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Abstract. The concentration of oxygen is fundamental to
lake water quality and ecosystem functioning through its
control over habitat availability for organisms, redox re-
actions, and recycling of organic material. In many eu-
trophic lakes, oxygen depletion in the bottom layer (hy-
polimnion) occurs annually during summer stratification.
The temporal and spatial extent of summer hypolimnetic
anoxia is determined by interactions between the lake and
its external drivers (e.g., catchment characteristics, nutrient
loads, meteorology) as well as internal feedback mechanisms
(e.g., organic matter recycling, phytoplankton blooms). How
these drivers interact to control the evolution of lake anoxia
over decadal timescales will determine, in part, the fu-
ture lake water quality. In this study, we used a vertical
one-dimensional hydrodynamic–ecological model (GLM-
AED2) coupled with a calibrated hydrological catchment
model (PIHM-Lake) to simulate the thermal and water qual-
ity dynamics of the eutrophic Lake Mendota (USA) over a
37 year period. The calibration and validation of the lake
model consisted of a global sensitivity evaluation as well as
the application of an optimization algorithm to improve the
fit between observed and simulated data. We calculated sta-
bility indices (Schmidt stability, Birgean work, stored inter-
nal heat), identified spring mixing and summer stratification
periods, and quantified the energy required for stratification
and mixing. To qualify which external and internal factors
were most important in driving the interannual variation in

summer anoxia, we applied a random-forest classifier and
multiple linear regressions to modeled ecosystem variables
(e.g., stratification onset and offset, ice duration, gross pri-
mary production). Lake Mendota exhibited prolonged hy-
polimnetic anoxia each summer, lasting between 50–60 d.
The summer heat budget, the timing of thermal stratification,
and the gross primary production in the epilimnion prior to
summer stratification were the most important predictors of
the spatial and temporal extent of summer anoxia periods in
Lake Mendota. Interannual variability in anoxia was largely
driven by physical factors: earlier onset of thermal stratifica-
tion in combination with a higher vertical stability strongly
affected the duration and spatial extent of summer anoxia.
A measured step change upward in summer anoxia in 2010
was unexplained by the GLM-AED2 model. Although the
cause remains unknown, possible factors include invasion by
the predacious zooplankton Bythotrephes longimanus. As the
heat budget depended primarily on external meteorological
conditions, the spatial and temporal extent of summer anoxia
in Lake Mendota is likely to increase in the near future as a
result of projected climate change in the region.
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1 Introduction

The availability of dissolved oxygen in lakes governs eco-
logical habitats and niches, the rates of redox reactions, and
the processing of organic matter throughout the water col-
umn (Cole and Weihe, 2016). When a lake is thermally strat-
ified, metabolism in the surface layer (epilimnion) can act
as a net source or sink of oxygen, depending on the balance
of gross primary production and ecosystem respiration, and
deviations of dissolved oxygen from saturation values are
modulated by atmospheric exchange (Odum, 1956). Addi-
tionally, entraining inflows can also act as an important oxy-
gen sink or source depending on the lake morphometry, the
inlet discharge, and the carrying capacity for dissolved oxy-
gen (Burns, 1995). Below the thermocline, dissolved oxygen
is depleted in the bottom layer (hypolimnion) by organic mat-
ter mineralization in the water column and the sediment oxy-
gen demand (Livingstone and Imboden, 1996). These oxy-
gen depletion processes can be quantified as either a volu-
metric sink (e.g., due to organic matter mineralization in the
water column) or as an areal sink (e.g., oxygen demand in
the sediments). The depletion rates of oxygen depend on the
organic matter pool (Müller et al., 2012, 2019), the trophic
status of the lake (Rhodes et al., 2017; Rippey and McSorley,
2009), the area to volume relationship over depth (Living-
stone and Imboden, 1996), and the chemical demand of the
water column and sediments (Yin et al., 2011).

While the biogeochemistry of lake oxygen is well stud-
ied, there is much to be learned about decadal-scale controls
over ecosystem patterns in oxygen and the interactions of ex-
ternal drivers with internal processes that control those pat-
terns. Oxygen depletion in the hypolimnion that results in
hypoxia (dissolved oxygen< 2 mg L−1; Diaz and Rosenberg,
2008) and anoxia (dissolved oxygen< 1 mg L−1; Nürnberg,
1995b) is a product of interacting external drivers (e.g., cli-
mate, land use practices in the catchment) that control mass
fluxes (Jenny et al., 2016b), morphometric characteristics,
and productivity that influences vertical transport and wa-
ter column stability (Meding and Jackson, 2003). Unprece-
dented changes to the climate and catchment land use are
likely to have nonlinear consequences on aquatic water bod-
ies and will potentially intensify hypolimnetic anoxia (Jenny
et al., 2014, 2016a; Sánchez-España et al., 2017).

The influence of physical controls on lake anoxia is of par-
ticular interest because it provides clues to how lakes might
respond to long-term changes in exogenous drivers. The tim-
ing of anoxia has been found to be strongly related to the
onset and offset of stratification as well as sediment oxygen
demand in small eutrophic lakes (Biddanda et al., 2018; Fo-
ley et al., 2012; Nürnberg, 2004). A reduction of winter and
spring mixing and an increase in stratification can be major
drivers of deep-water oxygen depletion (North et al., 2014).
For Lake Mendota (USA), Snortheim et al. (2017) concluded
that changes in air temperature were the main driver of the
spatiotemporal extent of summer hypolimnetic anoxia, but

was unable to disentangle the direct effect of air tempera-
ture (i.e., warmer water temperatures) vs. its indirect effect
(i.e., stronger thermal stratification) on oxygen dynamics.
The question thus remains open: under what circumstances
and at what timescales does thermal stratification strength act
as the dominant driver of hypolimnetic anoxia versus biogeo-
chemical processes?

Studying decadal-scale lake anoxia requires an ecosystem-
scale metric of lake anoxia and an analytical framework
for tying that metric to physical and biological processes.
Several metrics of oxygen availability have been devel-
oped by previous studies, such as mean areal hypolimnetic
oxygen depletion (AHOD, in mg O2 m−2 d−1; Cornett and
Rigler, 1979; Hutchinson, 1938), volumetric rate of oxy-
gen consumption (VOD, in mg O2 m−3 d−1; Cornett, 1989),
areal hypolimnetic mineralization (AHM, in g O2 m−2 d−1;
Matzinger et al., 2010), and the anoxic factor (AF, in days;
Nürnberg, 1995a, b, 2004). Most metrics calculate an oxygen
depletion rate, whereas the AF provides an integrated metric
that includes the spatial and temporal dimensions of anoxia
per season. As the AF sums up the product of anoxia dura-
tion with the corresponding area, it is therefore a useful met-
ric to evaluate long-term dynamics of hypolimnetic anoxia,
and to compare the intensity of anoxia between years and
different study sites. The AF and its derivative, the hypoxic
factor (the difference being the threshold of dissolved oxy-
gen; Nürnberg, 2004), have been used in several studies and
observations range from 0 to 83 d per summer for different
lake ecosystems (Nürnberg, 1995b).

Coupled hydrodynamic–water-quality models are an es-
tablished approach to studying lake physical and biological
responses to external drivers (Hipsey et al., 2019). An advan-
tage of a lake ecosystem model calibrated to observed long-
term data is that it can reproduce finer temporal and spatial
resolution than observational data permit for most ecosys-
tems (Stanley et al., 2019), allowing for the investigation of
complex ecosystem dynamics (Ward et al., 2020). By apply-
ing an ecosystem model driven by subdaily meteorological
and daily hydrological inflow data, physical processes rele-
vant to hypolimnetic oxygen depletion (such as the onset and
seasonal evolution of thermal stratification and gas transfer
velocities) can be resolved at an hourly resolution and can
subsequently be incorporated into stochastic models to gain
an understanding about the relationships between drivers and
their respective impacts on hypolimnetic anoxia (Snortheim
et al., 2017). Results from deterministic lake models can be
analyzed using statistical models to derive general relation-
ships of cause and effect in the model space. Results can also
be compared with alternative, deductive approaches, which
tend to be simpler models meant to reproduce gross ecosys-
tem properties. An example relevant to lake anoxia is the
simple deductive hypolimnetic oxygen depletion model by
Livingstone and Imboden (1996), which established that mi-
nor year-to-year meteorological variations during spring can
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cause an expansion of the thickness of the summer anoxia
layer.

This study aims to determine the extent to which phys-
ical, chemical, and biological (internal and external) fac-
tors control the interannual variability of the summer AF
over 37 years in the eutrophic Lake Mendota. We first use
a lake hydrodynamic–water-quality model to generate fine
scale ecosystem states and fluxes based on observational
data. Second, we use a deductive lake anoxia model and data-
driven empirical models to evaluate observed and simulated
data and to determine broad-scale control over lake anoxia.
We answer three questions with our modeling framework:
(1) overall, do internal biogeochemical processes or external
loadings control year-to-year variability of the AF? (2) what
are essential in-lake physical and biological controls over the
long-term variability in anoxia? (3) as the timing of thermal
stratification governs hypolimnetic oxygen depletion, what is
the year-to-year variability of Lake Mendota’s head budget?
Answers to these questions will further our understanding of
lake ecosystem responses to climate and landscape changes
to support water quality management.

2 Materials and methods

2.1 Study site

Lake Mendota is a 39.61 km2, 25 m deep, eutrophic lake
in southern Wisconsin, USA (Fig. 1). The lake has a mean
water residence time of 4.3 years (McDonald and Lathrop,
2017). Lake Mendota’s mixing regime is characterized by
a summer stratification period from late April through Oc-
tober and an inverse winter stratification period under ice
(Brock, 1985). Lake Mendota’s air temperature ranges from
−39 to 40 ◦C with a mean annual value of 8 ◦C and an an-
nual precipitation ranging from 540 to 990 mm with an av-
erage of 780 mm (Lathrop, 1992). The 604 km2 watershed
is dominated by agricultural land (67 %) and developed ur-
ban land (22 %; Duffy et al., 2018). Since 1995, physical,
chemical, and biological characteristics have been sampled
biweekly to monthly by the North Temperate Lakes Long
Term Ecological Research Program (NTL-LTER; Magnuson
et al., 2006). We note that Lake Mendota is a “hard water”
lake with pH> 7 and exhibits consistently high dissolved in-
organic carbon concentrations, with speciation dominated by
bicarbonate and carbonate (Hart et al., 2020).

2.2 Driver data acquisition

Meteorological forcing data were obtained from the second
phase of the North American Land Data Assimilation Sys-
tem (NLDAS-2; Xia et al., 2012). The data from the grid
cell were centered at 43◦6′3.4128′′ N, 89◦24′37.1124′′W.
The NLDAS-2 grid cells have 1/8th-degree spacing and
data are at an hourly resolution from 1 January 1979 to
present (Mitchell, 2004). Meteorological parameters used in

this study included wind speed, air temperature, specific hu-
midity, surface pressure, surface downward short- and long-
wave radiation, and total precipitation, which were used pri-
marily as boundary data for GLM-AED2. Relative humidity
was calculated post hoc as a function of specific humidity, air
temperature, and surface pressure.

To quantify the water budget in Lake Mendota, we sim-
ulated the water inflow from the catchment (through stream
flow, overland flow, and groundwater flow) to the lake and
water outflow from the lake to the catchments using a physi-
cally based distributed hydrologic model, PIHM-Lake (Penn
State Integrated Hydrologic Model, see Supplement text
“PIHM-Lake description”, Qu and Duffy, 2007). PIHM-Lake
integrates hydrologic processes in a lake-catchment coupled
system simulating the surface and subsurface hydrologic in-
teractions within the catchment and between the catchment
and the lake. Hydrologic interactions within the catchment
are modeled in three dimensions, while the lake is repre-
sented in PIHM-Lake as a simplified one-dimensional bucket
model assuming a uniform lake surface area and depth.
PIHM-Lake tracks the change in water storage from the
watershed’s vegetation canopy, ground surface, unsaturated
soil zone, saturated soil zone, and lake by using the semi-
discrete finite volume method and a triangular irregular net-
work (TIN). The PIHM-Lake simulation covers a 37 year pe-
riod (from 1979 to 2015), and its parameters were calibrated
and validated with in-situ measured stream inflow and lake
outflow discharges from the US Geological Survey (USGS).
The application of the PIHM-Lake model for quantifying the
lake inflows helped close the water balance of Lake Mendota
as groundwater inflow and surface overland flow were not
measured and the model simulations provided these inflows.

Surface nutrient loadings from the Yahara River and
Pheasant Branch inflows into Lake Mendota were estimated
by regression models using discharge and nutrient concen-
tration data from USGS gages (Appling et al., 2015; data
are available at Ladwig et al. (2021) via the Environmen-
tal Data Initiative). Combined with the simulated discharge
time series from PIHM-Lake, these regressions were used
to compute daily loading data. We included the following
nutrients in the inflow boundary conditions: soluble reac-
tive phosphate, adsorbed soluble reactive phosphate, dis-
solved organic phosphorus, particulate organic phosphorus,
dissolved organic nitrogen, ammonia, nitrate, refractory dis-
solved organic carbon, dissolved inorganic carbon, and reac-
tive silica. For a complete description of the inflow loading
regressions, see Weng et al. (2020). To provide information
regarding adsorbed soluble reactive phosphate, we doubled
measured total phosphorus (TP) concentrations and applied
specific ratios to individual phosphorus forms (Farrell et al.,
2020; Snortheim et al., 2017; Weng et al., 2020). This put
our estimates of TP near the upper range of previous load es-
timates. Bennett et al. (1999) estimated the long-term aver-
age annual TP load to be about 34 t, whereas our average an-
nual TP load (with adsorbed phosphate) was about 50.6 t and
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Figure 1. Location and overview map of Lake Mendota, Wisconsin, which is located in the Yahara River catchment in southern Wisconsin,
USA. USGS gage stations for the PIHM-Lake model and the location of the Lake Mendota monitoring buoy are placed in the map. Land
cover was sourced from the open-access US National Land Cover database.

ranged between 5.3 to 146.1 t (1979–2015). Our average an-
nual TP load (without adsorbed phosphate) was about 25.3 t
and ranged between 2.7 to 73.1 t (1979–2015), which is sim-
ilar to previous annual TP load estimates of 15 to 67 t (Kara
et al., 2012) and 10 to 80 t (Lathrop and Carpenter, 2014). By
doubling our TP by adding adsorbed phosphate, we accom-
modate a potential TP load underestimation due to the impor-
tance of extreme storm events on particulate loads (Carpen-
ter et al., 2018). As direct measurements of inlet loadings of
refractory organic matter, dissolved inorganic carbon (DIC),
and silica were not available, we used constant average val-
ues for the inflow loadings similar to the long-term mean val-
ues of the water column.

Monitored NTL-LTER data from 1995 to 2015 were used
for model calibration and validation. Data included water
temperature and dissolved oxygen concentrations (Magnu-
son et al., 2019a, 2020b) with a vertical spatial resolution
of 1 m from the surface to 24 m. Data were measured bi-
weekly during summer, monthly during fall, and once per
winter. The dissolved oxygen data set was complemented
with historical measured dissolved oxygen data from 1992
to 1994 (Soranno, 1995). NTL-LTER data also included pH,
dissolved inorganic carbon, dissolved organic carbon, nitrate,
ammonia, soluble reactive phosphate, and silica sampled at
the depths 0, 3, 8, 10, 12, 14, 16, 18, 20, and 22 m (Magnu-
son et al., 2020a). Surface-integrated samples of epilimnetic
chlorophyll a and Secchi depth were used to evaluate GLM-

AED2’s predictions of phytoplankton biomass and light ex-
tinction (Magnuson et al., 2019b, 2020b).

2.3 Modeling framework

Our modeling framework to investigate drivers of hypolim-
netic anoxia consisted of three components (Fig. 2):

1. Deductive model: a deductive model formulated by Liv-
ingstone and Imboden (1996) was run on the moni-
tored field data to characterize the empirical relation-
ships between observed dissolved oxygen data and oxy-
gen depletion processes and to quantify the contribu-
tions of water column and sediments to hypolimnetic
oxygen demand (Fig. 2). The deductive model furthered
our ecosystem-scale understanding of the partitioning
between volumetric and areal oxygen depletion sinks
in Lake Mendota. Therefore, this approach was used
independently of the other modeling approaches as a
“check” on the sediment oxygen demand rates of Lake
Mendota used in GLM-AED2.

2a. GLM-AED2: to gain a more mechanistic under-
standing of how processes driving oxygen deple-
tion lead to ecosystem-scale oxygen dynamics, we
used the vertical one-dimensional hydrodynamic–
water-quality model, GLM-AED2 (Hipsey et al.,
2019). GLM-AED2 uses meteorological, hydrolog-
ical, and nutrient load data as inputs and predicts
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Figure 2. Schematic overview of the modeling workflow: (1) ap-
plication of a deductive model to further our system understanding
about oxygen sink terms; (2) replication of Lake Mendota using
GLM-AED2 to investigate hydrodynamic and ecosystem mecha-
nisms; and (3) application of regression models to quantify the im-
portance of ecosystem predictors on the anoxic factor.

lake physical, chemical, and biological dynamics,
including those of dissolved oxygen. The advantage
of using GLM-AED2 is that it quantifies and tracks
processes relevant to oxygen cycling using well-
accepted physical and biogeochemical interactions
that otherwise are difficult to infer from observa-
tional data alone (see Sect. 2.3.2, Fig. 2). Although
GLM-AED2 is a deterministic model, hypolimnetic
anoxia is an emergent ecosystem property that de-
rives from a complex suite of interactions within the
model (Snortheim et al., 2017). Therefore, we used
GLM-AED2 to simulate and track states and fluxes
of modeled variables.

2b. Regression model: to derive generalized relation-
ships between the interannual variation in hypolim-
netic anoxia and the driving data, as well as the out-
put from GLM-AED2, we used statistical models
on our combined dataset of monitored and mod-
eled data. Because the number of potential candi-
date predictors is high, we used a machine learning
approach to determine the most significant predic-
tors of seasonal hypolimnetic anoxia at the interan-
nual scale (Fig. 2). These predictors were then used
in a multiple linear regression to rank their influ-
ence on hypolimnetic anoxia.

2.3.1 Deductive model

Using temporal and spatial linearly interpolated observed
dissolved oxygen data, we applied the simple deductive oxy-
gen depletion model according to Livingstone and Imbo-
den (1996) in which the oxygen depletion rate J (z) at depth z
is conceptualized as

J (z)= JV(z)+ JA(z)α(z), (1)

where the intercept JV JA is the volume sink (mass per
volume per time) representing organic matter mineraliza-
tion processes, e.g., microbial respiration in the water col-
umn, the gradient JA is the area sink (mass per area per
time) representing sediment oxygen demand, and α is a func-
tion for the ratio of sediment area to water volume over the
depth z (Bossard and Gächter, 1981; Livingstone and Imbo-
den, 1996):

α(z)=−
1

A(z)

dA(z)
dz

. (2)

We used observed dissolved oxygen data from 1992
to 2015 (measured biweekly after ice offset) to calculate the
specific oxygen depletion J (z) over depth for each year in-
dividually from the concentration, [DO]spring, at the date of
spring mixing offset, tspring, to the date, t2 mgL, when oxygen
concentrations, [DO]2 mgL, were below 2 mg L−1 (criterion
for hypoxia):

J (z)=
[DO]spring− [DO]2 mgL

tspring− t2 mgL
. (3)

Only dissolved oxygen data below a depth of 15 m were used.
The derivatives of area to depth were approximated by using
forward and backward differencing. The terms JV and JA
were assumed to be constant for every year (assuming the hy-
polimnion to be homothermic) and were determined by using
weighted linear regression.

2.3.2 GLM-AED2

For simulating Lake Mendota, we used the coupled one-
dimensional vertical hydrodynamic–ecological model GLM-
AED2 (GLM: v.3.1.0a1, AED2: 1.3.4, developed by Uni-
versity of Western Australia; Hipsey et al., 2019). The hy-
drodynamic model GLM incorporates a flexible Lagrangian
grid with each layer’s thickness dynamically changing in re-
sponse to the respective water density (Hipsey et al., 2019).
Surface mixing processes are computed via an energy bal-
ance approach that compares the available (turbulent) kinetic
energy to the internal potential energy of the water column
(Hipsey et al., 2019).

The water quality module, AED2, was configured to sim-
ulate the dynamics of dissolved oxygen, silica, inorganic car-
bon, organic matter (refractory, particulate, and dissolved C,
N, and P), and inorganic matter (refractory, particulate, and

https://doi.org/10.5194/hess-25-1009-2021 Hydrol. Earth Syst. Sci., 25, 1009–1032, 2021



1014 R. Ladwig et al.: Lake thermal structure drives interannual variability in summer anoxia dynamics

dissolved C, N, and P) as well as PO4, NO3, NH4, and
two functional phytoplankton groups (representing diatoms
and cyanobacteria; Table S1 in the Supplement). The model
was run on an hourly time step and output data were saved
at a daily time step at noon. The thickness of each model
layer (set to a maximum of 75 layers) could vary between
0.15 and 1.5 m with a minimum layer volume of 0.1 m3. The
source code of the model’s version, configuration files, and
input and output data are stored and accessible at Ladwig et
al. (2021) via the Environmental Data Initiative.

A global sensitivity analysis (Morris Method after Mor-
ris, 1991) was conducted to identify the most influential pa-
rameters for the predictions of water temperature, dissolved
oxygen, dissolved inorganic carbon, silica, nitrate, and phos-
phate. Using the Morris method with 10 iterative runs, the
distributions of the absolute elementary effects (the model
change quantified by a fit function, here the root mean square
error (RMSE) between observed and simulated data) of each
parameter were calculated. According to Morris (1991) and
Saltelli et al. (2004), the mean of the absolute elementary ef-
fects represents the overall sensitivity of the model outcome
to each parameter, and the standard deviations are a metric
of the interactions between different parameters. All param-
eters with a normalized mean elementary effect over 0.1 were
declared sensitive and were used for the calibration.

According to our calculated absolute elementary ef-
fects, we included the following parameters in the cal-
ibration, listed according to their respective state pa-
rameter (Fig. S1 in the Supplement). For calibrating
the six state variables, these parameters were (1) wa-
ter temperature: bulk aerodynamic coefficient for sensible
heat transfer (ch), longwave radiation factor (lw_factor),
mean sediment temperature (sed_temp_mean), shortwave
radiation factor (sw_factor); (2) dissolved oxygen: sedi-
ment flux (Fsed_oxy), mineralization rate of dissolved or-
ganic matter (Rdom), temperature multiplier for sediment
flux (theta_sed_oxy); (3) dissolved inorganic carbon: sed-
iment flux (Fsed_dic), half-saturation constant for oxygen
dependence on sediment flux (Ksed_dic), temperature mul-
tiplier for sediment flux (theta_sed_dic); (4) silica: sedi-
ment flux (Fsed_rsi), half-saturation constant for oxygen de-
pendence on sediment flux (Ksed_rsi), temperature multi-
plier for sediment flux (theta_sed_rsi); (5) nitrate: sediment
flux (Fsed_nit), half-saturation constant for oxygen depen-
dence on denitrification (Kdenit), half-saturation constant
for oxygen dependence on sediment flux (Ksed_nit), maxi-
mum reaction rate of denitrification at 20 ◦C (Rdenit); and
(6) phosphate: sediment flux (Fsed_frp), half-saturation con-
stant for oxygen dependence on sediment flux (Ksed_frp),
temperature multiplier for sediment flux (theta_sed_frp).

We applied a combination of an automatic calibration
technique and manual calibration for the calibration period
from 2005 to 2015. First, the derivative-free, optimization al-
gorithm (CMA-ES; Hansen, 2016) was used to minimize the
RMSE between observed and simulated data (data were split

into a calibration period, 2005–2015, and a validation period,
1995-2004). We used a time period prior to the calibration
period for validation to stress test the model by applying it
at a time period with potential different ecological character-
istics. The model parameters were calibrated iteratively (and
fixed for the next calibration step) in the following order: wa-
ter temperature, dissolved oxygen, dissolved inorganic car-
bon, silica, nitrate, and, finally, phosphate. We did not cal-
ibrate for phytoplankton functional group biomass because
it was out of scope for this analysis, but the model qualita-
tively recreated observed seasonal succession. Initial model
parameter values were taken from default parameter values
and ranges as well as literature values (Hipsey et al., 2017;
Snortheim et al., 2017). Calibration of water temperature and
dissolved oxygen concentrations were run for 300 iterations
and the other variables for 200 iterations. The fit criteria were
RMSE, Nash–Sutcliffe coefficient of efficiency (NSE), and
Kling–Gupta efficiency (KGE; Gupta et al., 2009) for the cal-
ibration period, the validation period, and the total time pe-
riod. The advantage of combining an automatic approach and
a manual post-calibration for an overparameterized model
such as GLM was that CMA-ES first limited the possible
parameter space of each parameter, then in a second calibra-
tion step, parameters could be manually changed to improve
overall dynamics and behavior without relying on a fixed ob-
jective function. The manual calibration was done to ensure
that the model was not overoptimized with unrealistic pa-
rameter combinations of the biological parameters. This cal-
ibration approach was done in accordance with other aquatic
ecosystem modeling studies (Fenocchi et al., 2019; Mi et al.,
2020) that did not apply computational optimization to water
quality models.

2.3.3 Post-processing of GLM-AED2 output

We quantified two heat budget metrics from simulated water
temperature data: the Schmidt stability (Idso, 1973; Read et
al., 2011; Schmidt, 1928) and the Birgean work (Birge, 1916;
Idso, 1973). The Schmidt stability (St) is a stability index
that expresses the amount of energy needed to mix the entire
water column to uniform temperatures without affecting the
amount of internal energy, whereas the Birgean work (B) is a
stability index that quantifies the amount of external energy
that is theoretically needed to build up the current stratifica-
tion from a hypothetical completely mixed state. The sum of
both terms, the total work G, gives an estimate of the energy
needed to keep a lake isothermal during stratified conditions:

G= St+B, (4)
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G=
g

As

zm∫
0

Az (1− ρz)(zv− z)dz

+
g

As

zm∫
0

Az (1− ρz)zdz, (5)

where g is gravity,As is the surface area (m2), zm is the max-
imum depth (m), Az is the respective area at depth z, ρz is
the respective density at depth z (kg m−3), zv is the depth

of the center of volume (zv =
1
V

zm∫
0
Azzdz), and V is the vol-

ume (m3). The stagnancy of deep water can be quantified by
calculating a heat budget ratio (HBR):

HBR=
G

B
, (6)

which compares the amount of energy needed to maintain
isothermal conditions to the amount of available external en-
ergy (Kjensmo, 1994). Here, an increased stagnancy of deep
waters results in a reduced exchange of fluxes between the
surface mixed and bottom layer. Therefore, HBR values> 1
indicate the isolation of the bottom water layers from surface
fluxes in a lake.

Internal energy – as the stored thermal energy in the water
column – was quantified using the R package rLakeAnalyzer
(Winslow et al., 2019) as

Einternal =
1
As

zm∫
0

Tz · cw ·mzdz, (7)

where Tz is the water temperature at depth z (◦C), cw is the
specific heat of water (J kg−1 K−1), and mz is the mass of
water at depth z (kg).

The thermocline depth was defined as a planar separation
between the surface mixed and the bottom stagnant layer.
The specific depth of this planar thermocline was quantified
as the depth of the maximum density difference over the ver-
tical axis where the minimum water temperature was above
4 ◦C and the density difference between the surface and bot-
tom layer was above 0.1 kg m−3, signaling stratified condi-
tions.

The temporal and spatial extent of anoxia during the sum-
mer season was quantified using the AF:

AF=
n∑
i=1

tiAi

As
, (8)

which sums the product of the anoxia duration t (d) with the
corresponding area A (m2) to the total surface area Aswhen
the in-water dissolved oxygen concentrations were below a
threshold of 1 mg L−1 (Nürnberg, 1995b). As the AF and hy-
poxic factor use the same equation with different thresholds

relating essentially all anoxia information also to hypoxia,
we focused on only quantifying the AF in this study. Ob-
served AFs were calculated by temporally and spatially in-
terpolating biweekly monitored field data using an ensemble
of approaches (linear, constant, and spline interpolation be-
tween neighboring data points). We quantified the seasonal
AF only for the summer season for the modeled and observed
data. We then compared the modeled AF (quantified by us-
ing modeled daily dissolved oxygen data profiles) against a
set of observed AFs (here, the biweekly data were temporally
and spatially interpolated to get daily estimates over a finer
vertical resolution) that were obtained by the application of
three interpolation techniques.

2.3.4 Regression model

We evaluated 21 candidate predictors on their relative impor-
tance in predicting the simulated summer AF of the respec-
tive year n (see Table 1 for an overview and further expla-
nation). All candidate predictors were either modeled out-
put or boundary data for the model. This enabled the regres-
sion analysis to identify internal connections in the numerical
model itself (similar analyses of modeled output and driver
data were performed by Snortheim et al., 2017; Ward et al.,
2020; Weng et al., 2020). For the calculation of certain candi-
date predictors, the water column was separated into an upper
layer (from the surface to a depth of 10 m) and a lower layer
(from 10 m to maximum depth). Although this is a rough ap-
proximation, this depth roughly represents the thermocline
depth and further separates the water column into a zone
without light limitation and one with light limitation.

To represent external forcing processes, we included the
seasonal total phosphorus inflow and seasonal total nitro-
gen inflow loadings for the pre-summer period (winter,
spring, summer) of each respective year. Further, we included
the Birgean work for spring and summer of each year, as
the Birgean work represents the amount of external energy
(mostly by wind shear stress) that is needed to build up the
current thermal structure. In addition to the Birgean work, we
also included the Schmidt stability; the HBR ratio; the onset,
end, and duration of spring mixing; the onset, end, and du-
ration of summer stratification; the mean hypolimnetic water
temperature at the onset of stratification; and the end and du-
ration of the ice period prior to summer to investigate the
effects of physical control on hypolimnetic anoxia.

In-lake biogeochemical processes were represented by the
dissolved oxygen concentration differences between spring
mixing onset and offset in the hypolimnion (Livingstone and
Imboden (1996) suggested that in eutrophic lakes, dissolved
oxygen reductions during the mixing phase can have pro-
found effects on the summer anoxia), organic carbon (both
dissolved and particulate) concentration differences between
spring mixing and stratification in the hypolimnion, and cu-
mulative gross primary production in the epilimnion and hy-
polimnion. Organic matter gradients were investigated be-
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Table 1. Overview of investigated predictors in a linear regression model on estimating the anoxic factor.

Candidate predictor Temporal period Method Unit

Schmidt stability Summer of year n See Sect. 2.3.3 J m−2

Schmidt stability Spring of year n See Sect. 2.3.3 J m−2

Birgean work Summer of year n See Sect. 2.3.3 J m−2

Birgean work Spring of year n See Sect. 2.3.3 J m−2

Ratio HBR Summer of year n See Sect. 2.3.3 –

Ratio HBR Spring of year n See Sect. 2.3.3 –

Onset, end, and duration of Spring/summer of Determined by Schmidt stability Day of the year,
spring mixing year n values (close to or at zero, indicating or days

mixed conditions)

Onset, end, and duration of Spring/summer/fall of Stratification was defined when Day of the year,
summer stratification year n density difference between the surface or days

and bottom layer was above 0.1 kg m−3

and the surface temperature was above
4 ◦C

End and duration of ice period Winter/spring of year n− 1 Extracted from simulation output Day of the year,
and n or days

Dissolved oxygen difference Spring/summer of year n Extracted from simulation output mmol O2 m−2 d−1

between mixing end and mixing
onset in the lower layer

Dissolved organic carbon gradient Spring/summer of year n Extracted from simulation output mmol C m−2 d−1

between stratification onset and
mixing onset in the lower layer

Particulate organic carbon Spring/summer of year n Extracted from simulation output mmol C m−2 d−1

gradient between stratification
onset and mixing onset in the
lower layer

Mean water temperature in the Summer of year n Extracted from simulation output ◦C
lower layer at the onset of
stratification

Total phosphorus inflow loading Winter/spring/summer of Extracted from driver data g P d−1 m−2

year n− 1 and n

Total nitrogen inflow loading Winter/spring/summer of Extracted from driver data g N d−1 m−2

year n− 1 and n

Cumulative gross primary Winter/spring of year n− 1 Extracted from simulation output mmol m−2 d−1

production in the upper layer and n

Cumulative gross primary Winter/spring of year n− 1 Extracted from simulation output mmol m−2 d−1

production in the lower layer and n

cause dissolved organic carbon can be used as a proxy for
allochthonous organic matter contributions to bacterial min-
eralization rates (Hanson et al., 2003). Gross primary produc-
tion (GPP) was included as an example organic matter source
that can fuel bacterial mineralization (Yuan and Jones, 2019).
Here, GPP represents the sum of all the functional phyto-

plankton group’s photosynthesis rates parameterized as the
total carbon uptake:
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f
PHYC
uptake =R

PHY
growth

(
1− kPHY

pr

)
φPHY

temp(T )φ
PHY
stress(X)

min
(
φPHY

light (I )φ
PHY
N (NO3NH4PHYN)

φPHY
P (PO4PHYP)φPHY

Si (Rsi)
)
[PHY]; (9)

where the carbon uptake f PHYC
uptake of an individual group PHY

depends on the growth rate RPHY
growth, the photorespi-

ratory loss (1− kPHY
pr ), temperature scaling φPHY

temp(T ),
metabolic stress φPHY

stress(X), and a minimum function tak-
ing into account limitations by light φPHY

light (I ), nitrogen
φPHY
N (NO3NH4PHYN), phosphorus φPHY

P (PO4PHYP), and
silica φPHY

Si (Rsi) (Hipsey et al., 2017; adapted from Hipsey
and Hamilton, 2008). As the GPP is the main model output
variable for phytoplankton dynamics, it scales directly with
biomass and chlorophyll a concentrations.

To determine the relative importance of these candidate
predictors that may influence the duration and extent of
anoxia, we applied the Boruta R package (Kursa and Rud-
nicki, 2010) to identify the relevant predictors by using a
wrapper built around a random forest classifier. The Boruta
feature selection duplicates predictor values, which are then
randomly shuffled to create so-called shadow attributes. If
the variable predictor values (here the averaged accuracy
loss normalized by the standard deviation and obtained from
multiple random forest classifier runs) of the original val-
ues are significantly greater than the shadow predictor val-
ues, these variables are deemed relevant (Kursa and Rud-
nicki, 2010). Only model output and model driver data from
the period 1980–2009 were used in the regression analysis.
The first year, 1979, was dropped from the investigations
due to a lack of prior winter information. The years 2010–
2015 were dropped due to an apparent ecosystem shift (see
Sect. 3.4). Meteorological quarterly divisions (DJF, MAM,
JJA, SON) of the year were used to define seasons. After se-
lecting important predictors driving the interannual variabil-
ity in AF using the random forest method, we applied the re-
maining seven selected predictors in a multiple linear regres-
sion model to quantify their respective importance on pre-
dicting the AF. Stepwise model selection iteratively removed
predictors to improve the regression model’s AIC. This mul-
tiple linear regression model to predict AF included seven
variables: the HBR ratio during spring, the HBR ratio during
summer, the Birgean work in spring, epilimnetic GPP, the
Schmidt stability in summer, the Birgean work in summer,
and onset date of stratification. We reduced the complexity of
the final multiple linear regression model to only three pre-
dictors of AF: onset date of stratification, the Schmidt stabil-
ity in summer, and epilimnetic GPP in winter or spring. The
Schmidt stability was included instead of the Birgean work
as the resulting AIC of both models were similar, but the con-
cept of the Schmidt stability is more commonly used in the
limnological research community (Table S3 in the Supple-
ment). The final multiple linear regression model was con-

figured as (scaled predictors, adjustedR2
= 0.84, p < 0.001;

Table S4 in the Supplement)

ŷ = 0.24EpiGPP+ 0.54SummerSt− 0.46OnsetStrat

− 5.44× 10−17
+ ε̂, (10)

where ε̂N(0, 382).
The relative importance of model fit was calculated as the

R2 contribution averaged over ordering among regressors
(relaimpo package; Grömping 2006).

3 Results

3.1 Oxygen depletion rates

The derived annual oxygen depletion rates by the deduc-
tive model confirmed Lake Mendota’s hypolimnetic anoxia
as primarily driven by mineralization of organic matter. Ob-
served oxygen depletion rates, J (z), against area–volume
ratios, α(z), were positively correlated for all years ex-
cept 1993, 1997, and 2007 (Fig. 3). For years with a posi-
tive relationship, the average intercept representing the vol-
umetric sink JV was 0.16 g m−3 d−1 and the average gradi-
ent representing the areal sink JA was 0.04 g m−2 d−1 (ad-
justed R2

= 0.13, p < 0.001). Lake Mendota’s hypolimnetic
oxygen depletion was mainly driven by water column min-
eralization processes over sediment oxygen demand. The an-
nual volumetric depletions rate followed a normal distribu-
tion with an increase in the volumetric sink in recent years.
The areal depletion rate distribution was positively skewed.
An inspection of the residuals from the model fits indicates
that the linear regression model may not be appropriate for
some years, especially for values of the sediment area to vol-
ume ratio α(z) near 0.5 m2 m−3.

Averaging this total oxygen depletion rate (volume and
area sinks) over the hypolimnion gave a potential total oxy-
gen depletion of ∼ 1 g m−2 d−1 (∼ 32 mmol [O2] m−2 d−1).
To conceptualize this depletion rate in our deterministic
GLM-AED2 model, we used a maximum sediment oxygen
demand (SOD) of 100 mmol [O2] m−2 d−1. This rate repre-
sented the total sum of volumetric and areal oxygen sinks
indirectly, as internal fluxes of organic carbon from the sedi-
ment back into the water column would drive additional oxy-
gen depletion. This high value of SOD was scaled by the
water temperature using an Arrhenius multiplier, effectively
reducing it to a value between 1 to 1.5 g m−2 d−1 (32 to
47 mmol [O2] m−2 d−1) of maximum oxygen depletion by
the sediment sink in the hypolimnion during summer stratifi-
cation. A recent modeling study investigating the formation
of metalimnetic oxygen minima in a drinking water reservoir
by Mi et al. (2020) confirmed that such high maximum SOD
values are typical for many lakes.
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Figure 3. Regression plots of the morphometric function α(z) against oxygen depletion rates for the years 1992 to 2018, which were
calculated from temporally linearly interpolated observed data. The respective equations represent weighted linear regressions.

3.2 GLM-AED2 calibration and validation

The thermal characteristics of Lake Mendota were replicated
well, especially water temperatures in the surface layers (Ta-
ble 2, Fig. 4, and Fig. S2 in the Supplement), with an RMSE
of 1.30 ◦C, an NSE of 0.97, and a KGE of 0.97, which
is within the range of previous modeling studies (Bruce et
al., 2018; Read et al., 2014). The simulated dissolved oxy-
gen concentrations in the whole water column achieved an
RMSE of 3.22 mg L−1, an NSE of 0.56, and a KGE of 0.77.
Here, the average fits were better in the surface layer (RMSE
of 2.77 mg L−1) compared to the bottom layer (RMSE of
3.31 mg L−1), whereas the temporal dynamics (as expressed
in NSE and KGE) were slightly better in the bottom layer
(an NSE of 0.64 and a KGE of 0.81) compared to the surface
layer (an NSE of −0.36 and a KGE of 0.47).

In contrast, the water quality model reproduced concen-
trations of the biogeochemical variables better at depth than

at the surface, as evidenced by higher NSE values (Table 2,
Figs. S3–S8 in the Supplement). The density distributions of
residuals (observed minus simulated data) are in agreement
(Fig. 5) for water temperature, dissolved oxygen concentra-
tions, nitrate, phosphate, and ammonium (we did not use am-
monium data during calibration but included it in the visual
inspection to check general nitrogen dynamics replicated by
the GLM-AED2 model), whereas the model overestimated
dissolved inorganic carbon concentrations and chlorophyll a
concentrations and underestimated silica concentrations. As
described above, the inflow concentrations of DIC and sil-
ica were assumed to be constant over the simulation period,
likely causing the discrepancies between model results and
observed data.
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Figure 4. Comparison of Lake Mendota water temperature from observations (a, white dots mark sampling events) and GLM-AED2 simu-
lations (b).

Figure 5. Density distributions of residuals (observed–modeled) for water temperature, dissolved oxygen, dissolved inorganic carbon (DIC),
silica, nitrate, phosphate, ammonium, and phytoplankton. The density distributions include residuals over all data points (over each time step
over each depth), calculated from observations minus model predictions.
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Table 2. Model performance for water temperature, dissolved oxygen, dissolved inorganic carbon, silica, nitrate, ammonium, and phosphate.
During calibration and validation, only the total fits over all depths and time steps were calculated. Surface layers refers to a depth of 0 m
below water table and bottom layer to a depth of 20 m below water table. Fits for surface and bottom layer during calibration and validation
are not shown as the fit over the whole water column and over time were used.

Variable Calibration Validation Total period
(2005–2015) (1995–2004) (1995–2015)

RMSE NSE KGE RMSE NSE KGE RMSE NSE KGE

Water temperature [◦C] 2.26 0.87 0.92 1.78 0.92 0.96 1.96 0.91 0.94
Surface layer 1.30 0.97 0.97
Bottom layer 2.43 0.20 0.71

Dissolved oxygen [mg L−1
] 3.33 0.54 0.76 3.29 0.53 0.76 3.22 0.56 0.77

Surface layer 2.77 −0.36 0.46
Bottom layer 3.31 0.64 0.81

Dissolved inorganic carbon [mg L−1
] 25.87 −7.03 0.18 15.41 −8.65 0.20 25.92 −10.13 0.20

Surface layer 19.71 −10.79 0.22
Bottom layer 29.19 −12.84 0.15

Silica [mg L−1
] 2.83 −1.32 −4.55 1.42 −0.55 −1.77 2.33 −0.83 −3.10

Surface layer 1.61 −1.32 −6.53
Bottom layer 2.78 −0.97 −0.90

Nitrate [mg L−1
] 0.36 −0.01 0.56 0.45 −1.44 0.26 0.40 −0.40 0.44

Surface layer 0.35 −0.18 0.49
Bottom layer 0.30 0.29 0.34

Ammonium [mg L−1
] 0.60 −3.03 0.17 0.48 −3.28 0.15 0.56 −3.05 0.17

Surface layer 0.25 −1.76 0.08
Bottom layer 0.64 0.41 0.70

Phosphate [mg L−1
] 0.10 0.56 0.51 0.09 0.59 0.62 0.09 0.56 0.51

Surface layer 0.03 0.40 0.43
Bottom layer 0.17 0.40 0.36

3.3 Heat budget dynamics

Lake Mendota’s annual stratification dynamics were char-
acterized by a short spring mixing period followed by a
very stable summer stratification period, which further pro-
motes hypolimnetic oxygen depletion. A low Schmidt sta-
bility value in spring close to zero was representative of
the overturn period (period I; Fig. 6). During this time, the
Birgean work, as well as stored internal energy, increased
rapidly and the water column remained well oxygenated.
The spring overturn period (period I) was characterized by
low HBR values (ratio of St+B to B) with an average
of 0.85 (MMA in Fig. 7a). A low HBR denoted very un-
stable regimes due to an abundance of external energy com-
pared to the required energy to keep the lake mixed. The
start of the spring overturn period coincided with ice melt
and open-water conditions, although in some years the ther-
mal structure of the lake was well mixed prior to ice off and
spring overturn. May was the earliest month when the av-
erage HBR was above 1 (Fig. 7b), which indicated that the
water layers below the thermocline became isolated from the
surface layers. Following period I, the Schmidt stability in-

creased in conjunction with the spatial extent of anoxia in the
lake water column (Fig. 6). The heat budgets, as well as the
anoxic area, peaked during this second phase (period II) and
declined, although the peak of the anoxic area lagged behind
the heat budget peaks. As the Schmidt stability decreased to
near zero in fall, mixing is initiated causing the water column
to become oxygenated.

The stratification phase (period 2) had an average HBR
value of 1.45, which indicated that an additional energy in-
put of 45 % would be needed to keep Lake Mendota isother-
mal during stratified summer conditions (Fig. 7a). Lake Men-
dota’s mean summer HBR value was similar to Lake Steins-
fjord, Norway (max. depth 22 m; Kjensmo, 1994) and was
larger than the HBR values of the unstable lake systems of
Lake Marion, USA (max. depth 4.5 m), and Lake Wingra,
USA (max. depth 6.1 m; Kjensmo, 1994). The oxygenation
of the water column lagged behind the stratification period,
and even when the Schmidt stability values at the end of the
2nd period were close to zero, a certain amount of the lake’s
area can remain anoxic.

Heat storage in Lake Mendota began after ice off and in-
creased rapidly between the end of the mixing period and the
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Figure 6. Daily average values of the Schmidt stability, the Birgean
work, internal energy, and anoxic area (below 1 mg L−1) plus or
minus the respective standard deviations (dashed lines) (internal en-
ergy is given in 106 J m−2). [Anoxic area units were adjusted for
display.]

onset of stratification (Fig. 8a). The amount of internal en-
ergy stored at the beginning of stratification correlated with
the maximum available amount of internal energy that will be
stored during the stratified period despite year-to-year fluc-
tuations in internal energy. Over the course of each year,
the amount of stored internal energy was positively corre-
lated with the Schmidt stability (Fig. 8b). The Birgean work
was also positively correlated with both the Schmidt stability
and internal energy. The relationship between the Schmidt
stability and the spatial anoxia extent exhibited a clockwise
hysteresis (Fig. 8c). Beginning in June, the Schmidt stabil-
ity increased as stratified conditions established in the water
column. The Schmidt stability peaked on average in August
at ∼ 720 J m−2 (Fig. 6), followed by a peak in the Birgean
work at ∼ 1250 J m−2. Simultaneously, the depth of anoxia
in the water column (anoxia height) followed the progres-
sion of the Schmidt stability, peaking in September. In Lake
Mendota, the anoxia height was limited by the thermocline
depth, as the low vertical turbulent diffusivity of the thermo-
cline acted as a barrier for an encroachment of anoxic condi-
tions into the surface mixed layer. Anoxia height decreased
after September as the Schmidt stability decreased. Thermo-
cline depth and anoxia height declined in parallel until the
Schmidt stability reached zero. In Lake Mendota, as in most
lakes, the surface layer was the region of significant heat stor-
age (Fig. 8d). Once stratified, heat storage in deeper water
layers was limited, whereas heat in the upper 5 m of the lake

increased throughout the summer and accounted for up to
40 % of the total internal energy stored during summer.

3.4 Oxygen dynamics

Dissolved oxygen dynamics, including the spatial extent of
oxygen depletion in the water column and the timing of sum-
mer anoxia periods, were replicated by the GLM-AED model
(Fig. 9a and b, Table 2), although the model overestimated
spring and summer time surface oxygen concentrations due
to a higher net ecosystem production. The depth-averaged fit
criteria of dissolved oxygen concentrations were similar but
slightly higher than reported in a recent study by Farrell et
al. (2020) in which the RMSEs were 1.88 and 2.49 mg L−1

in the epilimnion and hypolimnion, respectively, of a GLM-
AED model calibrated for Lake Mendota. Our model cap-
tured annual anoxia events in the hypolimnion (Fig. 10a), and
the range of the simulated AF was similar to the derived AF
from observed data (Fig. 10b). The model failed to replicate
extreme events (e.g., the very low AF in 2002) and did not
capture a recent positive trend of AF since 2010. The sim-
ulated AF over the total time period averaged 56.7± 5.2 d
with an RMSE of 7 d, an NSE of −0.22, and a KGE of 0.26
(correlation coefficient r = 0.28). The model’s underestima-
tion of the recent positive trend of AFs starting in 2010 was
investigated by quantifying the fits during two periods: 1992–
2009 (Fig. 10c) and 2010–2005 (Fig. 10d). In the pre-2010
period (1992–2009), the model achieved an RMSE of 6.79 d,
an NSE of −0.25, a KGE of 0.44, and an r of 0.45 for AF
predictions. In the post-2010 period (2010–2015), the model
achieved an RMSE of 8.04 d, an NSE of −31.99, a KGE
of 0.21, and an r of 0.62. A subsequent Wilcoxon signed-
rank test highlighted that the observed average and modeled
AFs from the pre-2010 period showed no significant differ-
ences between the two distributions, suggesting they belong
to the same population (p value= 0.13; Fig. S9a in the Sup-
plement), whereas the distributions of observed mean AFs
and modeled ones after 2010 were significantly different (p
value= 0.032; Fig. S9b in the Supplement), highlighting a
potential decadal shift in oxygen depletion patterns. On the
contrary, the modeled AF distributions of the pre- and post-
2010 period were not significantly different (p value= 0.49;
Fig. S9c in the Supplement), whereas the distributions of the
observed AFs were significantly different (p value= 0.0049;
Fig. S9d in the Supplement).

3.5 Regression model

We included in total three predictors in our final multiple lin-
ear regression, which were deemed important by the Boruta
algorithm and stepwise linear model investigations using
AIC for the period 1980–2009, namely the Schmidt stability
during summer (rel. importance of 43 %), the onset date of
stratification (rel. importance of 42 %), and winter to spring
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Figure 7. Dynamics of the average HBR= (St+B)/B over time. (a) Boxplots of the HBR over the meteorological seasons, which represent
seasonal quarters of the year beginning in December. The summer HBR values for Lake Marion, Lake Steinsfjord, and Lake Wingra were
taken from Kjensmo (1994). (b) Scatterplot of the average HBR values for each month.

gross primary production in the epilimnion (rel. importance
of 15 %; Table S4 in the Supplement).

The linear model showed a good agreement between sim-
ulated and predicted AF (Fig. 11a; Table S4 in the Sup-
plement). The AF was positively correlated to the summer
Schmidt stability (r = 0.72; Fig. 11b) and the gross primary
production in the epilimnion (r = 0.48). It was negatively
correlated to the onset of stratification (r =−0.78; Fig. 11b).

4 Discussion

4.1 Controls of interannual variability on hypolimnetic
anoxia

Interannual variability in the AF for Lake Mendota is in-
fluenced primarily by physical processes that regulate ther-
mal and stratification dynamics, and less so by processes
that influence organic matter. The Schmidt stability during
summer (rel. importance of 43 %) and the timing of stratifi-
cation (rel. importance of 42 %) both influence AF and are
driven mainly by atmospheric drivers and heat convection
throughout the water column. The most important predictor
of AF directly related to biological processes is gross pri-
mary production in the epilimnion (rel. importance of 15 %;
Table S4 in the Supplement) prior to summer. For eutrophic
lakes, this suggests two critical points. First, climate has di-
rect control over lake phenology. Climate drives the timing
of stratification onset and stratification strength, and that con-
trols the year-to-year variability in AF. Second, biology mat-
ters, but its interannual dynamics are not that influential, at
least for this eutrophic lake with a residence time greater
than one year. We also acknowledge that a step change in

the AF occurred in 2010 and was unexplained by our model.
Although the cause remains unknown, the timing was co-
incident with large increases in the invasive zooplankton
Bythotrephes (Walsh et al., 2017).

4.2 Physical control over anoxic factor

Our work demonstrates that oxygen dynamics in Lake Men-
dota are strongly governed by the stratification strength and
timing in the water column. Snortheim et al. (2017) came to
a similar conclusion in an analysis of Lake Mendota during
a shorter time period (2007–2010), arguing that changes in
the atmospheric boundary conditions – air temperature, wind
speed, and relative humidity – are driving changes in the hy-
polimnetic anoxia development of Lake Mendota. Here, we
link these atmospheric drivers to changes in the water col-
umn’s stratification (as quantified by the Schmidt stability
and Birgean work). Over our 37 year simulation, anoxia on-
set occurred in the days following stratification onset. During
stratification, the establishment of a strong density gradient
between the upper and the lower layers in the water column
reduces vertical turbulent diffusivities and limits the down-
ward flux of dissolved oxygen. Without any additional oxy-
gen source (e.g., atmospheric fluxes or primary production),
dissolved oxygen concentrations below the thermocline are
rapidly consumed by bacterial mineralization of organic mat-
ter in the water column and sediment.

In Lake Mendota, the temporal and spatial extent of anoxia
is limited by the length of the summer stratification period
(e.g., onset and offset of stratification, heat storage in water
column prior to stratification; see Fig. 6) and the stratifica-
tion strength and thermocline depth (e.g., the Schmidt stabil-
ity, wind shear stress; see Fig. 8), respectively. The number
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Figure 8. Stored heat dynamics and relationships to stratifica-
tion strength, thermocline depth, and anoxia height (hypsographic
height of anoxia area in the lake above sediment). (a) Time series
of internal energy at the respective dates of ice off, mixing onset,
mixing offset, stratification onset, and stratification offset. (b) Scat-
ter plot of internal energy against the Schmidt stability. The color
represents the magnitude of the Birgean work. (c) Scatter plot of
anoxia height against the Schmidt stability. The black line repre-
sents the average dynamic over the course of a year with the re-
spective months as labels. The color corresponds to the thermocline
depth in meters above the sediment. (d) Time series of daily aver-
aged internal energies stored over different depths and the Schmidt
stability. The main heat storage happens in a shallow surface layer
effectively after ice off and the simultaneous onset of a mixing pe-
riod.

of days between the onset of spring mixing, which begins
immediately following ice off, and summer stratification de-
termines the maximum amount of internal energy stored in
summer. An early spring overturn and a slightly later strat-
ification start would lead to increased anoxia height in the
water column, though not necessarily a higher AF, as the du-
ration of anoxia could be shorter. The mixing period is es-
sentially a turning point in the year for the gradient of the
internal heat accumulation, which increases rapidly follow-
ing mixing. Still, as most energy is stored in a thin surface
layer, short-duration extreme wind events or cold weather pe-
riods can deplete that additional stored heat before summer
stratified conditions are reached. The storage of heat simul-
taneously increases the Birgean work, and later the Schmidt
stability, increasing the resistance of the water column to
mixing and limiting vertical fluxes from the epilimnion to
the hypolimnion and vice versa. In summer, a higher amount
of stored internal energy is also related to a higher Schmidt
stability, further increasing the spatial extent of anoxia. Ul-
timately, the spatial extent of anoxia is limited by the ther-
mocline depth, as in all simulated years the anoxia height
reaches a maximum during late summer when the thermo-
cline depth was already deepening.

4.3 Biological control over anoxic factor

Gross primary production (GPP) in the epilimnion prior to
summer stratification is a secondary, but still important, pre-
dictor of anoxia. GPP fuels the sinking of particulate organic
carbon (POC) into deeper layers before the establishment of
a thermocline. In the hypolimnion, POC is readily decom-
posed into DOC, mineralized by bacteria in the numerical
model, and reflects the dissolved oxygen volume sink. Un-
expectedly, factors controlling year-to-year variation in GPP,
such as external loadings of nutrients (specifically nitrogen
and phosphorus), are not evident in the anoxia patterns in
Lake Mendota. This is likely due to the historically high
autochthony of the eutrophic lake (Hart, 2017), with phyto-
plankton blooms documented back to the early 1900s (Lath-
rop, 2007), thereby minimizing the need for external nutri-
ent loads to stimulate phytoplankton production. While bio-
logical contributions to volumetric and sediment oxygen de-
mands are well described for a broad range of lakes (Gelda
and Auer, 1996; Matzinger et al., 2010; Müller et al., 2012;
Rippey and McSorley, 2009; Yuan and Jones, 2019), for
eutrophic lakes the control over available organic substrate
for hypolimnetic oxygen demand may depend more on in-
ternal processing (autochthony) than external subsidies (al-
lochthony).

Although the model replicated well the long-term DOC
dynamics (Fig. S8 in the Supplement), it also overestimated
surface layer dissolved oxygen concentrations compared to
the observed data. This overestimation must have a concomi-
tant increase in organic matter as a consequence of photo-
synthesis and, in this case, in POC. Considering that our
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Figure 9. Time-series comparison between observed (red dots) and modeled dissolved oxygen concentrations (blue lines). The fit criteria
were root mean square error (RMSE), Nash–Sutcliffe coefficient of efficiency (NSE), and Kling–Gupta coefficient of efficiency (KGE).
(a) Averaged dissolved oxygen concentrations in the epilimnion (0–4 m). (b) Averaged dissolved oxygen concentrations in the hypolimnion
(deeper than 16 m).

proxy for the dynamics of phytoplankton biomass is reason-
ably well predicted (Fig. 5), this suggests our overestimate
of primary production results in an increase in POC that is
exported from the epilimnion to the hypolimnion. Unfortu-
nately, we do not have observed POC to calibrate this part of
the model, but we feel it is likely that our model has overes-
timated the contribution of primary production to hypolim-
netic organic matter and subsequent oxygen depletion.

The regression models showed that variables related to
load dynamics were not significant predictors of AF over
nearly four decades. The total phosphorus and nitrogen loads,
change in dissolved oxygen during spring overturn, temporal
change in organic carbon pools, and ice duration were not
found to be important based on the random-forest classifier.
Phosphorus cycling in Lake Mendota is complex, so it may
not be surprising that load dynamics in any one year are, to
a certain extent, uncoupled from the hypolimnetic oxygen
demand (Hanson et al., 2020). The relatively long water res-
idence time of Lake Mendota (approx. 4 years; McDonald
and Lathrop, 2017), along with the high internal phosphorus
loading rate, means that external phosphorus loads represent
only about 1/3 of the available phosphorus in the epilimnion
(Soranno et al., 1997). Furthermore, high primary production
rates that exceed the total lake mineralization, along with ex-
ternal loads of organic carbon, lead to a high storage of or-
ganic matter in the sediments that can likely carry over from
one year to the next (Hart, 2017). In a more nutrient-poor
system, the nutrient and carbon availability would likely be
more important predictors.

The model replicated the maximum anoxia event in 1998
but struggled to replicate the minimum in 2002. The discrep-
ancies of 5–10 d between the simulated and observed range
of the AF beginning in 2010 are related to an increased spa-
tial and temporal extent of summer anoxia (Fig. S10 in the
Supplement), which were not captured by the model. A sim-
ilar increase in observed AFs starting in 2010 was also vi-
sualized in the study by Snortheim et al. (2017), but pos-
sible causes were not discussed. The increased spatial and
temporal extent of summer anoxia were highlighted by the
statistical analysis of the pre-2010 (1992–2009) and post-
2010 (2010–2015) AFs. Prior to 2010, there were no sig-
nificant differences between observed and modeled distribu-
tions (p = 0.13), whereas after 2010 the observed distribu-
tion was significantly higher than the modeled distribution
(p = 0.032; Fig. S9 in the Supplement). Similarly, the pre-
2010 observed AFs were significantly different than the post-
2010 observed AFs (p = 0.0049). For simplicity and due to
limitations in Lake Mendota monitoring data post-2010, we
focused the regression analysis of the AF in this study only
on the pre-2010 period. The detection of this decadal shift in
summer anoxia post-2010 highlights a hidden biological pro-
cess that was not considered in the process-based model and
may be due to an ecosystem shift in Lake Mendota that be-
gan in 2009 when the invasive spiny water flea (Bythotrephes
longimanus) was detected in surprisingly high densities in
the lake (Walsh et al., 2016b, 2018). The spiny water flea
effectively became the dominant Daphnia grazer, causing
historically low Daphnia biomass in 2010, 2014, and 2015
(Walsh et al., 2016a) and reducing water clarity. The spiny
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Figure 10. Comparison of observations to GLM-AED modeled dissolved oxygen concentrations and ecosystem response. (a) Contour plot of
observed (upper figure, white dots mark sample events) and simulated dissolved oxygen concentrations. (b) Comparison of simulated anoxic
factor (blue dots) against interpolated range of anoxic factor derived from observed data (box–whisker plots) over the period 1979 to 2018.
(c) Comparison of simulated anoxic factor (red dots) against interpolated range of anoxic factor derived from observed data (box–whisker
plots) over the period 1992 to 2009. (d) Comparison of simulated anoxic factor (red dots) against interpolated range of anoxic factor derived
from observed data (box–whisker plots) over the period 2010 to 2015.

water flea may have increased organic matter supply to the
hypolimnion by grazing down certain zooplankton and in-
directly affecting phytoplankton. Mendota’s Daphnia pop-
ulation historically consisted of Daphnia pulicaria and the
smaller-bodied Daphnia galeata mendotae, which compete
differently with the spiny water flea. D. mendotae biomass

increased in spring after the spiny water flea invasion (Walsh
et al., 2017), grazing on phytoplankton and probably accel-
erating organic matter mineralization before stratification on-
set. This could be one potential cause that contributed to the
increase in hypolimnetic oxygen depletion after 2010. Our
GLM-AED2 model could not replicate this food web change
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Figure 11. Predicted against simulated summer anoxic fac-
tor. (a) Linear model with a prediction that was done us-
ing a multiple linear regression model of the form ŷ =

0.24Epi.GPP+0.54Summer.St−0.46Onset.Strat−5.44×10−17
+ε̂,

where ε̂N(0, 382). The red lines represent confidence intervals.
(b) Correlogram of the input data using Pearson correlation coef-
ficients. (AF= anoxic factor; Epi.GPP= gross primary production
in the epilimnion prior to summer season; Summer.St= summer
Schmidt stability; Onset.Strat= day of the year of summer strati-
fication onset.)

and subsequent shift in anoxia dynamics due to limitations of
the numerical model, i.e., GLM-AED2 had constant ecolog-
ical parameters over the entire modeling period and did not
have zooplankton dynamics instantiated. We envision future
monitoring and modeling studies of Lake Mendota that focus
entirely on ecosystem shifts associated with the invasion of
the spiny water flea in 2009 and the exponential growth of
zebra mussels from 2015–2018 (Spear, 2020).

The simple deductive model established that the volumet-
ric oxygen sink (i.e., water column oxygen demand) is con-
sistently higher (on average about four times higher) than
the sediment oxygen sink. The volumetric sink in lakes has
been found to be strongly dependent on the trophic state of
the lake, whereas the sediment sink is not (Rippey and Mc-
Sorley, 2009). Eutrophic lakes tend to have high volumet-
ric sinks that reach maxima of about 0.23 g m−3 d−1 (Rippey
and McSorley, 2009), similar to the average volumetric sink

of 0.16 g m−3 d−1 quantified by the deductive model for Lake
Mendota. This finding is confirmed by the works of Con-
way (1972), who found that the high hypolimnetic oxygen
demand of Lake Mendota was driven by algae decomposi-
tion originating from the surface layer. Although eutrophic
lakes tend to have a high sediment oxygen demand, with spe-
cific values ranging from 0.3 g m−2 d−1 (Romero et al., 2004;
Steinsberger et al., 2019) to extreme values of 80 g m−2 d−1

(Cross and Summerfelt, 1987), most studies measured or ap-
plied a value between 1 and 4 g m−2 d−1 (Mi et al., 2020;
Veenstra and Nolen, 1991). The sediment oxygen demand
calculated by our deductive model of 0.04 g m−2 d−1 was
closer to the average value of approx. 0.08 g m−2 d−1 mea-
sured by Rippey and McSorley (2009) on 32 lakes. We note
that the simple deductive model itself can only differentiate
between two sources of depletion and neglects any physical
transport drivers of oxygen, e.g., diffusion. Therefore, the re-
sults of the deductive model only add direct information to
the actual depletion process of dissolved oxygen, but not of
the dominant drivers.

4.4 Improving the modeling framework

The coupled GLM-AED2 model was able to generally repli-
cate the thermal dynamics and biogeochemistry of Lake
Mendota. In contrast to the calibration of Lake Mendota by
Bruce et al. (2018) using an earlier version of GLM (v. 2.2.0),
our model reproduced the water temperatures in the surface
layer better than the bottom layer dynamics (RMSE for epil-
imnion and hypolimnion water temperatures, respectively,
from Bruce et al., 2018: 1.94 and 1.42 ◦C). This is prob-
ably due to the close proximity of the atmospheric forcing
boundary condition to the surface layers, whereas the energy
balance approach used by GLM potentially underestimates
vertical mixing and hence overpredicts bottom layer water
temperatures. In contrast, the model achieved better fits of
the biogeochemical variables in the bottom layer. Better fits
in the hypolimnion were likely achieved through directed cal-
ibration of sediment fluxes during the calibration–validation
approach. The implementation and testing of alternative ver-
tical mixing schemes for the Lake Mendota model (e.g., ver-
tical mixing using a k−ε turbulence model) could potentially
improve vertical transport and water temperature dynamics
in deep layers. Further, using transient sediment boundary
conditions with dynamic parameters over time could improve
the model fit with the observed data and could replicate po-
tential ecosystem shifts. As the spatial extent of hypolim-
netic anoxia is fundamentally three-dimensional (Biddanda
et al., 2018), fully resolving anoxia in space and time likely
requires a three-dimensional model (Bocaniov and Scavia,
2016). Still, such a model has higher computational needs for
long-term calibration–validation analysis, and current moni-
toring is inadequate to validate the results as most measure-
ments are only made at the deepest point of the lake. There-
fore, additional monitoring sites would need to be estab-
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lished. Improved spatial monitoring would be useful in val-
idating our one-dimensional approach and setting up higher
dimensional numerical models.

Our GLM-AED2 model overestimated spring phytoplank-
ton biomass, which resulted in an overestimation of surface
dissolved oxygen concentrations. This primary overproduc-
tion is a potential source of uncertainty for the anoxia timing
below the thermocline, as the model’s anoxia dynamics lag
behind the observed ones. The time difference between the
simulated and observed dissolved oxygen decline below the
thermocline during stratification could be explained by an
underestimation of sinking simulated organic material into
the hypolimnion. Discrepancies between simulated and ob-
served Anoxic Factors, therefore, could be rooted in our sim-
plifications of the phytoplankton dynamics, the parameter
calibration, and the related organic matter fluxes. These re-
sulting discrepancies highlight the importance of improving
the representation of phytoplankton and zooplankton dynam-
ics in numerical models. Simulating a magnitude of individ-
ual species rather than functional phytoplankton groups has
been shown to improve numerical water quality and ecosys-
tem predictions (Hellweger, 2017), though it is unclear if it
could improve spring bloom predictions in Lake Mendota.
This also depends on a more extensive monitoring program
that measures and specifies specific phytoplankton species
over the vertical gradient on a regular basis. Further, bet-
ter numerical representations of phytoplankton life cycles
(Hense, 2010; Shimoda and Arhonditsis, 2016) and/or al-
lometric scaling (Shimoda et al., 2016) could significantly
improve numerical phytoplankton predictions. It is notewor-
thy that biweekly monitored data of Lake Mendota required
interpolation of the observed data in order to calculate the
observed AFs. This adds uncertainty to the observed AF,
as monitoring likely missed important daily (or even sub-
biweekly) fluctuations in dissolved oxygen.

It should be noted that as a statistical approach, the deduc-
tive regression model does not account for important mech-
anisms that may explain nonlinearities in the hypothetical
linear relationships between the oxygen depletion rate and
the sediment to volume rate. Thus, the deductive regression
model may be biased for Lake Mendota. As the model still
advanced our broader system understanding by quantifying
the range of the sediment oxygen demand, it was still helpful
to investigate observed dissolved oxygen concentration data.

4.5 Implications for landscape and climate change

The strong relationship between anoxia and water column
stability suggests that a changing climate might increase the
AF. Future climate in the region is expected to warm (Veloz
et al., 2012), which may amplify and prolong water column
stratification through increasing air temperatures (O’Reilly et
al., 2015; Winslow et al., 2017). Shorter ice duration or even
the total loss of ice (Sharma et al., 2019) could promote ear-
lier heat storage in Lake Mendota, which could potentially

increase the summer Schmidt stability, as demonstrated by
Farrell et al. (2020). Earlier heat accumulation would cause a
stability increase and an earlier onset of stratification, thereby
extending the duration of anoxia. Further, a warmer epil-
imnion can cause the thermocline to become shallower dur-
ing the course of summer, which would cause the anoxia
height to be spatially limited by a layer that is closer to the
surface; hence, more lake area would be anoxic. Increased
oxygen depletion rates may also cause the anoxia height to be
spatially limited by an earlier, and therefore lower, thermo-
cline depth. Therefore, warming air temperatures will likely
increase the AF of Lake Mendota through prolonged tempo-
ral and increased spatial extent of anoxia. It is worth noting
that our initial regression quantified the correlation between
AF and the water temperature in the hypolimnion at stratifi-
cation onset as weakly negative. Higher water temperatures
in a mixed water column prior to stratification onset are re-
lated to less stable stratified summer conditions. This feed-
back, potentially enhanced by shorter ice periods and warmer
spring overturn periods, could shorten the extent of summer
anoxia (similar findings were reported in Flaim et al., 2020).

Although our model evaluation supported the claim that
external phosphorus loads are not important predictors of in-
terannual variability in anoxia, future changes in the land-
scape (Motew et al., 2019), e.g., reduced agricultural ap-
plication of phosphorus, less direct runoff pathways from
the catchment to the lake, or more urbanization may change
these relationships. Lakes with nutrient concentrations lower
than Lake Mendota would almost certainly experience higher
primary production with elevated nutrient loads, and higher
primary production would likely fuel higher hypolimnetic
respiration (Rippey and McSorley, 2009). Thus, the link be-
tween catchment processes and lake anoxia, which was not
detectable in this study, would likely be important in lakes
with meso- or oligotrophic states (Ward et al., 2020). For
Lake Mendota, the only reasonable management approach
to reducing anoxia is to lower external nutrient loads, espe-
cially given that anoxia duration in Lake Mendota is related
to thermal stratification, which is predicted to increase with
future warmer air temperatures.

5 Conclusions

We presented a novel modeling framework combining three
complementary approaches (deductive model, numerical
GLM-AED2 model, and regression model) to conceptually
identify the important drivers of year-to-year variability in
the spatial and temporal summer hypolimnetic anoxia extent
of eutrophic Lake Mendota over a period spanning nearly
four decades. Physical metrics – the summer Schmidt stabil-
ity and onset date of stratification – were the most impor-
tant predictors driving the summer AF. Although the gross
primary production prior to summer stratification was still
influential in affecting year-to-year variability of hypolim-
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netic anoxia, biological control over the AF was limited in
our study period. As climate change is positively correlated
to lake stratification characteristics (earlier, longer, and more
intense summer stratification), we expect an increase in the
AF of Lake Mendota in coming decades. The only local
management option to mitigate future hypolimnetic anoxia
in Lake Mendota is a reduction of external nutrient loads,
which aims at shifting the lake towards oligotrophic condi-
tions. Further, our modeling framework detected a decadal
shift in the AF starting in 2010, which was not replicated by
our process-based model and therefore probably not driven
by physical or chemical drivers but related to an ecosys-
tem shift caused by the invasive Bythotrephes longimanus.
The modeling framework developed here can be extended by
an advanced sediment diagenesis model and an uncertainty
analysis, e.g., Bayesian analysis, to develop greater insight
into effective strategies to mitigate environmental degrada-
tion. Consequently, as managers and decision makers work
to prevent a decline in lake water quality as a result of climate
change, decision support tools that support an understanding
of lake dynamics over the long term are essential.
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