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Abstract

Consider the multigraph obtained by adding a double edge to
K4 − e. Now, let D be a directed graph obtained by orientat-
ing the edges of that multigraph. We establish necessary and
sufficient conditions on n for the existence of a (K∗

n, D)-design
for four such orientations.

1 Introduction

Let Zm denote the set of integers modulo m. For a graph H, let
V (H) and E(H) denote the vertex set of H and the edge set of H,
respectively. Similarly, for a digraph D, let V (D) and A(D) denote
the vertex set of D and the arc set of D, respectively. The order
and the size of a graph H (or digraph D) are |V (H)| and |E(H)| (or
|V (D)| and |A(D)|), respectively.

We denote the complete multipartite graph with parts of sizes
ai for 1 ≤ i ≤ m by Ka1,a2,...,am . If ai = a for all i ∈ {1, . . . ,m},
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then we use the notation Km×a. Furthermore, let V (Km×a) = Zma

with vertex partition {V0, V1, . . . , Vm−1} where Vi = {j ∈ Zma : j ≡ i
(mod m)}. Then E(Km×a) consists of all edges {i, j} such that i 6≡ j
(mod m).

The complete graph of order n with a hole of size t, denoted
Kn \ Kt, is the graph with vertex set V and edge set { {a, b} : a ∈
V, b ∈ V \ U, a 6= b } where |V | = n, U ⊆ V , and |U | = t. The
vertices in U are said to be the vertices in the hole.

Let tG denote the graph consisting of t vertex-disjoint copies
of G. The join of two vertex-disjoint graphs G and H, denoted
G ∨ H, is the graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H) ∪ {{a, b} : a ∈ V (G), b ∈ V (H)}. For example, K5x+1

could be described as (xK5 ∨K1)∪Kx×5. Note that, by convention,
the union of two graphs implies the graphs are edge-disjoint, but not
necessarily vertex-disjoint.

Let H be a graph and let G be a set of subgraphs of H. We
will refer to a graph G ∈ G as a G-block. A G-decomposition of H
is a set ∆ = {G1, G2, . . . , Gr} of pairwise edge-disjoint subgraphs
of H such that for every i ∈ [1, r], Gi

∼= G for some G ∈ G and
such that E(H) =

⋃r
i=1E(Gi). Of particular importance is when

G = {G}, in which case we write “G-decomposition of H” instead
of “{G}-decomposition of H.” A G-decomposition of Kn is also
known as a (Kn, G)-design. The set of all n for which Kn admits
a G-decomposition is called the spectrum of G. The spectrum has
been determined for many classes of graphs, including all graphs
on at most 4 vertices [4] and all graphs on 5 vertices (see [3] and
[12]). We direct the reader to [2] and [5] for recent surveys on graph
decompositions.

1.1 Definitions for Digraphs

Similar concepts to those defined above for undirected graphs can be
defined for digraphs. First, we introduce additional notation. For
an undirected graph G, let G∗ denote the digraph obtained from G
by replacing each edge {u, v} ∈ E(G) with the arcs (u, v) and (v, u).
Thus K∗

n, the complete digraph of order n, is the digraph on n vertices
with the arcs (u, v) and (v, u) between every pair of distinct vertices
u and v.
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Let H and D be digraphs such that D is a subgraph of H. A
D-decomposition of H is a set ∆ = {D1, D2, . . . , Dr} of pairwise
arc-disjoint subgraphs of H each of which is isomorphic to D and
such that A(H) =

⋃r
i=1A(Di). As with the undirected case, a D-

decomposition of K∗
n is also known as a (K∗

n, D)-design, and the set of
all n for which K∗

n admits a D-decomposition is called the spectrum
of D.

The spectra for several digraphs of small order at most 4 have
been determined. This includes the spectra for all digraphs on at
most 3 vertices [14], all bipartite digraphs on 4 vertices (see [9]), the
orientations of a triangle with a pendent edge (see [6] and [8]), and
several of the orientations of K4 − e (see [7]).

In this paper, we extend the known results on the spectra of
digraphs of order 4 by determining the spectra for the four digraphs
found in Figure 1. We use the naming convention found in An Atlas
of Graphs [15] by Read and Wilson. For example, D113[a, b, c, d]
refers to the digraph with vertex set {a, b, c, d} and arc set

{
(a, b),

(a, d), (b, a), (c, a), (c, b), (c, d)
}

.

a b

cd

D113[a, b, c, d]

a b

cd

D119[a, b, c, d]

a b

cd

D121[a, b, c, d]

a b

cd

D147[a, b, c, d]

Figure 1: The 4 digraphs for which we settle the spectrum. Note
that these are 4 possible orientations of a multigraph obtained from
adding a double edge to K4 − e.

1.2 Some Basic Results

The obvious necessary conditions for a digraph D to decompose K∗
n

are

(A) |V (D)| ≤ n,

(B) |A(D)| divides |A(K∗
n)| = n(n− 1), and

(C) both gcd{outdegree(v) : v ∈ V (D)} and gcd{indegree(v) : v ∈
V (D)} divide n− 1.
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Applying these necessary conditions to the 4 digraphs under consid-
eration, we obtain the following necessary conditions:

Lemma 1. For D ∈ {D113,D119,D121,D147}, a (K∗
n, D)-design

exists only if n ≥ 7 and n ≡ 1 or 3 (mod 6).

Given a digraph D, the reverse orientation of D, denoted Rev(D),
is the digraph with vertex set V (D) and arc set {(v, u) : (u, v) ∈
A(D)}. We make use of the following fact that was first noted in [9]:

Observation 2 ([9]). Let D and H be digraphs. A D-decomposition
of H exists if and only if a (Rev(D))-decomposition of Rev(H) exists.

The fact that K∗
n
∼= Rev(K∗

n) leads to the following corollary:

Corollary 3. Let D be a digraph. A (K∗
n, D)-design exists if and

only if a (K∗
n,Rev(D))-design exists.

Note that the 4 digraphs of interest in this paper occur in pairs
with respect to their reverse orientations. Namely, D113 ∼= Rev(D121)
and D119 ∼= Rev(D147).

The following theorems on decompositions of complete graphs
and complete multipartite graphs are crucial for proving our main
results. Note that these background results concern graphs, as op-
posed to digraphs. All of these results can be found in the Handbook
of Combinatorial Designs [10] (see for example [1] and [11]).

Theorem 4 ([10]). If n is an odd positive integer, then there exists
a {K3,K5}-decomposition of Kn.

Theorem 5 ([10]). Let t ≥ 3. There exists a K3-decomposition of
Kt×2 if t ≡ 0 or 1 (mod 3) and of K4, (t−2)×2 if t ≡ 2 (mod 3).

Theorem 6 ([10]). Let t ≥ 4. There exists a K4-decomposition of
Kt×3 if t ≡ 0 or 1 (mod 4) and of K6, (t−2)×3 if t ≡ 2 or 3 (mod 4)
and t 6= 6.

The following is a well-known result that is a special case of Wil-
son’s Fundamental Construction (see [13]).

Theorem 7 ([13]). Let m, n, r, s, and t be positive integers. If
there exists a (Kt×m,Kn)-design, then there exists a (Kt×ms,Kn×s)-
design. Similarly, if there exists a (Kr, t×m,Kn)-design, then there
exists a (Krs, t×ms,Kn×s)-design.
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2 Examples of Small Designs

We now turn our attention to the designs of small order which will
be used for the general constructions.

Given a digraph represented by the notation D[a, b, c, d] and some
i ∈ Zn, we define D[a, b, c, d] + i = D[a + i, b + i, c + i, d + i] where
all addition is performed in Zn. By convention, define ∞+ 1 =∞.

Example 1. There exists a (K∗
7 , D)-design for D ∈ {D113,D119,

D121,D147}.
Let V (K∗

7 ) = Z7.
A (K∗

7 ,D113)-design is given by {D113[0, 1, 4, 2] + i : i ∈ Z7}.
A (K∗

7 ,D119)-design is given by {D119[0, 1, 5, 3] + i : i ∈ Z7}.
Applying Corollary 3, we obtain the remaining designs.

Example 2. There exists a (K∗
9 , D)-design for D ∈ {D113,D119,

D121,D147}.
Let V (K∗

9 ) = Z2 × Z4 ∪ {∞}.
A (K∗

9 ,D113)-design is given by

{D113[(1, 1 + i), (1, 0 + i), (0, 0 + i), (0, 1 + i)] : i ∈ Z4}
∪ {D113[(0, 3 + i), (1, 2 + i), (1, 0 + i), (0, 2 + i)] : i ∈ Z4}
∪ {D113[∞, (0, 3 + i), (0, 1 + i), (1, 3 + i)] : i ∈ Z4}.

A (K∗
9 ,D119)-design is given by

{D119[(0, 3 + i), (0, 0 + i), (1, 1 + i), (1, 2 + i)] : i ∈ Z4}
∪ {D119[(0, 3 + i), (1, 3 + i), (1, 2 + i), (0, 1 + i)] : i ∈ Z4}
∪ {D119[∞, (0, 3 + i), (1, 1 + i), (1, 3 + i)] : i ∈ Z4}.

Applying Corollary 3, we obtain the remaining designs.

Example 3. There exists a (K∗
13, D)-design for D ∈ {D113,D119,

D121,D147}.
Let V (K∗

13) = Z13.
A (K∗

13,D113)-design is given by

{D113[0, 4, 6, 8] + i : i ∈ Z13} ∪ {D113[1, 0, 8, 11] + i : i ∈ Z13}.
A (K∗

13,D119)-design is given by

{D119[0, 4, 5, 7] + i : i ∈ Z13} ∪ {D119[9, 12, 10, 2] + i : i ∈ Z13}.
Applying Corollary 3, we obtain the remaining designs.
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Example 4. There exists a (K∗
15, D)-design for D ∈ {D113,D119,

D121,D147}.

Let V (K∗
15) = Z2 × Z7 ∪ {∞}.

A (K∗
15,D113)-design is given by

{D113[(0, 4 + i), (0, 1 + i), (1, 0 + i), (1, 1 + i)] : i ∈ Z7}
∪ {D113[(0, 6 + i), (0, 0 + i), (1, 4 + i), (1, 1 + i)] : i ∈ Z7}
∪ {D113[(1, 2 + i), (1, 1 + i), (0, 2 + i), (0, 0 + i)] : i ∈ Z7}
∪ {D113[(1, 4 + i), (0, 3 + i), (0, 1 + i), (1, 0 + i)] : i ∈ Z7}
∪ {D113[∞, (1, 6 + i), (1, 0 + i), (0, 0 + i)] : i ∈ Z7}.

A (K∗
15,D119)-design is given by

{D119[(0, 6 + i), (0, 0 + i), (1, 2 + i), (1, 3 + i)] : i ∈ Z7}
∪ {D119[(0, 3 + i), (0, 0 + i), (1, 0 + i), (1, 6 + i)] : i ∈ Z7}
∪ {D119[(0, 5 + i), (1, 3 + i), (1, 0 + i), (0, 0 + i)] : i ∈ Z7}
∪ {D119[(1, 2 + i), (0, 4 + i), (1, 5 + i), (1, 0 + i)] : i ∈ Z7}
∪ {D119[∞, (1, 1 + i), (0, 0 + i), (0, 5 + i)] : i ∈ Z7}.

Applying Corollary 3, we obtain the remaining designs.

Example 5. There exists a (K∗
21, D)-design for D ∈ {D113,D119,

D121,D147}.

Let V (K∗
21) = Z21.

A (K∗
21,D113)-design is given by

{D113[0, 3, 9, 1],D113[0, 4, 15, 2],D113[0, 7, 12, 5],

D113[0, 11, 1, 19],D113[0, 17, 13, 20],D113[1, 7, 5, 12],

D113[1, 2, 8, 6],D113[1, 14, 11, 3],D113[1, 17, 19, 10],

D113[2, 14, 17, 18]}.

A (K∗
21,D119)-design is given by

{D119[7, 15, 18, 5],D119[2, 16, 0, 4],D119[4, 3, 18, 13],

D119[0, 9, 7, 18],D119[0, 5, 4, 14],D119[0, 11, 19, 20],

D119[0, 17, 8, 6],D119[1, 4, 17, 13],D119[1, 7, 11, 17],

D119[2, 20, 8, 9]}.

Applying Corollary 3, we obtain the remaining designs.
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Example 6. There exists a (K∗
25, D)-design for D ∈ {D113,D119,

D121,D147}.

Let V (K∗
25) = Z25.

A (K∗
25,D113)-design is given by

{D113[0, 1, 13, 19] + i : i ∈ Z25} ∪ {D113[0, 3, 17, 21] + i : i ∈ Z25}
∪ {D113[0, 5, 15, 17] + i : i ∈ Z25} ∪ {D113[0, 7, 16, 14] + i : i ∈ Z25}.

A (K∗
25,D119)-design is given by

{D119[0, 12, 2, 8] + i : i ∈ Z25} ∪ {D119[0, 24, 6, 10] + i : i ∈ Z25}
∪ {D119[0, 22, 14, 16] + i : i ∈ Z25} ∪ {D119[0, 20, 4, 18] + i : i ∈ Z25}.

Applying Corollary 3, we obtain the remaining designs.

Example 7. There exists a (K∗
39, D)-design for D ∈ {D113,D119,

D121,D147}.

Let V (K∗
39) = Z39.

A (K∗
39,D113)-design is given by

{D113[25, 24, 19, 11],D113[13, 25, 23, 36],D113[26, 20, 3, 5],

D113[17, 9, 34, 27],D113[34, 13, 21, 35],D113[18, 6, 29, 7],D113[0, 10, 17, 5],

D113[4, 6, 5, 0],D113[0, 3, 9, 15],D113[0, 18, 31, 9],D113[0, 19, 15, 22],

D113[0, 20, 35, 11],D113[0, 32, 2, 38],D113[1, 25, 17, 38],D113[1, 31, 6, 35],

D113[1, 5, 35, 8],D113[1, 14, 37, 34],D113[1, 20, 24, 11],D113[1, 29, 26, 12]}.

A (K∗
39,D119)-design is given by

{D119[25, 29, 12, 37],D119[35, 34, 26, 15],D119[5, 25, 24, 36],

D119[23, 17, 28, 13],D119[5, 18, 36, 8],D119[4, 2, 7, 33],D119[0, 3, 9, 24],

D119[0, 4, 6, 27],D119[0, 7, 30, 1],D119[0, 19, 22, 16],D119[0, 28, 34, 2],

D119[0, 31, 2, 29],D119[0, 23, 14, 35],D119[0, 32, 5, 22],D119[0, 38, 35, 14],

D119[1, 19, 32, 16],D119[1, 31, 6, 23],D119[1, 26, 13, 29],D119[2, 26, 36, 34]}.

Applying Corollary 3, we obtain the remaining designs.
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Example 8. There exists a (K∗
4×2, D)-design D ∈ {D113,D119,

D121,D147}.

Let V (K∗
4×2) = Z8 with partition

{
{0, 4}, {1, 5}, {2, 6}, {3, 7}

}
.

A (K∗
4×2,D113)-design is given by

{D113[0, 1, 2, 5],D113[0, 6, 3, 2],D113[0, 7, 5, 3],D113[4, 1, 3, 5],

D113[4, 2, 5, 6],D113[4, 7, 6, 3],D113[2, 7, 1, 3],D113[6, 1, 7, 5]}.

A (K∗
4×2,D119)-design is given by

{D119[0, 3, 1, 2] + i : i ∈ Z8}.

Applying Corollary 3, we obtain the remaining designs.

Example 9. There exists a (K∗
3×6, D)-design for D ∈ {D113,D119,

D121,D147}.

Let V (K∗
3×6) = Z18 with partition

{
{j ∈ Z18 : j ≡ i (mod 3)} :

i ∈ Z3

}
.

A (K∗
3×6,D113)-design is given by

{D113[2, 12, 13, 15] + i : i ∈ Z18} ∪ {D113[1, 15, 14, 12] + i : i ∈ Z18}.

A (K∗
3×6,D119)-design is given by

{D119[2, 12, 13, 15] + i : i ∈ Z18} ∪ {D119[1, 15, 14, 12] + i : i ∈ Z18}.

Applying Corollary 3, we obtain the remaining designs.

Example 10. There exists a (K∗
5×6, D)-design for D ∈ {D113,D119,

D121,D147}.

Let V (K∗
5×6) = Z30 with partition

{
{j ∈ Z30 : j ≡ i (mod 5)} :

i ∈ Z5

}
.

A (K∗
5×6,D113)-design is given by

{D113[0, 2, 21, 7] + i : i ∈ Z30} ∪ {D113[1, 7, 8, 22] + i : i ∈ Z30}
∪ {D113[3, 16, 15, 11] + i : i ∈ Z30} ∪ {D113[2, 29, 10, 14] + i : i ∈ Z30}.

A (K∗
5×6,D119)-design is given by

{D119[0, 2, 21, 7] + i : i ∈ Z30} ∪ {D119[1, 7, 8, 22] + i : i ∈ Z30}
∪ {D119[3, 16, 15, 11] + i : i ∈ Z30} ∪ {D119[2, 29, 10, 14] + i : i ∈ Z30}.

Applying Corollary 3, we obtain the remaining designs.
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Example 11. There exists a (K∗
9 \ K∗

3 , D)-design for D ∈ {D113,
D119,D121,D147}.

Let V ((K∗
9 \K∗

3 ) = Z6 ∪ {∞1,∞2,∞3} where ∞1, ∞2, and ∞3

are the vertices in the hole.
A (K∗

9 \K∗
3 ,D113)-design is given by

{D113[0, 2, 5,∞3],D113[5,∞1, 0,∞2],D113[∞1, 1, 2, 3],

D113[∞2, 1, 3, 2],D113[∞3, 2, 1, 3],D113[1, 0,∞3, 5],

D113[3, 0,∞2, 5],D113[4,∞2, 2, 5],D113[4,∞3, 3,∞1],

D113[4, 0,∞1, 2],D113[4, 1, 5, 3]}.

A (K∗
9 \K∗

3 ,D119)-design is given by

{D119[0, 4,∞1, 1],D119[∞1, 5, 1, 2],D119[0, 3, 2,∞1],

D119[3,∞1, 4, 1],D119[∞2, 0, 2, 3],D119[∞2, 5, 3, 4],

D119[∞2, 1, 4, 2],D119[5, 2, 4,∞3],D119[5, 0,∞3, 4],

D119[∞3, 2, 1, 0],D119[3,∞3, 1, 5]}.

Applying Corollary 3, we obtain the remaining designs.

3 Main Results

We finally address the general constructions needed to piece together
the small designs mentioned previously to prove sufficiency of the
necessary conditions.

Theorem 8. If n ≡ 1 (mod 6) and n ≥ 7, then a (K∗
n, D)-design

exists for D ∈ {D113,D119,D121,D147}.

Proof. Let D ∈ {D113,D119,D121,D147} and let n = 6x + 1 for
some positive integer x. When x is 1, 2, or 4, the result follows
from Examples 1, 3, and 6, respectively. The remainder of the proof
breaks into two cases.

Case 1: x is odd with x ≥ 3.
By Theorem 4 there exists a {K3,K5}-decomposition of Kx. Thus,
by Theorem 7, there exists a {K3×6,K5×6}-decomposition of Kx×6.
Note that K6x+1 = (xK6 ∨ K1) ∪ Kx×6 = Kx×6 ∪

⋃x
i=1K7. Thus,

K∗
n = K∗

x×6 ∪
⋃x

i=1K
∗
7 . Since there exists a (K∗

3×6, D)-design (by
Example 9) and there exists a (K∗

5×6, D)-design (by Example 10),
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there exists a (K∗
x×6, D)-design. Since there also exists a (K∗

7 , D)-
design (by Example 1), there exists a (K∗

n, D)-design.

Case 2: x is even with x ≥ 6.
Let x = 2y for some integer y ≥ 3. Hence, n = 6(2y) + 1 = 12y + 1.

Subcase 2.1: y ≡ 0 or 1 (mod 3).
By Theorem 5 there exists a K3-decomposition of Ky×2. Thus,
by Theorem 7, there exists a K3×6-decomposition of Ky×12. Note
that K12y+1 = (yK12 ∨ K1) ∪ Ky×12 = Ky×12 ∪

⋃y
i=1K13. Thus,

K∗
n = K∗

y×12 ∪
⋃y

i=1K
∗
13. Since there exists a (K∗

3×6, D)-design (by
Example 9), there exists a (K∗

y×12, D)-design. Since there also exists
a (K∗

13, D)-design (by Example 3), there exists a (K∗
n, D)-design.

Subcase 2.2: y ≡ 2 (mod 3).
By Theorem 5 there exists a K3-decomposition of K4, (y−2)×2. Thus,
by Theorem 7, there exists a K3×6-decomposition of K24, (y−2)×12.
Note that K12y+1 =

((
K24 ∪ (y − 2)K12

)
∨ K1

)
∪ K24, (y−2)×12 =

K24, (y−2)×12 ∪ K25 ∪
⋃y−2

i=1 K13. Thus, K∗
n = K∗

24, (y−2)×12 ∪ K∗
25 ∪⋃y−2

i=1 K∗
13. Since there exists a (K∗

3×6, D)-design (by Example 9),
there exists a (K∗

24, (y−2)×12, D)-design. Since there also exist (K∗
25, D)-

and (K∗
13, D)-designs (by Examples 6 and 3), there exists a (K∗

n, D)-
design. �

Theorem 9. If n ≡ 3 (mod 6) and n ≥ 9, then a (K∗
n, D)-design

exists for D ∈ {D113,D119,D121,D147}.

Proof. Let D ∈ {D113,D119,D121,D147} and let n = 6x + 3 for
some positive integer x. When x is 1, 2, 3, or 6, the result follows
from Examples 2, 4, 5, and 7, respectively. The remainder of the
proof breaks into two cases.

Case 1: x ≡ 0 or 1 (mod 4) with x ≥ 4.
By Theorem 6 there exists a K4-decomposition of Kx×3. Thus, by
Theorem 7, there exists a K4×2-decomposition of Kx×6. Note that
K6x+3 = (xK6 ∨K3) ∪Kx×6 = Kx×6 ∪K9 ∪

⋃x−1
i=1 (K9 \K3). Thus,

K∗
n = K∗

x×6 ∪K∗
9 ∪

⋃x−1
i=1 (K∗

9 \K∗
3 ). Since there exists a (K∗

4×2, D)-
design (by Example 8), there exists a (K∗

x×6, D)-design. Since there
also exists a (K∗

9 , D)-design (by Example 2) and a (K∗
9 \ K∗

3 , D)-
design (by Example 11), there exists a (K∗

n, D)-design.
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Case 2: x ≡ 2 or 3 (mod 4) with x ≥ 7.
By Theorem 6 there exists a K4-decomposition of K6, (x−2)×3. Thus,
by Theorem 7, there exists a K4×2-decomposition of K12, (x−2)×6.
Note that K6x+3 =

((
K12 ∪ (x − 2)K6

)
∨ K3

)
∪ K12, (x−2)×6 =

K12, (x−2)×6 ∪ K15 ∪
⋃x−2

i=1 (K9 \ K3). Thus, K∗
n = K∗

12, (x−2)×6 ∪
K∗

15 ∪
⋃x−2

i=1 (K∗
9 \ K∗

3 ). Since there exists a (K∗
4×2, D)-design (by

Example 8), there exists a (K∗
12, (x−2)×6, D)-design. Since there also

exists a (K∗
15, D)-design (by Example 4) and a (K∗

9 \K∗
3 , D)-design

(by Example 11), there exists a (K∗
n, D)-design. �

Hence, our main result can be summarized as Theorem 10.

Theorem 10. For D ∈ {D113, D119, D121, D147}, there exists a
(K∗

n, D)-design if and only if n ≡ 1 or 3 (mod 6) and n ≥ 7.
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