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ABSTRACT

Deep Neural Networks (DNNs) have been shown to be vulnerable
to adversarial attacks, wherein, a model gets fooled by applying
slight perturbations on the input. In this paper, we investigate the
use of quantization to potentially resist adversarial attacks. Several
recent studies have reported remarkable results in reducing the
energy requirement of a DNN through quantization. However, no
prior work has considered the relationship between adversarial
sensitivity of a DNN and its effect on quantization. We propose
QUANOS- a framework that performs layer-specific hybrid quanti-
zation based on Adversarial Noise Sensitivity (ANS). We identify a
novel noise stability metric (ANS) for DNN, i.e., the sensitivity of
each layer’s computation to adversarial noise. ANS allows for a prin-
cipled way of determining optimal bit-width per layer that incurs
adversarial robustness as well as energy-efficiency with minimal
loss in accuracy. Essentially, QUANOS assigns layer significance
based on its contribution to adversarial perturbation and accord-
ingly scales the precision of the layers. We evaluate the benefits of
QUANGOS on precision scalable Multiply and Accumulate (MAC)
hardware architectures with data gating and subword parallelism
capabilities. Our experiments on CIFAR10, CIFAR100 datasets show
that QUANOS outperforms homogeneously quantized 8-bit pre-
cision baseline in terms of adversarial robustness (3 — 4% higher)
while yielding improved compression (> 5X) and energy savings
(> 2xX) at iso-accuracy. At iso-compression rate, QUANOS yields
significantly higher adversarial robustness (> 10%) than similar
sized baseline against strong white-box attacks. We also find that
combining QUANOS with state-of-the-art defense methods outper-
forms the state-of-the-art in robustness (~ 5% — 16% higher) against
very strong attacks.
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1 INTRODUCTION

Despite achieving super-human performance and classification ac-
curacies on a variety of perception tasks including, vision, gaming
among others [1], Deep Neural Networks (DNNs) have been shown
to be adversarially vulnerable [2]. A DNN can be easily fooled into
misclassifying an input with slight and imperceptible changes of
pixel intensities. This vulnerability severely limits the deployment
and potential safe-use of DNNs for real world applications such as
self-driving cars, malware detection, healthcare monitoring systems
etc. [3]. It is critical to ensure that the DNN models used in these
applications are robust, as failure to do so can have disruptive conse-
quences ranging from loss in revenue to loss of lives. Recent works
[4, 5] presents quantization as a straightforward way of improving
the intrinsic resilience of DNNs against adversarial attacks. Specifi-
cally, in [4, 5], the authors showed that quantization, primarily used
to reduce compute resource requirements of DNNS, also warrants
security against certain level of adversarial perturbation, thereby,
offering a key benefit of robustness in hardware implementation.
Inspired by this, our work asks the following question: Can we per-
form layer-specific hybrid quantization of different layers of a DNN
while optimally trading off between energy-accuracy-and-robustness?

Quantization is a popular compression technique used to reduce
the number of bits required for encoding a DNN’s weights and
activations. This in turn reduces the total computation energy as
well as the data access energy in case of hardware implementation
[6, 7]. The extreme case is that of a 1-bit quantized DNN. Such
binary quantized models are usually trained from scratch to obtain
competitive accuracy as that of a full-precision model [8]. Recent
works have also shown combining quantization with other tech-
niques, such as pruning [6], yield higher compression rates which
translate to higher energy savings on hardware. However, most
of these works usually perform homogenous quantization or as-
sign the same bit-width across all layers of a DNN that could be
sub-optimal in terms of overall savings. In DNNSs, each layer has
a different structure that can lead to different properties related
to quantization. Thus, some recent works have shown the possi-
bility of assigning different bit-width to different layers of a DNN
to achieve optimal quantization result [9]. In all the above works,
quantization is carried out while ensuring that the overall accuracy
of the network is maintained with the main focus of trading-off
energy-and-accuracy with some optimal compression methodology.
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In this paper, we propose QUANOS- Adversarial Noise Sensitiv-
ity driven Hybrid Quantization for energy efficient, adversarially
robust and accurate DNNs. We find the optimal bit-width of each
DNN layer based on its sensitivity to adversarial perturbations.
Conventionally, parameter importance of individual layers is as-
signed based on their impact on overall model accuracy. That is,
parameters that impact the accuracy the most are represented using
higher precisions (larger quantization widths), while low-impact
parameters are represented with fewer bits. QUANOS, on the other
hand, assigns parameter importance based on the layer’s contri-
bution to adversarial perturbation. So, layers that contribute more
to adversarial perturbations are quantized to lower precisions and
vice-versa. Consequently, our method can reduce the model size
significantly while maintaining a certain accuracy with the addi-
tional benefit of being adversarially robust. We propose a novel
Adversarial Noise Sensitivity (ANS) metric to estimate the adversar-
ial contribution of each layer. Using ANS, we avoid the exhaustive
search for optimal bit-width per layer, and make the quantization
process more efficient. Furthermore, QUANOS does not rely on
having a pre-trained model to determine the bit compression. It
is applied at the beginning of training (specifically, after ~ 20-30
epochs). This allows us to train a model with reduced bit-width at
each layer yielding an optimal quantized network with inference
as well as training energy savings.

To evaluate the benefits of QUANOS, we conduct a comprehen-
sive hardware evaluation study. We design a 2-D systolic array
accelerator to perform storage, computation analysis and calculate
the energy efficiency and memory compression with QUANOS.
Additionally, we evaluate the inference energy savings by inte-
grating our accelerator with runtime configurable and precision
scalable Multiply and Accumulate (MAC) architectures proposed
in [10, 11]. Specifically, we compare between Dynamic Voltage-
Accuracy-Frequency Scaling (DVAFS) [11], and Data Gating (DG)
[10]. This comparative analysis further highlights the relative ben-
efits of QUANOS that performs hybrid layer specific quantization
over homogeneously quantized networks. In summary, the key
contributions of our work are as follows:

e We propose QUANOS- an accurate and efficient method to
find optimal bit-width for each layer of a DNN that not only
reduces the overall compute complexity, but also improves
adversarial robustness.

o We test QUANOS using benchmark datasets- CIFAR10, CI-
FAR100 and show that QUANOS achieves higher energy effi-
ciency, adversarial robustness at near or iso-accuracy with re-
spect to an 8-bit quantized baseline. At iso-compression rate,
QUANOS yields higher adversarial robustness (> 10% — 15%)
than similar sized baseline. Evaluation of QUANOS on hard-
ware platforms employing scalable MAC architectures yields
> 2X improvement over 8-bit precision baseline.

2 QUANOS: APPROACH & IMPLEMENTATION
2.1 Background on Adversarial Attacks

Generating Adversaries: Adversarial examples are created using
a trained DNN’s parameters and gradients. The adversarial pertur-
bation is carefully designed to bias the network’s prediction on a
given input towards a wrong class. Goodfellow et al. [12] proposed
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a simple method called Fast Gradient Sign Method (FGSM) to craft
adversarial examples by linearizing a trained model’s loss function
(L, say cross-entropy loss) with respect to the input (X):

Xado = X + € X sign(Vx L(0, X, Ytrue) oy

Here, ysrye is the true class label for the input X, 6 denotes
the model parameters (weights, biases etc.) and € quantifies the
magnitude of distortion. The net perturbation added to the input
(A =€ex (VxL(0,X,Yrrue)) is, thus, regulated by €. A key point to
note here is that gradient propagation is a crucial step in adversarial
input generation. This implies that deterring the flow of adversarial
gradients can result in improved robustness. Further, the adversarial
gradient contribution to the net perturbation (A) from different
layers can vary depending upon the learnt activations. This can
enable us to evaluate the Adversarial Noise Sensitivity (ANS) per
layer. Besides FGSM, several other forms of attacks (essentially,
multi-step variants of FGSM, like Projected Gradient Descent (PGD)
[2] have also been proposed that cast stronger attacks.

Types of Attacks: There are two kinds of attacks: BlackBox
(BB), White-Box (WB) that are used to study adversarial robustness.
WB adversaries are created using the target model’s parameters,
that is, the attacker has full knowledge of a target model’s training
information. BB attacks refer to the case when the attacker has no
knowledge about the target model’s parameters. Security against
WB attacks is a stronger notion and robustness against WB attacks
guarantees robustness against BB for similar perturbation (€) range.
In all our experiments, we use WB attacks to verify the robustness of
our proposed technique. Generally, a model’s adversarial robustness
is quantified in terms of adversarial accuracy. Adversarial accuracy
is the accuracy of a DNN on the adversarial dataset created using the
test data for a given task. Higher accuracy implies more robustness.

2.2 Adversarial Noise Sensitivity (ANS)

A novel outcome of this paper is the identification of a new form of
noise stability for DNNS, i.e., the sensitivity of each layer’s compu-
tation to adversarial noise. Fig. 1 (a) visualizes the sensitivity of a
VGG-19 model trained on CIFAR10 data. ANS is measured in terms
of error ratio defined as:

l

adv
lla|l2

ld, —allz

ANS; )

1
adv’
tion values of a layer [ when X, X are presented to the network.

Note, we show results for a DNN (composed of Rectified Linear
Unit or ReLU neurons) with WB adversaries X4, created using
FGSM. We see that the error ratio in Fig. 1 (a) at the middle layers
(layer 4-layer 10) is significantly higher. In fact, layers 5,7 have the
highest error measure. This error ratio is representative of ANS,
wherein, higher ratio implies more changes in activations which
can be attributed to higher adversarial gradient contribution by
layers 5,7. To further support our ANS results, we conducted an
ablation study, that measures the importance of a single direction
(or neuronal activation) to a network’s computation by asking how
the network’s performance diminishes as the direction is removed.
Specifically, we measured the network’s adversarial accuracy as we
removed or clamped the activations of intermediate layers’ neurons,
as shown in Fig. 1 (b). We find that ablating random units in high

Eqn. 2 measures the layerwise error ratio ANS;. a d! are activa-
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Figure 1: (a) ANS value plotted across different layers of VGG-19 trained on CIFAR10. The x-axis denotes the layers as
{1,2,P,4,5...}, where ‘P’ denotes pooling layer. (b) Adversarial accuracy variation shown as different layers of VGG-19 model
are ablated to different proportion. (c) Standard, DG, DVAFS configuration shown for the multiplication operation of a MAC
accelerator processing 8-bitx8-bit and scaled 4-bitx4-bit operands. (d) Normalized energy/operation with precision scaling on

DG, DVAFS architectures.

ANS layers 5, 7 results in a drastic change in adversarial accuracy.
On the other hand, ablating low ANS layers 15, 17 shows a very
slow decline in accuracy. Even after zeroing out 99.99% of the neu-
rons in layers 15, 17, the adversarial accuracy is pretty reasonable at
~ 31%, 28%, respectively. The steep decline in accuracy in the high
ANS layer’s ablation study implies that high ANS layers are more
adversarially susceptible than low ANS layers. The consistency
between Fig. 1 (a), (b) illustrates ANS as a simple, yet, powerful
metric to evaluate how does each layer contribute to the net adver-
sarial perturbation during the gradient propagation. Based on this,
we propose QUANOS where, we disrupt the flow of adversarial
gradients by quantizing the individual DNN layers in proportion to
their ANS values. High ANS layers are quantized to low precision
and low ANS layers are maintained at high precision to yield robust
DNNs .

2.3 QUANOS: ANS based Hybrid Quantization

Despite their remarkable classification accuracies, large DNNs as-
similate redundancies. Several recent works have studied these
redundancies by abstracting the network from different levels and
searching for, in particular, redundant filters (DenseNets [13]) and
redundant connections (Deep Compression [6]). In this work, we
present a novel perspective on redundancy by tying it with adver-
sarial robustness and use it for quantization of network parameters
and activations. That is, we approximate the minimum size of the
network when each parameter and activation of each individual
layer is allowed to have a distinct number of precision bits.
Algorithm 1 outlines our technique. Initially we take a baseline
k1,,..1:a7Pit precision network and train it for a few epochs (gener-
ally, 30 epochs in all our experiments). Then, we calculate the ANS;
value of each layer [ of the partially trained network. Based on the
ANS values, we quantize each layer of the network as follows:

ki = Kiypyyi0 — round(ANSy s Ky, 0p) )

Say, ANS values of a 3-layered DNN are {0.7, 0.4, 0.9}. If the ini-
tial DNN has uniform 16-bit precision layers, applying Eqn. 3 will
yield a quantized DNN with {5-bit, 10-bit, 2-bit} hybrid precision
layers. Both weights and activations of a given layer are quantized
to k; precision. Note, high ANS layers are quantized to lower pre-
cisions than low ANS layers. One major advantage of QUANOS
is that it does not rely on a pre-trained model to perform optimal
quantization. We can take a partially trained model and perform
QUANOS analysis to obtain a compressed DNN which is then fur-
ther trained till convergence (see Algorithm 1). Note, we can also

apply QUANOS iteratively as: 1) Train a full precision DNN for a
few epochs, 2) Compute ANS, 3) Quantize the DNN based on ANS,
4) Train the quantized DNN till convergence and then 5) Repeat
Steps 2-4 till optimal accuracy-efficiency tradeoff is achieved. In
all our experiments, we find that starting from a 16-bit baseline
(ki,,,;,; = 16) results in an optimal sized DNN with varying preci-
sions ranging from 1-bit to 9-bit with just 1 iteration of QUANOS.
Instead, using a 32-bit baseline (kj,,,,., = 32) as the starting point
requires 2-3 iterations of QUANOS. Note, Algorithm 1 determines
the precision of weights and activations of the convolutional layers
of a network. The pooling layers following a convolutional layer
automatically receive quantized activations.

Algorithm 1: QUANOS Procedure
Take a randomly initialized DNN (say, 16-bit) and train it for
20-30 epochs;
for each layerl in DNN do
Compute ANS; using Eqn. 2;
k; = 16 — round(16 = ANS;) (Eqn. 3);
end

Train the k;-bit hybrid precision DNN till convergence;

3 HARDWARE EVALUATION SETUP

We evaluate the energy savings of QUANOS on a precision scalable
MAC accelerator with different hardware scalability features such
as DVAFS and DG. In an accelerator, the primary model dependent
metrics that affect the energy consumption of a classification task
are the MAC operations and memory accesses. Say, a particular
convolutional layer of a DNN comprises of I input channels, O
output channels, input map size N X N , weight kernel size k X k and
output size MxX M. We illustrate the number of memory accesses and
computations in a kj, — bit layer in Table 1. The energy consumption
is calculated based on projections on 45nm CMOS technology for
32-bit precision operations. The energy consumed by any layer [ is
given by

E;=Na-k, * Ea-k, + Ne—k, * Ec—k, 4)
Note, we exclude the energy due to instruction flow and control
flow. Further, the energy calculation in Eqn. 4 is a rather conser-
vative estimate ignoring weight or input sharing. To exploit the
benefits of hybrid precision, we designed MAC arithmetic circuits
by integrating DG and DVAFS features. In DG, only MSB operands
are used for computation while LSBs are kept at zero. This avoids
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Table 1: Energy Calculation Chart for a given layer in a DNN

Operation Term | Number of Operations
kp bit Memory access Na-k, N2xI+k®*xIxO
kp bit MAC Computations | Ne_g, M?xIxk*x0O
Operation Term Energy (pJ)
kp bit Memory access Ea-k, 2.5kp,
32 bit MULT INT Erp-1 3.1
32 bit ADD INT Eadd-1 0.1
kp bit MAC INT EC—kb ((3.1xkp)/32+0.1)
(a) uantize uantize
gonv(k,.l) — BatchNorm —— ReLU — e (k) —

(b) | CQ"“";‘” — BatchNorm— ReLU —
/ onv (kp,,,)

|

Layer|| [ Layer)| Quantize k Quantize
~ — BatchNorm—~ ReLU

n 1/ Conv(ky,,) ‘ (kby,,)

Layerl + 2

Figure 2: Illustration of Quantization that is implemented
with QUANOS on (a) standard block comprising convolu-
tional, batch-norm, relu operation, (b) residual block with
shortcut connection from layer [ to [ + 2.

unnecessary toggling in the circuit reducing switching activity as
well as the critical path thereby enabling lower voltage operation for
constant throughput. DVAFS logic reuses inactive cells at reduced
precision scaling together both weight and activation with sym-
metric subword parallelism. Similar to DG, the shortened critical
path permits lower supply voltage and lower frequency operation
for constant throughput. Fig. 1 (c) illustrates the DG and DVAFS
multiplier operation for 4b X 4b scaling of weights and activations
in comparison to a 8b x 8b baseline. Note the unused and used por-
tions of the operands in each logic. In case of DG, the MAC block
does not have any additional features such as selective clock gating.
That is, all registers (MSB/LSB) stay clocked despite zeroing out of
LSBs. DVAFS embeds additional design features for clock-gating
and increased parallelism.

We synthesized the DVAFS-/DG-enabled MAC configuration
circuits in 45nm process with a nominal supply voltage of 1V from
abstract-level System Verilog descriptions. Conservative power
models were used for synthesis and power estimation. For DVAFS,
we assessed the energy for each scaled mode of operation while
sweeping the voltage from 1V to 0.8V. Fig. 1 (d) shows the break-
down of energy per MAC operation for each configuration with
respect to varying precision. Energy values are normalized with
respect to a full 16-bit precision baseline MAC architecture. We
combine the results of Fig. 1 (d) and Eqn. 4 to estimate the total
energy of a DNN layer when integrated with DG/DVAFS hardware
configuration as:

Eloonpig = Na-ky * Ea-ky, + Ne-ky * Ec—ky, * Econfig,, (5

Econ fig, is the energy per operation evaluated for a given kj, — bit
precision and configuration as per Fig. 1 (d).

Besides energy, we also evaluate the overall memory compres-
sion achieved with QUANOS. For a given layer convolutional /,
the total memory required is equivalent to the product of total
number of weights and the precision of the weights, given by:
M;=Ix0xk?xkp.
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4 EXPERIMENTAL RESULTS

We test QUANOS on two prevailing image classification benchmarks-
CIFAR10 and CIFAR100. We use VGG-19 and ResNet18 models to
conduct all analysis on CIFAR10 and CIFAR100, respectively. We im-
ported github models and used similar hyperparameters and train-
ing methodologies as [14] to conduct our experiments in PyTorch.
For fair energy comparison, we use homogeneously quantized 8—bit
and 16 — bit precision models trained from scratch as baselines. We
find that 8 — bit and 16 — bit models achieve iso-accuracy with that
of a 32 — bit model. We compare the energy/memory efficiency,
adversarial accuracy (i.e. measure of robustness) and clean test ac-
curacy of the final network obtained with QUANOS to that of the
corresponding baselines. Note, as in most quantization works, we
quantize the model’s weights and activations to optimal bit-widths
during forward propagation. The gradient calculation and update
steps during backpropagation are done using full 32 — bit precision.
In QUANOS, as outlined in Algorithm 1, we train a 16 — bit model
initially for 30 epochs. Then, based on the ANS calculation, we
quantize the individual layers of the DNN. In our experiments, we
calculate the ANS metric based on adversarial inputs created using
WB FGSM attack with € = 0.05 for a random 1000-2000 sample of
training inputs.

Fig. 2 illustrates a quantized block of a DNN that is used for for-
ward propagation in VGG, ResNet-like models. While quantization
is pretty straightforward in VGG-like architectures, the residual
connection in a ResNet model needs to be carefully quantized. Say,
there is a shortcut connection between layer [ and layer [ + 2. We
quantize the shortcut connection based on the ANS metric evalu-
ated for layer [ + 2 i.e. the shortcut has the same precision as the
layer into which it feeds.

In our experiments, all layers of a DNN except the final output
layer are quantized. The final output layer for a baseline/QUANOS
model remains at 32 — bit precision. We also train both baseline
and QUANOS models for 210 epochs where accuracy saturation
occurs. For robustness, we measure the adversarial accuracy of
the models against WB FGSM and PGD attacks. PGD is one of the
strongest attacks known in literature that casts adversaries over
multiple steps [2]: X;;}J = H(Xédv +a(VxL(0,X,ysrue))). In our
experiments, we craft FGSM attacks for € range- {0.05, 0.1, 0.15,
0.2, 0.25, 0.3}. For PGD, we craft attacks over t = 7 steps of size
a = 2/255 over € range-{8/255, 16/255,32/255} as denoted in many
recent works [2, 4, 5].

4.1 CIFAR10

Table 2 illustrates the varying precision of different layers for a
CIFAR10 VGG-19 model obtained with QUANOS. The average bit
precision of the QUANOS model evaluated across all layers is 4.95
bits. For fair comparison of energy and adversarial accuracy at
iso-compression, we trained a homogeneously quantized 5-bit pre-
cision model for 210 epochs. The test accuracy of the baseline
(Baseline — 1, Baseline — 2, Baseline — 3 corresponding to 16-bit,
8-bit and 5-bit respectively) and the QUANOS model on clean in-
puts are comparable. We plot the ANS values of the 16-bit baseline
model (after 30 epochs of training as well as full training cycle of
210 epochs) and the model obtained with QUANOS (after full 210
epochs of training) in Fig. 3 (a). Note, the higher ANS layers are
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Figure 3: (a) ANS values shown for QUANOS and 16-bit baseline VGG-19 model after training on CIFAR10 for certain number
of epochs. Adversarial loss shown across different VGG-19 models trained on CIFAR10 for different perturbation strengths (¢)

against (b) FGSM attack, (c) PGD attack.

Table 2: Result summary of CIFAR10 VGG-19 model.The bit-precision of each convolutional layer (C1...C17) is shown.

Model Layers Accuracy Memory
Ci|c2|c3|ca|Cs|Co|cCr|cs|Colciofcit|cCiz]|cC13]Ci4]C15]Ci6]C17 Compression

Baseline-r |  ———— 16-bit——— 91.6 0.32G (1x)
Baseline-2 [  ——— 8-bit———— 914 0.16G (0.5x)
Baseline-3 |  ——— 5-bit———— 90.5 0.1G (0.31x)
QUANOS | 9-b [4b [5b[3b[3b[3b[4b[2b[4b[6b[9ob[8b[9b[7b][3b]2b]2b 90.7 | 0.09G (0.27x)

Table 3: Energy results on CIFAR10 VGG-19 models of Table
2 for different hardware configurations.

Model Energy (in mJ)
Standard DG DVAFS
Baseline-1 1.47 (1x) 1.47 (1x) 1.47 (1x)
Baseline-2 | 0.75 (0.51X) | 0.62 (0.42X) | 0.47 (0.32X)
Baseline-3 | 0.49 (0.33X) | 0.36 (0.24x) | 0.29 (0.2X)
QUANOS | 0.39 (0.26x) | 0.29 (0.2X) | 0.25 (0.17x)

Table 4: Comparison with adversarial training on CIFAR10
VGG-19 model of Table 2. Adversarial loss shown for ¢ =
{2, 8,16}/255 for FGSM, PGD attacks.

Scenario Model FGSM PGD
AdvTrain+FGSM 16-bit 10.6, 39.6, 54 7.6, 49, 81
QUANOS | 9,31,43 7,44, 72
AdvTrain+PGD 16-bit 12.6, 41, 56 11, 43, 67
QUANOS 8.5, 34.5, 52 6.5, 37.5, 65.5

quantized to lower precisions. ANS quantifies the net adversarial
perturbation contribution of different layers of a network. Interest-
ingly, the overall ANS value for the QUANOS model is lower than
that of the partially and fully trained baseline which implies that
quantization curtails adversarial sensitivity.

Fig. 3 (b), (c) compare the adversarial robustness of the QUANOS
model with that of 16-bit Baseline — 1 and 5-bit Baseline — 3 against
FGSM, PGD attacks. The plots in Fig. 3 (b), (c) show the overall
Adversarial loss measured as Clean Test Accuracy - Adversarial Ac-
curacy. Thus, lower loss implies higher robustness. We find that
QUANOS consistently yields lower loss than the baseline models
across varying €. We observe ~ 10% (~ 15%) higher robustness
in FGSM (PGD) attacks with QUANOS than a similar sized 5-bit
baseline.

The net energy calculated using Eqn. 4, 5 for different config-
urations are also shown in Table 3. Standard corresponds to the

accelerator configuration without any hardware scalability features.
The MAC hardware architecture is designed for a 16-bit baseline.
Hence, integrating DG, DVAFS does not change the overall energy
consumption of the 16-bit precision model. We start observing sav-
ings by lowering the bit-precision of the model (Table 3). QUANOS
yields ~ 3.8 X —5.9% energy reduction over the 16-bit baseline and
~ 1.8 X —2x lower energy than 8-bit baseline at iso-accuracy. Table
2 also shows the memory compression results. QUANOS yields
~ 3.7x (1.2X) higher compression than 8-bit (5-bit) baseline, re-
spectively. The advantage of memory compression with QUANOS
is that the training cost incurred in the hybrid model will also be
~ 3.7x lower than the 8-bit model baseline at iso-epochs.

In Fig. 3 (b), (c), we see that adversarial attacks cause sharp in-
crease in adversarial loss. While QUANOS provides an inherent
resilience, strong attacks with high perturbation strengths (¢) have
devastating effects. To mitigate the adversarial effects, we can in-
tegrate our model with defense mechanisms. Adversarial training
[2] is currently the strongest method for defense. By augment-
ing the training set with adversarial samples, the network learns
to classify adversarial samples correctly. Augmenting the dataset
with adversaries created using WB FGSM attacks is referred to as
AdvTrain+FGSM. Similarly, augmenting dataset with WB PGD ad-
versaries is referred as AdvTrain+PGD. It is evident AdvTrain+PGD
will provide a stronger defense than AdvTrain+FGSM since we train
the network with stronger adversaries for the former.

Table 4 compares the adversarial loss of a 16-bit baseline and
QUANOS model (shown in Table 2) trained with adversarial data
augmentation. In case of QUANOS, we perform adversarial train-
ing after conducting ANS analysis and hybridizing the layers with
varied precision. While adversarial training substantially improves
the robustness of both models, QUANOS yields ~ 1% — 10% and
~ 4% lower adversarial loss than the 16-bit baseline against FGSM
and PGD attacks across different e, respectively. Thus, integrat-
ing QUANOS with state-of-the-art defense techniques can amplify
robustness even outperforming the state-of-the-art methods.
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Table 5: Result summary of CIFAR100 ResNet-18 model.The bit-precision of each convolutional layer (C1...C17) is shown.

Model Layers Accuracy Memory
Ci|Cz|cC3|ca|[C5|Co|C7|c8|co|cCio|cii|cCi2]|cCi3]|Ci4]C15]Cl6]C17 Compression
Baseline-1|  ——— 16-bit————- 76.7 0.18G (1x)
Baseline-2|  ———— 8-bit————- 74 0.09G (0.5%)
Baseline-s |  ———— 4-bit————- 72.1 0.05G (0.25%)
QUANOS | 9-b [8-b[7-b[4-b[5b[3b[4bJ2b[3b[2b[3b[2b[2b[2b[2b[2b]2b]| 728 |0.024G(0.14x)

Table 6: Energy results on CIFAR100 ResNet18 models of Ta-
ble 5 for different hardware configurations.

4.2 CIFAR100

Table 5, 6 show the accuracy, memory compression and overall
energy results for CIFAR100 ResNet18 models across different bit-
precision scenarios: Baseline-1 (16-bit), Baseline-2 (8-bit), Baseline-3
(4-bit) and QUANOS (Hybrid). The bit-precision of the different lay-
ers of the QUANOS model averages to ~ 3.65. Thus, we perform
iso-compression comparison between QUANOS and Baseline-3.
Overall, QUANOS yields higher energy efficiency and memory
compression benefits at near iso-accuracy than all baseline models
in most cases (3.6X memory compression, 1.4 X —2.4X energy effi-
ciency than 8-bit Baseline-2). We find that for DG, DVAFS hardware
configuration, QUANOS yields slightly higher energy than Baseline-
3 (Table 6). The higher energy in QUANOS is a consequence of its
high precision (> 4 — bit) initial layers C1 — C5 (Table 5). Note, as
explained in Fig. 2, the residual connections in QUANOS are scaled
to the same bit-precison as the layer it feeds into. That is, according
to Table 5, a shortcut connection between C2 (8-bit) and C4 (4-bit)
will be quantized to 4-bit.

Fig. 4 (a), (b) show the adversarial loss of the models across
FGSM, PGD attacks. QUANOS yields 4% — 7% lower loss than 8-bit
baseline. QUANOS and 4-bit model exhibit similar robustness to
FGSM attacks, while, QUANOS is more resilient against PGD at-
tacks. Table 7 shows how QUANOS models trained with adversarial
training perform with respect to a adversarially trained 4-bit model
(Baseline-3) against strong PGD attacks. QUANOS has significantly
(> 10% adversarial loss difference for large e PGD attacks) higher
adversarial robustness than 4-bit Baseline-3.

(a), 75 FGSM Attack (b), 90 PGD Attack
»n 75

€ (Perturbation) € (Perturbation)
Figure 4: Adversarial loss shown across different ResNet18
models trained on CIFAR100 for different € against (a) FGSM
attack, (b) PGD attack.

Model Energy (in mJ)
Standard DG DVAFS Scenario Model FGSM PGD
Baseline-1 | 1.44 (1X) 1.44 (1x) 1.44 (1x) AdvTrain+FGSM 4-bit 12.6, 43.6, 58.6 9.6, 66, 90
Baseline-2 | 0.75 (0.52x) | 0.45(0.32x) | 0.13 (0.09x) QUANOS | 8.6,37.6, 56.6 5.6, 19, 34
Baseline-3 | 0.40 (0.28x) | 0.165 (0.114x) | 0.023 (0.02x) AdvTrain+PGD 4-bit 13,21.3,25.8 | 15.6, 26.6, 30.3
QUANOS | 0.32(0.22x) | 0.17 (0.118x) | 0.095 (0.07x) QUANOS | 11.2,16.3, 20 9,10.4, 14.9

Table 7: Comparison with adversarial training on CIFAR100
ResNet18 model from Table 5. Adversarial loss shown for
€ ={2,8,16}/255 for FGSM, PGD attacks.

5 CONCLUSION

We present QUANOS- a structured method for hybrid quantization
of different layers of a deep neural network to produce energy-
efficient, accurate and adversarially robust models. We propose a
novel metric, adversarial noise sensitivity (ANS), that evaluates
the contribution of each layer towards adversarial noise and then,
determines the optimal bit-width per layer. We perform energy eval-
uation of quantized models on hardware architectures integrated
with data gating (DG) and dynamic voltage accuracy frequency
scaling (DVAFS) features. Our experiments on CIFAR10, CIFAR100
datasets reveal QUANOS yields significant benefits than homoge-
neously quantized 8-bit and similar sized baseline models.
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