
Using SIMD and SIMT vectorization to evaluate sparse
chemical kinetic Jacobian matrices and thermochemical

source terms

Nicholas J. Curtisa,∗, Kyle E. Niemeyerb, Chih-Jen Sunga

aDepartment of Mechanical Engineering, University of Connecticut, Storrs, CT 06269,
USA

bSchool of Mechanical, Industrial, and Manufacturing Engineering, Oregon State
University, Corvallis, OR 97331, USA

Abstract
Accurately predicting key combustion phenomena in reactive-flow simula-
tions, e.g., lean blow-out, extinction/ignition limits and pollutant formation,
necessitates the use of detailed chemical kinetics. The large size and high
levels of numerical stiffness typically present in chemical kinetic models rele-
vant to transportation/power-generation applications make the efficient eval-
uation/factorization of the chemical kinetic Jacobian and thermochemical
source-terms critical to the performance of reactive-flow codes. Here we inves-
tigate the performance of vectorized evaluation of constant-pressure/volume
thermochemical source-term and sparse/dense chemical kinetic Jacobians us-
ing single-instruction, multiple-data (SIMD) and single-instruction, multiple
thread (SIMT) paradigms. These are implemented in pyJac, an open-source,
reproducible code generation platform. Selected chemical kinetic models cov-
ering the range of sizes typically used in reactive-flow simulations were used
for demonstration. A new formulation of the chemical kinetic governing
equations was derived and verified, resulting in Jacobian sparsities of 28.6–
92.0% for the tested models. Speedups of 3.40–4.08× were found for shallow-
vectorized OpenCL source-rate evaluation compared with a parallel OpenMP
code on an avx2 central processing unit (CPU), increasing to 6.63–9.44×
and 3.03–4.23× for sparse and dense chemical kinetic Jacobian evaluation,
respectively. Furthermore, the effect of data-ordering was investigated and
a storage pattern specifically formulated for vectorized evaluation was pro-
posed; as well, the effect of the constant pressure/volume assumptions and
varying vector widths were studied on source-term evaluation performance.
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Speedups reached up to 17.60× and 45.13× for dense and sparse evaluation
on the GPU, and up to 55.11× and 245.63× on the CPU over a first-order
finite-difference Jacobian approach. Further, dense Jacobian evaluation was
up to 19.56× and 2.84× times faster than a previous version of pyJac on a
CPU and GPU, respectively. Finally, future directions for vectorized chemi-
cal kinetic evaluation and sparse linear-algebra techniques were discussed.
Keywords: Chemical Kinetics, SIMD, SIMT, Sparse, Jacobian

1. Introduction

As the combustion and reactive-flows community has recognized the im-
portance of detailed chemical kinetics for predictive reactive-flow simula-
tions [1], chemical kinetic models have grown in size and complexity to
describe current and next-generation fuels relevant to transportation and
power generation. For example, a recent biodiesel model [2] consists of ~3500
chemical species and over 17,000 reactions. Moreover, the cost of evaluat-
ing the chemical source-terms scales linearly with the size of the model,
while evaluating and factorizing the chemical kinetic Jacobian respectively
scale quadratically and cubically with the number of species in the model, if
naively implemented via a finite-difference method [1]. These factors often
prohibit using detailed chemical kinetics in practice; e.g., in a direct numer-
ical simulation using a 22-species model, evaluating reaction rates consumed
around half of the total run time [3]. In addition, most common implicit
integration techniques need to evaluate and factorize the Jacobian matrix to
deal with stiffness. As a result, these operations are bottlenecks when using
even moderately sized chemical models in realistic reactive-flow simulations,
necessitating other cost-reduction strategies [1].

A host of techniques have been developed to lessen the computational
demand of chemical kinetic calculations while maintaining fidelity, falling
broadly into three categories: removal of unimportant species and reac-
tions [4–8], lumping of species with similar thermochemical properties [9–
11], and time-scale methods that reduce numerical stiffness [12–15]. We refer
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interested readers to the recent review by Turányi and Tomlin [16] for a
comprehensive overview.

In addition to the previously mentioned cost reduction methods, effort
has gone into improving the integration algorithms and codes that evaluate
the chemical kinetics [15, 17–19]. In particular, a carefully derived analytical
formulation of the Jacobian matrix can greatly increase sparsity [17] and drop
the cost of Jacobian evaluation to linearly depend on the number of species in
the model [1]; sparse-matrix techniques can then reduce the cost of Jacobian
factorization [20]. In addition, studies have shown that Single-Instruction,
Multiple-Data (SIMD) and the related Single-Instruction, Multiple-Thread
(SIMT) processors can accelerate chemical kinetic simulations [18, 21–25].

SIMD and SIMT programming are two important vector-processing paradigms
used increasingly in scientific computing. Traditional multicore parallelism is
now used to increase central processing unit (CPU) performance, as the expo-
nential growth in processing power—colloquially known as Moore’s law—has
slowed [26]. Recently, SIMD/SIMT processors, e.g., in the form of graphics
processing units (GPUs), have gained recognition due to their increased float-
ing operation throughput. The parallel programming standard OpenCL [27]
has further enabled adoption of vector processing in scientific computing by
providing a common application program interface (API) for execution on
heterogeneous systems, e.g., CPU, GPU, or Intel’s Many Integrated Core
(MIC) architecture. Here we will largely use OpenCL terminology to de-
scribe these processing paradigms, as it provides a convenient way to classify
otherwise disparate processor types (e.g., CPUs and GPUs). However, the
concepts discussed herein broadly apply to SIMD/SIMT processing.

A typical modern CPU contains multiple compute units (i.e., cores), each
with specialized vector processing units capable of running SIMD instruc-
tions, as Fig. 1a depicts. A SIMD instruction uses the vector processor
to execute the same floating-point operation (e.g., multiplication, division)
on different data concurrently. The vector-width is the number of possi-
ble concurrent operations, typically around two to four in double precision.1
Specialized hardware accelerators have also been developed, like Intel’s Xeon
Phi co-processor (i.e., the MIC architecture), that have tens of cores with

1OpenCL allows for use of vector-widths different from the actual hardware vector-
width via implicit conversion, and may provide some performance benefit as Sec. 3.5
discusses.
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(a) Schematic of SIMD processing.
A single compute unit (e.g., a CPU
core) contains a vector unit with Nv

processing elements (PEs), together
called a vector-lane. The vector unit
executes a single instruction concur-
rently on multiple data.
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(b) Schematic of SIMT processing.
A single compute unit (e.g., a GPU
streaming multiprocessor) contains
many processing elements (PEs) and
hosts many threads, each with an in-
struction to execute (I1, I2). Threads
with the same instruction execute
concurrently on multiple data while
the others must wait (leading to
thread divergence).

Figure 1: Simple diagrams explaining the fundamentals of the SIMD and SIMT vector-
processing paradigms.

wide vector-widths (e.g., 4–8 double-precision operations). Cutting-edge and
forthcoming Intel CPUs also include these wide vector-widths, like the Sky-
lake Xeon and Cannon Lake architectures.

Modern GPUs rely on the related computing paradigm of SIMT pro-
cessing, where a single compute element hosts large numbers of threads (a
streaming multiprocessor in Nvidia terminology) [28]. Figure 1b depicts a
SIMT compute unit, where a group of threads—typically 32, known as a
warp on Nvidia GPUs—execute the same SIMT instruction on multiple data
concurrently. If some threads must execute a different instruction, they are
forced to wait and execute later; this may occur due to if/then branching or
predication. This phenomenon, known as thread-divergence, is a key consid-
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eration for SIMT processing and can cause serious performance degradation
for complicated algorithms [24].

1.1. Related work
Recognizing the need to accelerate chemical-kinetic Jacobian evaluation

and factorization, a number of recent works have been published on con-
structing analytical Jacobian matrices; although as will be discussed at the
end of this section, here we offer several key improvements over past efforts.
Schwer et al. [17] were among the first to recognize the critical importance
of a sparse analytical Jacobian to accelerate chemical kinetic simulations.
Later, Safta et al. [29] developed the TChem software package, which was one
of the first developed that provides analytical Jacobian evaluation. However,
TChem has several limitations, including incompatibility with modern reac-
tion types—i.e., pressure-dependent Arrhenius (or P-Log) and Chebyshev
reactions—and its lack of thread-safety to enable parallel execution [30].
Youssefi [31] explored the importance of analytical Jacobian matrices for
time-scale analysis techniques as well as their effect on computational effi-
ciency in zero-dimensional homogeneous reactor simulations. Bisetti [32] de-
veloped an isothermal, isobaric analytical Jacobian code-generation utility;
this approach significantly increases Jacobian sparsity, although the chosen
isothermal assumption is not typical in most combustion simulations. In the
same work Bisetti also provided a novel way to compute dense matrix-vector
multiplications resulting from a change of system variables without storing
the full Jacobian. Perini et al. [33] developed an analytical Jacobian code
for constant-volume combustion, with additional options to increase sparsity
(at the expense of strict correctness) and tabulate temperature-dependent
properties; they reported an 80% speedup over a finite-difference-based Ja-
cobian when used in a multidimensional reactive-flow simulation. Gao et
al. [19] derived a sparse analytical Jacobian, but did not verify it outside the
context of use with an implicit-integration technique. In addition, since the
Jacobian was based on an over-constrained system [34], the effect on strict
conservation of mass/energy was not studied.

Recently, some groups have developed frameworks for constructing ana-
lytical Jacobians for evaluation on modern SIMD or SIMT processors. Dijk-
mans et al. [35] developed a GPU-based analytical Jacobian code with op-
tional tabulation of temperature-dependent properties, and showed speedups
up to 120× for zero-dimensional chemical kinetic integration with large
chemical models (~3000 species). Bauer et al. [36] used warp-specialization
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to improve GPU-vectorization over a standard data-parallel vectorization ap-
proach; they achieved speedups of up to 2.81–3.75×, 1.91–2.58×, and 1.4–
1.5× for evaluating viscosity, species diffusion, and chemical source terms,
respectively. Niemeyer et al. [18] created and verified the open-source analyt-
ical chemical kinetic Jacobian code-generator, pyJac, which supports parallel
execution on CPUs and SIMT execution on GPUs; pyJac enables a speedup
of 3–7.5× over a finite-difference Jacobian on the CPU.

Relevant to all of the aforementioned efforts, Hansen and Sutherland [34]
explored the choice of thermochemical state vectors and the resulting ef-
fect on consistency and errors in conserved properties such as mass and
energy. They also characterized how the choice of state vector affects im-
plicit/linearly implicit integration algorithms and chemical mode analysis
techniques. Overall they found that while many literature Jacobian formu-
lations are not strictly correct or over-specified, such flaws negligibly affect
Newton–Krylov methods—perhaps because the incorrect Jacobian reason-
ably approximates the true Jacobian. On the other hand, linearly implicit
algorithms like Rosenbrock methods and analysis techniques like chemical
explosive mode analysis [37] need accurate and correct Jacobians.

A number of recent works have investigated using high-performance SIMT
devices like GPUs to accelerate reactive-flow and chemical kinetics simula-
tions. Spafford et al. [3] coupled GPU-based chemical source-term evaluation
with an explicit direct numerical simulation code, achieving an order of mag-
nitude speedup compared to a CPU-based serial implementation. Shi et
al. [38] combined GPU-based chemical kinetic source-term evaluation and
Jacobian factorization with two implicit CPU solvers, achieving an order-of-
magnitude speedup for homogeneous reactor simulations of large chemical
models over a serial CPU implementation. Niemeyer et al. [39] implemented
an explicit solver for non-stiff chemistry on a GPU, achieving a speedup of
nearly two orders of magnitude over a sequential CPU code. Shi et al. [21]
proposed a strategy for chemical-kinetic integration in three-dimensional
reactive-flow simulations, where a traditional implicit integrator handled the
stiffest computational cells on a CPU and a stabilized-explicit solver solved
the less-stiff cells on a GPU; this hybrid solution technique performs 11–
46× faster than the implicit CPU solver alone for simulation of a premixed
diesel engine. Le et al. [40] found a 30–50× speedup for a GPU-based shock-
capturing reactive-flow code as compared with a sequential CPU version of
the same. Stone and Davis [41] investigated a GPU-based version of a com-
mon implicit integrator (VODE [42]), finding an order-of-magnitude speedup
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over a serial CPU implementation. Niemeyer and Sung [22] developed a
GPU-based stabilized explicit integrator for use with moderately-stiff chem-
ical kinetics, achieving an order of magnitude speedup over a multithreaded
VODE solver on a six-core CPU. Sewerin and Rigopoulos [23] studied a
fifth-order implicit Runge–Kutta solver on both consumer-grade and high-
end GPUs/CPUs; the high-end GPU solver was at best 1.8× slower than
the high-end CPU version running on 16 cores. Yonkee and Sutherland [43]
implemented accelerated evaluations of thermodynamic parameters, multi-
component transport properties, and species production rates on both the
CPU and GPU, achieving speedups over serial evaluation between 8–13×
on a 16-core CPU and 20–40× on the GPU. In addition, ~9× and ~25×
speedups were achieved for the simulation of a partially premixed methanol
flame for solving partial differential equations (PDE) on 16 CPU cores and
the GPU, respectively. Curtis et al. [24] implemented a fifth-order implicit
Runge–Kutta method [44], as well as two fourth-order exponential integra-
tion techniques [45, 46] paired with an analytical Jacobian code [18] on the
GPU and CPU. The GPU-based implicit Runge–Kutta method performed
equivalently to a standard implicit integrator [47] running on 12–38 CPU
cores for two relatively small chemical models with an integration time step
of 10−6 s.

In contrast, SIMD-based chemical kinetics evaluation/integration have
been studied far less. Linford et al. [48] implemented a three-stage, second-
order Rosenbrock integrator for atmospheric chemical kinetics on the CPU,
GPU, and cell broadband engine (CBE)—a specially designed vector processor—
and found speedups regularly exceeding 25× over a serial CPU implementa-
tion. Kroshko and Spiteri [49] implemented a SIMD-vectorized third-order
stiff Rosenbrock integrator for atmospheric chemistry on the CBE and found
a speedup of 1.89× (a parallel scaling efficiency of 94%) over a serial version
of the same code. Stone et al. [25] implemented a linearly implicit fourth-
order stiff Rosenbrock solver in the OpenCL for various platforms including
CPUs, GPUs, and MICs. They found that SIMD vectorization improves inte-
grator performance over an OpenMP baseline vectorized by simple compiler
hints (i.e., #pragmas) by 2.5–2.8× on the CPU and 4.7–4.9× on the MIC,
while the GPU performs only 1.4–1.6× faster than the OpenMP baseline
due to thread divergence [25].

1.2. Goals of this study
In this article we
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• Derive and verify a new Jacobian formulation that greatly increases
sparsity;

• Detail the implementation of cross-platform SIMD/SIMT vectorization
for CPUs, GPUs, and other accelerators;

• Investigate the performance of SIMD/SIMT-vectorization for a wide
range of chemical kinetic models, and compare with the previous ver-
sion of our analytical chemical kinetic Jacobian code [18]; and finally

• Discuss future extensions to this work as well as several promising di-
rections for SIMD/SIMT vectorization in reactive-flow simulations.

This work builds upon our previous analytical chemical kinetic Jacobian
code, pyJac [18], using the new formulation, pyJac v2, to achieve these goals.
To our knowledge is the first open-source, verified effort that vectorizes the
evaluation of chemical-kinetic source terms and Jacobian matrices for any
chemical model on a wide selection of platforms.

2. Methodology

2.1. Data ordering and vectorization patterns

(1,1) (1,2) ... (1,N)

(2,1) (2,2) ... (2,N)

..
.

(K,1) ...

...

(K,N)

(a) A simple 2-D data array with K
rows and N columns.

(1,1) (1,2) ... (1,N) (2,1) ... (K,N)

(b) Row-major data ordering

(1,1) (2,1) ... (K,1) (1,2) ... (K,N)

(c) Column-major data ordering

Figure 2: Simple data-layout patterns for 2-D arrays
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When storing arrays for a chemical kinetic model, the data-storage layout
and vectorization patterns are critical to achieving high-performance code.
Figure 2a depicts an example data array with K rows and N columns where
index (i, j) corresponds to the ith row and jth column. For example, the
concentration of species j for the ith thermochemical state would be stored in
[C]i,j with 1 ≤ i ≤ Nstate (the number of thermochemical states considered
for evaluation) and 1 ≤ j ≤ Nsp (the number of species in the model).
The stored concentrations would then have K = Nstate rows and N = Nsp
columns.

The “C” (C row-major) format stores the concentrations of all species for
a single thermochemical condition i sequentially in memory, i.e., with [C]1,1
in index 1 (using one-based index notation), [C]1,2 in index 2, and so on, as
shown in Fig. 2b. Conversely, in the “F” (Fortran column-major) format the
concentrations of a single species j over all thermochemical states lie adjacent
in memory, corresponding to storing [C]1,1 in index 1, [C]2,1 in index 2, and
so on, as shown in Fig. 2c. This ordering strongly affects the performance
of SIMD/SIMT-vectorized algorithms, as does the device (CPU, GPU, etc.)
and vectorization pattern in question.

In a shallow SIMD/SIMT vectorization (also referred to as “per-thread”
in previous works using GPUs [41]), each SIMD lane or SIMT thread in a
compute unit evaluates the source terms or Jacobian for a different thermo-
chemical state. If the data is stored in “F”-order, the SIMD lanes/SIMT
thread accessing [C]1,j . . . [C]Nv ,j will load sequential locations in memory,
where [C]i,j is the concentration of species j for state i and Nv is the SIMD
vector-width or the number of threads in a SIMT warp. The first (j + 1)th
species concentration, [C]1,j+1, will be Nstate memory locations away; this
increases the likelihood of cache misses on the CPU [50], but conversely well
matches the pattern of coalesced memory access on the GPU [51].

In a deep SIMD/SIMT vectorization (also referred to as “per-block” in
previous GPU works [24, 41]), a compute unit uses its SIMD lanes/SIMT
threads cooperatively to evaluate the thermochemical source terms for a sin-
gle thermochemical state; thus SIMD lanes loading [C]1,j . . . [C]1,j+Nv will ac-
cess sequential memory locations if the data is stored in “C”-order. Further,
in “C” ordering any two species concentrations within the same thermochem-
ical state lie at most Nsp locations away, with Nsp � Nstate in most cases;
this greatly improved data locality increases the chances of a cache hit on the
CPU, but may lead to uncoalesced memory accesses on the GPU. Deep vec-
torization requires synchronization between SIMD lanes/SIMT threads via
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memory fences/barriers, a potentially expensive operation. In addition, deep
vectorization may result in SIMD waste or SIMT thread divergence caused by
different lanes/threads executing different instructions (e.g., resulting from
different if/then branches). Shallow vectorization may also experience SIMD
waste or SIMT thread divergence, e.g., in chemical kinetic integration due
to varying internal solver time-step sizes [24]. However, in this work shallow
vectorization is largely unaffected by this concern as the only major code
paths that differ between vector lanes are high/low-temperature polynomial
evaluations and differing pressures for P-Log reactions, which cause far fewer
issues compared with differing internal ODE integration time-steps [24].

(1,1) (2,1) ... (Nv,1) (1,2) ... (Nv,N) ... (K,N)Nv+1,
1( (

(a) Row-major, shallow-vectorized data ordering

(1,1) (1,2) ... (1,Nv) (2,1) ... (N,Nv) ... (K,N)
1,

Nv+1( (

(b) Column-major, deep-vectorized data ordering

Figure 3: Vectorized data-ordering patterns

Finally, Fig. 3 shows a vectorized data-ordering that improves the caching
patterns of a shallow, “C”-ordered SIMD vectorization on the CPU (Fig. 3a)
and a deep, “F”-ordered SIMT vectorization on the GPU (Fig. 3b). We ac-
complish this by splitting the slower-varying axis of the data array—columns
for “C”-ordering, and rows for “F”-ordering—into chunks of size Nv (the
SIMD vector width or SIMT warp size) and laying these data out contigu-
ously in memory. For example, using the shallow-vectorized “C”-ordering
pictured in Fig. 3a, the concentrations of species j for states i to i + Nv

([C]i,j, . . . , [C]i+Nv ,j) lie contiguously in memory and are followed by the
concentrations of species j + 1 for the same states ([C]i,j+1, . . . , [C]i+Nv ,j+1).
This pattern ensures that any SIMD operation occurs on data contiguous in
memory, which greatly improves caching and SIMD throughput; it is also
similar to OpenCL’s native vector data-types, e.g., double8 treats eight con-
tiguous double-precision floating-point numbers as a single vector datum.
Conversely, the data-ordering in Fig. 3b enables coalesced memory accesses
for “F”-ordered, deep SIMT vectorization on the GPU. We will discuss the
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effects of these various data-ordering and vectorization patterns on perfor-
mance in Section 3.5.

2.2. Thermochemical source terms and Jacobian
This new version of pyJac is capable of evaluating the thermochemi-

cal source-terms for using the constant-pressure (CONP) or constant-volume
(CONV) assumption2 In this section, we will outline a brief summary of
the system evaluated by pyJac; the supplemental material contains the
complete—and lengthy—derivations.

The thermochemical state vector consists of the temperature, a non-
constant thermodynamic state parameter (volume or pressure for CONP and
CONV, respectively), and the number of moles of all species except the last
species in the chemical model, typically taken to be the bath gas (e.g., N2):

Φ =
{
T, V, n1, n2 . . . nNsp−1

}
for CONP, (1a)

Φ =
{
T, P, n1, n2 . . . nNsp−1

}
for CONV, (1b)

where T is the temperature, V and P the volume and pressure respectively,
and nj the number of moles of the jth species in the model (containing Nsp
total species).

This state vector—inspired by Schwer et al. [17]—has a number of bene-
ficial features. First, the state vector results in highly sparse chemical kinetic
Jacobians, as will be detailed in Section 3.4. Second, this formulation explic-
itly conserves mass, because the number of moles and rate of change of the
final species are calculated from the ideal gas law and conservation of mass,
respectively; see the supplemental material for the full details of the govern-
ing equations. The system is not over-constrained [34] and does not require
use of a more-complicated differential algebraic equation solver (as compared
to an ODE integrator) for integration. Finally, the chemical kinetic Jacobian
for this formulation changes relatively little between the CONP and CONV
forms, making maintaining the codebase much simpler. Although most cur-
rent combustion codes do not use species moles as a state variable, conversion
to/from the more-common mass/mole fractions and moles is straightforward,

2Note: in this context, the “constant-pressure” and “constant-volume” assumptions
refer to evaluation within a reaction sub-step in the operator splitting scheme, rather than
a general constant-pressure or constant-volume reactive-flow simulation.
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and the choice of variables no longer matters once inside the integration of
an chemical kinetic initial-value problem (IVP).

The evolution of the thermochemical state vector is described by a set of
chemical kinetic ordinary differential equations:

f = dΦ
dt =

{
dT
dt ,

dV
dt ,

dn1

dt ,
dn2

dt . . .
dnNsp−1

dt

}
for CONP, (2a)

f = dΦ
dt =

{
dT
dt ,

dP
dt ,

dn1

dt ,
dn2

dt . . .
dnNsp−1

dt

}
for CONV. (2b)

For both CONP and CONV, the molar source terms are [52]:

dnk

dt = V ω̇k k = 1, . . . , Nsp − 1, (3)

where ω̇k is the kth species’ overall molar production rate:

ω̇k =
Nreac∑
i=1

νk,iRici , (4)

νk,i is the net stoichiometric coefficient of species k in reaction i, Nreac is the
total number of reactions, Ri is the net rate of progress of reaction i, and ci

is the pressure-dependent modification term, i.e., for third-body or falloff/
chemically-activated reactions. pyJac is capable of evaluating all modern
reaction types, e.g., P-Log and Chebyshev reactions.

The temperature source-term [52] is:

dT
dt = −

∑Nsp
k=1 Hkω̇k∑Nsp

k=1[C]kCp,k

for CONP, (5a)

dT
dt = −

∑Nsp
k=1 Ukω̇k∑Nsp

k=1[C]kCv,k

for CONV, (5b)

where Hk, Uk, Cp,k, and Cv,k are the enthalpy, internal energy, constant-
pressure specific heat, and constant-volume specific heat of species k in molar
units, respectively, while [C]k is the concentration, given by

[C]k = nk

V
. (6)

By differentiating the ideal gas law, given by

PV = nRT (7)
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where R is the ideal-gas constant in molar units, we find the volume and
pressure source terms (where Wk and WNsp are the molecular weights of
species k and Nsp, respectively):

dV
dt = V

TR
P

Nsp−1∑
k=1

(
1− Wk

WNsp

)
ω̇k + 1

T

dT
dt

 for CONP, (8a)

dP
dt = TR

Nsp−1∑
k=1

(
1− Wk

WNsp

)
ω̇k + P

T

dT
dt for CONV. (8b)

pyJac arranges the computed Jacobian entries such that entry (i, j) cor-
responds to the partial derivative of the ith source-term in Eq. (2) by the
jth state variable in Eq. (1):

Ji,j = ∂fi

∂Φj

, i, j = 1 . . . Nsp + 1 . (9)

The supplemental material for this article contains the complete deriva-
tion of the Jacobian used by pyJac, for interested readers.

2.3. Code generation and testing infrastructure
The new version of pyJac uses the Python package loo.py [53] for code

generation, which translates pseudo-code and data to OpenCL/C code. As
the name implies, loo.py generates code using for loops; this differs from
the previous version of pyJac [54] that generates static code—i.e., fully un-
rolled loops, with thermodynamic/reaction parameters written directly in
code rather than stored in arrays. In our previous work [18], this static code
generation caused some issues with large file sizes, long compilation times,
and even occasionally broke the gcc and nvcc compilers (the latter issue ne-
cessitated splitting the Jacobian/source-term evaluations into separate files).
We will discuss the implications of this change in Section 3.5.2, where the
performance of the new version of pyJac will be compared with the previous
version.

In addition, loo.py allows the user to more easily make changes to the
structure of the generated program, e.g., the data ordering, vectorization,
and threading patterns, as well as switch the target language for code gen-
eration (and more simply extend to additional languages, e.g., CUDA). Fur-
ther, loo.py can execute developed subroutines from Python (natively for
C code, or via PyOpenCL [55] for OpenCL), enabling unit testing/verification
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for each component of the Jacobian or source terms; the unit testing suite
also helps ensure that bugs are not present in less commonly used code-
paths, or are introduced by future code changes. The source terms and sub-
components thereof (e.g., rates of progress, pressure-modification terms) are
directly compared with Cantera [56], while the automatic differentiation code
Adept [57, 58] provides reference values for Jacobian sub-components. We use
the Portable OpenCL (POCL) implementation [59] and OpenMP [60] to per-
form OpenCL and C unit testing, respectively, on the continuous-integration
framework Travis CI [61]. We will discuss verification of the complete (as op-
posed to the sub-component testing discussed here) generated source-terms
and Jacobian codes in detail in Section 3.2.

3. Results and discussion

3.1. Testing platforms

CPU Model Xeon X5650 E5-2690 V3
Instruction Set SSE4.2 AVX2
Vector Width two doubles four doubles
Cores 2× 6 2× 12
Identifier sse4.2 avx2
OpenCL Version 1.2 1.2

Table 1: The Intel CPU configurations used in this study. The vector widths are re-
ported in (ideal) number of double operations per SIMD instruction, as this will be used
in measuring SIMD efficiency; for reference, the vector widths of the sse4.2 and avx2 ma-
chines are 128 bit and 256 bit, respectively. The identifier field will be used as a shorthand
descriptor in the performance plots to quickly identify the CPU type.

We ran the performance and verification studies for this work on a variety
of CPU and GPU platforms. Table 1 shows the number of cores, vector
instruction set, and model of the CPUs used in this work; each CPU had
both v16.1.1 of the Intel OpenCL runtime [62] and v1.0 of the POCL [59]
runtime installed, both enabling OpenCL v1.2 execution. Additionally, v5.0
of the LLVM/clang [63] compiler chain was installed on all machines to
enable use of POCL. Table 2 lists the model, number of CUDA cores, and
Nvidia driver of each GPU we used. Nvidia’s OpenCL runtime is bundled
with the Nvidia driver [51], hence the driver version is used to specify the
OpenCL runtime version.
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Nvidia Model Tesla C2075 Tesla K40m
Driver Version 384.81 387.26
CUDA Cores 448 2880
Identifier C2075 K40m
OpenCL Version 1.1 1.2
Memory3 6GB 12GB

Table 2: The Nvidia GPU configurations used in this study. Nvidia’s OpenCL runtime is
provided with the graphics driver, rather than any specific version of CUDA. The identifier
field will be used as a shorthand descriptor during analysis of the performance results.

Table 3 lists the platforms and vectorization/execution patterns that they
are capable of running. The Intel and Nvidia OpenCL runtimes lack imple-
mentations of atomic operations on double-precision variables; pyJac cur-
rently needs these to run deep-vectorized code. On the other hand, POCL is
an open-source OpenCL runtime that works on all CPU types tested here,
and does implement these atomic operations. However, POCL’s implicit vec-
torization module—which uses the LLVM compiler [63] to translate OpenCL
code to vectorized machine code—typically fails to achieve much, if any,
speedup. Thus POCL is useful for verification but not necessarily for perfor-
mance studies; it is noted that while POCL is currently used by pyJac for
unit-testing purposes, it is not required to use pyJac. We will expand upon
this discussion in Section 5 to highlight future directions.

Platform Parallel Shallow Vectorization Deep Vectorization
OpenMP X – –
POCL OpenCL X X X
Intel OpenCL X X –
Nvidia OpenCL – X –

Table 3: The platforms used in this study and the execution /vectorization patterns that
they are capable of running.

Finally, Table 4 displays the chemical kinetic models used in this work,

3A driver implementation issue limited total memory to 4GB and 10GB on the C2075
and K40m GPUs, respectively [64].
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as well as number of partially stirred reaction conditions (PaSR) used in the
condition database for each. Our previous works describe the creation of the
PaSR databases in detail works [18, 24].

Model Number of Conditions Reference
H2/CO 900,900 [65]
GRI-Mech 3.0 450,900 [66]
USC-Mech II 91,800 [67]
iC5H11OH 450,900 [68]

Table 4: The chemical kinetic models used in this study and number of conditions in the
partially stirred reactor database for each.

3.2. Source-term verification
We verified the reaction rates of progress (ROP), species production rates,

and temperature rates in this study by comparing with values calculated
using Cantera [56]. However, special care must be taken due to floating-
point arithmetic issues.

For a direct comparison, a relative error norm of a quantity Xij over all
states j and reactions (or species) i was computed using the L∞ norm:

EX =
∥∥∥∥∥ |Xij,CT −Xij|

10−10 + 10−6 × |Xij,CT|

∥∥∥∥∥
∞
, (10)

where the CT subscript indicates values from Cantera [56].
However, computing the net ROP of reaction i for state j from the forward

and reverse ROP, i.e., Rij = R′ij−R′′ij, can easily lose accuracy as the net ROP
may be many orders of magnitude smaller than the forward and/or reverse
rates—particularly near chemical equilibrium. To quantify this phenomena,
we first define the error in forward ROP as

ε′ij =
∣∣∣R′ij −R′ij,CT

∣∣∣ , (11)

while the error in reverse ROP, ε′′ij, can be defined analogously. Finally, for
the reaction i∗ and the state j∗ that result in the largest error in net ROP, i.e.,
ER, an estimate of the error attributable to floating-point error accumulation
from the forward and reverse ROPs can be obtained using

Eε =
max(ε′i∗j∗ , ε′′i∗j∗)

10−10 + 10−6 × |Ri∗j∗,CT|
. (12)
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This estimate allows for directly comparing the error in forward or reverse
ROPs with the value of the net ROP itself; the error in net ROP will be large
if these are similar in magnitude.

Model H2/CO GRI-Mech. 3.0 USC-Mech II iC5H11OH
ER′ 1.56× 10−8 2.95× 10−8 9.42× 10−8 4.86× 10−4

ER′′ 6.92× 10−8 6.53× 10−8 1.20× 10−7 5.07× 10−4

ER 1.49× 101 1.11× 100 2.80× 100 4.82× 10−1

Eε 1.48× 101 1.13× 100 2.93× 100 5.03× 10−1

Edn
dt

2.53× 101 2.60× 100 7.62× 100 1.58× 101

EdT
dt

3.94× 105 3.35× 108 3.95× 106 7.11× 107

EdS
dt

3.52× 1012 3.46× 1012 3.44× 1012 3.38× 1012

Table 5: Summary of errors in rates of progress, species, temperature, and thermodynamic
state-parameter rate compared with Cantera. Error statistics are based on the infinity-
norm of the relative error detailed in Eq. (10) for each quantity. The “S” in E dS

dt
refers to

the thermodynamic state parameter, either V or P for CONP and CONV, respectively.

Table 5 compares pyJac v2’s source-term evaluations with Cantera’s [56]
using the data set of PaSR conditions (Table 4). The forward and reverse
ROPs agree closely for all models, though the error norm is ~3–4 orders
of magnitude larger for the isopentanol model. This discrepancy results
from differences in evaluation of P-Log reactions between pyJac and Can-
tera: pyJac computes the logarithm of the upper and lower reaction Ar-
rhenius rates analytically (see supplemental material) while Cantera evalu-
ates this term numerically. If we neglect the errors from P-Log reactions
in Eq. (10), the errors for the forward and reverse ROPs fall to 5.44 × 10−8

and 1.59× 10−7, respectively. This discrepancy does not imply any actual
error in either pyJac or Cantera—in fact, the error still lies well within the
proscribed tolerances in Eq. (10)—but merely emphasizes how even small
code changes can affect the accumulation of floating-point errors.

The error in the net ROP further underscores this point: it is ~3–9 or-
ders of magnitude (or 7–9 orders of magnitude when including P-Log reaction
contributions) larger than the error in forward or reverse ROP. Table 5 shows
that the magnitudes of Eε and ER agree in all cases, indicating that the ac-
cumulation of floating-point error from the forward and reverse ROPs causes
this large increase in error as previously discussed. The magnitudes of the
errors in molar species production rate and net ROP agree, but thermody-
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namic properties amplify the error in net species production rates and lead
to high discrepancies in temperature and state-parameter rates. Again, these
discrepancies in net ROP will not necessarily cause errors when integrating
the chemical kinetics—either in pyJac or Cantera—as this loss of accuracy
only occurs when the forward and reverse ROPs are nearly equal (i.e., near
equilibrium).

3.3. Jacobian verification
As in our previous work [18], we determined Jacobian matrix correct-

ness by comparing with that obtained by automatic differentiation of the
pyJac-generated source term, using the Adept software library [57, 58]. We
previously explained this choice fully [18], but broadly speaking automatic
differentiation provides relatively fast, highly accurate Jacobian matrix eval-
uation with minimal additional programming effort. (In contrast, it is chal-
lenging to obtain robust, accurate Jacobians using finite differences.) The
discrepancy between the analytical and automatic-differentiation Jacobians
for thermochemical state k, denoted by Jk and Ĵk respectively, is determined
by the relative error Frobenius norm over all Jacobian indices i, j:

Erel,k =
∥∥∥∥∥Ĵij,k − Jij,k

Ĵij,k

∥∥∥∥∥
F

. (13)

To avoid large relative discrepancies in small nonzero Jacobian elements
due to accumulation of floating-point error, the Frobenius norm of the auto-
matically differentiated Jacobian is calculated over all thermochemical states
k:

T =
∥∥∥Ĵ ∥∥∥

F
. (14)

The error statistics reported in this section are then based only on matrix ele-
ments where Jijk ≥ T

C , where C is a tunable threshold parameter; this filtered
form of Eq. (13) is denoted EC,k. Finally, the Frobenius norm is calculated
over all the states k in the PaSR thermochemical condition database:

EC = ‖EC,k‖F . (15)
This error norm is quite different from the relative error Frobenius norm

suggested by Anderson et al. [69] for quantifying the error of matrices in
LAPACK, e.g., over Jacobian indices i, j:

EL,k =

∥∥∥Ĵijk − Jijk

∥∥∥
F∥∥∥Ĵijk

∥∥∥
F
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and states k:

EL = ‖EL,k‖F . (16)

In our experience, the accuracy of larger elements in a Jacobian often dom-
inates the LAPACK error norm, while the filtered error norm can identify
errors in both large and small Jacobian entries. Further, with the tunable
threshold parameter C, we can assess the error of different ranges of element
sizes and isolate the effects of floating-point error. For reference, both our
error norm and the LAPACK error norm will be reported.

Model EL T̄ EC=1020 EC=1015

H2/CO 1.862× 10−14 6.431× 1018 1.741× 100 4.508× 10−5

GRI-Mech 3.0 1.567× 10−14 7.783× 1019 3.842× 10−7 3.687× 10−7

USC-Mech II 1.137× 10−14 2.830× 1021 1.199× 10−2 1.983× 10−7

iC5H11OH 1.227× 10−10 2.733× 1026 1.363× 10−3 2.764× 10−5

Table 6: Summary of Jacobian matrix verification results. The reported error statistics
are the maximum filtered relative error EC and LAPACK error EL over all test platforms,
vectorization patterns (Table 3), CONP/CONV, and sparse/dense Jacobians. The Frobe-
nius norm described in Eq. (14) varies slightly between the CONP and CONV cases; the
reported T̄ is the average of the two, with the appropriate value used during calculations
of the error statistics.

Table 6 reports the maximum EC and EL values over all test platforms
and vectorization patterns (see Table 3), sparse and dense (see Section 3.4),
as well as CONP and CONV formulations. The most stringent filtered error
norm (C = 1020) ranges from 10−7–100; the largest error is for the H2/CO
model. For this model, T is smaller than the tolerance of 1020, and hence
the error norm considers Jacobian entries smaller than O(1). GRI-Mech 3.0
has a T roughly an order of magnitude larger and so the stringent error
norm is significantly smaller: O(10−7). Given the intricacy of floating-point
error evaluation, the use of different languages and OpenCL platforms (the
effect of these differences will be explored in Appendix B), and the general
complexity of pyJac it would be exceedingly difficult to pinpoint an exact
cause for this phenomenon, as was done in Section 3.2. To ensure no bugs
or errors present in the Jacobians generated by pyJac, relaxed filtered error
norms (C = 1015) are also presented for each model in Table 6. This relaxed
norm is smaller by 2–5 orders of magnitude for all models—except GRI-Mech

19



3.0, where the stringent case already has small error as previously discussed—
which indicates that accuracy is higher when the smaller Jacobian entries are
excluded. This result suggests that floating-point error accumulation controls
the stringent filtered error norm.

The relative LAPACK error norm—ranging from ~10−10–10−14—re-enforces
this finding, as it indicates roughly 10–14 digits of accuracy [69]. The
iC5H11OH model has the largest LAPACK error norm, likely due to the
presence of P-Log/Chebyshev reactions and the resulting complicated deriva-
tives with many logarithms, exponetiations, and summations. Further, the
LAPACK error norm does not correlate well with the stringent filtered error
norm, e.g., USC-Mech II has the smallest LAPACK error norm (1.137 × 10−14)
but the second-largest stringent filtered error norm (1.119 × 10−2). Con-
versely, the model with the largest LAPACK error norm, iC5H11OH has
the second smallest stringent filtered error norm: EL = 1.227× 10−10 and
EC=1020 = 1.363× 10−3, again suggesting that floating-point error accumula-
tion influences the stringent error norm. These findings, along with the indi-
vidual unit-testing of all chemical source-terms and Jacobian sub-components
described in Section 2.3, gives high confidence in the correctness of pyJac
v2.

3.4. Sparsity patterns
In general, the Jacobian matrices generated by pyJac are largely sparse

with non-zero entries corresponding to species that participate in the same
reaction or non-default efficiency third-body species in a reaction, with dense
rows/columns corresponding to temperature and the thermodynamic state
parameter. However, the explicit-mass conservation formulation of pyJac
can introduce additional non-zero entries in two ways. First, if the last species
in the model (i.e., the bath gas) participates directly in any reaction, the
derivative of its forward or reverse rate of progress is non-zero with respect
to all other species in the model, regardless of whether the other species
participate in that reaction or not. Similarly, if the last species has a third-
body efficiency not equal to the default (one), this will again create nonzero
derivatives for the pressure-modification term with respect to all other species
(see the supplemental material). Either case will result in a fully dense
Jacobian row for all species with a non-zero net stoichiometric coefficient in
such a reaction.

However, pyJac v2 allows the user to ignore these derivatives (via a
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command-line switch) and avoid the adverse effects on Jacobian sparsity.5
The rationale behind this choice is that many common implicit integration
techniques (e.g., CVODE [47]) used to solve chemical-kinetic initial-value
problems are formulated around the assumption that the supplied Jacobian
is approximate; this allows the Jacobian and its LU factorization to be reused
for multiple internal integration time steps, accelerating the solution process.
Such solvers do not need the exact form of the Jacobian and thus the so-called
“approximate” form is preferable. Though this might be used as a crude form
of preconditioning for such solvers, the primary purpose is merely to increase
Jacobian sparsity; McNenly et al. [70] more thoroughly investigated precon-
ditioners. Hence, in this section we will detail the sparsity of both forms of
the Jacobian for the chemical models tested.

Figure 4 graphically represents the Jacobian sparsity of GRI-Mech 3.0. In
particular we note that Fig. 4b has several rows that are no longer fully dense,
as result of its approximate form; these rows correspond to species directly
interacting with N2, largely in GRI-Mech 3.0’s nitrogen chemistry reactions.
Table 7 shows the density of the exact and approximate Jacobians for all
chemical kinetic models tested in this work. The smallest model, H2/CO,
is very dense with 71.4% of the exact Jacobian entries non-zero; this drops
to 56.7% for GRI-Mech 3.0, continues to decrease to 28.2% for USC-Mech
II, and is just 11.5% for the isopentanol model. The approximate Jacobian
assumption drops the density of Jacobian by ~3–7% for all models.

Currently, pyJac can use two common sparse-matrix storage formats [71]:
compressed row storage (CRS) and compressed column storage (CCS), used
for “C” and “F”-ordered data respectively. For brevity we will outline only
the CRS format but the CCS format is similar [71]. An N ×N CRS matrix
is stored using three vectors: a value vector of length NNZ (the number of
non-zero elements in the Jacobian) that stores the elements of the Jacobian,
a row pointer vector of length N that stores the locations in the value vector
that begin a row, and a column index vector length NNZ that stores the
column indices of the elements in the value vector.

The Jacobian access pattern used by pyJac is fairly irregular; for simplic-
ity we will only discuss looping-structure of species derivatives calculations
since these form the bulk of the computation and have the most challenging

5Alternatively, one may choose the last species as one that does not participate in any
reactions.
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(a) The “exact” Jacobian. (b) The “approximate” Jacobian.

Figure 4: A graphical representation of the sparsity pattern of the chemical kinetic Jaco-
bian generated by pyJac for GRI-Mech 3.0. Black squares indicate a non-zero Jacobian
entry, while white square correspond to an empty entry. The numbers indicate the index
of the entry in the state vector.

Model Exact Jacobian Density Approximate Jacobian Density
H2/CO 71.4% 68.4%
GRI-Mech 3.0 56.7% 49.8%
USC-Mech II 28.2% 26.4%
iC5H11OH 11.5% 7.98%

Table 7: The density of the exact and approximate Jacobians generated by pyJac for the
various models studied.

Jacobian access patterns. In general, an outer loop iterates over all reac-
tions of a certain type (e.g., falloff reactions) and calculates the relevant
Jacobian subproducts—independent of any particular species—for the re-
action (e.g., the derivative of the falloff pressure modification term). Two
inner loops then iterate over the species in a reaction, updating the Jaco-
bian entries for these species as appropriate. This pattern leads to fairly
easily vectorizable code and efficient Jacobian evaluation, since the bulk of
the computation depends only on the reaction in question, as discussed in
our previous work [18]. Generally, this means that a lookup operation is
required to find the sparse Jacobian index for any pair of state variables; in
some cases this can be avoided, e.g., the rows corresponding to derivatives of
the temperature and thermodynamic state parameter source-terms are fully
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dense in pyJac, and hence no lookup is necessary. This lookup operation is
currently implemented as a simple “for” loop, e.g., for a sparse lookup of a
pair of indices (i, j) in a CRS matrix, the lookup function searches the col-
umn index vector between the values row_pointer[i], . . . , row_pointer[i+1]
for j, and returns the offset from row_pointer[i] (or −1 if not found). As
will be explored in Section 3.5.2, this slows down sparse Jacobian evaluation,
and might be improved by a static mapping of the full Jacobian indices to
the sparse index (or some null value if the entry is empty). However, this
would require increased constant-data usage, a limitation for OpenCL. Ad-
ditionally, this might be an excellent usage of OpenCL’s Image memory type
(similar to texture memory in CUDA terminology). Both of these sparse
indexing techniques merit future investigation.

3.5. Performance
The performance studies in this work were run on the platforms listed

in Tables 1 and 2. Run times in each case were averaged over ten runs, each
using the same set of PaSR conditions used in verification. The OpenMP Ja-
cobian/source-term kernels, as well as the OpenMP/OpenCL wrapping code
(responsible for initializing/transferring memory, reading input, etc.) was
compiled with gcc v5.4.0 on the avx2/K40m platforms and gcc v4.8.5 on
the sse4.2/C2075 machines. The optimization level “-O3 -mtune=native”
was used and no “fast math” OpenCL optimizations were enabled. Addi-
tionally, the exact form of the Jacobian (as opposed the “approximate” form
discussed in Section 3.4) was used in all cases. Finally, unless stated other-
wise: the performance results used a single CPU core, the CONP assumption,
a vector width of 8/128, and “C”/“F”-ordered data for the CPU/GPU cases,
respectively; the run times reported are for the number of conditions spec-
ified in Table 6 and include data-transfer overhead to/from internal buffers
used in pyJac. The effects of choice of vector width, data ordering, and dif-
ferences between CONP and CONV evaluations on the CPU/GPU will be
explored in Section 3.5.1, while parallel scaling for multiple CPU cores will
be examined in Sections 3.5.1 and 3.5.2.

3.5.1. Source-term evaluation
Figure 5 explores the performance of the source-term evaluations gener-

ated by pyJac on the CPU test platforms listed in Table 1. Source-term
evaluations—critical in their own right for direct numerical simulations of
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reactive-flows [3], among other applications—also provide a convenient plat-
form to detail the effects of various code configuration options before inves-
tigating the more involved Jacobian evaluation performance.

Figure 5a shows the mean run time per initial condition for both the avx2
and sse4.2 CPUs, using Intel OpenCL and OpenMP. This normalization of
the run time by the number of initial conditions tested is chosen to account
for the varying numbers of conditions in the PaSR databases for each model
(Table 4). For both CPUs, the OpenMP implementation is the slowest for all
models; interestingly, the unvectorized (i.e., strictly parallel) Intel OpenCL
code is slightly faster than OpenMP in all cases. As expected, the avx2
machine is faster than the sse4.2 CPU for the strictly parallel cases, per-
forming 1.82–2.13× and 1.72–1.85× faster for the unvectorized OpenCL case
and OpenMP, respectively. Additionally, the shallow-vectorized OpenCL
code performs significantly faster than either the OpenMP or unvectorized
OpenCL codes on both processors.

Figure 5b details the extent of this speedup; the speedup displayed is
calculated per-machine, e.g., the avx2 shallow-vectorized code speedup is
relative to OpenMP on the same CPU. On both machines, the unvectorized
OpenCL code is faster than the baseline parallel OpenMP code, by 1.30–
1.51× on the avx2 CPU and 1.25–1.27× on the sse4.2 machine. Addi-
tionally, the shallow-vectorized OpenCL code is 2.53–2.92× and 3.40–4.08×
faster than the OpenMP code for the sse4.2 and avx2 machines, respec-
tively.

In contrast, Fig. 5c shows the mean run time per condition of deep, shal-
low, and unvectorized OpenCL codes using the POCL runtime, as compared
with OpenMP parallelization. No speedup is achieved for either vectoriza-
tion type on either CPU—indeed, the OpenMP case is faster on both CPUs,
though we stress that Intel OpenCL runtime achieves vectorization using the
same code and hardware. The reasons for this lack of vectorization with
POCL are quite technical; however, personal communication with the devel-
opers of POCL revealed that to achieve vectorization, changes are required
to both the way POCL prepares LLVM intermediate representation code,
as well as improvements to LLVM’s loop-vectorizer itself [72].6 As will be

6Specifically, improvements such as ensuring LLVM recognizes uniform vectorization
loop bounds (even if said bounds are uniform in practice), proving vector instructions’
ability to handle all edge cases identically to the corresponding scalar instruction, hand-
ing of branches and conditionals (potentially within POCL instructions themselves), and
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(a) The mean run time per condition
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(c) The mean run time per condition
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Figure 5: Mean run times per condition and speedups achieved by the various CPU
OpenCL runtimes compared to OpenMP parallelization for each chemical model studied.
The names in the legends correspond to the identifiers listed in Table 1.
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discussed in Section 4, we hope that using explicit vector types (to lessen
demands on the LLVM-vectorization module) in combination with some of
these changes might solve this issue, but for the moment POCL is still quite
useful as a verification tool.

Figure 6 shows the performance of evaluating source terms on the GPUs
listed in Table 2. Figure 6a investigates how the number of initial conditions
evaluated affects the mean run time per condition on the K40m GPU; the
run time decreases until around ~104 conditions for all chemical models, at
which point the GPU becomes saturated and performance levels off. The
performance plateaus slightly later for the H2/CO model compared with
the others. Figure 6b shows the speedup in source-term evaluation that
the K40m GPU achieves over the C2075 GPU for the maximum number of
conditions in Fig. 6a with two vector widths (i.e., GPU block size), 64 and
128. The best K40m case with a vector width of 128 is 1.40–1.88× faster
than the slowest case (C2075 with a vector-width of 64) depending on the
chemical model in question. Figure 6b also shows that varying the vector-
width minimally affects performance for most of the K40m and C2075 cases;
the GRI-Mech 3.0 and USC-Mech II models show the largest improvements
with a vector width of 128: ~10–18% for both GPUs. This is likely caused
by higher occupancy on the GPUs, but it is unclear exactly how Nvidia’s
OpenCL runtime balances the registers/warps per streaming-multiprocessor,
as controls occupancy in CUDA [73].

Figure 7 shows how changing data-ordering patterns, the CONP or CONV
formulation, and the CPU vector width affect the performance of source-term
evaluation in pyJac. Per Fig. 7a, we see that the choice of CONP or CONV
formulation has little to no effect on run time for OpenMP as well as the
shallow-vectorized/unvectorized Intel OpenCL codes on the avx2 machine.
Generally speaking, the difference between the CONP and CONV formula-
tions only marginally affects performance regardless of CPU/GPU choice.

In contrast, Fig. 7b shows significant speedups of “C”-ordered data over
“F”-ordered data on the avx2 machine; the speedup presented is calculated
per language, e.g., the 1.35–2.09× speedup of the “C”-ordered OpenMP
implementation is relative to the “F”-ordered OpenMP baseline. Addition-
ally, the “C”-ordered shallow-vectorization in Fig. 7b and the other shallow-
vectorized CPU data shown in Sections 3.5.1 and 3.5.2 use the vectorized-

handling of memory access/vector-element extraction patterns.
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Figure 6: pyJac source-term evaluation performance on the Nvidia GPUs

data ordering described in Section 2.1; this case achieves speedups of 2.14–
2.58× over the “F”-ordered shallow-vectorization, demonstrating the value
of the vectorized-data ordering for CPU execution.

Figure 7c shows how the “C”- and “F”-ordering affect the performance of
source-term evaluation on both GPUs, with the speedup presented per-GPU.
The “C”- and “F”-ordered shallow-vectorizations perform almost equiva-
lently on both GPUs, with less than a 10% difference in run time between
data orderings. For the isopentanol model, “C”-ordered data is ~1.08×
faster on both GPUs (while the trend is less clear for the other models).
The roughly equivalent performance between the “C” and “F”-ordered ap-
proaches on GPUs counters what one might expect: typically speaking, co-
alesced memory access in a shallow vectorization is easier to achieve with
“F”-ordering (see Section 2.1). However, the vectorized-data ordering here
ensures that memory storage is aligned to the vector width and, thus, en-
courages coalesced accesses.

Figure 7d shows how changing vector width affects source-term evaluation
performance on the avx2 CPU. The vector width of 8 performs the fastest
(out of those tested), while the larger vector width of 16 is slightly slower
due to increased register pressure [74]. It is unclear why the vector width
of 4 results in no speedup at all (in fact, it is the slowest case). Intel’s
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Figure 7: The effect of the CONP and CONV formulations, “C” and “F” data-ordering,
and CPU vector-width on source-term evaluation performance in pyJac. The shallow-
vectorized “C”-ordered OpenCL cases correspond to the vectorized data ordering described
in Section 2.1.
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vectorization guide [75] mentions that a heuristic determines the optimal
vector width (in this case, it appears from compiler output to be 8), so it
is possible that using a vector width smaller than the heuristic breaks the
implicit vectorizer. This issue does not occur for a vector width of 4 on the
sse4.2 CPU.

Finally, Fig. 8 displays the (strong) parallel scaling efficiency and SIMD
efficiency for the CPU platforms. The strong parallel scaling efficiency is
defined as

ε = t̄1
Nt̄N

, (17)

where t̄N is the mean run time per condition on N CPU cores and t̄1 the
same on a single CPU core. The strong parallel scaling efficiency measures
the speedup due to the use of additional CPU cores as a fraction of linear
speedup; strong scaling tends to decrease with the number of processors
used due to memory-bandwidth limitations and decreasing computation work
allocated per CPU core [76].

Figure 8a shows the strong parallel scaling efficiency of source-term eval-
uation in pyJac on the avx2 machine for both the shallow-vectorized Intel
OpenCL and OpenMP codes. In general, the H2/CO mechanism has the
worst scaling efficiency for both Intel OpenCL and OpenMP, likely result-
ing from both its relatively small size and few falloff/chemically activated
reaction (in particular, the additional expensive logarithm and exponential
evaluations that accompany them). As demonstrated in Appendix C, the
amount of computational work required per thermochemical state plays a
critical role in fully utilizing SIMD instructions/multiple threads. Addition-
ally, OpenMP tends to scale better than the shallow-vectorized OpenCL
code, e.g., ~0.9 and ~0.75 for four and eight CPU cores, respectively, com-
pared to just 0.66–0.72 and 0.44–0.48 for OpenCL. Though not pictured (to
keep the figure readable), the unvectorized Intel OpenCL code scales only
slightly worse than the OpenMP code, hence the poorer scaling is unique to
the shallow-vectorized code. This is due in large part to the superior perfor-
mance of the shallow-vectorized OpenCL code, coupled with the relatively
small amounts of work associated with source-term evaluation. To illustrate
this, Fig. 8b shows the mean run time per-condition of the OpenMP source-
term evaluations for 2–16 cores, compared to the shallow-vectorized OpenCL
code on one (solid line) and four (dashed line) cores on the avx2 machine. For
all chemical models, the mean run time per-condition (and hence the com-
putational work allocated per-core, one of the key-drivers of parallel scaling
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Figure 8: The parallel scaling efficiency and SIMD efficiency of source-term evaluation for
Intel OpenCL on the avx2 and sse4.2 CPUs.
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efficiency [76]) of OpenMP running on four cores is roughly equal to that of
the shallow-vectorized OpenCL code on a single core. Similarly, OpenMP
running on 16 cores is roughly equivalent to the OpenCL code on 4 cores.
Therefore, a more fair comparison of parallel scaling efficiencies is to com-
pare OpenCL running on 4 cores with OpenMP on 16; the OpenMP code’s
parallel efficiency drops to ~0.64 for 16 cores, similar to OpenCL’s parallel
scaling efficiency of 0.66–0.72 at 4 cores. Indeed, as will be seen in Sec-
tion 3.5.2, sparse Jacobian evaluation—the most computationally intensive
task in this work—exhibits similar strong-scaling efficiency on Intel OpenCL
and OpenMP.

The SIMD efficiency is defined as

εSIMD = t̄unvec

Wt̄shallow
, (18)

where t̄unvec is the mean run time per condition of the unvectorized OpenCL
code, t̄shallow the same for the shallow-vectorized OpenCL code, and W is the
vector width reported in number of double operations (see Table 1). This
measure compares the actual speedup due to shallow vectorization with the
ideal speedup based on the nominal vector width of the machine. Figure 8c
shows the SIMD efficiency of source-term evaluation in pyJac on a single core
of the avx2 machine; the larger models (isopentanol and USC-Mech II) have
higher SIMD efficiencies of 0.76–0.78, and the smaller models (H2/CO, GRI-
Mech 3.0) have lower SIMD efficiencies of 0.6–0.66. This again demonstrates
that the SIMD vectorization becomes more efficient with increasing amounts
of work to perform (i.e., with increasing model size). Interestingly, Fig. 8d
shows the SIMD efficiency on the sse4.2 machine as greater than one. This
is likely caused by a combination of using an OpenCL vector width greater
than the native CPU vector width (i.e., eight versus two) and improved
data locality for the vectorized-data ordering as discussed in Section 2.1, and
results in a modest 7–17% improvement over the nominal vector width.

3.5.2. Jacobian evaluation
Figure 9 shows the performance of the sparse and dense Jacobian evalu-

ations in pyJac on the CPU platforms. In Fig. 9a, the mean run time per
condition is presented for the shallow-vectorized Intel OpenCL and OpenMP
codes on the avx2 CPU. The sparse Jacobian evaluates slower on both In-
tel OpenCL and OpenMP due to indirect lookup indexing requirements, as
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discussed in Section 3.4. Interestingly, indirect lookup less-negatively im-
pacts the shallow-vectorized OpenCL code: the sparse OpenMP code is
2.47–10.42× slower than the dense OpenMP evaluation, while the sparse
shallow-vectorized OpenCL code is just 1.41–3.34× slower than its dense
counterpart. As a result, the shallow-vectorized sparse OpenCL code per-
forms as fast or faster than the dense OpenMP code in all cases on the avx2
machine (Fig. 9a). Figure 9b shows the speedup of the shallow-vectorized
OpenCL, sparse and dense Jacobian evaluations over the same on OpenMP;
the dense OpenCL code is 3.03–4.23× faster than the corresponding dense
OpenMP code. This speedup increases to 6.63–9.44× for the sparse Jaco-
bian.

On the sse4.2 machine, Fig. 9c shows similar results: the sparse OpenMP
code is the slowest in all cases, and the shallow-vectorized OpenCL code is
nearly as fast as the dense OpenMP code. Once again, indirect lookup less-
negatively impacts the sparse OpenCL code, which is only 1.76–3.33× slower
than its dense counterpart, while the sparse OpenMP code is significantly
(2.25–8.72×) slower than the dense version. In Fig. 9d, the speedup of the
sparse and dense shallow-vectorized OpenCL codes are compared with their
OpenMP versions; the dense OpenCL code is 1.92–2.47× faster while the
sparse shallow-vectorization achieves a speedup of 3.14–5.03×.

Figure 10a compares the strong parallel scaling efficiency of the sparse
shallow-vectorized OpenCL with the sparse OpenMP code. Although the
plot is challenging to read since most of the data are clustered together,
it shows that the shallow-vectorized OpenCL code scales similarly to the
OpenMP code, in contrast to the parallel scaling efficiency of source-term
evaluation (Fig. 8a). The H2/CO model scales the worst for both codes,
ranging from 0.94–0.54 and 0.99–0.82 efficiency for OpenCL and OpenMP
respectively on 2–16 cores. As the model size increases, the efficiency of the
OpenCL code improves dramatically, reaching 0.997–0.84 for the isopentanol
model.

Figure 10b shows scaling for the OpenMP and shallow-vectorized dense
Jacobian OpenCL codes. In this case, the isopentanol model scales the worst
for both cases. The sheer size of the dense isopentanol Jacobian limited
the total number of states for the dense isopentanol Jacobian evaluation to
50,000—storing the dense matrix for a single thermochemical state takes
over 1MB of data, so 50,000 states requires over 50GB of memory); this
greatly drops the computation cost for this case, and adversely affects the
scaling efficiency as discussed in Section 3.5.1. Excluding the isopentanol
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Figure 9: Performance of sparse and dense Jacobian evaluations on the CPU platforms in
pyJac.
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Figure 10: Strong parallel scaling efficiencies of sparse and dense Jacobian evaluations for
the shallow-vectorized Intel OpenCL and OpenMP codes on the avx2 CPU.

model, the dense shallow-vectorized OpenCL code scales slightly better than
for source-term evaluation: 0.70–0.78 and 0.52–0.61 for four and eight cores,
respectively (compared with 0.66–0.72 and 0.44–0.48 for shallow-vectorized
OpenCL source-term evaluations). This results from the higher computa-
tional cost of Jacobian evaluation, and hence more available work per CPU
core. As in Section 3.5.1, the shallow-vectorized dense Jacobian code run-
ning on 1 and 4 cores of the avx2 machine performs roughly as fast as the
OpenMP code on 4 and 16 cores, respectively. The parallel scaling efficiency
of OpenMP on 16 cores (excluding isopentanol) is 0.63–0.71, similar to the
shallow vectorization’s efficiency of 0.70–0.78 for 4 cores.

Figure 11a plots the mean run time per condition for the sparse and dense
Jacobian evaluations on the K40m GPU. As in the species evaluation case, the
mean run time per condition drops steadily, for both cases becoming roughly
constant after just 3× 103 states (except for H2/CO, which levels off near 104

conditions). Sparse Jacobian evaluation is significantly slower for all models
before the GPU becomes saturated (due to the indirect indexing lookup),
but the performance gap between sparse and dense evaluations narrows past
the saturation point. This is likely due to the ability to fit many more sparse
Jacobian matrices in the K40m’s memory, as well as improved data locality/
caching due to the smaller size of the sparse Jacobian. Figure 11b presents
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Figure 11: The performance of sparse/dense Jacobian evaluation on the K40m and C2075
GPUs.

the speedup of the K40m over the C2075 GPU for sparse/dense Jacobian
evaluation; sparse evaluation on the K40m is 1.10–1.59× faster than on the
C2075, while dense evaluation is 1.36–3.0× faster. The speedup on the K40m
decreases with increasing model size for the sparse formulation, but increases
for larger models when dense; this likely results from the larger available
memory of the K40m, and hence fewer data-transfer operations to/from the
GPU.

Figure 12 compares the performance of the sparse analytical Jacobian
with a sparse first-order finite-difference Jacobian on both the avx2 CPU
and C2075/K40m GPUs. Figure 12a shows large speedups for both OpenMP
and shallow-vectorized OpenCL; the analytical OpenMP Jacobian is 3.92–
8.67× faster, while the analytical OpenCL Jacobian achieves speedups of
17.22–55.11×. We excluded the isopentanol case here, since a single run of
the sparse finite-difference Jacobian using either OpenCL or OpenMP took
over 12 hours of run time. In addition the current finite-difference formula-
tion breaks Intel’s auto-vectorizer, hence we compared OpenCL against the
unvectorized OpenCL code (we did not prioritize fixing this issue, since we
implemented the finite-difference Jacobian for comparison purposes only).
Although we do not display the dense finite-difference Jacobian speedup
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in Fig. 12a, the dense OpenCL and OpenMP analytical Jacobian codes out-
perform the finite-difference variants by even larger margins: 24.44–245.63×
for OpenCL and 9.68–112.73× for OpenMP (these data do include the
isopentanol model, though limited to 50,000 conditions as discussed pre-
viously). Figure 12b compares the sparse analytical and finite-difference
Jacobians on the GPUs. The analytical Jacobian on the K40m and C2075
shows speedups of 3.81–17.60× that increase with chemical model size; the
K40m has a larger speedup than the C2075 for the isopentanol model (17.60×
vs. 14.75×) due to its larger available memory. Although not pictured, the
dense analytical Jacobian on the K40m GPU has larger speedups compared
with the dense finite-difference Jacobian: 4.04–45.13×. The K40m GPU again
shows significantly larger speedups over the C2075 for the isopentanol model
(45.13× vs. 23.85×), further underscoring the effect of more available mem-
ory on the K40m.
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Figure 12: The performance of a sparse, first-order forward finite-difference Jacobian
compared to the analytical Jacobian on the avx2 CPU and both GPUs.

Figure 13 compares the performance of evaluating the dense analytical
Jacobian of pyJac-v2 with that of the previous version, pyJac-v1 [54], on the
sse4.2 CPU and C2075 GPU. (We selected dense Jacobian evaluation for this
comparison since it was the only type implemented in the previous version of
pyJac.) On the sse4.2 CPU, the pyJac-v2 evaluates faster than pyJac-v1
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for OpenMP for the larger chemical models; the static OpenMP code gen-
erated by pyJac-v1 (see Section 2.3) is 1.79× faster for the H2/CO model,
and only 1.09× slower for the GRI-Mech 3.0 model. In contrast, the loop-
based OpenMP code of pyJac-v2 is 3.37–10.19× faster than pyJac-v1 for
the USC-Mech II and isopentanol models. The shallow-vectorized OpenCL
pyJac-v2 code is faster than pyJac-v1 in all cases, achieving speedups of
1.37–19.56× that increase with model size. Figure 13b compares the per-
formance of the pyJac-v2 with pyJac-v1 for evaluating dense analytical
Jacobians on the C2075 GPU. As with the CPU, the static code of pyJac-v1
is slightly faster for the H2/CO model, but pyJac-v2 outperforms pyJac-v1
by 1.25–2.84× for the other models. Performance likely drops for the isopen-
tanol model due to the limited number of conditions in dense evaluation for
pyJac-v2, as noted earlier.
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Figure 13: Performance comparison of dense Jacobian evaluation using pyJac-v2 and
pyJac-v1 [54].

4. Practical notes on OpenCL use

While OpenCL provides a simple interface to enable cross-platform execu-
tion, and significant speedups were achieved via shallow-vectorized OpenCL
code in this work, there are some serious potential pitfalls in its use. The
closed-source OpenCL runtimes tested in this work (Intel and Nvidia) contain
several bugs that result in compilation failures, simply incorrect vectorized
machine code, or even segmentation faults. Further, these runtimes (in our
experience) tend to be less responsive to fixing said bugs, with relatively in-
frequent new releases (or in Nvidia’s case, lack of changelogs/public records
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of bug-fixes). On the other hand, the open-source OpenCL runtime used in
this work, POCL, has far fewer implementation bugs, and when issues arise
the community is very responsive to bug reports and user outreach; however,
POCL fails to achieve vectorization as noted in Section 3.5.1.

To demonstrate the type of issue discussed, we created a minimum work-
ing example [77] that shows a failure of Nvidia’s OpenCL runtime correspond-
ing to the GPU driver version 375.26 on a Tesla K40m GPU; simply changing
to another runtime (e.g., Intel) produces the correct result—with no code
changes or recompilation. This provides a particularly vexing problem for
the programmer, since little can often be done to resolve the issue; thankfully,
in this case we were able to upgrade the driver version to resolve the problem.
Further, as noted throughout this work, certain code-generation patterns can
break OpenCL execution/vectorization, e.g., the failure of POCL to achieve
vectorization or Intel OpenCL’s failure to vectorize the finite-difference Jaco-
bian. Indeed the vectorization process attempted by most OpenCL runtimes
(and thus, reasons for incorrect/unvectorized code output) is obscured from
the user, making reasoning about errors or performance trends quite diffi-
cult. Thankfully, loo.py allows relatively easy switching between output
languages; the most significant code change requires building of the wrapper
that initializes/transfers memory and calls the source-rate/Jacobian kernel.
These issues make it critical to provide adequate implementation details (e.g.,
runtime version, platform, etc., as given in Section 3.1) for codes utilizing
OpenCL in order to enable reproducible results.

5. Conclusions

In this work, we developed automatically generated OpenCL codes for
SIMD and SIMT-vectorized evaluations of thermochemical source-term and
sparse/dense chemical kinetic Jacobian matrices. The main contributions of
this work are:

• Deriving and verifying a new Jacobian formulation that greatly in-
creases sparsity;

• Enabling vectorized execution on the CPU, GPU, and other accelera-
tors; and

• Achieving significant speedups over a strictly parallel Jacobian and
source-term evaluation on SIMD-enabled processors (e.g., CPUs).
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These efforts are made publicly available (see Appendix A) via the open-
source, high-performance, chemical kinetics code pyJac. The new molar-
based formulation resulted in highly sparse chemical kinetic Jacobians, and
allows selection of either the constant-volume or constant-pressure approxi-
mation. In addition, sparsity can be increased further by eliminating compo-
nents associated with the bath gas, as discussed in Section 3.4; this approxi-
mation is not a key feature of this work, and future efforts to incorporate more
sophisticated Jacobian approximations would be a worthwhile endeavor.

We also demonstrated source-term and Jacobian evaluation for a range of
chemical kinetic models [65–68] and multiple CPUs/GPUs (Tables 1 and 2).
In addition to parallel OpenMP evaluation on the CPU, this work enabled
the shallow-vectorized evaluation of the chemical-kinetic source terms and
analytical Jacobian on both the CPU and GPU via OpenCL. Deep vector-
ization is possible on the Portable OpenCL (POCL) platform [59], but it
yields no performance benefit as POCL did not achieve vectorizations for
any execution pattern studied. Deep vectorization deserves further study
with other platforms (e.g., CUDA).

We demonstrated significant speedups in shallow SIMD-vectorized execu-
tion over a parallel OpenMP code for evaluating the chemical-kinetic source
terms and sparse/dense Jacobian: up to 4.09×, 9.44×, and 4.23×, respec-
tively, on an avx2-capable CPU. Sparse Jacobians evaluate more slowly than
dense Jacobians on all CPU/GPU platforms due to indirect lookup require-
ments in array indexing, but this adversely affects the shallow-vectorized
OpenCL code less than OpenMP. Further, analytical Jacobians evaluate sig-
nificantly faster than a first-order finite-difference-based approach on all plat-
forms. Finally, we compared the performance of evaluating dense, analytical
Jacobians in this new version of pyJac with the previous version [54]. The
OpenMP version evaluates moderately slower on the CPU for the smallest
chemical model (e.g., 1.79× on the avx2 CPU), but significantly faster for
the larger models—up to 10.19×. The shallow-vectorized OpenCL code runs
faster than the previous version over all chemical models, reaching speedups
of 19.56×.

The OpenMP code-generation is currently only capable of parallel execu-
tion, but extending this platform to shallow/deep-vectorizations (via loo.py
and compiler #pragmas) is a key priority going forwards since OpenMP is
a standard library on most machines. In addition, CUDA [51] has been
significantly more reliable in previous works [18, 24], while Intel’s open-
source OpenCL alternative, ISPC [78], has been relatively stable and easy to
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work with during preliminary efforts with the unit-testing discussed in Sec-
tion 2.3. The current deep-vectorization formulation would be executable
for both CUDA and ISPC targets, as these languages implement double-
precision atomic operations, further recommending their use. It is also pos-
sible, particularly for the Intel OpenCL/POCL runtimes, that better perfor-
mance/stability might be achieved using so-called “explicit” vectorization,
i.e., through use of built-in vector types such as the double8. Specifically,
this change could enable vectorization on the POCL runtime and might also
enable deep vectorization on the Intel OpenCL runtime. Using OpenCL
Image/CUDA Texture memory to accelerate the indirect lookup for sparse
matrix evaluation should be investigated as well. Finally, future extensions of
this work will include extending to additional target languages (e.g., vector-
ized OpenMP, CUDA, ISPC) to improve ease of use and reliability, improving
the existing OpenCL targets (e.g., to enable meaningful deep-vectorized eval-
uation), and implementing reaction sorting [23] to improve SIMD efficiency
(Appendix C).

One key component missing in this work is vectorized sparse/dense linear-
algebra subroutines to maximize the performance of LU-factorization and
matrix-vector multiplication (commonly used in implicit-integration tech-
niques). Third-party/open-source options exist for some target languages,
e.g., cuBLAS [79], clBLAS/clSPARSE [80] or SuperLU [20], but these do
not necessarily cover all targets/required linear-algebra operations and, in
the case of the CUDA/OpenCL libraries, are often optimized operation on
one large matrix instead of many (relatively) smaller matrices. The extent
to which these existing programs may be used needs to be assessed and miss-
ing operations should be implemented in loo.py to ensure easy switching
between target languages and vectorization types.
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Appendix A. Availability of material

The results for this article were obtained using pyJac v2.0.0b0 [81].
The most recent version of pyJac can be found at its GitHub repository:
https://github.com/SLACKHA/pyJac. All figures, and the data and plot-
ting scripts necessary to reproduce them, are available openly under the
CC-BY license [82].

Appendix B. Jacobian error statistics per test platform

This section gives more detail on the results presented in Section 3.3,
breaking down the reported error statistics per test platform/language. The
error of the Intel OpenCL runtime is presented in Table B.1, the Portable
OpenCL (POCL) runtime in Table B.2, OpenMP in Table B.3, and the
Nvidia OpenCL runtime in Table B.4. POCL and OpenMP tend to have the
smallest error norms, while Nvidia tends to have the largest; in particular
the stringent filtered error norm EC=1020 is two orders of magnitude larger
for the Nvidia runtime than the other test platforms with the H2/CO and
USC-Mech II models.

Model EL EC=1020 EC=1015

H2/CO 1.455× 10−14 8.084× 10−1 1.907× 10−5

GRI-Mech 3.0 1.567× 10−14 1.469× 10−7 1.316× 10−7

USC-Mech II 9.632× 10−15 5.567× 10−3 1.704× 10−7

iC5H11OH 1.227× 10−10 1.363× 10−3 2.864× 10−5

Table B.1: Summary of Jacobian matrix verification results for the Intel OpenCL runtime.
The reported error statistics are the maximum filtered relative error EC and LAPACK error
EL over all vectorization patterns (Table 3), CONP/CONV, and sparse/dense Jacobians.
The threshold for the filtered relative error is the same as reported in Section 3.3.
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Model EL EC=1020 EC=1015

H2/CO 1.456× 10−14 1.230× 10−1 3.951× 10−6

GRI-Mech 3.0 1.014× 10−14 1.890× 10−7 1.877× 10−7

USC-Mech II 9.632× 10−15 8.998× 10−4 1.201× 10−8

iC5H11OH 9.133× 10−15 1.723× 10−5 5.108× 10−7

Table B.2: Summary of Jacobian matrix verification results for the Portable OpenCL
(POCL) runtime. The reported error statistics are the maximum filtered relative error
EC and LAPACK error EL over all vectorization patterns (Table 3), CONP/CONV, and
sparse/dense Jacobians. The threshold for the filtered relative error is the same as reported
in Section 3.3.

Model EL EC=1020 EC=1015

H2/CO 5.962× 10−15 3.614× 10−2 1.657× 10−6

GRI-Mech 3.0 1.297× 10−15 1.321× 10−7 1.316× 10−7

USC-Mech II 9.630× 10−15 4.185× 10−4 6.746× 10−9

iC5H11OH 6.131× 10−15 1.721× 10−5 5.108× 10−7

Table B.3: Summary of Jacobian matrix verification results for OpenMP execution. The
reported error statistics are the maximum filtered relative error EC and LAPACK error
EL over all vectorization patterns (Table 3), CONP/CONV, and sparse/dense Jacobians.
The threshold for the filtered relative error is the same as reported in Section 3.3.

Model EL EC=1020 EC=1015

H2/CO 1.862× 10−14 1.741× 100 4.508× 10−5

GRI-Mech 3.0 1.489× 10−14 3.842× 10−7 3.687× 10−7

USC-Mech II 1.174× 10−14 1.119× 10−2 1.983× 10−7

iC5H11OH 8.602× 10−15 1.748× 10−5 5.109× 10−7

Table B.4: Summary of Jacobian matrix verification results for Nvidia OpenCL execution.
The reported error statistics are the maximum filtered relative error EC and LAPACK error
EL over all vectorization patterns (Table 3), CONP/CONV, and sparse/dense Jacobians.
The threshold for the filtered relative error is the same as reported in Section 3.3.
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Appendix C. SIMD efficiency Scaling Example

This simple example demonstrates how the SIMD efficiency of shallow-
vectorized OpenCL source-term evaluation depends on the size of the chemi-
cal model in question, i.e., the amount of computational work per source-term
evaluation. The base chemical model for this example was the isopentanol
model [68] used throughout this article, and the same thermochemical state
database described in Section 3.1 was used for source-term evaluation. As
in Section 3.5 all reported results are based on 10 individual runs and in
this example all cases were run on the avx2 machine using the Intel OpenCL
runtime.

Algorithm 1 A greedy selection algorithm to remove reactions from a
base chemical model M , while preserving the number of active species.
Input: Base chemical model M with reactions R and species S
function Determine Species Count(active)

for Species Sk in model M do
species_rxn_count [k]← 0
for Reaction Rj in model M do

if active[j] and
(∣∣∣ν ′k,j

∣∣∣+ ∣∣∣ν ′′k,j

∣∣∣) > 0 then
species_rxn_count[k]← species_rxn_count[k] + 1

return species_rxn_count
procedure Model Generation(M)

active[j]← True for all reactions Rj in M
species_rxn_count← Determine Species Count(active)
while min (species_rxn_count) ≥ 1 do

species_rxn_count← Determine Species Count(active)
for Reaction Rj in model M do

rxn_count[j]← min∀Sk∈Rj
(species_rxn_count [k])

remove_at← argmax (rxn_count)
active[remove_at]← False

First, the reactions in the isopentanol model were converted to simple re-
versible Arrhenius reactions by either simply dropping third-body efficiency
calculations (third-body enhanced reactions), using the high-pressure-limit
coefficients (falloff/chemically-activated and P-Log reactions) or fitting Ar-
rhenius parameters to the calculated rate constant at a fixed pressure (Cheby-
shev reactions). This conversion made the cost of reaction rate evaluation
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roughly equivalent between all reactions in model, separating the effect of
chemical model size from computational intensities of different reaction types
on the SIMD efficiency. Next, a greedy reaction removal algorithm (Algo-
rithm 1) generated a number of models ranging from 2100–186 reactions,
in increments of 200 reactions (except the final increment from 200 to 186
reactions).

500 1000 1500 2000
Number of Reactions

0.6

0.8

1.0

ε S
IM

D

Shallow

Unvectorized

Figure C.1: The effect on SIMD efficiency of varying chemical model size.

To discern the effect of varying chemical model size on the SIMD effi-
ciency, shallow-vectorized and unvectorized source-term evaluation perfor-
mance tests were run. As demonstrated in Fig. C.1 the SIMD efficiency
strongly depends on the generated model size and thus the amount of com-
putational work per thermochemical state. In addition, the range of SIMD
efficiency in this example (0.56–0.91) is larger than the range of SIMD effi-
ciencies calculated for real chemical models, as seen in Fig. 8c. For smaller
models—e.g., H2/CO which had a SIMD efficiency of 0.6 on the avx2 CPU—
this suggests that the presence of more computationally intensive fall-off/
chemically activated reactions in model can increase the SIMD efficiency.
However, the base isopentanol model achieved a SIMD efficiency of only
0.78 on the avx2 machine in Section 3.5.1, suggesting that more work could
be done to optimize the source-term evaluations. In particular, it is likely
that a reaction sorting method, such as suggested by Sewerin and Rigopou-
los [23], would be particularly beneficial to reduce the number of vector
gather/scatter/masking operations incurred during source-term evaluation.
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