This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

A Multigrid Method for Efficiently Training Video Models

Chao-Yuan Wu'+?
Christoph Feichtenhofer?

!The University of Texas at Austin

Abstract

Training competitive deep video models is an order of
magnitude slower than training their counterpart image
models. Slow training causes long research cycles, which
hinders progress in video understanding research. Fol-
lowing standard practice for training image models, video
model training has used a fixed mini-batch shape: a specific
number of clips, frames, and spatial size. However, what is
the optimal shape? High resolution models perform well,
but train slowly. Low resolution models train faster, but are
less accurate. Inspired by multigrid methods in numerical
optimization, we propose to use variable mini-batch shapes
with different spatial-temporal resolutions that are varied
according to a schedule. The different shapes arise from
resampling the training data on multiple sampling grids.
Training is accelerated by scaling up the mini-batch size
and learning rate when shrinking the other dimensions. We
empirically demonstrate a general and robust grid sched-
ule that yields a significant out-of-the-box training speedup
without a loss in accuracy for different models (I3D, non-
local, SlowFast), datasets (Kinetics, Something-Something,
Charades), and training settings (with and without pre-
training, 128 GPUs or 1 GPU). As an illustrative example,
the proposed multigrid method trains a ResNet-50 SlowFast
network 4.5 x faster (wall-clock time, same hardware) while
also improving accuracy (+0.8% absolute) on Kinetics-400
compared to baseline training. Code is available online.'

1. Introduction

Training deep networks (CNNs [27]) on video is more
computationally intensive than training 2D CNN image
models, potentially by an order of magnitude. Long training
time slows progress in video understanding research, hin-
ders scaling out to real-world data sources, and consumes
significant amounts of energy and hardware. Is this slow
training unavoidable, or might there be video-specific opti-
mization strategies that can accelerate training?

3D CNN video models are trained using mini-batch op-
timization methods (e.g., SGD) that process one mini-batch

!github.com/facebookresearch/SlowFast/blob/master/projects/multigrid

Ross Girshick?

Kaiming He?
Philipp Krihenbiihl!

2Facebook Al Research (FAIR)

20 Multigrid
4.5 x faster, 76.4%

Baseline
75.6%

75

70
--@ - Multigrid training (ours)

—@— Baseline training

Validation top-1 accuracy

65

0 5 10 15 20 25 30
Wall-clock training time in hours

Figure 1. Training time vs. top-1 accuracy on Kinetics-400 with
aResNet-50 SlowFast network. Each point corresponds to a model
trained for a specific number of epochs. Multigrid training, the
method developed in this paper, obtains a significantly better trade-
off than baseline training. For example, under default settings,
multigrid training is 4.5x faster while achieving higher (+0.8%
absolute) top-1 accuracy. All methods here, and throughout the
paper, use the same hardware and software implementation.

per iteration. The mini-batch shape BxT x HxW? (mini-
batch size x number of frames x height x width) is typ-
ically constant throughout training. A variety of consid-
erations go into selecting this input shape, but a common
heuristic is to make the T'x H x W dimensions large in or-
der to improve accuracy, e.g., as observed in [9,45,47].

This heuristic is only one possible choice, however, and
in general there are trade-offs. For example, one may use
a smaller number of frames and/or spatial size while si-
multaneously increasing the mini-batch size B. With such
an exchange, it is possible to process the same number of
epochs (passes over the dataset) with lower wall-clock time
because each iteration processes more examples. The re-
sulting trade-off is faster training with lower accuracy.

The central idea of this paper is to avoid this trade-off—
i.e., to have faster training without losing accuracy—by
making the mini-batch shape variable during training. By
viewing the input video clips in a mini-batch as raw video
signals that are sampled on a sampling grid (to be defined),
we can draw a connection to multigrid methods for numeri-

2We omit the channel dimension (3 for RGB) for clarity.

cal analysis [1]. These methods exploit coarse-to-fine grids
to accelerate optimization. Intuitively, if we use large mini-
batches with relatively small time and space dimensions (a
‘coarse grid’) early in training and small mini-batches with
large time and space dimensions (a ‘fine grid’) later, then
SGD may be able to scan through the data more quickly
on average while finally solving for a high accuracy model,
akin to how coarse grids enable solving problems on finer
grids more rapidly in multigrid numerical solvers [1].

Multigrid training is possible because video models are
compatible with input data of variable space and time di-
mensions due to weight sharing operations (e.g., convolu-
tions). In addition, CNNs are effective at learning patterns
at multiple scales, e.g., as observed when training with data
augmentation [18,26,38]. We observe similar multi-scale
robustness and generalization with multigrid training.

Our proposed multigrid training method is simple and
effective. It is easy to implement and typically only re-
quires small changes to a data loader. Empirically, it works
with default learning rate schedules and hyper-parameters
already in use. No tuning is required. Moreover, multi-
grid training works robustly out-of-the-box for different
models (I3D [3], non-local [47], SlowFast [9]), datasets
(Kinetics-400 [23], Something-Something V2 [14], and
Charades [36]), initializations (random and pre-trained),
and hardware scales (e.g., 128 GPUs or 1 GPU). We ob-
serve a consistent speedup and performance gain in all cases
without tuning. As an example, we train a SlowFast net-
work ~4.5x faster in wall-clock time on the large-scale Ki-
netics dataset (Fig. 1) while also reaching a higher accu-
racy (+0.8% absolute). We hope these benefits provided by
multigrid training will make research on video understand-
ing more accessible, scalable, and economical.

2. Related Work

3D CNN video models extend 2D CNNs to model both
spatial and temporal patterns. They are currently the state
of the art for video understanding [3,9,12,19,30-32,34,43—

,47-49]. These methods are computationally expensive,
both for training and inference [43,49]. Some recent studies
propose lighter weight models that use efficient temporal
modules [2,5,19,21,28-30,32,34,40,44,46] and/or exploit
temporal redundancy [9,51]. In this paper, we show that the
training time of state-of-the-art efficient models [9] can still
be reduced significantly.

Efficient training can also be advanced through, e.g., opti-
mization methods (e.g., [8,24,33,39]), pre-training [3, | 1],
distributed training [13, 50], or advances in hardware [22]
and software design [4, 6]. In this paper, we propose a
complementary direction that exploits variable mini-batch
shapes for fast training. Related to our method, Wang et
al. [47] and Feichtenhofer et al. [10] initialize larger models

with smaller, fully-trained ones. These methods can poten-
tially speed up training as well, and (as can be seen later)
are a special case of multigrid training.

Multi-scale training in segmentation [
tion [18, 38] uses multiple image crop sizes. However, the
mini-batch shape remains fixed [16, 18,38]. Multigrid train-
ing on the other hand uses variable mini-batch shapes. He et
al. [17] change the input shapes, but fix the mini-batch size.
These methods shows that training with variable scales can
be beneficial. Multigrid training enjoys the same property.

] and classifica-

Multigrid methods were originally proposed for numeri-
cal boundary value problems, and later developed into an
entire field in computational mathematics [1]. They typ-
ically involve iterating through cycles of coarse and fine
problems, and exploit the fact that a coarse problem can
be solved efficiently to speed up the overall problem solv-
ing. He and Xu [15] connect multigrid methods to deep
networks through identifying the correspondence between
steps in traditional multigrid methods and operators in a
convolutional neural network. In this paper, we take inspi-
ration from multigrid concepts from a more abstract view to
accelerate video model training.

3. Multigrid Training for Video Models

To develop our multigrid training method we will con-
sider a reference video model (e.g., C3D [43], I3D [3])
that is trained by a baseline mini-batch optimizer (e.g.,
SGD) that operates on mini-batches of shape B xT'x H xW
(mini-batch size X number of frames x height x width) for
some number of epochs (e.g., 100). The spatial-temporal
shape, T'x HxW, arises from resampling source videos
in the training dataset according to a sampling grid that
is specified by a temporal span, a spatial span, a tempo-
ral stride, and a spatial stride (defined in §3.1). These con-
cepts intuitively correspond to a grid’s duration/area (span)
and sampling rate (stride). The baseline optimizer holds the
mini-batch shape constant across all training iterations.

Proposed Multigrid Method. Inspired by multigrid meth-
ods in numerical analysis, which solve optimization prob-
lems on alternating coarse and fine grids, the core observa-
tion in this paper is that the underlying sampling grid that is
used to train video models need not be constant during train-
ing. In fact, we will show in experiments that by varying
the sampling grid and the mini-batch size during training
it is possible to reduce training complexity substantially (in
terms of total FLOPs and wall-clock time) while achieving
similar accuracy in comparison with the baseline.

The fundamental concept that enables multigrid training
is the balance between computation allocated to processing
more examples per mini-batch vs. the computation allocated
to processing larger time and space dimensions. To control

154

this balance, we will consider temporal and spatial shapes
txwx h that are formed by resampling source videos with a
new sampling grid that has its own spans and strides. When
changing the input shape we use a scaled mini-batch size b
satisfying the relation b-¢-h-w = B-T-H-W, or

THW
b=15 thw’ b
which yields computation (in FLOPs) that is roughly equal
to the computation of the aforementioned baseline mini-
batch for typical 3D CNNs.?

Our multigrid method uses a set of sampling grids and
a grid schedule that determines which grid to use in each
training iteration. If training is run for a similar number of
epochs regardless of the choice of grids,* then by making
b>B on average the entire training process can use fewer
total FLOPs and have a lower wall-clock time.

We will experimentally investigate two questions: (i) is
there a set of grids with a grid schedule that can lead to
faster training without a loss in accuracy? and, (ii) if so,
does it robustly generalize to new models and datasets with-
out modification? In the following we will develop the core
multigrid training concepts in detail (§3.1), provide an im-
plementation (i.e., a set of grids and a grid schedule) that
work well in practice (§3.2), and then explore ablation and
generalization experiments (§4).

3.1. Multigrid Training Concepts

Sampling Grids. Each video in a dataset is a discrete sig-
nal that was sampled from an underlying continuous signal
generated by the physical world. The video has some num-
ber of frames and pixels per frame, which are related to the
physical world by the temporal and spatial resolution of the
recording device (which depends on a number of camera
properties). When using one of these source videos in a
training mini-batch, a sampling grid is used to resample it.
A sampling grid in one dimension (space or time) is de-
fined by two quantities: a span and a stride. Their units are
defined w.r.t. the source video being resampled.” For the
time dimension, the units are frames while for the spatial di-
mensions the units are pixels. The span is the support size of
the grid and defines the duration or area that the grid covers.
The stride is the spacing between sampling points. Dividing

3 In practice, the computation is not exactly equal, because of rounding
(e.g., wcan be %), padding, and, e.g., fully connected or non-local layers.

We ignore these subtleties and only use approximate FLOPs as a rough
design principle. All speedups are measured by wall-clock time.

“4In practice, a similar number of epochs (e.g., within a factor of 2) are
typically used for a given dataset, even for very different models.

SBetween two videos these units may have different physical meanings
if the videos were captured by cameras with different properties (e.g., a 24
frame span from a 24 FPS video vs. a 24 frame span from a 30 FPS video).
These properties may be unknown and therefore we define grid units with
respect to source videos, not the physical world.

the span by the stride gives the number of points in the grid,
which determines the shape of the input data. Note that dif-
ferent grids can yield the same data shape, which implies
that the mini-batch size will only change (Equation (1)) if a
change in the sampling grid also changes the data shape.
We note that spatial sampling grids already appear in
the baseline optimizer if it uses multi-scale spatial data
augmentation [7,26,37]. Under our multigrid perspective,
multi-scale spatial data augmentation changes the spatial
spans and strides of the resampling grid proportionally so
that the resulting mini-batch always has the same H xW
spatial shape. In contrast, we will change spans and strides
by different factors, which results in a different spatial shape
hxw for each grid (and likewise for the time dimension).

Grid Scheduling. We use mini-batch optimizers, which
have as their most basic scheduling unit a single mini-batch
iteration in which one model update is performed. The
training schedule consists of some number of mini-batch
iterations and is often expressed in terms of epochs. For
example, training may consist of 100 or 200 epochs worth
of iterations. Within this overall training schedule it is com-
mon to let the learning rate vary, such as annealing it accord-
ing to a schedule defined in terms of iterations or epochs.

Scheduling other training properties is also possible.
Central to our multigrid method is the idea of scheduling
the sampling grids that are used throughout training. When
changing grids, the mini-batch size is always scaled ac-
cording to Equation (1) so that mini-batch FLOPs are held
roughly constant. Grid scheduling is highly flexible, ad-
mitting a large design space from simply cycling through
a sequence of pre-defined grids to using randomized grids.
In §3.2 we will present a randomized, hierarchical schedule
that works well in practice.

Multigrid Properties. Multigrid training relies on two
properties of the data and model. First, resampling the data
on different grids requires a suitable operator. For video,
this operator can be a reconstruction filter applied to the
source discrete signal followed by computing the values at
the points specified by the grid (e.g., bilinear interpolation).

Second, the model must be compatible with inputs that
are resampled on different grids, and therefore might have
different shapes during training. Models that are composed
of functions that use weight sharing across the dimensions
that are resampled, e.g., 2D and 3D convolutions, recurrent
functions, and self-attention, are compatible and cover most
of the commonly used architectures; fully-connected layers,
unless their inputs are pooled to a fixed size, are not com-
patible.® We will focus on models that use 2D and 3D con-

OIf an appropriate operator exists for ‘resampling’ model parameters so
that they are compatible with new input shapes, then these parameters may
still be usable with multigrid training. This concept can be combined with
weight sharing, e.g., by dilating or resizing model filters to mirror the data
sampling grid, though preliminary experiments did not improve results.

16 % 16x

) ‘L_ﬂ)
N V2 V2
@ 8>< 8>< oo T H W
5 35 ve)
34X 4x an»
.f ~ E W
£ 2X 2x o
E (T, H, W) (T,I:I',.W)
1x — 1x S
Iterations Iterations
(a) Baseline (b) Long cycles

16 %
8x
4x SRR
2% SR
1x ----)
Iterations Iterations
(c) Short cycles (d) Long + short cycles

Figure 2. A general and robust grid schedule (§3.2). We contrast multigrid training with standard baseline training. (a) Baseline training
methods typically use a fixed mini-batch shape throughout training. (b) Multigrid long cycles loop over inputs from small shapes (with
large mini-batch sizes) to large shapes (with small mini-batch sizes), staying on each shape for several epochs. (c) Multigrid short cycles
rapidly move through a variety of spatial shapes, changing at each iteration. (d) Multigrid long + short cycles (our default setting)
combines long and short cycles, and moves through shapes at two frequencies simultaneously. Dark green points in (b), (c), and (d)
correspond to one full period of a long cycle, a full short cycle, and a long+short cycle, respectively.

volutions, as well as self-attention operations in the form of
non-local blocks [47]; all models end with global average
pooling and a single full-connected layer as the classifier,
as is common practice.

Training and Testing Distributions. The focus of this
work is on multigrid methods for fraining and therefore we
use a standard inference method that uses a single shape for
the testing data. This choice, however, may introduce a mis-
match between the data distribution used to train the model
and the data distribution used at test time. To close this gap,
training may be finished with some number of ‘fine-tuning’
iterations that use grids more closely aligned with the test-
ing distribution, e.g., see [42]. We find that this fine-tuning
gives a small, but consistent improvement.

3.2. Implementation Details

Multigrid training involves a choice of sampling grids
and a grid schedule, which leads to a rich design space.
We use a hierarchical schedule that involves alternating be-
tween mini-batch shapes at two different frequencies: a
long cycle that moves through a set of base shapes, gener-
ated by a variety of grids, staying on each shape for several
epochs, and a short cycle that moves through a set of shapes
that are ‘nearby’ the current base shape, staying on each
one for a single iteration. This hierarchical grid schedule is
described in more detail shortly and illustrated in Fig. 2.

The remainder of this subsection provides details for this
design, which we have found to work well in practice. After
presenting these details, we will explore what design deci-
sions are important in ablation experiments.

Optimizer. We use SGD with momentum and a step-
wise learning rate decay schedule since these are common
choices in practice [9, 18,26,43]. Using other learning rate
schedules and optimizers is also possible. Specific sched-
ules are given in each experimental section.

Long Cycle. We use sampling grids that result in an or-
dered sequence of S=4 base mini-batch shapes of non-

. . . . T H W
: X & X =X L=
decreasing size along each dimension: 85 x 7 NoRONAE

4Bx%x%x%, 2BxLxHxW, and BxTxHxXW.
These four shapes cover an intuitive range and work well
in practice. The long cycle is synchronized with the step-
wise learning rate decay schedule: a full cycle over the S
shapes occurs exactly once for each learning rate stage. We
train on each shape for the same number of iterations.

We use a simple randomized strategy to generate a mini-
batch with the target input shape for each training iteration.
For each video to be used in the mini-batch, we select a ran-
dom span from a specified range and set the stride such that
the desired shape is produced when sampling on the result-
ing grid. For the spatial dimensions, this strategy amounts
to resizing a random crop to the desired shape using bilin-
ear interpolation (similar to random cropping used in image
classification [18,26,38]). For the temporal dimension, this
strategy amounts to selecting a random temporal crop and
subsampling its frames. The sampling range for spans is
specified in each experimental section.

Short Cycle. The short cycle rapidly moves through a vari-
ety of spatial shapes, changing at each iteration. By default,
we use the following 3-shape short cycle. For iteration ¢,
let m = ¢ (mod 3); if m=0, then we set the spatial shape
to % X %; if m=1, we use % X %; otherwise, the current
base spatial shape from the long cycle is used.

The short cycle can be applied on its own or in conjunc-
tion with the long cycle. The mini-batch size is again scaled
using Equation (1). The same randomized grid strategy is
applied to sample data for the target mini-batch shape.

Learning Rate Scaling. When the mini-batch size changes
due to the long cycle, we apply the linear scaling rule [13] to
adjust the learning rate by the mini-batch size scaling factor
(thus either 8x, 4, 2x, or 1x). We found that this adjust-

156

ment is harmful if applied to mini-batch size changes due
to the short cycle and therefore we only adjust the learning
rate when the long cycle base shape changes.

Fine-tuning Phase. If the baseline optimizer uses L learn-
ing rate (LR) stages, then we apply the long and short cycles
in the first L—1 LR stages. We use the corresponding L-th
stage for fine-tuning to help match the training and testing
distributions, similar to [42]. In the first half of the fine-
tuning iterations we use the L—1-st learning rate and in the
second half we use the final (L-th) learning rate. While
fine-tuning we use the short cycle (as data augmentation),
but not the long cycle.

Batch Normalization. The behavior of Batch Normaliza-
tion (BN) [20] depends on mini-batch statistics. In tradi-
tional trainers, the constant mini-batch size is also a hyper-
parameter that impacts BN behaviors (e.g., the noisiness of
the statistics). As our multigrid method uses variable mini-
batch sizes, it is desirable to decouple its impact on BN from
that of training speedup. The following heuristic works well
in practice: we compute BN statistics with a standardized
sub-mini-batch of size 8; when the short cycle increases the
overall mini-batch size by 2x or 4x, we likewise increase
the BN sub-mini-batch size to 16 and 32, respectively.

4. Experiments on Kinetics

We conduct ablation studies on the Kinetics-400
dataset [23], which is used in prior research and requires
classifying each video into one of 400 categories. It con-
tains ~240k training videos and ~20k validation videos on
which we report results. Performance is measured by top-1
and top-5 accuracy.

Baseline Model and Training. We use a ResNet-50 (R50)
SlowFast network [9, 18] with a 32-frame fast pathway,
speed ratio a=4, and channel ratio 5=1/8 as our default
model. Input frames are sampled at a temporal stride of 2.
Our baseline training recipe follows Feichtenhofer et
al. [9]. We run synchronous SGD for 112k iterations on
128 GPUs with a mini-batch size of 4 clips per GPU (~239
epochs) with initial learning rate of 0.8. (We perform sin-
gle GPU experiments in §5.) The learning rate is decreased
by 10x at iterations 44k, 72k, and 92k.” We use a weight
decay of 10~%, momentum of 0.9, and a linear learning rate
warm-up [!3] from 0.002 over 16k iterations. Input clips
are random 224 x224 spatial crops from clips that are ran-
domly resized such that the shorter side € [256, 340] pixels.
At test time, we sample 10 clips per video with uniform
temporal spacing and combine the predictions with average
pooling following [9,25,47]. We use 224 x224 center crop

"We use the stepwise learning rate schedule rather than the cosine
schedule used in Feichtenhofer ef al. [9] because it is still more common.
Results with a cosine schedule are available in Supplementary Material.

testing by default [25,48] and present results with other set-
tings in Supplementary Material.

We select these training and inference procedures based
on validation accuracy using the baseline training method.
We adopt the exact same recipe for multigrid training exper-
iments, aside from multigrid specific changes. This choice
may put multigrid training at a disadvantage, but it reflects
the realistic scenario in which one wants to apply multigrid
training to accelerate an already known training schedule
without further tuning.

Evaluation. Speedup factors are wall-clock GPU training
time on P100 GPUs with CUDA 9.2 and cuDNN 7.6.3. For
fair comparison, the same hardware and software imple-
mentation is used for all methods. We note that multigrid
training exploits larger mini-batches, which increases data
loading throughput requirements. Training may become 10
bound if the data loader is not optimized appropriately or if
remote data access is used. With sufficient local disk and an
optimized data loader, training is typically not IO bound.

Multigrid Training Details. To sample data with spatial
shape hxw that is smaller than H xW, we change the de-
fault random short-side interval to [256%, 340], noting that
w=h in our experiments. For the temporal dimension, we
take ¢ (t<T') frames with random stride in [2, 2Z].

4.1. Main Results

We compare multigrid training to baseline training in
Fig. 3. In addition to the default baseline, one could speed
up training by using a smaller spatial-temporal shape with a
larger mini-batch size and learning rate, so we also compare
to this baseline variant. For each method, we experiment
with training schedules that range from 0.25x to 3x the
number of baseline epochs (~239) to study the trade-off be-
tween training time and accuracy. Overall, multigrid train-
ing always achieves a better trade-off than baseline training.
For example, multigrid training with both the long and short
cycles can iterate through 1.5 more epochs than baseline
method, while only requiring 1/3.4x the number of itera-
tions, 1/4.5x training time, and achieving higher accuracy
(75.6% — 76.4%). The wall-clock speedup is greater than
the iteration reduction factor, as a larger mini-batch with
smaller space/time dimensions is more parallelism-friendly
on modern GPUs. Both the long and short cycles improve
the trade-off and using both together performs the best.

In Fig. 3 we also observe that baseline training suffers a
decline in accuracy when training for >1.5x epochs. With
either long and/or short cycles, a decrease in accuracy is not
observed for schedules up to 2.0x epochs, indicating that
variable grids can help prevent overfitting.

In the following we use multigrid training with long and
short cycles and 1.5 x more epochs than the baseline as our
default since it obtains a good trade-off.

157

Default baseline

Default multigrid 20x
g‘ 15x 20% ISX el
& -9 ox e A
s 10%,.# ‘ -----
5 7 1’ ®--7S ™ n = 20
5] . ,f.0>< o ISX
] ! ’ O
— " ’ ‘
’
:':}.‘ 05f @05x%
i K
15X aer
8 70 10X frosx
,g 20
S 025%
=
< 05x
>

10X 15%

=@~ Multigrid (default: long+short cycle)

- @- Multigrid (long cycle only)
-+ A . Multigrid (short cycle only)
; . T, H ., W
Baseline (constant shape: 8 B X 7 X 75 X W)
—@— Baseline (default constant shape: BXT X Hx W)

0 2 4 6 8 10 12 14 16 18

20 22 24 26 28 30 32 34 36 38 40

Wall-clock time in hours (same hardware and software implementation for all methods)

Figure 3. Multigrid vs. baseline training. Each point corresponds to one model trained with a specific schedule choice. Annotations
denote training epochs relative to the baseline 1.0x schedule. For example, ‘1.5x” denotes training for 1.5 x more epochs than the default
‘1.0’ baseline schedule (112k iterations or ~239 epochs). We see that all variants of multigrid training achieve a better trade-off
than baseline training, which uses a constant mini-batch shape. Also note that multigrid training can iterate through the same number

of epochs more efficiently.

4.2. Ablation Experiments

Long Cycle Design. By default, we use S=4 long cycle
shapes with a 1.5 epoch schedule. In Table 1a, we explore
using fewer shapes, where we take the last S’ <.S shapes, for
S’€{1,2,3}. The short cycle is used in these experiments,
and the S’=1 setting is equivalent to using the short cycle
only. We run all variants for the same number of training
iterations (to roughly preserve total training FLOPs), not-
ing that methods which use fewer shapes will process fewer
epochs due to having smaller mini-batches on average com-
pared to the S=4 design.

We see that using each additional shape improves accu-
racy and saturates at S=4 (default). The improvement in
accuracy is possibly due to the more examples seen by the
model given the same amount of iterations. Compared with
S=1 (i.e., short cycle only), our default choice improves the
top-1 accuracy by absolute 2.4% (74.0% — 76.4%), while
being slightly faster (4.0x — 4.5x). All results use the fine-
tuning phase, which we find is beneficial to varying degrees
in different settings. With the default schedule, it leads to
0.4% absolute gain (76.0% — 76.4%; not shown in table).

Short Cycle Design. Adding each input shape to the short
cycle leads to a clear accuracy improvement, Table 1b. Our
default short cycle design (3-shape) improves over 1-shape
(i.e., no short cycle / long-cycle only) by absolute 1.9%
(74.5% — 76.4%) in top-1 accuracy.

4.3. Generalization to Different Training Settings

Next we study how multigrid training generalizes to dif-
ferent training settings that are common in practice.

Pre-training. In our main results, we train models from
random initialization. We see in Table 2a that with Im-
ageNet [35] pre-training, our multigrid method obtains a

similar speedup and performance gain. (We will present
more results on ImageNet-pre-trained models in §4.4.)

Temporal Shape. Next we show generalization of multi-
grid training for models of different temporal shapes 7". We
compare models that use 16-frame, 32-frame (default), and
64-frame input clips.® 1In all cases (Table 2b), multigrid
training achieves a consistent accuracy gain and speedup.
The 64-frame model enjoys the largest performance gain
(75.9% — 77.6%) and the best speedup (5.5 x).

Spatial Shape. We also demonstrate generalization of our
method for models of different spatial shapes H xW. We
increase the baseline shape from 224x224 (default) to
320x320 and study the impact. Inference for the 320x320
model is analogous to the 224 x224 case; we resize shorter
side to 352 pixels and test on center 320x320 crops. In
Table 2c, we see that multigrid training leads to an even
larger performance gain (75.1% — 76.8%) and a more sig-
nificant speedup (6.5x) in the 320x320 case. Also note
with the baseline method 320x320 does not work better
than 224 x224, possibly due to overfitting, similar to what
is reported in Tan et al. [41]. On the other hand, with multi-
grid training, spatial scaling brings improvement, possibly
due to the data augmentation brought by multigrid training.

4.4. Generalization to Different Models

So far we have focused on state-of-the-art SlowFast net-
work [9] for analysis. We next demonstrate generalization
of multigrid training to different networks by presenting re-
sults using a standard R50-I3D model [3, | 8] and its exten-
sion with non-local blocks (I3D-NL) [47].

8 =2 in the 16-frame model to avoid a degenerated slow pathway.

158

long cycle design speedup top-1 top-5
Baseline - - 756 919
40x 740 914
43x 755 921
44x 762 924
45x 764 924

short cycle design speedup top-1 top-5
Baseline - - 756 919
42x 745 916
43x 755 921
45x 764 924

1-shape (short cycle only)
2-shape

3-shape

4-shape (default)

(a) Long cycle design (with default short cycle)

1-shape (long cycle only)
Multigrid 2-shape

Multigrid
ultigri 3-shape (default)

(b) Short cycle design (with default long cycle)

Table 1. Ablation Study. We perform ablations on Kinetics-400 using an R50-SlowFast network. We analyze the impact of the long cycle
(Table 1a) and short cycle (Table 1b) designs. All variants of multigrid training use the same number of training iterations as our default
1.5% epoch schedule; this roughly preserves the total training FLOPs. We report wall-clock speedup relative to the baseline trained for
1.0x epochs.

pre-train? speedup top-1 top-5 T speedup top-1 top-5 HxW speedup top-1 top-5
Baseline - 75.6 91.9 16 Baseline - 74.8 91.4 224 Baseline - 75.6 91.9
Multigrid 4.5x 764 92.4 16 ~ Multigrid 4.0x 75.2 91.9 224 Multigrid 4.5x 76.4 924
Baseline v - 75.4 91.9 32 Baseline - 75.6 91.9 320 Baseline - 75.1 91.8

Multigrid v 4.5x 76.0 92.4 32

Multigrid 4.5%x 76.4 92.4 320

Multigrid 6.5x 76.8 92.8

64 Baseline

- 759 92.1

64 Multigrid 5.5x 77.6 93.2

(a) Pre-training

(b) Temporal shape T'

(c) Spatial shape H xW

Table 2. Generalization Analysis. We study how multigrid training generalizes to models both with and without ImageNet pre-training
(Table 2a) and models of different temporal (Table 2b) and spatial (Table 2c) shapes. All experiments use R50-SlowFast with results on
Kinetics-400. We use the default setting for multigrid training (1.5x more epochs, corresponding to 3.4 x fewer iterations than baseline)
in all settings. We observe that the default choice brings consistent speedup and performance gain in all cases.

Implementation Details. Both models are ImageNet-pre-
trained with 3D convolutions inflated from 2D convolutions
following common practice [3, 10,47]. Each input clip con-
sists of 16 frames, sampled at a stride of 4. I3D-NL ad-
ditionally contains 5 (dot product) non-local blocks [47] in
ress and res, stages. The exact model specification is given
in Supplementary Material.

The baseline recipe trains for 100k iterations using 128
GPUs, with a mini-batch size of 2 clips per GPU (~106
epochs) and a learning rate of 0.04, which is decreased by
a factor of 10 at iteration 37.5k and 75k. We do not use
learning rate warm-up [| 3] following prior work [47]. Other
training details are analogous to SlowFast training. We note
again that this training recipe is selected to be the best for
the baseline training method and we apply multigrid train-
ing on top without further tuning.

Evaluation. We summarize the results in Table 3. For both
I3D and I3D-NL, multigrid training with the default sched-
ule (1.5 epoch) obtains similar or better accuracy, while
being up to 3.9 faster. We also experiment with a shorter
baseline schedule (‘baseline 575’ in table), which trains for
the same number of iterations as the multigrid training. The
shorter baseline schedule obtains a lower accuracy (3.7%
and 3.2% absolute top-1 lower than multigrid). We also
see that I3D-NL has a lower speedup than I3D. This is in
part due to the less optimized NL operator than convolu-
tion, consuming a large portion of the training time. We ob-

model speedup top-1 top-5
13D Baseline - 74.4 91.4
I3D Baseline ﬁ 3.3x% 71.1 89.9
13D Multigrid 3.9% 74.8 91.7
I3D-NL Baseline - 75.5 92.1
I3D-NL Baseline 7z 3.3x 723 90.6
I3D-NL Multigrid 3.3%x 75.5 92.4

Table 3. Kinetics-400 accuracy with I3D and I3D-NL. While de-
veloped on SlowFast [9], multigrid training provides a consistent
speedup and performance gain with I3D [3] and I3D-NL [47].

serve consistent improvements with larger backbone mod-
els (R101); see Supplementary Material.

5. Case Study: 1-GPU Training on Kinetics

Our experiments thus far use a large number of GPUs
(128) in parallel. However, a more common training recipe
may use far fewer GPUs (e.g., 1 to 8) and given that one
of our goals is to make video research more accessible by
reducing computational requirements it is important to ex-
plore the application of our multigrid method in the few-
GPU regime, without any tuning.

As a case study, we use a single GPU to train an 13D
model on Kinetics-400 using the quick training recipe from
the public repository’ of Wang et al. [47]. We apply multi-

https://github.com/facebookresearch/
video-nonlocal-net

159

training time (days) top-1 top-5
Baseline 6.7 72.5 90.4
Multigrid 2.0 72.5 90.4

Table 4. Case study: 1-GPU training on Kinetics-400. Multigrid
training reduces the training time from nearly 1 week to 2 days on
a single GPU. We hope the reduced training time will make video
understanding research more accessible and economical.

grid training on top without further tuning. This schedule
trains for 1200k iterations (after adjusting with the linear
scaling rule [13]) on one GPU with 8 clips (~40 epochs).
The learning rate is 0.00125, which is decreased by a fac-
tor of 10 at iteration 600k and 1000k. Dropout and ran-
dom scaling are disabled to accelerate convergence given
the short schedule. Each input clip consists of 8 frames,
sampled at a stride of 8, when using the baseline optimizer.
Other training details are the same as the 13D experiments.
Table 4 shows that multigrid training generalizes well
out-of-the-box to a few-GPU, short-schedule setting. With
multigrid training we are able to achieve 72.5% (73.1% with
30-crop testing [47]) top-1 accuracy in 2 days using only
1 GPU, while the baseline method would need nearly 1
week. (When using a small model, we observe a smaller
wall-clock speedup of ~3.3x compared to a larger model,
which typically yields a ~4.5x speedup). We hope the re-
duced training time with multigrid training will make video
understanding research more accessible and economical.

6. Experiments on Something-Something V2

We next evaluate multigrid training on the Something-
Something V2 dataset [14], which contains 169k training,
and 25k validation videos. Each video shows an interaction
with everyday objects. The task is classification with 174
action classes. Performance is evaluated by top-1 and top-
5 accuracy. This task is known to require more ‘temporal
modeling’ to solve than Kinetics [49].

Implementation Details. We use an R50-SlowFast
model [9, 18] with 64-frame fast pathway with speed ratio
a=4 and channel ratio f=1/8. The model is pre-trained
on Kinetics-400 following prior work [29]. The baseline
training recipe trains for 230k iterations on 8 GPUs, with a
mini-batch size of 2 clips per GPU and a learning rate of
0.03, which is decreased by a factor of 10 at iteration 150k
and 190k. Other training details are analogous to Kinetics
experiments; see Supplementary Material for details.

Results. Similar to what we observe on Kinetics, multigrid
training obtains a better trade-off than baseline training on
Something-Something V2 (Table 5). With the default 1.5 x-
epoch training, multigrid training is 5.6 faster while ob-
taining a slightly higher accuracy. Multigrid training be-
haves consistently for the ‘spatial heavy’ Kinetics dataset
and the ‘temporal heavy’ Something-Something V2 dataset.

speedup top-1 top-5
Baseline - 60.9+031 87.2+013
Baseline =5 5.2x 54.6+1015 83.0+0.14
Multigrid 1.0 x 8.3x 60.0+031 86.8+0.05
Baseline 51 3.4x 5734013 8474015
Multigrid 1.5 x (default) 5.6 61.2+018 87.4+012
Baseline 55 2.6x 5874006 85.8+015
Multigrid 2.0 x 4.2x 61.7+020 87.8+0.2

Table 5. Results on Something-Something V2. Multigrid train-
ing achieves a better trade-oft than baseline training. Results are
the mean and standard deviation over 5 runs.

speedup mAP (%)
Baseline - 38.0-+0.18
Baseline ﬁ 5.3% 27.5+0.15
Multigrid 1.0x 8.6x 36.8+031
Baseline 7= 3.5% 31.5+02
Multigrid 1.5 (default) 5.7% 38.2006
Baseline 7 2.6x 33.6+015
Multigrid 2.0 x 4.3x 37.4+015

Table 6. Results on Charades. Multigrid training shows consis-
tent speedups compared with the other datasets. Results are the
mean and standard deviation over 5 runs.

7. Experiments on Charades

We finally evaluate our method on the Charades
dataset [36], which is relatively small, consisting of only
9,848 videos in 157 action classes. The task is to predict all
actions in a video. Performance is measured by mAP.

Implementation Details. We use the same R50-SlowFast
model [9, 18], with the same Kinetics pre-training as the
Something-Something experiments. Training details are
available in Supplementary Material.

Results. Overall we observe consistent results compared
with Kinetics and Something-Something V2 (Table 6). The
default multigrid training is 5.7x faster, while achiev-
ing slightly better mAP. Overall, we see that even for
the smaller Charades dataset, with strong large-scale pre-
training, multigrid training is beneficial.

8. Conclusion

We propose a multigrid method for fast training of video
models. Our method varies the sampling grid and the mini-
batch size during training, and can process the same num-
ber of epochs using a small fraction of the computation of
the baseline trainer. With a single out-of-the-box setting,
it works on multiple datasets and models, and consistently
brings a ~3-6x speedup with comparable or higher accu-
racy. It works across a spectrum of hardware settings from
128 GPU distributed training to single GPU training. We
hope the reduced training time will make video understand-
ing research more accessible, scalable, and economical.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation (Grant No. IIS-1845485) and the Facebook Fellowship.

160

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

WF Briggs, VE Henson, and Stephen F McCormick. A
Multigrid Tutorial, 2nd Edition. SIAM, 2000. 2

Joao Carreira, Viorica Patraucean, Laurent Mazare, Andrew
Zisserman, and Simon Osindero. Massively parallel video
networks. In ECCV, 2018. 2

Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
2017. 2,6,7

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. TVM: An automated end-to-end
optimizing compiler for deep learning. In OSDI, 2018. 2
Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. Multi-fiber networks for video recog-
nition. In ECCV, 2018. 2

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014. 2

Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca M Gam-
bardella, and Jiirgen Schmidhuber. High-performance neu-
ral networks for visual object classification. arXiv preprint
arXiv:1102.0183,2011. 3

John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. JMLR, 2011. 2

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. SlowFast networks for video recognition. In
ICCV,2019. 1,2,4,5,6,7,8

Christoph Feichtenhofer, Axel Pinz, and Richard Wildes.
Spatiotemporal residual networks for video action recogni-
tion. In NIPS, 2016. 2,7

Deepti Ghadiyaram, Du Tran, and Dhruv Mahajan. Large-
scale weakly-supervised pre-training for video action recog-
nition. In CVPR, 2019. 2

Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zis-
serman. Video action transformer network. In CVPR, 2019.
2

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch SGD: Training ImageNet in 1 hour. arXiv preprint
arXiv:1706.02677,2017. 2,4,5,7, 8

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The “Something Something” video
database for learning and evaluating visual common sense.
InICCV,2017. 2,8

Juncai He and Jinchao Xu. MgNet: A unified framework of
multigrid and convolutional neural network. Science China
Mathematics, 2019. 2

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask R-CNN. In ICCV, 2017. 2

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

161

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. PAMI, 2015. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2,4,5,6, 8

Noureldien Hussein, Efstratios Gavves, and Arnold WM
Smeulders. Timeception for complex action recognition. In
CVPR, 2019. 2

Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 5

Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and
Junjie Yan. STM: Spatiotemporal and motion encoding for
action recognition. In /ICCV, 2019. 2

Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In ISCA, 2017.
2

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The Kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 2,5

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

Bruno Korbar, Du Tran, and Lorenzo Torresani. SCSampler:
Sampling salient clips from video for efficient action recog-
nition. In ICCV, 2019. 5

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
ImageNet classification with deep convolutional neural net-
works. In NIPS, 2012. 2,3, 4

Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1989. 1
Myunggi Lee, Seungeui Lee, Sungjoon Son, Gyutae Park,
and Nojun Kwak. Motion feature network: Fixed motion
filter for action recognition. In ECCV, 2018. 2

Ji Lin, Chuang Gan, and Song Han. Temporal shift module
for efficient video understanding. In /CCV, 2019. 2, 8
Chenxu Luo and Alan L Yuille. Grouped spatial-temporal
aggregation for efficient action recognition. In ICCV, 2019.
2

Brais Martinez, Davide Modolo, Yuanjun Xiong, and Joseph
Tighe. Action recognition with spatial-temporal discrimina-
tive filter banks. In /CCV, 2019. 2

AlJ Piergiovanni, Anelia Angelova, Alexander Toshev, and
Michael S Ryoo. Evolving space-time neural architectures
for videos. In ICCV, 2019. 2

Siyuan Qiao, Zhe Lin, Jianming Zhang, and Alan L Yuille.
Neural rejuvenation: Improving deep network training by
enhancing computational resource utilization. In CVPR,
2019. 2

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(501

Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-
temporal representation with pseudo-3D residual networks.
InICCV,2017. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. 1JCV, 2015. 6

Gunnar A Sigurdsson, Giil Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity under-
standing. In ECCV, 2016. 2, 8

Patrice Y Simard, David Steinkraus, and John C Platt. Best
practices for convolutional neural networks applied to visual
document analysis. In ICDAR, 2003. 3

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In /CLR,
2015. 2,4

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and
Quoc V Le. Don’t decay the learning rate, increase the batch
size. In ICLR, 2018. 2

Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi. Human
action recognition using factorized spatio-temporal convolu-
tional networks. In ICCV, 2015. 2

Mingxing Tan and Quoc V Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In ICML,
2019. 6

Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé
Jégou. Fixing the train-test resolution discrepancy. In
NeurIPS, 2019. 4,5

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3D convolutional networks. In ICCV, 2015. 2, 4

Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feis-
zli. Video classification with channel-separated convolu-
tional networks. In ICCV, 2019. 2

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In CVPR, 2018. 1, 2
Limin Wang, Wei Li, Wen Li, and Luc Van Gool.
Appearance-and-relation networks for video classification.
In CVPR, 2018. 2

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, 2018. 1, 2, 4,
5,6,7,8

Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
ing He, Philipp Krihenbiihl, and Ross Girshick. Long-term
feature banks for detailed video understanding. In CVPR,
2019. 2,5

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV,
2018. 2,8

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and
Kurt Keutzer. ImageNet training in minutes. In /CPP, 2018.
2

[51] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

162

Brox. ECO: Efficient convolutional network for online video
understanding. In ECCV, 2018. 2

