, i.e., fourth-order convergence. Increasing the number of

integration steps—by further reducing the internal time-step size—past this point results in one

further drop in error (of order ∼ 3); however for more than 103 steps the overall error begins to

climb due to accumulation of local error. Since the Radau-IIA solver is nominally fifth-order, it

is unclear whether we are observing order reduction due to the stiffness of the problem, use of a

numerically obtained “true” solution, or an accumulation of local error. Although a more accurate

assessment of convergence order might be achieved through use of a stiff sample problem with an

analytical solution—e.g., HIRES [31] or ROBER [58]—direct validation with the problem at hand

was conducted here.

The exponential solvers utilizing an approximate Krylov subspace exhibit larger levels of error

in general, with |E| ∼ O(1)–O(10) for a single internal integration step of δt = 10−6 s. As the

time-step size is decreased, the convergence of the Arnoldi algorithm is affected by the internal

integration time-step size (the matrix exponentials and error estimates are scaled by the internal

time-step). To study the effect of the Arnoldi algorithm on error, Fig. 2 also presents the error

convergence of the exponential integrators with the Krylov approximation error reduced far below

the error of the overall method (for larger internal time-steps). Practically, this was accomplished by

detecting when the nth Krylov subspace vector approaches zero, a condition known as the “happy

breakdown” in literature [59]. At this limit, the approximate exponential matrix/vector product

approaches the exact value and thus the Krylov approximation error is relatively small compared

to the error of the overall method. It is clear the that error induced by the “exact” Krylov subspace

is non-zero however, as both methods reach a minimum error around 102 steps and are unaffected

by further step-size decreases, in contrast to the Radau-IIA solver which exhibits increasing error

past this point due to local error accumulation. Figure 2 shows that the exponential methods

achieve only first-order convergence to the true solution with the approximate Krylov subspace,

but both methods converge at higher rates with the “exact” Krylov subspace. The nominal fourth-

order convergence of the exp4 algorithm is a classical nonstiff order, and thus order reduction is

expected for stiff problems [37, 60]; the exp4 solver reaches roughly second-order convergence with

the “exact” Krylov subspace. The exprb43 solver reaches third-order convergence with the “exact”

Krylov subspace. Similar to the discussion on the Radau-IIA convergence order, it is difficult to

determine whether order reduction has occurred due to problem stiffness, the use of a numerically

obtained “true” solution, or some combination thereof. Furthermore, the error of Krylov subspace
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approximation dominates the error measurement |E|. From Fig. 2 we conclude that all three solvers

produce reasonably accurate solutions as compared with CVODE. Additionally, although not shown,

the GPU solvers produce identical results.

3. Results and discussion

We studied the performance of the three integrators by performing constant-pressure, homoge-

neous reactor simulations with two global integration time-step sizes, ∆t = 10−6 s and ∆t = 10−4 s,

for each integrator. Initial conditions were taken from the PaSR databases described in Sec. 2.2.

A larger global time step induces additional stiffness and allows evaluation of the performance

of the developed solvers on the same chemical kinetic model with varying levels of stiffness. In

reactive-flow simulations, the chemical integration time-step is typically determined by the flow

time-scale and stability requirements determined by the Courant–Friedrichs–Lewy number. Typ-

ical global time-step values of reactive-flow simulations are not always clear in the literature, as

adaptive time-stepping is often used, or the global time-step size is simply not reported; our own

experience suggests global time-step sizes ranging from 10−7 s to 10−4 s. The global time-step size

used in a given simulation depends highly on the problem and numerical methods, but large-eddy

simulations usually require higher time resolution than Reynolds-averaged Navier–Stokes simula-

tions [61]. Hence, the global time-step sizes we selected for study represent realistic values used in

large-eddy [62, 63] and Reynolds-averaged Navier–Stokes [64, 65] simulations.

Runtimes are reported as the average over five runs, where each run started from the same

set of PaSR conditions. All CPU integrators were compiled using gcc 4.8.5 (with the compiler

options “-O3 -funroll-loops -mtune=native”) and executed in parallel via OpenMP on four ten-

core 2.2GHz Intel Xeon E5-4640 v2 CPUs with 20MB of L3 cache memory, installed on an Ace

Powerworks PW8027R-TRF+ with a Supermicro X9QR7-TF+/X9QRi-F+ baseboard. OpenMP

was used to parallelize on a per-condition basis; i.e., each individual OpenMP thread was responsible

for integrating a single chemical kinetic IVP, rather than cooperating with other OpenMP threads

to solve the same. A six-core 2.67GHz Intel Xeon X5650 CPU hosted the GPU integrators, which

were compiled using nvcc 7.5.17 (with compiler options “-arch=sm_20 -O3 -maxrregcount 63

--ftz=false --prec-div=true --prec-sqrt=true --fmad=false”) and run on a single NVIDIA

Tesla C2075 with 6GB of global memory. Reported runtimes for the GPU-based algorithms include

time needed for CPU–GPU data transfer before and after each global time step; in addition, the

function cudaSetDevice() initialized the GPU before timing to avoid any device initialization delay.
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The open-source pyJac software [39–41] produced CPU and GPU custom source-code functions

for the chemical source terms and analytical Jacobian matrix evaluation. Finally, the L1/shared-

memory cache was set to prefer a larger L1 cache using the cudaDeviceSetCacheConfig() function.

3.1. Runtime performance

For all cases in this section, the integrator runtimes are presented as the runtime per IVP

solved, for two reasons. First, saturation of the available computational resources becomes visually

apparent (transition from a nearly linear decrease to a flat trend), and second, it allows certain other

performance trends (e.g., the effects of thread divergence) to be easily highlighted. The presentation

of the performance data in raw form is also available in the supplementary material for completeness.

Figure 3 shows the runtimes of the CPU and GPU integrators for the hydrogen model. In

Fig. 3a the runtimes per IVP for the CPU integrators for a single global time-step of ∆t = 10−6 s

decrease approximately linearly with the number of IVPs for small numbers of initial conditions

(shown here on a log-log plot). For small numbers of IVPs, the exponential integrators are faster

than the implicit integration techniques due to the modest stiffness of the hydrogen model; even

with many near-equilibrium states removed from the beginning of the PaSR database, the model

is not particularly stiff for this small time-step size. Larger numbers of IVPs begin to saturate the

CPU resources, and the runtime per IVP levels off to a more constant value; vertical lines are shown

in Fig. 3 where the relative change in runtime per IVP between successive data-points is first smaller

than 15% (based on the results for CVODE/Radau-IIA for the CPU/GPU respectively). Eventually,

relatively more stiff conditions are encountered and the performance of the implicit integration

techniques catches up and then surpasses that of the exponential integrators; CVODE is the most

efficient solver on the CPU when solving more than 104 IVPs; however, CVODE is only ∼1.87× faster

than the slowest solver (exprb43) on the whole database. Figure 3c shows the performances of

the GPU integrators for the smaller global time-step size, which exhibit similar trends as the CPU

solvers: a linearly decreasing solution cost that reaches a roughly constant value beyond 103–104

IVPs. Unlike for the CPU solvers, the GPU-based Radau-IIA performs faster than the exponential

solvers for all numbers of IVPs. As will be seen in Sec. 3.3, both solver classes experience minimal

thread divergence due to differing internal integration time-step sizes in this case. Therefore, we

conclude that the relatively slower runtimes per IVP for the exponential algorithms on the GPU

results from thread divergence in the Arnoldi iteration—caused by varying Krylov subspace sizes

between threads.
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(a) CPU performance results for ∆t = 10−6 s
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(b) CPU performance results for ∆t = 10−4 s
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(c) GPU performance results for ∆t = 10−6 s
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(d) GPU performance results for ∆t = 10−4 s

Figure 3: Average runtimes of the integrators on the CPU and GPU, scaled by the number of IVPs, for the hydrogen

model at two different global time-step sizes. Estimation of where the runtime per IVP levels off to a constant value

(based on the results for CVODE/Radau-IIA for the CPU/GPU, respectively) is marked with a vertical line for all

cases. Error bars indicate standard deviation. Data, plotting scripts, and figure files are available under CC-BY [13].
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Figures 3b and 3d show the performance of the integration algorithms on both platforms for

the hydrogen model with a single larger global time step (∆t = 10−4 s). The performances of

the CPU integration algorithms show similar trends to those of the smaller global time-step size

case: decreasing cost per IVP before reaching a more constant performance for higher numbers of

IVPs. The larger global time-step size induces additional stiffness, and the implicit solvers are more

efficient for most numbers of IVPs; CVODE is again the most efficient CPU solver. Figure 3d shows

the performance of the GPU solvers for the larger global time-step size. The exponential solvers

exhibit significant spikes in computational cost when changing from 2–4 and 16–32 IVPs, with the

latter mimicked somewhat by the implicit Radau-IIA solver. A jump in solution cost between 2–4

IVPs is also present for the CPU exponential integrators, indicating stiffness as the primary cause.

On the other hand, between 16–32 IVPs the CPU exponential solvers exhibit only a very minor

performance decrease, while the GPU-based Radau-IIA also shows a decrease in performance at

the same point—a trend completely absent in the CPU Radau-IIA version. These factors indicate

that thread divergence also plays a key role in the performance trend here, and will be investigated

further in Sec. 3.3. As in case of the smaller global time-step size, the Radua-IIA solver is the most

efficient GPU algorithm in all cases.

Figure 4 shows the runtime of the integrators for the GRI-Mech 3.0 model. Similar to the

hydrogen case for the smaller global time-step size, the CPU exponential integrators are more ef-

ficient (Fig. 4a) for the near-equilibrium conditions at the beginning of the database. For larger

numbers of conditions, the implicit integrators are more efficient, and CVODE again performs the

fastest. Compared with the hydrogen model (Fig. 3a), the CVODE performs better than the ex-

ponential algorithms for the GRI-Mech 3.0 model with the small global time-step size (Fig. 4a),

reaching a speedup of 2.18× over exp4 on the whole database; this results from the higher stiffness

present in the model. This performance gap between the CPU implicit/exponential integrators in-

creases for the larger global time-step size (Fig. 4b); CVODE is 10.1× faster than exp4 on the whole

database. Comparing the performance of the CPU implicit solvers between the two kinetic models

shows roughly an order-of-magnitude performance decrease for both global time-step sizes. This

phenomena, due largely to the increase in model size, is also seen for the Radau-IIA GPU solver

for the smaller global time-step size; the performance of which decreases by just over an order of

magnitude. However, for the larger global time-step size, the GPU-based Radau-IIA solver performs

roughly two orders-of-magnitude slower compared with the hydrogen case. As will be examined in

Sec. 3.3, this dramatic decrease likely results from increased thread divergence in the Radau-IIA
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(a) CPU performance results for ∆t = 10−6 s
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(b) CPU performance results for ∆t = 10−4 s
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(c) GPU performance results for ∆t = 10−6 s
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(d) GPU performance results for ∆t = 10−4 s

Figure 4: Average runtimes of the integrators, scaled by number of IVPs, on the CPU and GPU for the GRI-Mech

3.0 model at two different global time-step sizes. Estimation of where the runtime per IVP levels off to a constant

value (based on the results for CVODE/Radau-IIA for the CPU/GPU respectively) is marked with a vertical line for all

cases. Error bars indicate standard deviation. Data, plotting scripts, and figure files are available under CC-BY [13].
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solver, as well as the increased memory traffic inherent in the larger model.

Unlike for the hydrogen model, the exprb43 solver outperforms exp4 with the GRI-Mech 3.0

model in almost all cases for the larger global time-step size for both the CPU and GPU. Although

the exprb43 and exp4 algorithms each require three exponential matrix function approximations per

step, a single internal time step of exprb43 is more expensive due to the extra chemical source term

evaluations, matrix multiplications, and higher-order exponential matrix function requirement. As

such, the relatively simpler CPU exp4 integrator outperforms the CPU exprb43 integrator for the

hydrogen model where there is relatively less stiffness. However, as previously discussed the exp4

algorithm may experience order reduction for stiff problems, and the exprb43 algorithm typically

outperforms exp4 on both the CPU and GPU in the larger global time-step GRI-Mech 3.0 case as

a result.

3.2. CPU/GPU performance comparison

Comparing the performance of CPU- and GPU-based integrators in a meaningful way is chal-

lenging. First, the vastly different nature of the processing cores in each platform eliminates the

possibility of comparing performance normalized by core count. In addition, the floating-point oper-

ation count is not readily available for chemical kinetics integration—unlike many GPU-accelerated

applications where the number of operations required to solve the problem is known, e.g., as in

linear-algebra operations or fast Fourier transforms—which precludes comparing performance on

the basis of floating-point operations per second (FLOPS). Although the runtimes of the GPU in-

tegration algorithms can be directly compared with that of the CPU-based solvers (and often are),

these figures do not provide much useful information. For instance, if a GPU algorithm performs

10× faster than its equivalent on two six-core CPUs, how does this compare to two eight-core CPUs,

etc.?

For researchers in numerical combustion, two issues stand out as particularly important for

performance evaluation: runtime and cost. As established in Sec. 1, large-scale reactive-flow simu-

lations with realistic chemical kinetic models are extremely computationally expensive, and remain

outside of the capabilities of most in the field. With this in mind, we ask, for a given simulation,

what is the effect on the overall runtime of adding more CPU cores compared with adding GPU

accelerators? In addition, if a budget is allocated to expand available computational resources, how

might these funds be best allocated? To answer these questions, we derived an estimate of the

number of CPU cores required for equivalent performance on the GPU.
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A nominal performance metric for both the CPU- and GPU-based integration algorithms must

first be obtained. As the most efficient solvers in all cases with large numbers of IVPs are CVODE

for the CPU and Radau-IIA for the GPU, these algorithms will be considered the performance

benchmarks. Furthermore, most large-scale simulations consist of millions of cells (or more), and

therefore we only consider the performance limit of each algorithm (i.e., the cost per IVP of each

algorithm in the region where this cost reaches an approximately constant value). To this end,

the previously discussed threshold—the first relative change in runtime per IVP between successive

data-points smaller than 15% (based on CVODE/Radau-IIA for the CPU/GPU accordingly)—is used,

and marked as vertical lines on Figs. 3 and 4. The cost per IVP above and including these thresholds

was averaged and forms our nominal performance measure. The CPU performance measure must

also be normalized by the total number of cores used: 40. Table 3 presents the ratios of these

performance measures, which give estimates for the number of CPU cores required to equal the

GPU performance for the cases studied. The GPU is roughly equivalent to 12 or more CPU cores

for all cases except GRI-Mech 3.0 with the larger global time-step size, and equivalent to at most

38 cores for the hydrogen case with the smaller global time-step size. With the increasing size of

the chemical kinetic model, the equivalent CPU core count of the GPU Radau-IIA solver drops

significantly. As will be discussed in Sec. 3.3, this drop in performance is primarily due to higher

memory traffic requirements, however increased levels of thread divergence also play a role. Although

this work represents the current state-of-the-art for implicit integration of stiff chemical kinetic IVPs

on the GPU, it is clear that more effort is required to improve GPU performance for larger chemical

kinetic models. Approaches to mitigate these issues will be discussed in the subsequent section.

Global time-step size
# equivalent CPU cores

Hydrogen GRI-Mech 3.0

10−6 s 38 12

10−4 s 15 3

Table 3: The number of CPU cores (roughly) required for equivalent performance to a single GPU for the combinations

of chemical kinetic models and global time-step sizes studied.

At the time of writing, the ten-core Intel Xeon E5-4640 v2 CPU used in this study was listed

for a recommended customer price of $2725 [66], while a new Tesla C2075 GPU is available for

∼$1400 [67]. These prices are only rough estimates of the actual cost of these devices, since the
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actual price for the Intel CPU may be significantly less in a configured server node, while the

Tesla C2075 is no longer sold directly by NVIDIA—thus the prices are variable. Furthermore, the

performance decrease using an older, cheaper CPU (e.g., the Intel Xeon X5650 used as host processor

for the GPU simulations in this work) may not be that large. However, combined with the equivalent

core counts in Table 3, this information suggests that the Tesla C2075 is a reasonable investment

to supplement computing power for chemical-kinetic integration in large-eddy simulations.

3.3. Effects of thread divergence and memory traffic

Thread divergence and memory traffic are two performance concerns particularly important for

chemical kinetics integration on GPU and SIMT platforms. Slowdown due to memory traffic for

a GPU integration algorithm implemented on a per-thread basis primarily results from the small

amount of on-chip memory available. Implicit integration algorithms, which typically require storage

of the Jacobian matrix and/or factorized forms thereof, can quickly overwhelm the registers and L1

cache memory available to each thread and cause many slow global memory accesses. Reformulating

the chemical kinetic equations to generate sparse Jacobian matrices [68] would greatly benefit GPU-

based integration algorithms due to the reduced memory requirements, and in addition enable use

of sparse multiplication/factorization algorithms (from which a CPU-based algorithm would also

benefit); this is a planned improvement to the pyJac software [39, 41].1 Further, the Tesla C2075

GPU used in this study was originally released nearly five years ago and is several generations old;

the newer Tesla K40 is available for a similar price, $2950 [69], as the Xeon E5-4640 v2 CPU used

in this study, and has 2× registers available per block [15] and 6.4× as many CUDA cores [70] as

the Tesla C2075 used. Using a newer GPU model could significantly improve solver performance

for larger models by relieving the scarcity of on-chip memory in a per-thread approach. Finally, a

per-block approach may be required to efficiently integrate the largest models on the GPU, due to

the much higher amount of cache memory allocated for each IVP solution.

The performance penalty due to thread divergence depends both on the cost of the divergent

branches as well as the proportion of the warp that executes each branch. For example, if only

one thread in a warp executes an expensive branch (e.g., a Jacobian update), the rest of the warp

remains idle during that time, and the SM may become severely underutilized. To investigate the

1Bisetti [37] demonstrated a method to exploit the underlying sparsity of a dense mass-fraction-based constant-

pressure Jacobian matrix (used in this study) to accelerate Jacobian-vector multiplications; however, a reformulation

is still more attractive as it enables sparse-LU factorization.

20



effects of thread divergence further, we adopted a modified version of the quantification of thread

divergence of Niemeyer and Sung [22]:

D = 1−
∑32

i=1 di
32× max

i=1,...,32
di
, (3)

where di is the number of internal integrator time steps taken to reach the global time step by thread

i in a warp (which consists of 32 threads). D represents the similarity of internal time step counts

across threads in a warp—a significant source of thread divergence. If all threads in a warp use

identical internal integration time steps and thus the warp experiences no thread divergence from this

source, then D = 0; however, if a warp experiences an unbalanced number of internal integration

time steps, then D → 1. Differing internal time-step sizes are not the only source of thread

divergence for the GPU integration algorithms. For instance, threads in a warp may use different

Krylov subspace sizes for the exponential integrators or different numbers of Newton iterations for

the Radau-IIA solver. Indeed, Sec. 3.1 notes that we suspect thread divergence from differing Krylov

subspace sizes as the reason the exponential solvers are less efficient for small numbers of IVPs for

the hydrogen model with the small global time-step size. However, these operations clearly cost less

than an entire internal integration step (in which they are embedded) and thus we look only at the

thread divergence of internal integration time steps. Thread divergence of such operations within an

internal integration step could play an important role and will be investigated in our future work.

Figures 5a and 5b show the distribution of the divergence measure D for the Radau-IIA solver

with both global time-step sizes and kinetic models when run on 262,144 IVPs, spread across 8192

warps. For both kinetic models with the smaller global time-step size, nearly 100% of the warps

had a divergence measure near zero. Increasing the global time-step size causes the number of warps

with high levels of thread divergence (e.g. D > 0.5) to increase for both models. For the hydrogen

model, over 40% of warps were between D = 0.55 and D = 0.65, and the approximate equivalent

CPU core-count (Table 3) dropped by 2.5× between the small and large global time-step sizes.

Further, over 75% of warps were between D = 0.6 and D = 0.8 for the GRI-Mech 3.0 model for

the larger global time-step size, and subsequently a higher drop in performance of 4× occurred.

This observation motivates future work aimed at developing strategies to reduce thread divergence.

Potential solutions include adopting an IVP per-block approach [21], reordering IVPs to increase

similarity of stiffness inside a warp, or synchronizing internal time-step sizes between threads in

a warp. However, Figs. 5a and 5b do not explain the drop in equivalent core count between the

hydrogen model and the GRI-Mech 3.0 model for the smaller global time-step size. The minimal
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(a) Radau-IIA solver for hydrogen model
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(b) Radau-IIA solver for GRI-Mech 3.0 model
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(c) exprb43 solver for hydrogen model
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(d) exprb43 solver GRI-Mech 3.0 model
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(e) exp4 solver hydrogen model

0.0 0.2 0.4 0.6 0.8 1.0
Divergence measure D

0

20

40

60

80

100

Pe
rc

en
t

of
to

ta
lw

ar
ps

∆t = 10−6

∆t = 10−4

(f) exp4 solver GRI-Mech 3.0 model

Figure 5: Thread divergence estimate for the three solvers for both models and global time-step sizes. Data, plotting

scripts, and figure files are available under CC-BY [13].
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thread divergence of the Radau-IIA solver for both models at the smaller global time-step size

suggests that this drop in performance is primarily caused by the increased memory traffic of the

larger model, as well potential thread divergence inside the internal integration step; this further

motivates development of a sparse version of the pyJac [39, 41] software.

Figures 5c and 5d show the divergence levels of the exprb43 GPU solver. Similar to the

Radau-IIA solver, nearly 100% of warps for the exprb43 solver have no thread divergence due

to differing internal integration step sizes for the hydrogen model. The exprb43 thread divergence

levels increase somewhat for the GRI-Mech 3.0 model with the smaller time-step size; 27% of warps

still had a divergence measure of D = 0, but nearly 63% of the warps had divergence measures

between D = 0.05 and D = 0.2. With the larger time-step size, the exprb43 solver experiences

significantly more thread divergence for both models. The divergence measure distribution is fairly

similar to that of the Radau-IIA solver for the GRI-Mech 3.0 model, but most warps experience a

divergence measure of D ∼ 0.8 for the hydrogen model (versus D ∼ 0.6 for the Radau-IIA solver).

The semi-implicit solvers deal with stiffness less efficiently, and end up using a greater range of

internal time-step sizes between conditions of varying stiffness. This results in an increase in thread

divergence levels due to differing internal time-step sizes.

The relatively worse stiffness handling of the exp4 method is also apparent in Figs. 5e and 5f;

in most cases, significantly more thread divergence is seen for exp4 than for either of the other two

solvers. The exp4 algorithm is the only solver to show significant thread divergence even for the

hydrogen model for the smaller global time-step size. Further, the exp4 algorithm experiences more

thread divergence than the exprb43 for both models at the larger global time-step size.

3.4. Effect of using a finite-difference-based chemical kinetic Jacobian

While it is well established that using an analytical Jacobian matrix can significantly accelerate

chemical kinetics integration on the CPU (e.g., [5, 68, 71]), relatively little study has been directed

at use of a GPU-based analytical Jacobian. Dijkmans et al. [72] used a GPU-based analytical

Jacobian code to accelerate various CPU-based chemical kinetics integration schemes, and our own

previous works [40, 41] have detailed the performance of pyJac. However, to our knowledge no work

using an analytical Jacobian for GPU-based chemical kinetics integration has been published. In

this section, we explore the relative performance benefits of the analytical Jacobian compared with

a first-order finite-difference Jacobian on both the CPU and GPU. The exponential methods require

an exact Jacobian matrix (rather than an approximation as given by finite-difference methods), so
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their performance was not considered in this section.

Figure 6 shows the speedup achieved on both the CPU and GPU for the Radau-IIA algorithm

for various cases; the GRI-Mech 3.0 results for the larger global time-step size have been omitted

due to long run times. For the hydrogen model (Figs. 6a and 6b), using the analytical Jacobian

offers minimal performance benefit for the CPU-based integrators, reaching a maximum speedup of

1.49× and 1.39× for the small and large global time-step sizes, respectively. Our previous work [41]

demonstrated that evaluation of the analytical Jacobian was 5.28× faster on the CPU for the same

chemical kinetic model; thus, the minor speedup seen here results from reuse of the Jacobian

within the Radau-IIA solver, such that integration only requires a few Jacobian evaluations. In

some cases the finite-difference Jacobian solver may be faster than the analytical Jacobian solver;

although it is difficult to explain the exact cause of this phenomena, differences in the finite-difference

Jacobian likely caused the integrator to follow a slightly different instruction path (e.g., with fewer

Jacobian updates/chemical source term evaluations) changing the integration cost. However, for

large numbers of conditions, the analytical-Jacobian-based CPU solver indeed performs faster than

the finite-difference counterpart. In contrast, the analytical-Jacobian-based GPU solver performs

significantly faster than the finite-difference GPU solver in all cases for the hydrogen model, reaching

a maximum speedup of 12.16× for the smaller global time-step size. As discussed in Sec. 3.3,

significantly higher levels of thread divergence are expected for the larger global time-step size.

Correspondingly, the maximum speedup of the GPU solver increases to 240.96× for the larger

global time-step size. Figure 6c shows that the speedup of the CPU and GPU solvers reach 2.61×
and 7.11×, respectively, for the larger GRI-Mech 3.0 model at the smaller global time-step size.

It is clear that for a per-thread-based GPU integrator, using an analytical Jacobian is essential for

efficient integration due to thread-divergence concerns.

4. Conclusions

The large size and stiffness of chemical kinetic models for fuels traditionally requires the use

of high-order implicit integrators for efficient solutions. Past work showed orders-of-magnitude

speedups for solution of nonstiff to moderately stiff chemical kinetic systems using explicit solvers

on GPUs [20, 22, 29]. In contrast, work on stiff chemical kinetics integration with implicit GPU

solvers has been limited to specialized cases, or failed to surpass current CPU-based techniques.

This work demonstrated and compared the performances of CPU- and GPU-based integration

methods capable of handling greater stiffness, including an implicit fifth-order Runge–Kutta al-
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(a) Hydrogen model with ∆t = 1× 10−6 s
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(b) Hydrogen model with ∆t = 1× 10−4 s
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(c) GRI-Mech 3.0 model with ∆t = 1× 10−6 s

Figure 6: Ratio of the average finite-difference Jacobian based integrator runtime |RFD| to that of the analytical

Jacobian runtime |RAJ| for the Radau-IIA (CPU/GPU) solvers. Error bars indicate standard deviation, and the

horizontal lines show a ratio of one. Data, plotting scripts, and figure files are available under CC-BY [13].
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gorithm and two fourth-order exponential integration algorithms, using chemical source term and

analytical Jacobian subroutines provided by the pyJac software [39–41]. By comparing the perfor-

mance of these algorithms using two chemical kinetic models, including hydrogen with 13 species

and 54 reactions [53] and methane with 53 species and 325 reactions [54], and using two global

time-step sizes (10−6 s and 10−4 s), we drew the following conclusions, q:

• For global time-step sizes relevant to large-eddy simulations (e.g., ∆t = 10−6 s), the GPU-

based implicit Runge–Kutta method was roughly equivalent to the CPU-based implicit CVODE

integrator running on 12–38 CPU cores.

• At larger global time-step sizes, the performances of all GPU-based integrators decreased

significantly due to thread divergence.

• For a global time-step size relevant to Reynolds-averaged Navier–Stokes simulations (e.g.,

∆t = 10−4 s), the GPU-based implicit Runga–Kutta solver performed equivalent to CVODE

running on 15 cores for the hydrogen model, and just 3 cores for the GRI-Mech 3.0 model.

• The higher memory traffic required due to the size of the GRI-Mech 3.0 model significantly

decreased GPU solver performance; a sparse analytical chemical kinetic Jacobian formulation

must be developed to achieve high performance for still larger chemical kinetic models on the

GPU.

• The exponential solvers were significantly less efficient than the implicit integrators on the

CPU and GPU for all relevant cases.

• Using an analytical Jacobian matrix on the GPU is critical for efficient chemical kinet-

ics integration due to thread divergence; speedups of 7.11–240.96× over a finite-difference-

approximation were reached on the GPU, far surpassing the corresponding CPU speedup of

1.39–2.61×.

Based on these results, we conclude that the exponential solvers poorly fit the SIMT accel-

eration paradigm due to high levels of thread divergence combined with the relatively high cost

of integration steps due to Arnoldi iteration (as compared with other semi-implicit integration

techniques). Instead, we recommend directing further focus on stiff semi-implicit solvers such as

(non-exponential) Rosenbrock solvers, explored for the CPU by Stone and Bisetti [71], and inexact

Jacobian W-methods [73, 74]. Further improvements to the analytical Jacobian code, e.g., by using
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a chemical kinetic system based on species concentrations to increase Jacobian sparsity, are likely

to further increase performance of the developed algorithms. Additionally, newer GPUs should be

tested to examine the ability of larger cache sizes and more available registers to improve perfor-

mance by reduction of slow global memory loads/stores; a per-block solution still may need to be

adopted for efficient integration of larger chemical kinetic models. However, this work also showed

that thread divergence poses a challenge to high performance of GPU-based integration techniques

on a per-thread basis. Our future work will therefore include a more comprehensive study of thread

divergence, as well as developing methods to mitigate or eliminate its negative performance impact.

Finally, new integration techniques will be investigated and paired with work studying the selection

of appropriate solvers based on estimated stiffness.

Acknowledgments

This material is based upon work supported by the National Science Foundation under grants

ACI-1534688 and ACI-1535065.

Appendix A.

The results for this paper were obtained using accelerInt v1.0-beta [43]. The most recent

version of accelerInt can be found at its GitHub repository https://github.com/SLACKHA/

accelerInt. All figures as well as the data and plotting scripts necessary to reproduce them,

are available openly under the CC-BY license [13].

Supplementary material associated with this article includes unscaled plots of integrator run-

times and characterizations of the partially stirred reactor data for this work.
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