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Abstract

Excluding large native mammals is an inverse test of rewilding. A 25-year exclosure experi-
ment in an African savanna rangeland offers insight into the potentials and pitfalls of the
rewilding endeavor as they relate to the native plant community. A broad theme that has
emerged from this research is that entire plant communities, as well as individual plants,
adjust to the absence of herbivores in ways that can ill-prepare them for the return of these
herbivores. Three lines of evidence suggest that these “naive” individuals, populations, and
communities are likely to initially suffer from herbivore rewilding. First, plots protected from
wild herbivores for the past 25 years have developed rich diversity of woody plants that are
absent from unfenced plots, and presumably would disappear upon rewilding. Second, indi-
viduals of the dominant tree in this system, Acacia drepanolobium, greatly reduce their
defences in the absence of browsers, and the sudden arrival of these herbivores (in this
case, through a temporary fence break), resulted in far greater elephant damage than for
their conspecifics in adjacent plots that had been continually exposed to herbivory. Third,
the removal of herbivores favoured the most palatable grass species, and a large number of
rarer species, which presumably would be at risk from herbivore re-introduction. In sum-
mary, the native communities that we observe in defaunated landscapes may be very differ-
ent from their pre-defaunation states, and we are likely to see some large changes to these
plant communities upon rewilding with large herbivores, including potential reductions in
plant diversity. Lastly, our experimental manipulation of cattle represents an additional test
of the role of livestock in rewilding. Cattle are in many ways ecologically dissimilar to wildlife
(in particular their greater densities), but in other ways they may serve as ecological surro-
gates for wildlife, which could buffer ecosystems from some of the ecological costs of rewild-
ing. More fundamentally, African savannah ecosystems represent a challenge to traditional
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Western definitions of “wilderness” as ecosystems free of human impacts. We support the
suggestion that as we “rewild” our biodiversity landscapes, we redefine “wildness” in the 215
Century to be inclusive of (low impact, and sometimes traditional) human practices that are
compatible with the sustainability of native (and re-introduced) biodiversity.

Introduction

Ecological restoration has been primarily a botanical endeavor emphasizing re-establishing
plant communities (the trophic basis of ecosystems). In contrast, conservation biology has
emphasized populations of warm-blooded vertebrates (the species most similar to humans).
These differences have divided these two biodiversity disciplines [1]. Species re-introductions,
however, have long been a component of biodiversity conservation, and can appropriately be
considered a restoration activity. Nonetheless, the fields of conservation and restoration
remain largely separate in their practitioners, their taxa of interest (and therefore methods),
and their levels of organization (population versus community) [1]. Rewilding, with its empha-
sis in ecosystem processes [2], has the potential to integrate conservation and restoration [3],
albeit still with fundamental differences [4].

Rewilding emphasizes the re-establishment of locally extinct large predators and herbivores
[2]. This may be accompanied by either the removal of non-native livestock or their incorpo-
ration as wildlife surrogates (e.g., [5]). Large (>100kg) native mammals have been lost from
many parts of the world at different times in the past, often at the hands of humans, but the
savanna ecosystems of eastern and southern Africa can serve as reference communities of rela-
tively intact mega- and meso-fauna (as well as a millennial-scale history of pastoralism; [6]).
More emphasis on rewilding has been placed on large carnivores than on large herbivores [2,
3], despite large herbivores having a much stronger experimental record of ecosystem effects.
In addition, examinations of the effects of reintroduced large mammals on plant communities
are sparse [2, 7], especially in the form of controlled, replicated experiments [8], and are often
assumed to be positive [9, 10].

We know from herbivore (and carnivore) introductions to isolated islands that plant (and
animal) communities not adapted to these herbivores may suffer tremendous changes, includ-
ing species loss [11, 12]. We expect that communities defaunated at different time scales would
similarly be dominated by plant species less adapted to herbivory by large mammals. We also
know that individual plants relax their (inducible) defenses in the absence of herbivores [13].
These two forms of plant naivete may put individual plants and plant communities at risk dur-
ing refaunation.

What does the world look like with and without its large native herbivores, and with and
without livestock? What lessons does this hold for the rewilding endeavor? The Kenya Long-
term Exclosure Experiment (KLEE) has been manipulating three guilds of large native and
domestic herbivores in an African savanna for the past 25 years. The selective removal of large
herbivores from a more intact ecosystem can be thought of as an “inverse test” of rewilding.
Here we synthesize some of the more striking results, as they inform the potential and pitfalls
of rewilding as a restorative conservation practice. In particular, we suggest that long-defau-
nated landscapes may be dominated by “naive” plant individuals and communities (those that
are favoured in the absence of herbivory) that are ill-prepared for the reintroduction of historic
populations of large wild herbivores.
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Study site and exclosure design

This research was carried out at Mpala Conservancy, located on the Laikipia plateau in central
Kenya (0°17'N, 36°52’E). The study site is located within Acacia drepanolobium wooded grass-
land at an elevation of 1800m, on heavy clay (’black cotton’) soils. Mean annual rainfall 1995-
2017 was 600 mm/yr (range 365-1000 mm/yr), which on average falls in a weakly trimodal
seasonal pattern, with a distinct dry season December-March.

The understory is dominated by 5-6 species of perennial grasses (~85% of herbaceous
cover), with a rich community of >100 additional plant species (see Supplement 1 in [14]).
The woody layer is dominated (>90% of cover) by Acacia drepanolobium, which is spinescent
and also hosts colonies of four mutually exclusive ant species that vary in their defensive
behaviours [15].

The region has been under various forms of cattle management for over three thousand
years [6, 16—-19]. Most recently (last 100 years) the study site has been a commercial ranching
operation increasingly tolerant of wildlife. The Mpala Conservancy is managed for both wild-
life conservation and livestock production. Cattle are stocked at moderate densities (0.10-0.15
cattle ha™). Wild ungulates commonly found in the study site include: plains zebra (Equus
quagga Gray), Grant’s gazelle (Gazella [Nanger] granti Brooke), elephant (Loxodonta africana
Blumenbach), cape buffalo (Syncerus caffer Sparrman), eland (Taurotragus oryx Pallas), giraffe
(Giraffa camelopardalis L.), hartebeest (Alcelaphus buselaphus Pallas), oryx (Oryx gazella beisa
L.), steinbuck (Raphicerus campestris Thunberg), bush duiker (Sylvicapra grimmia L.), Grevy’s
zebra (Equus grevyi Oustalet), and common warthog (Phacochoerus africanus Gmelin) [20].
Wildlife densities in Laikipia are the second highest in East Africa, after the Mara-Serengeti
ecosystem.

In 1995, we established the Kenya Long-term Exclosure Experiment (KLEE), designed to
tease apart the separate and combined effects of cattle and wildlife on each other and on the
savanna ecosystem that they share. The KLEE experiment uses a series of semi-permeable bar-
riers to allow access by six different combinations of cattle (‘C’), native meso-herbivore ungu-
lates 15-1000 kg (“W’: mainly zebras, gazelles, eland, hartebeest, oryx, buffalo; “Wildlife”
hereafter) and mega-herbivores (‘M’: elephants and giraffes). The experiment consists of three
replicate blocks separated from one another by 70-200 m. In each block, there are six random-
stratified 200 x 200 m (4 ha) treatment plots (18 total plots; 24ha). The six treatments are: 1)
MW<C-accessible to mega-herbivores, meso-herbivore wildlife and cattle; 2) MW-accessible
to mega-herbivores and meso-herbivore wildlife; 3) WC-accessible to meso-herbivore wildlife
and cattle; 4) W-accessible to meso-herbivore wildlife; 5) C-accessible to cattle; and 6) O-no
large herbivore access.

Herds of 100-120 mature cows (sometimes with calves) are grazed in each cattle-treatment
plot for two hours on each of two to three consecutive days, typically 3-4 times per year. These
grazing and herding practices replicate typical cattle management on most private and some
communal properties in the region. The cattle are in an individual plot for only a few hours
per year, greatly reducing the possibility that wildlife responses are due to direct avoidance of
cattle. For full details of the basic experimental design, see [21, 22].

Herbaceous and woody data collection

Herbaceous vegetation data have been collected in all 18 KLEE plots annually (in June) or
biannually (in February and June) since 1999. Here, we use aerial plant cover data collected by
counting the number of pins hit by each species of grass or forb over a ten-point pin frame at
gridded sampling stations spread evenly over the innermost hectare of each plot. Details of the
sampling are given in 20. Because our primary interest was species composition, here we use
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only relative cover data. Relative cover is the total number of pins hit by each species divided
by the total number of pins hit across all species within each plot and sample period. Relative
cover provides an index of the contribution of each species to the herbaceous community
while controlling for differences in total biomass due to herbivore treatments and rainfall vari-
ability. For our assessment of rare species (Table 2), we used frequency data, based on pres-
ence/absence from 100 1m x 1m quadrats in each plot. In 2011 (after 16 years of exclosure), we
also surveyed all 18 KLEE plots for woody species, enumerating every individual encountered.

On 19 July 2014, there was a break in one of the fences that allowed elephant entry into
plots from which they had previously been excluded until the fence was repaired on 31 July. In
late 2014 and 2015, we carried out surveys of recent elephant damage to Acacia drepanolobium
in plots that a) had been exposed to elephants continually, and b) had been protected from ele-
phants and giraffes from 1995 until 2014 but exposed to elephants during to the fence break.
We concentrated our surveys on the trees around glades, landscape features that have higher
densities of larger trees and are preferred browsing sites for elephants. For each A. drepanolo-
bium tree encountered, we measured height, stem diameter, and distance from glade edge, and
assessed elephant damage using the following classes: 0: no damage, 1: 1-24% damage 2: 25-
49% damage, 3: 50-74% damage, 4: 75-99% damage, 5: 100% damage, complete breakage of
above ground stem.

Statistical analyses

Mean values were calculated for each plot, and one-way and two-way ANOV As were run on
plot means, with the three blocks as replicates.

Ethics statement. This research was carried out under Government of Kenya research
clearance permit No. 347 NCST/RCD/12B/012/42

Results
Woody plant diversity in KLEE plots

We found a total of 38 species of woody plants in the KLEE plots in 2011, after 16 years of
exclusion of different large mammalian herbivores. Of these, 15 were found only in plots from
which native large herbivores had been excluded (Table 1). Mean woody plant species richness
varied from 7.5 to 20, and increased with increasing exclusion of native large mammals
(F=148.1,p < 0.001; Fig 1).

Elephant damage on naive and experienced A. drepanolobium trees

We surveyed a total of 550 individuals of A. drepanolobium, 202 in three plots to which ele-
phants had continuous access, and 348 in two plots from which elephants had been excluded
for 20 years, until the temporary fence break. Estimated elephant damage differed significantly
between size classes (larger trees suffering more damage) and past elephant exposure (naive
trees suffering more damage). There was a significant interaction between these two factors
(p<0.001); the greater damage in naive trees was only significant among trees >4m tall

(F =22.78, p = 0.018; Fig 2). Damage was more than twice as high among trees occupied by
the ant Crematogaster sjostedti than other trees (P<0.001). Elephants also attacked other
woody species, including those that had recruited over the previous 20 years, but their rarity or
absence in plots exposed to elephants precluded similar comparisons.
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Table 1. List of the 15 woody plant species found only in KLEE plots protected from all large herbivores (treat-
ment O) or plots accessible only to cattle (treatment C) in the 2011 survey, and therefore likely to disappear if
large native herbivores are reintroduced (in order of abundance in protected plots).

Kleinia squarrosa
Lantana viburnoides
Aloe sp. A
Phyllanthus sepialis
Plectranthus sp.
Unidentified sp. 1
Ximenia americana
Ipomea sp.

Maerua angolensis
Asclepias sp.
Ormocarpum sp.
Rhamnus staddo
Unidentified sp. 2
Aloe sp. B

https://doi.org/10.1371/journal.pone.0248855.t001

Differences in herbaceous community structures after 25 years of large
herbivore treatments

The herbaceous communities after 25 years of KLEE treatments had diverged considerably,
especially in the plots protected from both cattle and large wild herbivores (Treatment O in
Fig 4, [20]). In particular, plots protected from large mammal herbivory were dominated by
Brachiaria lachnantha, the grass most preferred by cattle [23] and Pseudognaphalium sp., a
perennial forb that, although unpalatable, is sensitive to herbivore disturbance (Fig 2 in [20]).
More than twenty of the less common plant species were only recorded in (all of) our pro-
tected plots, especially those protected from megaherbivores (Table 2).

Discussion

Excluding large native mammals as an inverse test of rewilding

If we demonstrate how the exclusion of large herbivores affects an ecosystem, can we “reverse
engineer” [24] the effects of adding native large mammals back to the ecosystem? How might a
defaunated plant community respond to the reintroduction of large herbivores? How might
such a defaunated plant community respond to the replacement of cattle by native wildlife?
The KLEE plots provide insights into these questions.

Naivete as a risk in reintroduction

Naivete to re-introduced consumers can occur at the community, population and individual
levels. As we have shown in KLEE, the removal of large mammalian herbivores can shift the
herbaceous plant community in the direction of more palatable species and/or species with rel-
atively low tolerance to defoliation. The return of large herbivores may come as a severe
“shock” to this savanna community, as these less well-defended plant species are heavily uti-
lized, and eventually replaced by less palatable species, resulting in a major shift in community
structure.

There are two kinds of plant naivete that may produce at least transient costs of re-intro-
ductions. First, the individual organisms may be ill-prepared for life in the newly re-faunated
community and are at risk until they develop more defensive traits. This concern has rarely
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Table 2. Herbaceous plant species found only in surveys of all six plots protected from all native large herbivores
(List A), or only in all 12 plots protected from only native mega-herbivores (List B).

List A: Species observed in all treatments without either wildlife or megaherbivores (O and C), but never in with
native large herbivores (W, WC, MW, MWC).

Achyranthus aspera

Amaranthus hibridus

Chenopodium opulifolium

Cyphostemma sp.

Ocimum sp.

List B: Species observed in all treatments without megaherbivores (O, C, W, WC), but never in treatments with
megaherbivores (MW, MWC)

Achyranthus aspera
Amaranthus hibridus
Chenopodium opulifolium
Chenopodium schraderianum
Conyza pedunculata
Cyathula orthacantha
Cynodon dactylon
Cynodon plectostachyus
Cyphostemma sp
Emilia discifolia
Harpachne schimperi
Melhania velutina
Mollugo nudicaulis
Monsonia angustifolia
Ocimum sp

Pavonia patens
Schkuhria pinnata

Sida sp.

Sporobolus sp.

Tagetes minuta
Unidentified fern
Unidentified lily

Data from surveys in 2017, 2018, and 2019. For the meaning of the treatment acronyms, see Methods.

https://doi.org/10.1371/journal.pone.0248855.t1002

been raised for plants, although occasionally for animals (e.g., introducing naive animals into
the wild: [25, 26]).

Second, members of the recipient community may be dominated by species not evolved to
receive herbivores or carnivores that have been long absent. An extreme example of this may
be the extinctions of naive megafauna following the arrival of humans in Australia, the Ameri-
cas, and various island ecosystems [27], but it might also occur with more recent carnivore re-
introductions (c.f. [28]).

Two kinds of individual plant defenses react to the presence or absence of consumers, at
different time scales. Constitutive defenses are increased or decreased over evolutionary time,
whereas induced defenses react on shorter time scales within an individual plant’s lifetime [13,
29]. However, both may leave individual plants at risk when suddenly confronted by a long-
absent consumer population.

By excluding herbivores, the KLEE experiment has induced naivete in the plant community
and provides insight into the cost of plant naivete in the face of herbivore re-introduction.
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C

Woody Species Richness

Wildlife +  Wildlife Only  Neither
Megaherbivores

Herbivores allowed
Fig 1. Woody species richness in the KLEE plots in 2011 (after 16 years of large herbivore exclusion). Cattle had no
significant effect on woody species richness, and each bar includes data from treatments with cattle and without cattle.

“Wildlife” here refers to non-megaherbivore large herbivores (see Methods). Bars represent one standard error (three
replicates). For the meaning of the treatment acronyms, see Methods.

https://doi.org/10.1371/journal.pone.0248855.9001

Acacia species are classic examples of plants exhibiting induced defense. In the KLEE plots,
spine lengths and chemical defenses decrease in the absence of herbivores [30-32]. In addition,
A. drepanolobium trees protected from herbivory are significantly more likely to be occupied
by Crematogaster sjostedti, the least protective of the four ant species [33], likely because

30 I

M Experienced T
Naive

N
o
]

N
(@]
T

P =0.0018

-
o
T

Percent damage
o

0 | 1 ‘ ;
<2m 2-4m >4m
Height class

Fig 2. Damage by elephants to Acacia drepanolobium trees that had either a) been continuously exposed to native
herbivores, or b) protected from elephant herbivory for 20 year before a break in the wildlife fence (Naive). Bars
represent one standard error. For the meaning of the treatment acronyms, see Methods. Bars not sharing a letter are
significantly different.

https://doi.org/10.1371/journal.pone.0248855.g002
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protected trees reduce their rewards to strongly defensive ants [32]. Even if defensive recovery
is relatively rapid (as little as weeks) after reintroduction of herbivores, there is plenty of time
for herbivores to do severe damage to not-yet-well-defended plants.

In addition to our “reverse engineered” tests of herbivore reintroduction from the KLEE
project, the 2014 incursion by elephants offers a more direct text of the naivete hypothesis.
Indeed, the naive trees suffered far higher elephant damage than the more “experienced” trees
that have been continually exposed to elephants (Fig 2) and have maintained their physical
(spines) and symbiotic (ants) defenses [32, 34]. This damage was greatest on trees occupied by
the non-defensive ant C. sjostedti, which is the ant species most associated with plots protected
from herbivory [33].

Any re-introduction of a consumer population to a community from which it had been
long absent could result in similar losses. These would be expected to be more severe when the
defenses lost were constitutive (evolutionary) and therefore slower to respond. The loss of
plant defenses in the KLEE experiment over the past 25 years are almost entirely due to relaxa-
tion of induced defenses. The absence of herbivores on millennial time scales would likely also
include evolutionary (constitutive) reductions in defenses to large herbivores.

Community changes in plots protected from large mammalian herbivores

Not only can individual plants become naive to large mammal herbivory, so can entire plant
communities, when the absence of herbivores allows more susceptible species to flourish. In
KLEE, protection form large native mammals resulted in large increases in the species richness
of the woody layer (Fig 1).

Were these large herbivores to be re-introduced into these plant communities, one would
predict the species richness of the woody layer to decline rapidly, including through local
extinctions. In fact, we are planning just such a reversal of the experimental treatments, which
will provide the opportunity to test this hypothesis. Planned reversals of KLEE treatments will
provide even more direct tests of rewilding.

An interesting comparison can be made with the situation of wild (escaped) horses in the
United States [35], which are broadly believed to be responsible for various degradative effects
in these ecosystems ([36, 37], see also [38]). Yet multiple native equids were part of the Pleisto-
cene megafauna of North American [39], and presumably targets for re-wilding [40]. Their
modern “damaging” effects may be attributable to either a) the absence of appropriate Pleisto-
cene carnivores that may have kept their numbers low, or b) precisely the kinds of community
responses expected from plant communities that have become naive to such herbivores over
the last 10,000 years. Similar arguments might be made for cattle west of the Great Plains (and
their once-massive bison herds). The KLEE experiment has been in place since 1995 (25
years), and therefore evolutionary relaxations of plant defense are unlikely to have occurred.

Additional rewilding lessons from the KLEE project

A recent increase of elephants in the broader Laikipia ecosystem in which KLEE is embedded
provides yet another unplanned test of rewilding, with KLEE acting as an experimental con-
trol. Over the past 20 years, elephants have significantly increased in Laikipia [41], perhaps
because of the deteriorating conservation status in elsewhere in the region. Patterns from our
study site match widely reported impacts of elephants and other large herbivores on woody
vegetation in this ecosystem and elsewhere [42-45]. Acacia drepanolobium densities have
declined over the past 20 years in unprotected KLEE plots only (Table 1 in [46]). Even more
pronounced, these plots have also lost most of their A. mellifera trees. During the same interval
of increasing elephant numbers, populations of two other Acacia species in adjacent plant
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communities, A. hockii and A. seyal fistula, have been completely extirpated. For a similar
experience of increasing elephant populations in southern Africa, see [47]).

In addition, we have shown experimentally that although elephants alone have only modest
effects on A. drepanolobium populations, in combination with fire, another natural distur-
bance in this ecosystem, their effects are great [46]. Conversely, we have shown that herbivory
by large mammals can reduce the intensity, severity, and continuity of fires [48, 49]. Together,
these results suggest that the ecosystem effects of refaunation will interact with fire and other
ecosystem processes in complex ways.

It is worth noting that the plant species excluded from KLEE plots to which large herbivores
have access are present in the broader ecosystem, which has resident populations of these her-
bivores. KLEE is situated in a relatively homogeneous community, both biologically and topo-
graphically. A broader, more topographically diverse landscape may harbour local refuges
from large mammal herbivory [40, 50, 51].

Our experimental exclusion of cattle represents one of the secondary goals
of rewilding

Cattle are clearly keystone species in this ecosystem. They have myriad impacts that may be
considered degradative, and some effects directly resulting from the techniques of cattle man-
agement [22, 52, 53]. These effects support the removal of livestock as a potential goal of
rewilding. On the other hand, results from KLEE show that cattle (at moderate densities) are
in many ways (though not all) ecological surrogates for wildlife (20, see also [54]). Note that
the plant species in Table 2 all occur in the presence of cattle, but not native wildlife. Overall
herbivore pressure may be more influential than the particular mix of native and domestic her-
bivore species, and the replacement of livestock with wild herbivores may result in less dra-
matic effects on plant populations and communities than rewilding into landscapes with no
recent history of livestock. A similar case has been made for bison and cattle in North America
(e.g., [55, 56]). Worldwide, the presence of domestic herbivores may have buffered ecosystems
to some of the ecological costs of large mammal defaunation [54]. Similarly, the reintroduction
of carnivores, by reducing wildlife numbers or habitat use [7, 9], may also buffer ecosystems
from some of the effect the reintroduction of wild herbivores.

At moderate densities: Redefining “wildness” in the 21*' Century

Does rewilding need to minimize/eliminate the human footprint? In particular, multiple eco-
systems in Africa can be test cases of what could work, and what does not. There has recently
been a strongly expressed disagreement about the appropriate meanings of “wilderness” and
“wildness”, often in the context of rewilding [57, 58]. The traditional Western concept of wil-
derness, as expressed in the 1964 U.S. Wilderness Act and IUCN (Category Ib: Wilderness
Area), defined wilderness as areas “untrammeled by man” and “without permanent or signifi-
cant human habitation”, respectively. This definition, rooted in human-nature or culture-
nature dualisms, has recently been challenged on historical, geographic, political, social, and
conservation grounds [52, 57, 58]. In particular, the tremendous diversity of large mammals in
African savannah ecosystems has been (until recently) compatible with millennial-scale pasto-
ral human presence [52]. Over the past two decades the KLEE project, in one such African eco-
system, has experimentally demonstrated that considerable large mammal diversity can be
compatible with livestock production, at moderate densities [20, 22, 53, 59]. Hunter-gatherer
societies are likely to have been even more compatible with the maintenance of biodiversity.
This supports a broader definition of wildness that could form a basis of rewilding, in Africa
and elsewhere [4, 58].
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