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ORIGINAL ARTICLE

Generative adversarial networks for data augmentation and transfer in
credit card fraud detection

Alex Langevin, Tyler Cody, Stephen Adams and Peter Beling

Department of Engineering Systems & Environment, University of Virginia, Charlottesville, Virginia, USA

ABSTRACT
Augmenting a dataset with synthetic samples is a common processing step in machine
learning with imbalanced classes to improve model performance. Another potential benefit
of synthetic data is the ability to share information between cooperating parties while main-
taining customer privacy. Often overlooked, however, is how the distribution of the data
affects the potential gains from synthetic data augmentation. We present a case study in
credit card fraud detection using Generative Adversarial Networks to generate synthetic sam-
ples, with explicit consideration given to customer distributions. We investigate two different
cooperating party scenarios yielding four distinct customer distributions by credit quality.
Our findings indicate that institutions skewed towards higher credit quality customers are
more likely to benefit from augmentation with GANs. Relative gains from synthetic data
transfer, in the absence of feature set heterogeneity, also appear to asymmetrically favour
banks operating on the lower end of the credit spectrum, which we hypothesise is due to
differences in spending behaviours.
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1. Introduction

Payment card fraud represents a large and growing
problem faced by consumers and financial institu-
tions around the globe. On a worldwide basis, losses
from card fraud were estimated to be $27.85 billion
in 2018, an increase of 16.2% from 2017 (HSN
Consultants Inc, 2019). Much of this growth appears
to be linked to the increase in e-commerce pay-
ments and the amount of personal information
being stored – and leaked – online. In the UK for
example, of the £671:4 million in payment card
fraud losses in 2018 (up 19% from 2017), e-com-
merce related card fraud made up over half the total
at £393:4 million, an annual increase of 33%, and
card identity theft made up £47:3 million, an
increase of 59% over 2017 (UK Finance, 2019).
Meanwhile in the United States, the Federal Trade
Commission catalogued 163,257 reports of credit
card fraud in 2018, of which 130,298 were tied to
new account openings, an increase of 24% over the
previous year (Federal Trade Commission, 2019).
To help combat this growing problem, financial
institutions are increasingly turning to machine
learning as an automated, real-time solution.

One of the main challenges in fraud detection is
the rarity of occurrence. In the UK, there were 2.6
million fraudulent transactions in 2018 out of 20.4
billion payments, or 0.013% of payment volumes

(UK Finance, 2019). By transaction value, fraud
losses equated to 0.084% of payments in the UK in
2018 (UK Finance, 2019), the global figure is
0.069% (HSN Consultants Inc, 2019). Compounding
this, fraudulent behaviour is constantly changing
(Cody et al., 2018; Mead et al., 2018; Zeager et al.,
2017), making older datasets and the fraudulent
instances in those datasets obsolete when training
new machine learning models to detect fraud. Many
of the recent advances in machine learning, and in
particular deep learning, rely on access to large
quantities of data that are representative of the
population being modelled. Given the rarity of posi-
tive cases of fraud relative to non-fraudulent pay-
ments, the limited lifespan of training data, and the
expense of creating and labelling large datasets,
fraud datasets often do not contain enough samples
to train effective machine learning models that can
generalise to the population in question.

The scarce number of fraud cases relative to non-
fraud instances is one manifestation of the general
problem of class imbalance whereby observations of
one or more minority classes of interest are domi-
nated by the frequency of occurrence of some other
majority class(es). Class imbalance occurs in a num-
ber of fields from fraud detection to cybersecurity to
medical diagnosis and bioinformatics, and often
results in poor classification performance of
machine learning models for the minority classes,
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which are often the classes of greatest interest (Ali
et al., 2015; Leevy et al., 2018).

A common solution to help alleviate problems
associated with class imbalance is to augment the
under-represented class with synthetic samples.
Synthetic data generation methods are used not only
for class re-balancing but also have other applica-
tions as well, e.g. computer vision where it is
referred to as data augmentation and used to reduce
model overfit (Shorten & Khoshgoftaar, 2019).

One class of generative models that have seen tre-
mendous growth in popularity and domains of appli-
cation, due in part to their ability to model and sample
from complex, high-dimensional, often unspecifiable
distributions in “Big Data” settings, is Generative
Adversarial Networks (GANs) (Goodfellow et al.,
2014). In our study, we choose GANs as a flexible and
scalable approach to generating synthetic samples for
credit card fraud detection, building on the work of
Fiore et al. (2019), and adding to the literature on data
augmentation for class imbalanced learning in several
key regards. Through a partner financial institution,
we have been given access to a dataset of nearly 80 mil-
lion credit card transactions, with a diverse feature set
containing multiple data types, allowing for an evalu-
ation of data augmentation in a Big Data setting.
Several of the data types require special consideration
in modelling the distribution of the data, and we pro-
pose and evaluate a simple and straightforward mech-
anism for modelling boundary-constrained features
with GANs. In addition, given the size of the dataset,
we control the customer distribution according to cus-
tomer credit quality, partitioning the data into four
distinct customer distributions with varying propor-
tions of higher and lower credit quality customers and
examining the impact of data augmentation subject to
distributional considerations. To the best of our know-
ledge, such a distributional analysis has not been con-
ducted before, perhaps due to dataset size constraints.

An additional benefit to using GANs in generat-
ing synthetic samples is that they implicitly capture
the underlying distribution of the data being mod-
elled. We leverage this feature to solve a potential
circular problem in imbalanced data scenarios,
namely that there may be too few minority class
samples from which to create synthetic samples of
sufficient quality for learning. Our proposed major-
ity-minority GAN transfer framework first models
the conditional distribution of the majority class,
then utilises some portion of the learned majority
GAN architecture to train a separate GAN on the
minority class, with the main hypothesis being that
the majority class can be modelled with greater
accuracy, including regions of the distribution that
overlap with the minority class – information that
can then be used to better model the minority class.

It is also the case in class imbalanced learning
that data augmentation generally is performed on
the minority class only, often in combination with
some form of under-sampling of the majority class.
In our general statistical framework for data aug-
mentation, detailed in Section 3, we note an argu-
ment can also be made for augmenting the majority
class with synthetic data if it can provide a learning
algorithm with access to previously unobserved sam-
ples, and so in our data augmentation experiments
we also investigate potential benefits to adding syn-
thetic majority samples to our training sets.

Since in practice GANs will tend to model a dis-
tribution only approximately, can generate synthetic
samples in arbitrary quantities, and are not created
directly from real customer transactions as in some
other generation techniques (Chawla et al., 2002),
there is a potential secondary use of these samples
as a form of private information transfer between
cooperating parties.

Both the GAN transfer framework and sharing of
synthetic samples are a form of transfer learning
(Pan & Yang, 2010), which can be loosely described
as taking knowledge gained from one domain or dis-
tribution (the source) and applying it to another
domain or distribution (the target). The GAN trans-
fer framework is referred to as parameter transfer,
while the synthetic data sharing would be considered
sample-based transfer. Transfer learning is useful for
learning in settings with limited data and for avoid-
ing retraining models from scratch when underlying
distributions change, or in this setting where limited
data from one class may prevent the effective model-
ling of the data distribution for synthetic sampling
and/or classifier model training. In both transfer
learning cases there lies an opportunity to leverage
outside sources of information for improved model
performance. In the latter case, however, there are
several reasons why cooperating institutions would
not share real customer data, including legal and eth-
ical considerations, as well as competitive concerns.

Synthetic data transfer between financial institu-
tions represents one mechanism for private know-
ledge sharing, the other main tools being federated
learning (McMahan et al., 2017), and privacy-preser-
vation mechanisms such as differential privacy
(Dwork, 2011). Differential privacy (DP) is a frame-
work in which each time a private database is
queried, whether for machine learning or other pur-
poses, a carefully selected amount of random noise
is added to the response, such that a mathematical
bound can be placed on the potential amount of
privacy loss to individuals in that database, one of
the main reasons for its popularity. Federated learn-
ing is a form of multiparty machine learning in
which a common model is trained between
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cooperating institutions or individuals while each
party maintains exclusive access to and control over
its own private database. These methods need not
be mutually exclusive – previous work has com-
bined differential privacy with both synthetic data
generation (Beaulieu-Jones et al., 2019; Jordon et al.,
2019; Li et al., 2014) as well as multiparty deep
learning (Wang et al., 2018; Zhang et al., 2019).

We see synthetic data sharing as a promising
avenue for private multiparty learning, since it
requires neither a common model nor common fea-
ture set, allowing each party to select their own
(possibly proprietary) model, while potentially gain-
ing access to both previously unobserved samples
and features. Admittedly synthetic data generation
on its own does not provide provable privacy guar-
antees such as with DP, but as mentioned can be
combined with DP or other privacy mechanisms
such as postprocessing to remove synthetic records
too closely resembling real client data.

In anticipation of future research into synthetic
data and privacy, our study includes a secondary
analysis that examines the potential benefits of syn-
thetic sample transfer between financial institutions.
We present two transfer scenarios – one in which
the cooperating parties have similar customer distri-
butions, and another where the two hypothetical
financial institutions have distributions skewed
towards either end of the credit spectrum. We
intentionally do not consider heterogeneity in fea-
ture sets between cooperating parties, but rather
focus on how distributional differences between par-
ties impact the gains from transfer, or potentially
losses – a phenomenon known as negative transfer.

Our contributions can be grouped and summar-
ised as follows:

1. Synthetic Data Generation on Imbalanced Data
a. Outlining a general framework for generat-

ing synthetic data samples for one or more
imbalanced classes using a novel GAN
transfer procedure

b. An investigation of the use of synthetic
data from both majority and minority
classes, rather than just the minority class

c. A simple mechanism for generating
bounded features with GANs

2. Private Transfer Learning with Synthetic Data
a. An evaluation of the benefits of synthetic

sample transfer learning between parties
with non-identical customer distributions

� Improved Realism of Data Augmentation
Evaluation
a. Testing Data Augmentation on a “Big

Data” scale

b. Incorporating a diverse feature set into the
modelling process

c. Evaluating the benefits of data augmenta-
tion under several customer distribu-
tion scenarios

The remainder of the article is structured as fol-
lows: Section 2 provides a background and technical
primer of the core concepts that form the backbone
of the study. Section 3 presents a general statistical
framework for understanding class imbalance and
data augmentation, and outlines our proposed
majority-minority GAN transfer methodology.
Section 4 lays out the study design and experiments,
with results presented in Section 5. We conclude the
article with a more in-depth discussion the results
and their implications in Section 6 along with study
limitations and avenues for future research.

2. Background

2.1. Class imbalance & data augmentation

Kaur et al. (2019) classify solutions to the class
imbalance problem into three broad categories: pre-
processing approaches, algorithmic approaches, and
hybrid approaches. Algorithmic approaches tend to
focus on the design of the learning model or loss
function, while preprocessing approaches involve
some form of data manipulation, with the hybrid
approach being a combination of the two. Of the
various methods surveyed, Kaur et al. (2019) note
that sampling methods are some of the most popu-
lar mechanisms for dealing with class imbalance, in
particular the SMOTE algorithm (Chawla et al.,
2002). Sampling methods typically involve some sort
data re-sampling in order to reduce imbalance
between the classes. SMOTE does so by generating
synthetic data to “over-sample” the minority class,
which in the original framework was achieved by
taking linear combinations of similar minority sam-
ples, as determined by the K-Nearest Neighbours
algorithm. This can be done in combination with
random under-sampling or “down-sampling” of the
majority class. There are multiple proposed methods
for the creation of synthetic samples, see e.g.
Goodfellow et al. (2014); Kingma and Welling
(2014); Sun et al. (2019) – Ali et al. (2015); Kaur
et al. (2019) and Hittmeir et al. (2019) provide lit-
erature reviews or conduct comparative studies of
additional methods.

The process of generating synthetic samples with
which to augment a training dataset is not particular
to class-imbalanced learning, and is often employed
in image-based or computer vision tasks as a way to
limit model overfit, for example to prevent a model
from simply “memorising” a dataset during the
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training. Shorten and Khoshgoftaar (2019) provide a
comprehensive review of general data augmentation
techniques for image-based tasks, including GAN-
based methods.

GANs have enjoyed great success in image gener-
ation, and have begun to see applications to other
domains (Beaulieu-Jones et al., 2019; Choi et al.,
2017; Fiore et al., 2019), which has coincided with
GAN extensions to generate non-continuous data
such as discrete and categorical variables (Choi
et al., 2017; Hjelm et al., 2018; Jang et al., 2017). In
addition to image classification (e.g. Liu et al., 2018)
and other computer vision applications, GANs and
similar adversarial frameworks have been used for
data augmentation in fields including biomedical
informatics (Beaulieu-Jones et al., 2019; Choi et al.,
2017; Lan et al., 2020), and machine fault detection
(Shao et al., 2019). Fiore et al. (2019) have also
recently applied GANs to generate synthetic minor-
ity samples for credit card fraud detection, while
Douzas and Bacao (2018) have compared GANs for
imbalanced data scenarios against several state-of-
the-art methods.

2.2. Generative adversarial networks

GANs (Goodfellow et al., 2014) are a neural net-
work-based training framework that uses a gener-
ator network to produce synthetic data and a
discriminator network to distinguish between real
and synthetic data. Through an iterative training
process, the generator becomes progressively better
at generating realistic looking synthetic samples,
while the discriminator improves at discerning real
data from fake. In theory, a GAN with sufficient
model capacity will reach an equilibrium whereby
the generator learns to sample directly from the
data distribution, pdata. The generator does so by

first drawing a noisy sample z from some prior dis-
tribution pz, and applying a map G : z 7! x, where x
ideally mimics a draw from pdata. The discriminator
D then receives a sample x from either the generator
or real dataset and returns a probability of x coming
from pdata, as opposed to the generator distribution
pG. This results in the following minimax game,

minGmaxDEx�pdata log ðDðxÞÞ� �

þ Ez�pz log ð1�DðGðzÞÞÞ� �
:

Given enough capacity in both G and D, if D is
trained to optimality after each update of G, then,
the GAN will reach an equilibrium such that the
Jensen–Shannon divergence between pdata and pG is
minimised, i.e. pG�pdata: A visual representation of
the GAN setup and training process appears in
Figure 1.

The deep architecture of GANs naturally allow
them to scale to high-dimensional scenarios. The
widespread adoption of GANs by researchers and
academics has been bolstered by advancements in
network architectures and optimisation methods,
such as conditional GANs (cGANs) (Mirza &
Osindero, 2014) and Wasserstein GANs (WGANs)
(Arjovsky et al., 2017; Gulrajani et al., 2017). cGANs
are a variant on the original GAN framework
whereby both generator and discriminator have add-
itional input nodes to represent the class of the sam-
ple being generated or tested, and so the generator
network instead learns to produce samples from B
pdata conditioned on the class label C, i.e. pdatajC:
WGANs are an alteration to the GAN training
framework where instead of attempting to minimise
the Jensen–Shannon divergence between pG and
pdata, the discriminator (now referred to as a critic)
outputs a real number, with the loss function
approximating the Wasserstein distance between pG

Figure 1. GAN training framework.
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and pdata up to a multiplicative constant. Using
Wasserstein distance has some more desirable prop-
erties such as being continuous everywhere and dif-
ferentiable almost everywhere, and can result in
more stable training of GANs (Arjovsky et al.,
2017). The WGAN proposed by Arjovsky et al.
(2017) requires the imposition of a rather strict
Lipschitz condition on the critic by directly clipping
the weight parameters, which is later relaxed in the
work of Gulrajani et al. (2017) by instead adding a
gradient penalty to the loss function (WGAN-GP),
which steers the critic towards learning a function
with the desired Lipschitz condition. The WGAN
architectures are tested alongside the original GAN
framework in our experiments.

3. Methodology

3.1. A statistical framework for data
augmentation

The problem of lack of positive samples in card
fraud detection can be viewed as a more general
problem of class imbalance with potentially multiple
under-represented (minority) classes. Let X repre-
sent a random variable with parameters h, i.e. X�h,
where h are generally unknown. Suppose that we
have a random sample of n observations generated
by X, denoted x ¼ ðx1, :::, xi, :::, xnÞT : Typically, x will
contain only a subset of the possible observations
generated by X, and follow a sample distribution
pðxjhÞ, denoted pdata, which may or may not match
the population distribution of X, denoted pX.

Let Ci represent the class of a given observation
xi. In the binary case, we have Ci 2 f0, 1g 8i where
1 is the positive, or minority, class. In a supervised
learning setting, we are attempting to train a model
to learn the function f : xi 7!pCjXðCi ¼ 1jxiÞ, where
pCjX is the conditional distribution of the class
labels, conditioned on the population random vari-
able X. In reality we are training a model with x
rather than X, and so we are learning a function g :
xi 7!pCjdataðCi ¼ 1jxiÞ (with a slight abuse of nota-
tion) which ideally closely approximates f.

Note that there are several sources of error that
can lead to a poor approximation of pCjX for the
minority class. One possibility is that the learned g
is simply a poor approximator, whether by choice of
model or loss function. In the event that the minor-
ity class suffers from severe imbalance, through the
model training process we may obtain a local min-
imum for the loss function whereby gðxiÞ<k for
most or all cases where Ci ¼ 1, where k 2 ½0, 1� is
the classification threshold. Another possibility is
that the model fits pdata very well, but pdata does not
resemble pX, either for the minority class(es) or
more generally.

One potential solution to these problems with
approximating f in the face of severe class imbalance
is through data augmentation, or synthetic data gen-
eration. It is often the case that the minority classes
are the focus of data augmentation with imbalanced
datasets (Kaur et al., 2019; Ramyachitra &
Manikandan, 2014), however, augmentation need
not be restricted to minority classes. If we denote
our synthetic sample of m observations as ~x ¼
ð~x1, :::, ~xj, :::, ~xmÞT , we then have an augmented
training set,

x0 ¼ ðx, ~xÞT ¼ ðx1, :::, xn , ~x1, :::, ~xmÞT

which follows the distribution,

paug ¼ kpsynth þ ð1�kÞpdata
where k 2 ½0, 1� represents the proportion of syn-
thetic data in the new augmented training set. If we
were to augment all classes in equal proportion with
synthetic data, we are assuming that for some value
of k, paug offers a better approximation to pX than
does pdata, either by providing previously unob-
served samples to our dataset, or by altering the
relative weights of observed samples in our training
data. This in turn can lead to a better approxima-
tion of f, either through the selected model training
on a better approximation of pX, or by leading to
the selection of a better model in the validation pro-
cess. This formulation holds for data augmentation
in general, and need not be specific to imbalanced
data scenarios.

If we were to augment only the minority classes
with synthetic data, the resulting paug has a slightly
different formulation. We first note that by the law
of total probability we can write pdata as,

pdata ¼ pdatajC¼1 � ProbdataðC ¼ 1Þ
þ pdatajC¼0 � ProbdataðC ¼ 0Þ

where Probdata is used to denote the fact that the
probability of a certain class is dependent on the
sample. By adding synthetic data to the minority
class only paug now becomes,

paug ¼ pdatajC¼0 � ProbaugðC ¼ 0Þ
þ kpsynthjC¼1 þ ð1�kÞpdatajC¼1
� �

� ProbaugðC ¼ 1Þ
where ProbaugðC ¼ 1Þ 6¼ ProbdataðC ¼ 1Þ and
ProbaugðC ¼ 0Þ 6¼ ProbdataðC ¼ 0Þ: By augmenting
the minority class only, we are altering our sample
distribution in two ways. One is by directly chang-
ing the conditional distribution of the minority class
pdatajC¼1, and the other by indirectly shifting the
sample class proportions through the addition of
new minority samples.

There are two possible interpretations of the
choice to augment the minority classes only. One is
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that pdatajC¼1 provides a poor approximation to
pXjC¼1 and also does not accurately reflect the true
class proportions, which we attempt to correct
through selective augmentation. Another possible
interpretation is that by changing the relative
weights of the classes, we can obtain a better
approximation of f for the minority classes by alter-
ing the training behaviour of our model, regardless
of whether paug offers a better approximation to pX.
This concept is depicted in Figure 2.

It is not immediately clear whether one augmen-
tation procedure is preferable to the other, and so
in our experiments we examine both. There is also
the possibility that our choice of synthetic data gen-
eration method may not be able to create all pos-
sible observations that can be generated by X, in
particular 8x 2 X such that pdataðxÞ�0: In the con-
text of GANs, there is also a phenomenon known as
mode collapse, where a generator learns to sample
from a portion of the full distribution of pdata. In

Figure 2. A visual representation of the effects of data augmentation.
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the case of a multimodal distribution, the learned
psynth may be centred around one of the many
modes of pdata, and so in effect for a given x we
may have psynthðxÞ � 0 while pdataðxÞ>0: This is
where we see one potential benefit of sample trans-
fer from a cooperating party, by providing add-
itional samples that can be generated by X, but
cannot be replicated locally. Since these transferred
samples are generated by a different random vari-
able Y which likely does not follow the same distri-
bution as X, however, there will be a trade-off
between the provision of additional samples that
offer a better approximation to pX, and skewing the
distribution towards pY rather than pX.

Although in theory a GAN generator G can
model pdata exactly in the limit, in practice G will
tend to offer only a noisy approximation. In a sense,
we can then view data augmentation using G
trained to model pdata as a special case of transfer
learning, subject to the same trade-offs as when
samples are transferred from a different institution.
The main differences will be:

1. G is trained to approximate pdata and so the
trade-off is likely to be less pronounced than
with samples transferred from a different source

2. Transferred samples offer a second potential
benefit in that the cooperating entity may collect
additional features which are otherwise unob-
served in pdata. The transferred samples then offer
an additional source of information which will
not be provided by samples generated from G

3.2. Majority-minority GAN transfer

When training a GAN to generate samples from
minority classes, we run into a potential issue in that

we wish to generate synthetic minority samples to aug-
ment our training set, but may have too few samples to
effectively model this class, a “catch-22” of sorts. Our
hypothesis is that by first training G to model the con-
ditional distribution of the majority class pdatajC¼0, we
can learn some high level distributional characteristics
that are common to pdatajC¼0 and pdatajC¼1, but can be
more effectively modelled on the majority class given
the relative abundance of samples from which to learn.
We then first train G to approximate pdatajC¼0, and in
doing so capture any additional information that can
be learned about pdatajC¼1 from our sample, before
transferring G to the minority class to continue train-
ing, to learn the low level distributional features spe-
cific to the minority class.

A visual intuition for our rationale is presented in
Figure 3 – note the distribution of pdata is represented
by the histogram. By leveraging the abundance of
majority class examples, the intuition is that a generator
can be trained to more accurately model pdatajC¼0,
including the overlapping regions of pdatajC¼0 and
pdatajC¼1: By training first on pdatajC¼0 then transferring
to the minority class, the generator will capture more
information about pdatajC¼1 than would be possible by
training only on the minority class. This assumes that
pdatajC¼0 and pdatajC¼1 overlap for some region(s) of the
distribution, which we see as reasonable, otherwise the
classes would be easily separable making the classifica-
tion task straightforward, and limiting the need for syn-
thetic data to begin with.

This leads to our proposed framework for gener-
ating synthetic samples from imbalanced datasets,
which can be applied to datasets with one or more
minority classes, and well as include a transfer com-
ponent. We denote a party’s own data or models by
a superscript L (local component), and transferred
elements by a superscript T (transfer component).

Figure 3. Visual representation of GAN transfer.
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We also use the same notation as above, where an
index value of C¼ 0 refers to the majority class, and
C¼ 1 the minority class. We present our framework
for the binary case:

1. For a given dataset D, partition D into its con-
stituent classes D0 and D1

2. Further partition D0 into training and valid-
ation sets, DTrain0 and DVal0

3. Train a generator GL
0 on DTrain0 using DVal0 to

select optimal hyperparameters
4. Save GL

0 , and initialise GL
1 using architecture

and weight parameters of GL
0 :

5. Partition D1 into DTrain1 and DVal1

6. Train GL
1 on DTrain1 using DVal1 to select opti-

mal hyperparameters
7. Generate synthetic data for desired class(es),

~D
L
0 and/or ~D

L
1

8. (optional) Transfer ~D
L
0 and/or ~D

L
1 to cooperat-

ing parties
9. (optional) Obtain transferred synthetic sam-

ples ~D
T

10. Augment D with synthetic data Daug ¼
fD, ~DL

, ~D
Tg: If (9) ignored then ~D

T ¼ Ø
11. Utilise Daug as desired

Figure 4 gives a visual diagram of the majority-
minority GAN transfer process. Note that in step (4) of
the framework, when transferring a generator from the
majority to minority class(es), we are seeking to transfer
additional information on the distribution, which will
be contained in the architecture and model weights. We
do not see a justification for transferring model hyper-
parameters such as learning rates and batch size – these
can be tuned for example by random search when train-
ing the minority class generator(s). There are also sev-
eral possible ways in which to transfer the architecture
and weight parameters of the majority class generator,
which we test in our experiments.

4. Experiment details

This section outlines the dataset as well as the
experimental setup used to test the hypothesis and

framework described in Section 3 – additional
details can be found in Appendix A.

4.1. Dataset preprocessing

The dataset for this case study was provided by a
partner financial institution and is composed of 77.6
million credit card transactions from the first eight
months of 2013. The original dataset has 69 discrete
and approximately continuous (e.g. dollar-valued)
variables, with a fraud rate of 0.14%. After deriving
several additional features with transformations
similar to those applied by Wang et al. (2018), and
conducting feature selection to reduce the dimen-
sionality of the data, we were left with 50 features,
20 numeric, and 30 categorical, for the GAN aug-
mentation experiments.

Several of the selected features were either lower-
bounded (e.g. card limits) or had both upper and
lower bounds (e.g. proportion of transactions by day
of week). In our proposed mechanism for handling
these features, lower-bounded features were log-
transformed, and features with both upper and
lower bounds were scaled to [0,1] and logit trans-
formed, with small amounts of noise added to
boundary values to avoid “Not a Number” issues
with the transformations.

4.2. Customer distribution scenarios

In order to facilitate the fraud detection experiments
and introduce heterogeneity to the distributions, the
processed and transformed data were partitioned
into two datasets representing two hypothetical
financial institutions, Bank A and Bank B. The full
dataset (less 50,000 samples used for feature selec-
tion) was first ordered by account credit limit. Data
were initially sampled from transactions falling
below the median credit limit at a fixed sampling
ratio and assigned to Bank A. Data for Bank A
would then be over/under sampled above the
median credit limit so as to equalise the expected
number of fraudulent transactions for each bank.

Figure 4. Majority-minority GAN transfer framework.
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The remaining transactions after sampling were
assigned to Bank B.

Two alternate customer distribution scenarios
were examined, resulting in four datasets in all. In
the first scenario, Bank A’s data were randomly
sampled as 55% of all below median credit limit
transactions, and 45% of above median transactions
(referred to as A/55/45). Bank B’s data were the
mirror image of Bank A, composed of 45% of below
median transactions, and 55% of all above median
transactions (B/45/55). This first partition represents
the case where the hypothetical banks have similar
customer distributions as measured by credit qual-
ity, with Bank A having relatively lower credit qual-
ity, or “subprime” customers, assuming credit limit
is a valid proxy for credit quality. In the second
scenario, we sample Bank A/80/18 and Bank B/20/
82, simulating two banks that have customer profiles
skewed toward either end of the credit spectrum.
Figure 5 illustrates the sampling procedure.

Once the data were divided, 5% of each dataset –
circa 2 million transactions including approximately
2500 fraudulent samples – was set aside for out-of-
sample testing in the fraud model experiments.

4.3. Distribution modelling

To allow for the generation of arbitrary quantities of
fraud and non-fraud transactions, and to examine
the benefits of the proposed GAN transfer step, the
conditional distributions of each class of transaction
were modelled separately. Two methods of training
fraud data were examined in the model valid-
ation process:

1. Majority-minority GAN transfer as detailed in
Section 3

2. Independently learn a GAN model on the
fraud data

The best architectures using each method were
taken to the fraud detection modelling step for fur-
ther validation. cGANs were another possible

method to model the sample distribution while
being able to control the class balance of the gener-
ator, although it was hypothesised in the experimen-
tal design phase that without some mechanism to
control the sampling frequency of each class in the
GAN training process, in a Big Data setting the
cGAN generator would effectively learn the non-
fraud component of the distribution, and so was not
considered in the experiments.

For each of the four datasets, 1.5 million non-
fraud transactions were used for GAN architecture
selection and hyperparameter tuning by random
search, using the PyTorch deep learning library for
model training. Categorical features were modelled
using the Gumbel� Softmax trick (Jang et al.,
2017), while several bounded feature approaches
were tested in addition to the proposed transforma-
tions. A summary of the key hyperparameters of the
selected models can be found in Appendix B.

GAN models were validated using three criteria.
The first was an approximation to the Wasserstein
distance, or Earth Mover’s Distance (EMD) between
the generator’s distribution and the sample distribu-
tion, using the Gower distance metric as ground
truth and computed using the Python Optimal
Transport library (Flamary & Courty, 2017).

The other two validation criteria used were
standard machine learning classifiers – logistic
regression and random forests – trained to distin-
guish between the synthetic and real data. At each
validation step, a new batch of synthetic data would
be generated and the classifiers trained on this new
synthetic batch along with the real validation sam-
ples. A second batch of synthetic data would then
be generated, and the accuracy of the validation
classifiers on these synthetic samples would be taken
as the validation score. A score of 0.5 signifies that
the classifiers achieve coin toss accuracy in deter-
mining whether the synthetic data is indeed fake.
GANs that showed strong and consistent perform-
ance across all three metrics were selected for both
the fraud GAN training step, and further validation
in the data augmentation experiments.

Figure 5. Dataset partitioning procedure - skewed distribution scenario.
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As mentioned previously, for fraud GAN training
we attempted to transfer the best performing non-
fraud architectures for further training on fraud
data, as well as attempted to construct new architec-
tures by random search of the hyperparameters. The
following transfer methods were attempted when re-
training non-fraud GANs on fraud data:

1. Re-train the selected non-fraud model directly
on fraud data

2. Re-initialise the final 1–2 layers of the critic
and/or generator before re-training on the
fraud data

3. Re-initialise all weights and re-train on fraud
data using the selected non-fraud architec-
tures only

The fraud GANs were trained on circa 42,500
fraud transactions, with 5000 samples held aside for
model validation. As with the non-fraud GANs, the
candidate models which consistently performed best
across all three validation criteria were selected for
further validation with the data augmentation
experiments.

4.4. Fraud detection experiments

4.4.1. Validation of benchmarks and GAN architec-
ture selection
Once candidate GAN models for each bank were
selected, the datasets were combined and re-parti-
tioned into training and validation sets for fraud
detection model training. The re-use of data across
two sets of models does not present an issue, since
the data are being used for two different purposes –
distribution modelling in one instance, and fraud
detection in the other. After partitioning, each of
the four banks across the two scenarios had a train-
ing set, two validation sets, and a test set. While the
training and validation sets were formed from data
re-purposed from the distribution modelling step,
the test sets were not used at any point apart from
obtaining out-of-sample performance estimates for
the fraud detection models.

In the first round of validation, model selection
was performed using only real data in the training
set. In early experiments the LightGBM (LGBM)
(Ke et al., 2017) implementation of gradient boosted
trees produced the most competitive results, and so
all further experiments used LGBM models. In
imbalanced data settings, Area Under the Curve
(AUC) can give a misleading picture of model per-
formance (Davis & Goadrich, 2006), and so we
opted for F1 score for fraud classifier validation and
performance measurement.

F1 score can be interpreted as the harmonic
mean of recall and precision – the ability of a model
to correctly identify positive cases, and the accuracy
of the predicted positive cases. By selecting a model
based on F1 score, we are simultaneously seeking
high precision and recall as well as a balance
between the two. This is particularly appropriate in
a financial crime detection setting, where false posi-
tives can make up a substantial portion of overall
fraud costs – one analysis estimates that direct and
indirect false positive costs make up close to half of
losses from payment card fraud (Crossfield &
Griffin, 2017).

For the real data only model, the non-fraud
transactions were first randomly down-sampled at
different rates, a commonly employed data sampling
technique in class imbalanced learning (Leevy et al.,
2018). The training set was down-sampled to
achieve fraud rates of 1–15%, and for each fraud
rate, 250 models were tested by random search of
the hyperparameters. The best performing model
was selected by F1 score on the first validation set,
which then served as the benchmark for the data
augmentation experiments.

A similar experiment was conducted to select the
best performing synthetic data generators from the
candidate GANs. For each candidate generator,
datasets of equal size to their respective real datasets
were generated at fraud rates of 1–15%, and 250
LGBM models were tested on each synthetic dataset
with hyperparameters tuned by random search. The
generators that produced the best performing
LGBM models were selected for the data augmenta-
tion experiments.

Once the optimal fraud rates, real data model
benchmarks, and synthetic data generators had been
selected, we undertook data augmentation experi-
ments to examine how the use of synthetic data in
classifier training affects model performance under
each of the four distribution scenarios.

4.4.2. Data augmentation experiments
In the first data augmentation experiment, real non-
fraud transactions were down-sampled to the best
validation fraud rate, and the training set was subse-
quently augmented with both synthetic fraud and
non-fraud data, with the total proportion of syn-
thetic data varying from 1% to 50%. This was done
using either local augmentation or transfer augmen-
tation. Model performance after local GAN augmen-
tation was benchmarked against the performance of
the real data only model, as well as model perform-
ance after partner GAN augmentation. Once the
datasets were augmented, the same candidate mod-
els obtained by random search on the real datasets
(1000 models across the four datasets) were re-
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trained on the augmented datasets, with the best
model selected using the F1 score from validation
set 2. The same set of models were used to control
for the possibility of performance differences com-
ing from better or worse hyperparameter random
search results, rather than the data augmenta-
tion procedure.

A second experiment was also conducted, aug-
menting the fraud class only at synthetic propor-
tions varying from 1% to 66%, or synthetic:real
ratios of 1:99 to 2:1. By augmenting the fraud class
only, less down-sampling of the non-fraud transac-
tions is required in order to achieve a fraud rate of
1%. This combination of over-sampling the minority
class and down-sampling the majority class is the
general approach outlined in Chawla et al. (2002).
The model selection procedure remained the same
as in experiment 1, with the experiment conducted
using both local and transfer augmentation.

Using the notation from Section 3, it is possible
that by including more samples of the majority class
from pdata rather than a noisy psynth, the resulting
paug from experiment 2 will be a better approxima-
tion to pX. Conversely, if synthetic non-fraud sam-
ples from psynth add previously unobserved samples
that could be generated by our random variable X,
then experiment 1 could achieve better results.

For both experiments, once the best performing
LGBM models were selected, the test sets were used
to obtain estimates of out-of-sample model perform-
ance for each of the three models – the real data
model benchmark, the local augmentation-based
model, and the transfer augmentation-based model.
For each bank, the test set results are reported as
training plots, showing the change in out-of-sample
performance through each boosting round of the
LGBM models on the training set. These plots are
presented both on a bank’s own test set, referred to
as its local performance, and also on its partner
bank’s test set as a way to examine data augmenta-
tion’s effect on a bank’s ability to generalise its
model, referred to as its generalisation performance.
For example, the benchmark and augmented models
for Bank A/55/45 were trained on Bank A/55/45’s
own data (with added synthetic samples in the aug-
mented cases), with performance being measured on
both the Bank A/55/45 test set (local performance)
and the Bank B/45/55 test set (generalisation
performance).

A third scenario was also examined whereby a
bank’s non-fraud customer distributions were con-
sidered stationary, while fraud data from both bank
test sets were pooled and sampled at varying rates.
In other words, each bank was evaluated using its
own test set or legitimate customer base for non-
fraud transactions, while fraudsters were considered

“mobile” and free to circulate, not tied to a particu-
lar distribution but instead able to “test” their fraud
techniques at different institutions. This experiment
was conducted using the best performing augmenta-
tion rate-model combination for each augmentation
scenario, based on validation F1 score.

As a comparison to GAN-based data augmenta-
tion techniques, each dataset was also augmented
using a SMOTE variant from the Imbalanced-learn
package in Python (Lemâıtre et al., 2017) that is
capable of working with mixed continuous and cat-
egorical data, SMOTE-NC. A similar model selec-
tion process was performed using the SMOTE-
augmented datasets, and out-of-sample performance
estimates from the best validation SMOTE-NC
models are presented alongside benchmark and
GAN-augmented model performance. In subsequent
sections, the benchmark or baseline model, local
GAN model, partner GAN model, and SMOTE-NC
model refer to the LGBM fraud classification model
obtained from training on the corresponding aug-
mented dataset.

5. Results

5.1. Validation results – benchmarks and GAN
architecture selection

Figure 6(a) shows the validation performance of the
best benchmark real data LGBM models at various
fraud rates after 500 boosting rounds. In all scen-
arios, model performance drops off precipitously for
fraud rates larger than 1%, and so data augmenta-
tion experiments were conducted at a 1% fraud rate.

Figure 6(b) shows the validation results of the
best performing candidate synthetic data models
after 500 boosting rounds. As in the real data case,
a fraud rate of 1% yields the best F1 score on the
validation set. The validation performance after
training on synthetic data only is also considerably
below the performance of the real data-trained mod-
els, suggesting that the GANs are able to capture
some distributional information, although with a
considerable amount of noise. From a privacy stand-
point this may be beneficial, assuming the synthetic
data remains useful, as it suggests there is a lower
level of information leakage since the GAN is not
perfectly modelling the customer distributions.

Across all four distribution scenarios, the best
performing GAN models were cases where both the
generator and critic were transferred to the fraud
data using the trained weights and architecture of
the non-fraud GAN, or with the final layer of the
critic model re-initialised to random weights.
Attempting to train a fraud GAN with random
weight initialisations, or resetting any portion of the
generator weights produced considerably worse
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Figure 6. Best performing LGBM models after 500 boosting rounds.
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distributional approximations for the fraud class.
This provides some evidence that the majority class
GAN is able to capture additional distributional
information about the minority class that would
otherwise be missed by attempting to train a model
from scratch directly on the minority class.

Also notable, the best performing GANs across all
scenarios included the proposed log and logit data
transformations – Figures 7 and 8 provide some side-
by-side univariate comparisons. Figure 7(a,b) show
an example of where the generators were able to
approximately capture the univariate distribution of
the log transformed variable. Figure 7(c,d) show an
example of where the generators had difficulty in

modelling the log transformed features on a univari-
ate basis. It appears that where the log transformed
variables included a long tail of extreme values, the
generators struggled to model these tails, which
resulted in some synthetic samples showing extreme
values that were off by several orders of magnitude
relative to the real data. In general, the univariate dis-
tributions of the logit transformed variables show that
the GAN generators were able to capture the overall
univariate structure of the features, including at the
feature boundaries where the additional noise step
was required – Figure 8 presents some examples. We
further discuss implications of the log transformed
results in Section 6.

Figure 7. Bank A/55/45 synthetic data univariate analysis - log transformations.
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5.2. Data augmentation experiments – Bank
A/55/45

First looking at the similar bank scenario, the out-
of-sample performance results of the mildly sub-
prime bank’s selected LGBM models are presented
in Figure 9. This figure presents the model perform-
ance on Bank A/55/45’s own (local) test set, as the
models are progressively trained on either of the
augmented datasets or Bank A/55/45’s real data
only, through 4500 boosting rounds. The best result
for Bank A in the similar bank scenario was
achieved in experiment 1 at a data augmentation
rate of 3% for both fraud and non-fraud samples.
At an augmentation rate of 3% using Bank A’s own

GAN, the difference between the local GAN model
and baseline is 1.4 points of F1 score, or an F1 score
of 0.482 for the local GAN model vs. 0.468 for the
benchmark. Since F1 score 2 ½0, 1�, we also discuss
results in terms of points, i.e. F1 score �100, as a
matter of convenience. Note that this uplift in per-
formance is also persistent – the local GAN model
records a stronger test set F1 score for the majority
of training, averaging 1.3 points over the final 500
boosting rounds. The local GAN model performs
roughly on par with the SMOTE-NC model, which
reaches an F1 score of 48.4 points by boosting
round 4500, marginally outperforming the local
GAN model, although for the latter half of the

Figure 8. Bank A/55/45 synthetic data univariate analysis - logit transformations.
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training rounds the two models show very similar
performance.

At a 3% augmentation rate, the partner GAN
model also outperforms the real data benchmark at
round 4500, with a difference in F1 score of 0.5
points, however, when looking at the training plots,
the baseline and partner GAN models exhibit a
crossing pattern, often achieving similar test set per-
formance, making it unclear whether the partner
GAN model outperforms the benchmark. The
results are also highly sensitive to the augmentation
rate – once the data augmentation rate reaches 5%,
the performance gains disappear, with performance
worsening considerably as the proportion of syn-
thetic data is increased further. At a 10% augmenta-
tion rate for example, the local GAN model
performs worse than baseline for the majority of
model training, and by boosting round 4500 the dif-
ference is 1.1 points of F1 score. At a 25% augmen-
tation rate, this difference is 3.0 points, and by 50%
the local synthetic data model performs 11.2 points
worse than benchmark (10.4 point difference for the
partner GAN model). It is worth noting that Bank
A/55/45 was the only bank to show a clear benefit

from augmenting the non-fraud transactions, the
focus from this point is on the results from experi-
ment 2.

Figure 10 shows Bank A/55/45’s most noteworthy
local performance result from experiment 2. At an
augmentation rate of 1%, the partner GAN model
displays a clear F1 score improvement through the
boosting rounds relative to the baseline model. At
round 4500, the partner GAN data model achieves a
test set F1 score of 47.9 points compared to a
benchmark of 46.8 points. With an F1 score of 48.4
points at round 4500 the SMOTE-NC model does
look to offer even further gains, although as can be
seen in the training plot both SMOTE-NC and part-
ner GAN models often exhibit a crossing pattern in
test set performance, and so the difference between
augmented data models could be sensitive to an
early stopping criterion, which was not considered
in validating fraud classifiers. The average difference
between the 1% partner GAN model and SMOTE-
NC model over the final 500 boosting rounds was
0.1 points.

The next two scenarios attempt to examine how
data augmentation impacts a model’s ability to

Figure 9. A/55/45 local performance - experiment 1.
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generalise to new fraud settings. Figure 11 displays
Bank A/55/45 model performance on Bank B/45/
55’s test set, i.e. the ability of Bank A’s model to
generalise to other customer distributions. Figures
11a and 11b display the generalisation performance
of the strongest validation models for the local GAN
and partner GAN, respectively. In other words,
these are the LGBM models that would be selected
in a full validation process. In this case at a 1%
fraud sample augmentation rate, the partner GAN
model performs best, although roughly on par with
SMOTE-NC – the partner GAN model achieves an
F1 score of 48.4 points compared to 48.3 points for
SMOTE-NC and 47.9 points for the baseline model.
Similar to the local test set, generalisation perform-
ance of the GAN augmented data models decreases
markedly as the proportion of synthetic data
increases. In the case where the dataset is aug-
mented with 3% fraud and non-fraud data, the local
GAN model reaches an F1 score of 0.476, 0.3 points
below baseline, and 0.7 points below the SMOTE-
NC model.

In the pooled fraud experiment, we left the non-
fraud test set samples unchanged, under the
assumption that a bank’s distribution of legitimate
customers remains stationary, while the fraud cases
were pooled from both Bank A and B test sets, and
sampled at the original fraud ratio. For example, if
Bank A had a fraud rate of 0.1% in a test set of 2
million samples, then from the combined fraud
pool, 2000 fraud samples were drawn at random
and joined with Bank A’s non-fraud test set obser-
vations before obtaining the model’s F1 score. This
experiment attempts to simulate a more realistic
scenario where a bank’s customer distribution
remains largely static in the short term, while

fraudsters are able to freely circulate amongst the
banks to try their luck. Figure 12 displays the per-
formance of the best validation augmentation mod-
els compared to the baseline model, based on an
average of 100 random draws from the combined
fraud pool. The percentages on the horizontal axis
represent the proportion of samples drawn from the
partner bank’s fraud pool – Bank B/45/55 in this
case. Higher percentages attempt to estimate the
Bank’s model performance with higher rates of
“new” or “unobserved” fraud behaviours or typolo-
gies, i.e. a high velocity amongst the fraudsters.

In this pooled fraud scenario, the baseline model’s
performance stays static at an F1 score of around
0.468 regardless of proportion of new fraud. At a 50%
new fraud proportion, the SMOTE-NC augmented
data model slightly outperforms the partner GAN
model 0.483 vs. 0.481. At 60% new fraud cases, the
performance is the same at 0.482, and past 60% new
fraud cases the performance of the partner GAN
model continues to improve, reaching 0.485 at close
to 100% new fraud, compared to the SMOTE-NC
model performance of 0.482 and a baseline model F1
score of 0.469, a difference of 0.3 points and 1.6
points, respectively. The selected local GAN model
performs roughly on par with the SMOTE-NC model
through the different sampling proportions, record-
ing an F1 score of 0.481 at 50–80% new fraud cases,
and 0.482 beyond that. Table 1 summarises the
selected GAN models that offered the best validation
performance for each bank.

Figure 10. Bank A/55/45 local performance - experiment 2.
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Figure 11. Bank A/55/45 generalisation performance - best validation models.

Figure 12. Bank A/55/45 realistic performance.
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5.3. Data augmentation experiments – Bank B/
45/55

For Bank B/45/55, the mildly prime bank, the most
significant local results are presented in Figure 13.
When augmenting the fraudulent transactions with
local synthetic data at a 3% rate, Bank B’s local
GAN model records an F1 score of 0.488 vs. a score
of 0.478 for the benchmark and SMOTE-NC mod-
els. At a 3% augmentation rate the partner GAN
model performs on par with the benchmark. At an
augmentation rate of 5% both GAN models obtain
an F1 score of 0.484 by the final boosting round,
although in the case of the partner GAN model, this

performance improvement over benchmark was not
necessarily persistent – the gain over the benchmark
model occurred in the final 100 or so boosting
rounds, before which the partner GAN model con-
sistently underperformed benchmark. In experiment
1, the GAN-based models performed worse than
benchmark past a 1% augmentation rate.

As for the ability to generalise to new fraud cases
and customer distributions, the local GAN model
shows a clear and reasonably persistent improve-
ment over the others. Figure 14 shows generalisation
performance when augmenting the dataset with 3%
synthetic fraud samples – using synthetic samples
from Bank B/45/55’s own GAN yields an F1 score

Table 1. Validation best GAN model summary performance.

Bank Source GAN
Classes

augmented
Augmentation

rate
Baseline local
performance

GAN model
difference
(local perf)

Baseline
generalisation
performance

GAN model
difference
(gen perf)

A/55/45 Local Fraud &
Non-Fraud

3% 0.468 1.4 0.479 –0.3

Partner Fraud Only 1% 1.1 0.5
B/45/55 Local Fraud Only 3% 0.478 1.0 0.472 1.1

Partner Fraud &
Non-Fraud

1% 0.3 –0.5

A/80/18 Local Fraud Only 3% 0.491 –0.3 0.399 –0.5
Partner Fraud Only 1% 0.5 –0.5

B/20/82 Local Fraud Only 1% 0.552 0.6 0.367 1.0
Partner Fraud Only 3% –0.7 0.5

Figure 13. B/45/55 local performance - experiment 2.
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of 0.483, a 1.1 point improvement over the baseline
model and 1.9 point gain compared to the SMOTE-
NC model. Results from the pooled fraud scenario
appear in Figure 15, again showing the local GAN
model outperforming other methods across all sam-
pling proportions. Across the various new fraud
sampling rates, the local GAN model has average F1
scores of 0.486–0.487 compared to a baseline aver-
age of 0.475 at 50% new case sampling, decreasing
to 0.473 at 99% new case sampling. The local GAN
model selected for this experiment was augmented
with 3% synthetic fraud samples, which is the same
model that displayed the strongest local and general-
isation performance. Both the partner GAN and
SMOTE-NC models show declining performance as
the proportion of new fraud cases is increased, from
averages of 0.472 and 0.471, respectively, at a 50%
new fraud rate, to 0.464 and 0.465, respectively, at a
99% sampling rate. The best validation partner
GAN model in this instance had local performance
comparable to the benchmark model, and showed
worse than baseline generalisation performance.

5.4. Data augmentation experiments – Bank A/
80/18

Looking at the local performance results from experi-
ment 2 in Figure 16, the local GAN model shows the
strongest test set performance – at a 1% augmentation
rate the F1 score at boosting round 4500 is 0.501, a
1.0 point improvement over baseline. The partner
GAN model also offers an improvement over the
benchmark model with an F1 score of 0.496, while
the SMOTE-NC model performs worst at 0.480.

Figure 17 displays the generalisation performance
of fraud data augmented models compared to the
benchmark model. In all cases, the models trained
using augmented data performed worse than the
benchmark model. The baseline had a generalisation
F1 score (on Bank B/20/82’s test set) of 0.399, with
the SMOTE-NC model reaching a score of 0.379 by
boosting round 4500. The validation best partner
GAN model had an F1 score of 0.394 – a loss of 0.5
points compared to baseline – at a 1% augmentation
rate. The best performing local GAN model
obtained an F1 score of 0.395 at a 5% augmentation
rate, again a loss compared to benchmark.

In the pooled fraud scenario all models saw a
decline in performance as the sampling proportion
of new fraud cases increases, as shown in Figure 18.
The baseline model performs better than or equal to
the selected augmented data models through the
various sampling proportions. At a 50% new fraud
case sampling rate the baseline model has an aver-
age F1 score of 0.460, declining to 0.428 at a 99%
new fraud case proportion. The partner GAN model
holds up best among the augmented data models,
matching baseline at a 50% sampling rate, perform-
ing 0.1 points worse at 60% and 70% new fraud
sampling rates, and 0.4 points worse at the 99%

Figure 14. Bank B/45/55 generalisation performance - experiment 2.

Figure 15. Bank B/55/45 realistic performance.
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rate. The local GAN augmented model consistently
performs 0.2 points worse than baseline, while the
SMOTE-NC model has an F1 score 1.4–1.8 points
below baseline.

5.5. Data augmentation experiments – Bank B/
20/82

The gains in local performance for the strongly
prime Bank B/20/82 were relatively more subdued
compared to the other banks – Figure 19 displays
the test set results for the only augmentation rate
that showed a clear performance improvement over
baseline. By augmenting the real fraud data with 1%
synthetic samples from B/20/82’s own GAN, test set
F1 score improves to 0.558, or 0.6 points over base-
line. The best validation SMOTE-NC model
recorded a test set F1 score of 0.525, 2.7 points
below baseline, while the partner GAN model never
beat benchmark. The gains from the local GAN
augmentation appear fairly persistent through the
LGBM model training process, averaging 0.4 points
over the final 500 boosting rounds, and 0.5 points
over the final 1000.

The generalisation performance of Bank B’s mod-
els on the heavily subprime bank’s test set is shown
in Figure 20. The local GAN model outperforms
baseline at several different augmentation rates. At a
1% augmentation rate, the local GAN model yields
an F1 score of 0.377 compared to a benchmark
score of 0.367, and a SMOTE-NC score of 0.363. At
3% and 5% augmentation rates, the local GAN
model reaches an F1 score of 0.381, an improve-
ment of 1.4 points over benchmark, with gains dis-
appearing at higher augmentation rates. The partner
GAN model also outperforms benchmark at 3% and
5% augmentation rates, by 0.5 points and 1.0 points,
respectively.

Finally, Figure 21 presents the results of the
pooled fraud sampling scenario. All models see
declining performance as the sampling proportion
from Bank A/20/82’s fraud pool is increased, with
the baseline model recording a test set F1 score of
0.466 at a 50% new fraud sampling rate, decreasing
to 0.370 at a 99% sampling rate. The validation-best
local GAN model outperforms all others through
the range of sampling proportions, beating baseline
by 0.8 points at the 50% new fraud case rate,
increasing to a 1.2 point difference at the 99%

Figure 16. A/80/18 local performance - experiment 2.
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extreme. The validation-best partner GAN model
also outperforms the benchmark model at each sam-
pling rate, although by a smaller margin, while the
SMOTE-NC model underperforms at each point in
the test achieving an F1 score of 0.449 at the 50%
sampling rate, decreasing to 0.367 at 99%.

6. Discussion

6.1. General remarks

The main conclusion that we draw from the results
is that using GAN-generated synthetic data in small

amounts to augment training sets for fraud detec-
tion has the potential to improve model perform-
ance, although how synthetic data affects
performance is sensitive to the underlying customer
distributions and the source of the data.

The gains from GAN-based augmentation for the
banks which skew towards prime customers is fairly
definitive, while for the subprime banks we have
some ambiguity as to which model ultimately

Figure 17. A/80/18 generalisation performance - experiment 2.

Figure 18. Bank A/80/18 realistic performance.

Figure 19. Bank B/20/82 local performance - experiment 2.
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performs best. For the mildly subprime A/55/45,
arguably the best validation model was obtained by
augmenting fraud data only with the partner bank
GAN. Both the partner GAN and SMOTE-NC mod-
els clearly outperform the baseline model, and so
the question is which augmentation method is pref-
erable for this particular distribution. For Bank A/
80/18, however, the SMOTE-NC augmentation
method is at an obvious disadvantage, and so the
choice is between the baseline model and partner
GAN model, with the generalisation performance
being perhaps less relevant to the decision in the
skewed bank scenarios, since it is unlikely that a
subprime lender will be competing for customers
with a private bank, for instance.

For the subprime banks, the decision to utilise
GANs depends on the level of new fraud cases or
typologies to which the bank expects to be exposed.
Some studies (Tang et al., 2014; Van den Poel &
Lariviere, 2004) have found that financial services
customers with lower financial and/or social status
tend to have higher rates of attrition, or churn.
Higher churn for subprime banks, all else being
equal, means more chances for fraud at the applica-
tion stage, and more limited transaction histories

with which to identify anomalous spend-
ing behaviour.

Another interesting result is how the various
banks benefit from GAN augmentation and transfer.
Both of the prime banks have a clear performance
gain from utilising local GAN-augmented fraud
data, while the evidence of performance gains from
the partner GAN are at best mixed. Conversely, the
best performing validation GAN models for the sub-
prime banks are arguably the partner GAN models.
Until further investigation is conducted, we can
only provide an educated guess as to the reason for
this asymmetry.

Our hypothesis is that the observed model per-
formance with and without synthetic data augmen-
tation is due to a fundamental difference in
spending behaviours between customer types.
Perhaps due to increased customer churn, we
believe that the subprime population exhibits more
heterogeneous or diverse spending patterns com-
pared to the prime population, and at least partially
encompasses the spending patterns of the prime
population. Consider for example a student who
leaves university and enters the workforce in a high-
paying position. Due to limited or non-existent

Figure 20. B/20/82 generalisation performance - experiment 2
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credit history, he or she may be initially classed as a
subprime customer, later becoming a prime cus-
tomer as his or her credit history develops, without
there necessarily being any change in spend-
ing patterns.

In the event subprime customers exhibit greater
volatility in spending patterns, while partially over-
lapping with prime customers, we would expect that
transferring synthetic samples from Bank B to Bank
A would result in a higher ratio of relevant to irrele-
vant or noisy samples, and vice versa from Bank A
to Bank B. This could explain why Bank B sees less
utility from Bank A’s data – the number of irrele-
vant or noisy samples causes an impediment to
training relative to Bank B’s own synthetic samples.
In contrast, although the prime bank may produce
more homogeneous samples, a greater number fall
within the distribution of the subprime bank, which
could explain the performance of the validation-best
partner GAN model for Bank A/80/18 – a slight
boost to local performance with constant or slightly
worse performance in terms of generalisation to
new cases and distributions, a sign of overfit. This
observed result could have also been in part a func-
tion of data quality, as the synthetic data validation
results in Figure 6(b) show, the best performing
fraud detection model trained on only synthetic
samples for Bank A/80/18 did relatively worse than
for the other banks. This in turn suggests that the
local synthetic samples provided to Bank A/80/18
were a less accurate representation of pdata, which
may also speak to the greater diversity and complex-
ity of the distribution, making it more difficult
to model.

Differences in volatility could explain the
observed model performance of both the non-aug-
mented model benchmarks, as well as the synthetic
data-augmented models. Referring back to Table 1,
more diverse or “noisier” spending behaviours
would be consistent with greater difficulty in detect-
ing credit card fraud, which is what we observe. In
both the similar and skewed distribution scenarios,

Bank A’s model performs worse on its own cus-
tomer base than does Bank B, suggesting that the
higher credit quality customers exhibit more homo-
geneous spending patterns where it is easier to
detect deviations from those norms. Note as well
that the skewed distribution models perform better
than the similar distribution models, suggesting that
there are some distinct behaviours in either popula-
tion that are easier to discern in isolation, and con-
found when the customer mix becomes more evenly
split between the two customer groups.

The observed generalisation performance also
lends support to our hypothesis. In both distribution
scenarios the Bank A benchmark has better general-
isation performance on Bank B’s customer base
than vice versa, a pattern which also mostly holds
true for the pooled fraud experiments in the skewed
distribution scenario. The fact that Bank B/20/82
sees relatively marginal gains on its local model per-
formance from synthetic data augmentation, but
does clearly benefit in terms of generalisation would
tend to support this view, to the extent that aug-
mentation increases sample diversity as opposed to
simply altering model training behaviour.

In most cases when augmenting training sets
with synthetic data, the best results were achieved
with augmentation using synthetic fraud data only.
When combined with down-sampling this allows for
the inclusion of a greater number of real non-fraud
observations. In the case of Bank A/55/45, however,
the strongest local GAN results occurred with the
inclusion of both synthetic non-fraud and fraud
data, suggesting there can be circumstances where
the inclusion of synthetic data from the majority
class is warranted, and so should not be ruled out
of the model development process prematurely.

There is a concern as to whether the magnitude
of the gains observed from data augmentation with
GANs are significant from both a statistical and
business investment standpoint. From a statistical
perspective, the sheer size of the datasets involved
instills a high degree of confidence in the obtained
results. Consider the Agnostic Test Set Bound from
prediction theory (see e.g. Langford (2005) and the
references therein for an overview) which permits
us to upper bound the difference, specifically the KL
divergence, between the error rate of the test set,
and the true, unobservable error rate of a given
model with a minimum probability. Since the test
set for each bank is in the range of 1.9–2 million
samples, these bounds can made remarkably tight.
In the case of Bank B/45/55 for example with 1.95
million test set observations, the KL divergence
between the observed and true model error rates is
upper bounded at 5:9� 10�6 with probability at
least 99.999%. Relaxing the probability threshold

Figure 21. Bank B/20/82 realistic performance - experi-
ment 2.
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permits an even tighter bound on the error
rate difference.

As to whether these gains, although statistically
meaningful, are worth the resource investment
depends both on the customer distribution, as well
as bank-specific fraud characteristics that drive
fraud-related losses. Again consider Bank B/55/45,
which witnessed a 1.0 point local improvement in
F1 score from the GAN-augmented data model
compared to both benchmark and SMOTE-aug-
mented data models. Analysing the F1 score compo-
nents shows this improvement to come from a
13.9% reduction in false positives (relative to bench-
mark), partially offset by a slight 1.2% decrease in
detection of fraudulent transactions, i.e. true posi-
tives. In the analysis of fraud losses mentioned in
Subsection 4.4.1, the report takes a false positive:true
positive ratio of 10:1 as typical in financial fraud
detection. Assuming a bank starts with this 10:1
ratio as baseline, then implementing the GAN-aug-
mented fraud model will shift this ratio to 8.61:0.99,
or equivalently 8.72:1. Assume for simplicity this
bank incurs £100 of fraud-related costs, split roughly
equally between direct fraud and false positive costs,
and in a given year catches 1 true fraud with 10
false positives. Before implementing the GAN-based
model, a false positive costs the bank £50=10 ¼ £5
per instance. After implementing the GAN-aug-
mented data model, the bank’s direct fraud costs
increase to £50 � 1:012 ¼ £50:63, while costs linked
to false positives decrease to £5 � 8:72 ¼ £43:59: The
1.0 point increase in F1 score for this bank then
translates to a reduction in fraud-related expenses,
from £100 to £94:22 – a 5.8% cost savings. Larger
financial institutions can process hundreds of bil-
lions of pounds in credit and debit card payments
per year, and smaller institutions will still process
substantial volumes. Even if fraud-related expenses
represent a small fraction of total payment value,
given the volumes involved a 5.8% fraud cost reduc-
tion can lead to significant savings.

Finally, while not a direct comparison to Chawla
et al. (2002) and the results obtained by Fiore et al.
(2019), we note that our most definitive benefits
from the addition of synthetic data were obtained at
augmentation rates of 1–5% and in fact saw consid-
erable deterioration in model performance past that
point. In contrast, Fiore et al. (2019) report their
strongest F1 score results at a minority class sam-
pling ratio synthetic:real of 2:1, while the best
reported sampling ratios in Chawla et al. (2002)
ranged from 1:2 up to 5:1, which corresponds to
augmentation rates of 33% to 83%. At augmentation
rates in this range, we witnessed model performance
losses relative to the benchmark model in all cases,
with losses ranging from 2.2 to 14.2 points of F1

score for experiment 2. This could be due to several
factors including peculiarities of our dataset or
experiment design, and we also note that these two
studies were experimenting with datasets numbering
in the hundreds or thousands of samples, whereas
we had access to a training set numbering in the
millions. We leave it to future work to explore a
potential relationship between dataset size and the
effectiveness of data augmentation.

6.2. Limitations & future work

In designing the fraud detection experiments, we
sought to examine the effects of synthetic data aug-
mentation and transfer under multiple transfer scen-
arios and potential customer distributions, to be
able to condition the results on the fact that each
financial institution has a unique customer mix, as
well as attain a degree of generality in our conclu-
sions. Despite these efforts, there may be some
peculiarities to our dataset which affect the general-
ity of our results. In order to confirm or disprove
our findings and hypotheses, in particular surround-
ing the behaviours of subprime and prime custom-
ers, replication across additional datasets is required,
although to the best of our knowledge no publicly
available credit card fraud datasets of similar size
exist – as mentioned in the previous subsection, our
conclusions regarding the optimal level of augmen-
tation may be sensitive to dataset size.

Additionally, while we sought to give as broad a
consideration as possible to alternative procedures at
each stage in the experiments, time and resource con-
straints limited the scope of our work. For example,
we attempted to exhaustively consider the potential
data augmentation scenarios by including multiple
hypothetical institutions with varying distributions,
multiple rates of data augmentation of both fraud and
non-fraud data, as well as a full fraud classifier model
selection procedure for both the local and transfer
augmentation cases. Had we been able to narrow the
focus beforehand to a subset of these scenarios, a
more in-depth hyperparameter search in the distribu-
tion modelling and fraud classifier validation stages
may have affected the results. In our results we had
also discovered that certain customer distributions
(Bank A/55/45) could potentially benefit from syn-
thetic data augmentation from different sources, i.e.
local GAN non-fraud samples and partner GAN fraud
samples – an experiment we did not consider in this
study which presents a possible avenue for future
research. Our study design also specifically controlled
for differences in features between the hypothetical
banks, in order to isolate the effects of distributional
differences on transfer learning with synthetic data.
Based on our findings, in future work we plan to relax
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this assumption of homogeneous feature sets and
develop techniques for feature transfer while control-
ling for distributional differences, to further explore
the potential gains from synthetic data transfer.

Also, while we were able to establish that our
proposed data transformation and GAN transfer
framework does yield results that are an improve-
ment to some alternative procedures, for similar rea-
sons as above we were not able to give
consideration to all published alternatives. In future
work, we plan to evaluate our proposed minority
class GAN training methods and data transforma-
tions against a wider range of alternatives, for
example cGANs and autoencoders. In particular,
cGANs have been investigated in imbalanced data
settings (Douzas & Bacao, 2018; Fiore et al., 2019),
although with datasets much smaller in scale than
our case study. In Subsection 4.3, we hypothesised
that sample size could play a role in the effective-
ness of cGANs for imbalanced data modelling, and
this would be the area of focus in future method
comparison research.

As was mentioned in Section 5, while our pro-
posed data transformations did offer improved per-
formance compared to some alternative GAN
generator architectures, the generator did appear to
struggle in modelling log transformed variables in
some circumstances, in particular where the univari-
ate histograms display a long tail of extreme values.
We suspect that this was due in part to the bounded
variables being sampled, and hence error functions
calculated, in log space which will reduce the impact
of extreme positive observations on the resulting
gradient calculations. We plan to examine alterna-
tive GAN architectures in future work that better
account for this fact, by adding an inverse trans-
formation to the generator output layer for example,
or by altering the sampling of the noise distribution
such that the log and logit transformations are
included in the computational graph of
the generator.

Lastly, we mentioned in Section 1 that there is
the possibility to combine synthetic data generation
with privacy mechanisms such as differential priv-
acy. In the distribution modelling stage we did ini-
tially attempt to train a GAN under the stricter
�-differential privacy, although did not obtain any
usable models. In future work, we plan to examine
alternative differential privacy definitions and exten-
sions, including those which seek to address the
issue of differential privacy in the presence of corre-
lated data (Kifer & Machanavajjhala, 2011).
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Appendix A

Experimental details

In terms of computing environment for the experi-
ments, feature selection, experiments with the “xgboost”
algorithm (Chen et al., 2016), and most data visualisa-
tions (Wickham, 2016) were conducted in R (R Core
Team, 2018), while the remaining experimental steps
were performed in Python 3.6/3.7, primarily using the
University of Virginia’s high-performance comput-
ing cluster.

Of the 50 features selected for the experiments, the
categorical variables were day of the week (7 features)
and month of the year (8 features), as well as the mer-
chant category code (15 features). Numeric features
included account credit limit, account-level information
on balances outstanding and authorised transactions, total
number of transactions on the card, length of time since
the credit card was issued, transaction time, and distance
of the transaction from the cardholder’s home ZIP code,
along with several derived features. Examples of the
derived features include the length of time between a card
holder’s transactions, and the proportion of the card
holder’s transactions that fall within a given hour of day,
day of the week, etc.

Feature selection was conducted on a hold out set of
50,000 random samples � 5000 fraud transactions and
45,000 non-fraud transactions� using the feature impor-
tances obtained from an xgboost gradient boosted deci-
sion tree model. Feature selection was performed in an
iterative fashion, training a model then culling the least
important feature before re-training.

Regarding the proposed bounded feature transforma-
tions, where these features had values at the boundaries,
meaning the log and logit functions are undefined, ran-
dom noise was added such that the values fell in between
the boundary and the next lowest (or highest) value in
the dataset. The GAN models were trained on these noisy
values, while for model evaluation and fraud detection
experiments, any values produced within these margins
were rounded to the boundary.

In Subsection 4.2, it was mentioned that sampling was
adjusted to equalise expected fraud instance between the
partner banks. This was done to control for the possibility
of differences in GAN quality between the banks being
caused by differences in fraud data availability. The fraud
cases were fairly evenly distributed across credit limits,
meaning little over/under sampling was required to gen-
erate an approximately balanced division of the fraud
cases among the banks. In each scenario, both banks were
left with 36� 38 million transactions, including circa
50,000 fraudulent ones. During the fraud classifier model
selection phase, 2500 fraud samples were assigned to the
two validation sets, and merged with random samplings
of non-fraud transactions such that the fraud rates
matched the test set.
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During GAN training and architecture selection, simi-
lar to Camino et al. (2018) categorical features were
branched off separately for an additional 0� 2 layers,
before applying a Gumbel� Softmax activation and con-
catenating the output to the generated continuous fea-
tures. Included in the hyperparameter tuning was the
testing of different data transformations for the bounded
variables. In addition to the proposed transformations, for
scaled variables that were both upper and lower bounded
a sigmoid activation of the generator output layer was
tested, as well as threshold function activations – essen-
tially ReLU activations with arbitrary threshold(s) – for
all bounded features.

As for the GAN validation metrics, due to the compu-
tational complexity of the calculation, EMD distance was
not calculated on the entire validation set, but rather on
random subsets of the validation data and then averaged.
Through trial and error it was found that averaging 40
subsamples of size 2000 provided reasonably stable dis-
tance estimates with an acceptable computation time.

Once the data augmentation stage of the experiments
were reached, initial tests were conducted with various
machine learning algorithms for fraud classifier training
including xgboost, LGBM, logistic regression, K-Nearest
Neighbours, and artifical neural networks, with LGBM
models showing the most promise in terms of F1 score.

Appendix B

Key GAN hyperparameters

Table B1. Key hyperparameters across non-fraud and transferred fraud GANs.
Hyperparameter Bank A/55/45 Bank B/45/55 Bank A/80/18 Bank B/20/82

GAN Training Framework WGAN-GP WGAN-GP WGAN-GP WGAN-GP
Optimiser Adam Adam Adam Adam
Fraud Weight Re-initialisations - Generator None None None None
Fraud Weight Re-initialisations - Critic None None None Final Layer
Noise Distribution N(0,1) Unif(–1,1) N(0,1) Unif(–1,1)
Nodes per Hidden Layer - Generator [171,63,128,186] [50,50] [50,50,50] [124,124]
Residual (Shortcut) Connections Y Y Y Y
Generator Activations ReLU Tanh ReLU ReLU
Additional Categorical Hidden Layers 2 0 0 2
Categorical Layer Activations Tanh ReLU Softsign Tanh
Generator Batch Norm N Y Y Y
Nodes per Hidden Layer - Critic [96] [83,134] [186,168,178,38,56] [143,184,147,145,33,59]
Critic Activations Softsign Leaky ReLU Softsign Sigmoid
Critic Batch Norm N N N N
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