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Traditional uncertainty relations dictate a minimal amount of noise in incompatible projective quantum
measurements. However, not all measurements are projective. Weak measurements are minimally invasive
methods for obtaining partial state information without projection. Recently, weak measurements were
shown to obey an uncertainty relation cast in terms of entropies. We experimentally test this entropic
uncertainty relation with strong and weak measurements of a superconducting transmon qubit. A weak
measurement, we find, can reconcile two strong measurements’ incompatibility, via backaction on the state.
Mathematically, a weak value—a preselected and postselected expectation value—lowers the uncertainty
bound. Hence we provide experimental support for the physical interpretation of the weak value as a
determinant of a weak measurement’s ability to reconcile incompatible operations.
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Quantum measurements suffer from noise that limits preci-
sion metrology [1,2], amplification [3,4], and measurement-
based feedback. The minimal amount of noise achievable is
lower bounded in uncertainty relations. They highlight how
quantum noise arises from disagreement between, or incom-
patibility of, quantum operations. Robertson proved [5] the
most familiar uncertainty relation: the measurement statistics
of two observables A and B must have sufficiently large
standard deviations ΔA and ΔB to obey

ΔAΔB ≥
1

2
jh½A;B�ij: ð1Þ

Operator pairs with nonzero uncertainty bounds are said to
disagree or to be incompatible. Uncertainty relations quantify
the incompatibility.
Equation (1) suffers from shortcomings [6]. For exam-

ple, the right-hand side (rhs) depends on a state, through an
expectation value. Varying the state appears to vary the
disagreement between A and B. But the amount of
disagreement should depend only on the operators. This
objection and others led to the development of “entropic
uncertainty relations” in quantum-information theory [7].
The variances in Eq. (1) give way to entropies, which
quantify the optimal efficiencies with which information-
processing tasks can be performed [8].

An exemplary entropic uncertainty relation was proved
in [9]. Consider preparing a state ρ and measuring the

observable A. Let pa denote the probability of obtaining the
eigenvalue a. The probability distribution fpag has a
Shannon entropy HðAÞρ ≔ −Σapa log2 pa equal to the
detector’s von Neumann entropy. If HðBÞρ is defined
analogously,

HðAÞρ þHðBÞρ > − log c; ð2Þ
where c denotes the “maximum overlap” between any
eigenstates jai and jbi of the observables’ eigenstates:
c ≔ maxa;bfjhbjaij2g. Equation (2) holds for every state ρ
and eliminates state dependence from the bound (rhs), as
desired.
The uncertainty relations (1) and (2) concern only

projective, or strong, measurements of observables.
“Weak measurements” [10] operate at various measure-
ment strengths. They have been explored recently in
quantum optics [11], cavity quantum electrodynamics
(QED) [12], and circuit QED [13–16]. During a weak
measurement, the system of interest is coupled weakly to a
detector, which is then projected [17]. The outcome
provides partial information about the system of interest,
without projecting the system. Weak measurements illu-
minate quantum dynamics, as in the tracking of the
progress of spontaneous emission [18,19], the catching
and reversing of quantum jumps [20], and observations of
noncommuting observables’ dynamics [21].
An entropic uncertainty relation that governs weak

measurements was proved recently [22]. The relation
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quantifies the disagreement between a strong measurement
and the composition of a weak measurement and another
strong measurement. We show that the weak measurement
can, backacting on the state, reconcile the disagreement
between the strong measurements. The measurements are
performed in a circuit-QED architecture, with a super-
conducting transmon qubit.
Our results reveal a physical significance of weak values.

A “weak value” is a pre- and postselected expectation
value. Let I ¼ P

i λijiihij and F ¼ P
f fjfihfj denote

observables. We assume, throughout this Letter, that the
eigenspaces are nondegenerate, as we will focus on a qubit.
But this formalism, and the theory we test [22], extend to
degeneracies. Consider measuring I , obtaining outcome λi,
measuring F, and obtaining outcome f. Let A denote an
observable that commutes with neither I nor F. Which
value can be retrodictively ascribed most reasonably to A,
given the preselection on λi and the postselection on f?
The weak value [23]

Awv ≔
hfjAjii
hfjii : ð3Þ

Awv can assume anomalous values, which lie outside the
operator’s spectrum. Weak values’ significance and utility
have been debated across theory and experiment [24–29].
We demonstrate a new physical meaning of the weak value:
As a contribution to the uncertainty bound for weak and
strong measurements [22], Awv controls how much weak
measurements reconcile incompatibility.
This Letter reports on an experimental test of the entropic

uncertainty relation for weak and strong measurements
[22]. We first introduce the experimental platform and the
dispersive measurements performed in circuit QED. We
begin by quantifying two projective measurements’ incom-
patibility with entropies. Turning one measurement into a
composition—a weak measurement followed by a projec-
tive measurement—raises the overall measurement’s
entropy by increasing the number of possible outcomes.
But, under a natural normalization scheme, the weak
measurement reduces the sum of the two operations’
entropies. The entropy sum was bounded in [22], whose
theory we review and then test experimentally. We quantify
how the weak measurement backacts on the state. Through
the backaction, the weak value can lower the uncertainty
bound, allowing the measurements to agree more. In
bridging entropic uncertainty relations with weak measure-
ments and superconducting qubits, this Letter unites several
subfields of quantum-information physics, which can
benefit from the synergy introduced here. For example,
in addition to the fundamental contribution to weak values
mentioned above, this Letter paves the path toward
detecting quantum chaos with weak measurements experi-
mentally, being the first experiment to sprout from the

considerable theoretical work on leveraging weak
measurements to identify chaos [22,30–37].
Experimental context.—We measure the entropic uncer-

tainty relation with a transmon superconducting qubit. The
qubit couples to one mode of the electromagnetic field in a
three-dimensional microwave cavity (Fig. 1). The qubit
frequency, ωq=ð2πÞ ¼ 3.889 GHz, is far detuned from the
cavity frequency, ωc=ð2πÞ ¼ 5.635 GHz, enabling a dis-
persive interaction. Dispersive interactions do not exchange
energy, allowing for quantum-nondemolition measure-
ments. The Jaynes-Cummings Hamiltonian in the disper-
sive limit,

HJC=ℏ ¼ ωca†aþ 1

2
ωqσz þ χa†aσz; ð4Þ

governs the measurement dynamics. a† (a) denotes the
cavity mode’s creation (annihilation) operator, and σz
denotes the Pauli z operator. The final term, χa†aσz,
represents the interaction. It effectively changes ωc by
an amount �χ ¼∓ 2πð1.5 MHzÞ dependent on the
qubit’s state.
We prepare the cavity probe in a coherent state, whose

phase shifts in accordance with the qubit’s state. We
perform a homodyne measurement of the field’s Q quad-
rature, using a Josephson parametric amplifier. The probe
state is continuous variable. However, we discretize the
possible measurement outcomes into bins labeled by j.
Outcome j occurs with a probability calculated with a

positive operator-valued measure (POVM). POVMs
represent general (not necessarily projective) measure-
ments mathematically [8]. A POVM is a set of positive
operators K†

jKj > 0 that obey the normalization conditionP
j K

†
jKj ¼ I. The “Kraus operator” Kj evolves the

system-of-interest state: ρ ↦ KjρK
†
j=TrðρK†

jKjÞ. The
denominator equals the measurement’s probability of
yielding j.

FIG. 1. Our experimental setup involves a superconducting
transmon qubit coupled dispersively to a microwave cavity. The
cavity’s state is sketched in phase space, defined by quadratures I
and Q. Coherent states probe the cavity, acquiring a phase shift
(red and blue circles) dependent on the qubit’s state. The
transmitted-probe quadrature that contains qubit-state informa-
tion is demodulated and digitized into discrete measurement
outcomes j.
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Our setup measures the qubit observable A ¼ σz, due to
Eq. (4) and the measurement’s homodyne nature [38]. We
can effectively measure other observables A by rapidly
rotating the qubit before and after the interaction. Our
phase-sensitive homodyne scheme projectively measures
the cavity field along a specific quadrature [39]. If the
cavity measurement yields outcome j, the qubit state
evolves under the Kraus operator [10]

Kj ¼
�

δt
2πτ

�
1=4

exp

�
−
δt
4τ

½jI − A�2
�
: ð5Þ

τ denotes the characteristic measurement time [40], and the
integration time δt determines the measurement strength
δt=τ. It depends on system parameters, including the mean
number of photons in the cavity. The Kraus operator’s
backaction on the qubit state will enable the weak meas-
urement to reconcile incompatible operators.
Entropic uncertainties.—To build intuition, we show

how entropic uncertainties arise in our experiment and are
modified by weak measurements. First, we define observ-
ables I , F, and A. Without loss of generality, we set
I ¼ σz ¼ j0ih0j − j1ih1j. F is represented on the Bloch
sphere by the axis that lies an angle θF below the z axis, at
the azimuthal angle ϕ ¼ 0 [Fig. 2(a)]. A is defined
analogously, in terms of θA.

Consider preparing a state ρ and implementing one of the
three measurements shown in Fig. 2(a): (i) a projective
measurement of I , (ii) a projective measurement of F, or
(iii) the composition of a weak A measurement and a
subsequent projective F measurement. We implement a
projective measurement experimentally by integrating the
measurement signal for a time δt ≫ τ. Choosing δt ¼
350 ns and τ ¼ 6 ns realizes a projective measurement
with ground-state fidelity 99% and excited-state fidelity
91%. The measurement time, 350 ns, is shorter than the
decoherence timescales, T1 ¼ 50 and T�

2 ¼ 10 μs.
The entropies HðIÞρ and HðFÞρ are defined as follows.

In each of many trials, we prepare a qubit state ρ
and measure I . From the outcome statistics, we infer
the probabilities pi ¼ hijρjii. From fpig, we calculate
HðIÞρ. We determine HðFÞρ analogously. For the data
shown in Fig. 2(b), ρ ¼ j0ih0j. The entropies’ sum peaks at
θF ¼ π=2, signaling the maximal incompatibility of σz with
�σx. I and F coincide at θF ¼ 0, where the entropy sum
minimizes. The sum ≳0 because the measurements have
finite fidelities.
Figure 2(b) displays also the entropy of the joint AF

measurement, for θA ¼ π=4. In each of many trials, we
prepare ρ, measure A weakly, and measure F projectively.
From the frequencies of the outcome tuples ðj; fÞ, we infer
the joint probabilities pj;f ¼ hfjKjρK

†
j jfi. On the distri-

bution, we calculate the entropy HðAFÞρ.
j assumes one of ≈24 possible values, so the weak

measurement raises the entropy by ≈4 bits. Aside from
this increase, measuring A reduces entropy sum when
θF ¼ π=2, where F ¼ σx disagrees maximally with
I ¼ σz. To highlight this effect, we normalize HðAFÞρ,
displaying the difference HðAFÞρ −HðAÞρ in Fig. 2(b).
The weak A measurement reconciles the two operators, as
we now quantify in more detail.
Theory.—We briefly review the derivation of the entropic

uncertainty relation for weak and strong measurements
[22]. For convenience, we reuse the definitions in the
previous two sections. The theory generalizes, however,
beyond circuit QED and qubits. Recall two of our POVMs,
(i) a projective I measurement and (iii) the composition of
a weak A measurement and a projective F measurement.

We formalize a general weak measurement as follows.
A detector is prepared in a state jDi, coupled to the
system’s A weakly via a unitary V, and measured projec-
tively. If outcome j obtains, the system evolves under the
Kraus operator Kj ¼ ðphaseÞhjjVjDi. Taylor approximat-
ing in the coupling strength yields [41]

Kj ¼ ffiffiffiffiffi
pj

p fI þ gjAþOð½gj�2Þg: ð6Þ

pj equals the probability that, if the detector is prepared in
jDi and does not couple, the measurement yields j. gj
quantifies the interaction strength and is defined, via the
Kraus operators’ unitary invariance [8], to be real.

(a)

(b)

FIG. 2. Characterization of entropic uncertainties: (a) We sub-
ject a state ρ to one of three measurements. The measurements’
entropies are defined as the detectors’ von Neumann entropies.
(b) Entropies measured for the state ρ ¼ j0ih0j. Bands indicate
statistical error from finite sampling (approximately 10 000
repetitions per angle). HðIÞρ and HðFÞρ characterize projective
measurements. HðAFÞρ −HðAÞρ quantifies the change, caused
by the weak measurement, in the second measurement’s entropy,
when θA ¼ π=4. HðIÞρ þHðFÞρ maximizes when θF ¼ π=2,
such that F ¼ X, while I ¼ Z. The second measurement’s
entropy change, HðAFÞρ −HðAÞρ, maximizes at θF ¼ 0.53π.
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Comparing with Eq. (5), we calculate the cavity QED pj
and gj in the Supplemental Material [42].
The entropic uncertainty relation for weak and

strong measurements is proved as follows. We begin
with a generalization, to POVMs, of the entropic
uncertainty relation (2) [43,44]. POVMs (i) and (iii) are
substituted into the relation. The left-hand side (lhs),
HðIÞρ þH ðAFÞρ, consists of entropies defined as in the
previous section. The entropies quantify the average
uncertainties about the POVMs’ outcomes.
The uncertainty relation’s rhs contains a maximum

overlap, similarly to Eq. (2). This overlap, however, is
between POVM elements. In its raw form, the rhs cannot be
straightforwardly inferred from experiments. Therefore, the
bound was Taylor approximated in the weak coupling,
gj

ffiffiffiffiffipj
p . The entropic uncertainty relation for strong and

weak measurements results:

HðIÞρþHðAFÞρ
≥mini;j;f

�
−log2ðpfjipjÞ−

2

ln2
ReðgjAwvÞþOðpj½gj�2Þ

�
:

ð7Þ

The bound contains two non-negligible terms. The
zeroth-order term depends on the eigenstate overlap
pfji ¼ jhfjiij2 in the entropic uncertainty relation (2) for
projective measurements. The first-order term depends on
the weak value’s real part ReðAwvÞ [Eq. (3)]. Positive weak
values tend to achieve the minimum, we find, leading to a
negative Awv term. The negative sign comes from the
negative sign in (the generalization, to POVMs, of) Eq. (2).
The term lowers the bound, enabling the POVMs to agree
more, as our experiment shows.
Results.—Figure 3 displays results of measuring both

sides of the entropic uncertainty relation (7). As above, we
set I ¼ σz and ρ ¼ j0ih0j, to achieve the tightest bound.
Since the I-measurement axis coincides with ρ on the
Bloch sphere, only the measurement infidelity causes the
entropy HðIÞρ (Fig. 2) to contribute to the lhs of (7). We
first focus on HðAFÞρ, measured as a function of θF and
θA. The choice I ¼ σz introduces an azimuthal symmetry
that allows us to neglect rotations out of the x–z plane.
We have already detailed the θF dependence of HðAFÞρ

for θA ¼ π=4: Figure 2 showed how the weak measurement
can reconcile incompatible operators. Here, we focus on the
θA dependence ofHðAFÞρ [Fig. 3(b)]. Four effects compete
to extremize HðAFÞρ as a function of θA ∈ ½0; π�, when
θF ¼ π=2. First, as θA grows from zero, the initial states
overlap with an A eigenstate decreases. A-measurement
outcomes are sampled from an increasingly uniform dis-
tribution. This effect helps maximize HðAFÞρ at θA ¼ π=2.
Second, as A approaches F, the A measurement’s back-
action biases the F-measurement outcome. This effect
would decrease HðAFÞρ to a minimum at θA ¼ π=2, in

the absence of the other effects. Third, the weak measure-
ment partially projects the state onto the A axis, dephasing
the state with respect to the A eigenbasis. Detection
inefficiency enhances the dephasing [42] and shrinks the
Bloch vector [Fig. 3(c)]. The F-measurement outcome
becomes maximally biased, minimizing HðAFÞρ, when
θA ¼ π=4; 3π=4. Fourth, readout infidelity (due to energy
leakage from the qubit) raises HðAFÞρ as θA increases.
HenceHðAFÞρ is asymmetric about θA ¼ π=2. Overall, the
maxima and minima ofHðAFÞ follow from the competition
between the uncertainties in the F- and A-measurement
outcomes. Our experimental apparatus’s finite measure-
ment efficiency [42] masks the A measurements contribu-
tion, resulting in minima at θA ¼ π=4 and 3π=4.
Figure 3(d) displays measured values of the entropic

uncertainty relation’s rhs. We measure pfji, pj, and Awv in
separate sets of experiments. We calculate pfji ¼ jhfjiij2
by preparing an I eigenstate jii and measuring F in each of
many trials. From the frequency with which f occurs, we
infer the conditional probability. The pj and gj in (6) are
obtained from the weak-measurement calibration (see
Supplemental Material [42]). Finally, we measure the weak
value Awv by preparing an I eigenstate jii, measuring A
weakly, and then measuring F projectively, in each of many
trials. Then, we postselect on the final-measurement out-
come f. An average of the weak-measurement outcomes j
is proportional to Awv [42]. We measure the uncertainty
relation’s rhs only where θF ∈ ½π=6; 5π=6�, due to low
postselection success rates closer to zero and to π. Having

(b)

(d)(a)

(c)

FIG. 3. Measurements of the entropic uncertainty relation:
(a) The entropy HðAFÞρ. (b) Detail of HðAFÞρ versus θA
(markers), compared to theory (dashed line), at θF ¼ π=2. Bands
indicate statistical error that results from finite sampling (ap-
proximately 140 000 repetitions per angle). (c) Bloch-plane
sketch indicating the Ameasurement’s backaction (dashed arrow)
on the initial state. (d) The bound of Eq. (7). The dashed line
indicates the bound’s theoretical maximum.
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measured pfji, pj, and Awv for each choice of ði; j; fÞ, we
calculate the argument of the minimum in Eq. (7). We then
identify the minimizing triple.
In Fig. 3(d), the maximum of the bound, the equation’s

rhs, varies sinusoidally with θA. Though F disagrees most
with I at θF ¼ π=2, the weak A measurement shifts the
maximum’s location. For example, when θA ¼ π=4, the
maximally disagreeing AF measurement has θF ¼ 0.53π,
when the measurement strength is δt=τ ¼ 0.17. When
θF ¼ π=2, setting θA to π=4 reconciles disagreeing
operators, σz and σx.
The weak value Awv [Eq. (3)] underlies the reconcilia-

tion: The weak-value term in Eq. (7) tends to assume
negative values, lowering the bound. Additionally, Awv
can grow anomalous, straying outside the A spectrum.
However, large-magnitude Awv values can violate the
Taylor approximation that led to Eq. (7) [22]. As we focus
on the uncertainty relation, anomalous weak values lie
outside the scope of this study.
Finally, we examine the bound’s tightness, the difference

between the lhs and rhs. The bound tightens maximally not
just at one measurement orientation, but throughout a set
of orientations near θF ¼ π=2. Here, the tightness is
2.45� 0.05 bits. The tightness is ideally 0.7 bits, but
inefficient detection raises the entropy sum’s empirical
value by 1.66 bits.
Discussion.—We have experimentally measured an

entropic uncertainty relation for strong and weak measure-
ments [22], using a circuit-QED platform. A weak meas-
urement, we have shown, can reconcile incompatible
operations: up to a normalization floor, the weak meas-
urement decreases the entropy sum on the equation’s lhs
and the uncertainty bound on the rhs. This Letter opens
operator reconciliation to feedback-free control by weak
measurements, which have recently been used to control
steering [45] and pure-state preparation [46] without feed-
back. This Letter also suggests benefits of using weak
measurements in applications of entropic uncertainty rela-
tions, as to quantum cryptography [47].
Mathematically, a weak value lowers the uncertainty

relation’s rhs. The weak value’s influence is visible also in
the sinusoidal variation of the rhs with the weak-measure-
ment angle. This Letter therefore demonstrates a new
physical interpretation of the weak value: the weak value
controls the uncertainty bound on operations formed from
strong and weak measurements. Whereas other interpreta-
tions have excited controversy, this interpretation
is, we believe, mathematically clear and experimentally
supported.
Entropic uncertainty relations have been measured

with various platforms, including neutrons, optics, and
nitrogen-vacancy centers [48–51]. The measurements in
[51], though nonprojective, are probabilistic projections.
In contrast, our measurements are weak and experimentally
demonstrate the weak value’s role in reconciling

incompatible operations. This role has only been men-
tioned theoretically [22], neither detailed nor experi-
mentally tested, until now. Uncertainty relations occupy
two categories [7], one centered on measurement out-
comes’ unpredictability [50,51] and one centered on
measurements’ disturbance of quantum states [48,49].
Our uncertainty relation occupies both categories, in the
spirit of [52]: On the one hand, we prepare an I eigenstate
jii and perform the composite AF measurement. On the
other hand, we take advantage of the weak A measure-
ment’s disturbance of jii. This Letter identifies weak
measurements as a means of unifying the classes of
uncertainty relations.
The measured uncertainty relation follows from simpli-

fying an entropic uncertainty relation for quantum-
information scrambling [22]. Quantum information scram-
bles by spreading through many-body entanglement,
during a nonclassical stage of equilibration [53–56]. The
entropic uncertainty relation for quantum-information
scrambling occupies a recent line of theoretical applications
of weak measurements to scrambling [22,30–37]. Our
experiment is the first to arise from this theory. It paves
the way for characterizations of scrambling with weak
measurements of many-body quantum systems.
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