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a b s t r a c t

In 2017 Davis, Nelson, Petersen, and Tenner pioneered the study of pinnacle sets of
permutations and asked whether there exists a class of operations, which applied to a
permutation in Sn, can produce any other permutation with the same pinnacle set and
no others. In this paper, we adapt a group action defined by Foata and Strehl to provide
a way to generate all permutations with a given pinnacle set. From this we give an
answer to a second question asked by Davis, Nelsen, Peterson, and Tenner, which asks
for a closed non-recursive formula enumerating permutations with a given pinnacle set.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let N denote the set of the nonnegative integers. For n ∈ N, let [n] = {1, 2, . . . , n} and let Sn denote the set of
permutations π = π1π2 · · · πn of [n]. Given a permutation π = π1π2 · · · πn ∈ Sn, throughout we let π0 = πn+1 = ∞.

hen using two digit numbers for any of the πi (as in Example 4.5), we use the notation π = [π1, π2, . . . , πn] to avoid
onfusion. A permutation π = π1π2 · · · πn has a descent at a nonzero index i if πi > πi+1, an ascent at a nonzero index
if πi < πi+1, a peak at a nonzero index i if πi−1 < πi > πi+1, and a valley at a nonzero index i if πi−1 > πi < πi+1.
hereas, the value πi of a permutation is a pinnacle if πi−1 < πi > πi+1, and a vale if πi−1 > πi < πi+1. Then the peak

et of a permutation π ∈ Sn is Pk(π ) = {i ∈ [n] : i is a peak of π}, the pinnacle set of π is the set

Pin(π ) = {i ∈ [n] : i is a pinnacle of π},

he valley set of π is Vy(π ) = {i ∈ [n] : i is a valley of π}, and the vale set of π is the set

Vale(π ) = {i ∈ [n] : i is a vale of π}.

ote that we can also think of the pinnacle set as the image of the peak set under the function π , and we can think of the
ale set as the image of the valley set under the function π . For example, the permutation π = 15264387 has pinnacle
et Pin(π ) = {5, 6, 8}, peak set Pk(π ) = {2, 4, 7}, vale set Vale(π ) = {1, 2, 3, 7} and valley set Vy(π ) = {1, 3, 6, 8}.
Although the notions of pinnacles and peaks (resp. vales and valleys) capture a sense of a rise and fall (resp. fall

and rise) in a permutation, they behave rather differently. To capture this difference, we consider T ⊂ [n] and let
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k(T ; n) = {π ∈ Sn : Pk(π ) = T }, Pin(T ; n) = {π ∈ Sn : Pin(π ) = T }, and present some previous results in the study of
eaks and pinnacles of permutations. In 2013, Billey, Burdzy, and Sagan presented a result regarding the enumeration of
ermutations in Sn with a specified n-admissible peak set T , that is, T ⊂ [n] such that Pk(T ; n) ̸= ∅. Their main result is
s follows.

heorem 1.1 (Billey, Burdzy, and Sagan 2013 [1]). If T = {i1 < · · · < is} is an n-admissible peak set, then

|Pk(T ; n)| = p(n)2n−|T |−1 (1)

here p(n) is a polynomial depending on T such that p(m) is an integer for all integral m and deg p(n) = is − 1.

In 2017, Davis, Nelson, Petersen, and Tenner determined bounds for the number of permutations with a specified
-admissible pinnacle set P ⊂ [n]. That is, P ⊂ [n] such that Pin(P; n) ̸= ∅. Their main result is as follows.

heorem 1.2 (Davis, Nelson, Petersen, and Tenner 2017 [3]). If P is an admissible pinnacle set, then

2n−|P|−1
≤ |Pin(P; n)| ≤ |P|! · (|P| + 1)! · 2n−2|P|−1

· S(n − |P|, |P| + 1)

here S(r, s) denotes the Stirling number of the second kind. Moreover, these bounds are sharp.

Davis et al. posed the question of whether there exists a class of operations which, applied to a permutation in Sn, can
roduce any other permutation with the same pinnacle set and no others [3, Question 4.2]. In this paper, we provide a
ay to generate all permutations with a given pinnacle set by using a group action on permutations called the dual Foata–
trehl action, which we define in Section 2. Specifically, this action partitions the set Pin(P; n) into disjoint orbits, and we
enerate one permutation in each orbit. From this we then prove Theorem 1.3 to provide an answer to [3, Question 4.4]
hich asks for a closed non-recursive formula for the total number of permutations with a given pinnacle set. To state
his result, for a given pinnacle set P , we define V(P) to be the set of all vale sets, V ⊆ ([n] \ P), so that P and V are an
-admissible pinnacle and vale set combination, i.e. there are permutations in Sn with P as their pinnacle set and V as
heir vale set.

heorem 1.3 (Corollary 4.6 in this paper). If P is an n-admissible pinnacle set, then

Pin(P; n) = 2n−|P|−1
∑

V∈V(P)

⎛⎝∏
p∈P

(
NPV (p)

2

) ∏
x∈[n]\(P ∪ V )

NPV (x)

⎞⎠ ,

here Vk = {v ∈ V : v < k}, Pk = {p ∈ P : p < k}, and NPV (k) = |Vk| − |Pk|, counting the number of vales less than k, minus
he number of pinnacles less than k.

This work is organized as follows. In Section 2 we define the dual Foata–Strehl group action on permutations, recall
ome known characteristics of this action, and establish that the dual Foata–Strehl group action on permutations preserves
innacle sets (Theorem 2.3). In Section 3 we describe a unique representative from each orbit under the dual Foata–
trehl action (Theorem 3.6). In Section 4 we construct and count permutations with a fixed pinnacle set (Corollary 4.6)
nd provide a way to construct and count all vale sets in V(P) (Proposition 4.7). In Section 5 we present computational
vidence that the algorithm based on our constructions in Section 4 is drastically faster than the naive algorithm for
enerating Pin(P; n). In Section 6 we present a few open problems for further study.

. The dual Foata–Strehl group action on Sn

Let π ∈ Sn and x ∈ [n]. We can write π = w1w2xw4w5 where w2 is the longest contiguous subword immediately to
he left of x such that all values are less than x and w4 is the longest contiguous subword immediately to the right of x
uch that all letters of w4 are less than x. Call this the x-factorization of π , then let ϕx(π ) = w1w4xw2w5, which defines
n involution on Sn. Note that if x is a vale, then w2 = ∅ = w4, where ∅ denotes the empty word, and ϕx(π ) = π .
The map ϕx is a modified version of the map Foata and Strehl defined in [4]. In their paper, the x-factorization of w

as defined by letting w2 be the longest contiguous subword immediately to the left of x such that all values are greater
han x and w4 is the longest contiguous subword immediately to the right of x such that all letters of w4 are greater than
. Then they use their x-factorization to define the map φx(π ) = φx(w1w2xw4w5) = w1w4xw2w5.
In that sense, ϕx and φx only differ in that one switches the values near x that are less than x and the other switches

he values near x that are greater than x. If we let w0 be the longest word of Sn, namely w0 = n (n − 1) . . . 1, and if
= π1π2 · · · πn then w0(πi) = n − πi + 1 for all 1 ≤ i ≤ n. Hence, for any x ∈ [n], we have that

ϕx(π ) = w0(φw0(x)(w0π )). (2)

eometrically, this equation states that to obtain ϕx(π ) we can first flip the graph of π vertically along the y = (n+ 1)/2
ine, which is achieved by multiplying π by w0 on the left. Then, we apply the map φw0(x), and finally flip the permutation
ertically again along the same line.
In the next example, we provide some computations of the maps ϕx and φx. We then notice a commutativity property

hat is later proved in Lemma 2.2.
2
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xample 2.1. If π = 6534127, then

ϕ4(π ) = ϕ4( 65
w1

3
w2

4 12
w4

7
w5

) = 6512437

ϕ5(π ) = ϕ5( 6
w1

∅
w2

5 3412
w4

7
w5

) = 6341257,

nd

φ4(π ) = φ4( 653
w1

∅
w2

4 ∅
w4

127
w5

) = 6534127

φ5(π ) = φ5( ∅
w1

6
w2

5 ∅
w4

34127  
w5

) = 5634127.

Repeating this process shows that ϕ5(ϕ4(π )) = 6124357 = ϕ4(ϕ5(π )) and φ5(φ4(π )) = 5634127 = φ4(φ5(π )).

In Section 2 of [4] Foata and Strehl prove that for any x, y ∈ [n] and any permutation π we have that φx(φy(π )) =

y(φx(π )). We use this result together with Eq. (2) to show the equivalent result for ϕx and ϕy.

emma 2.2. If x, y ∈ [n], then ϕx(ϕy(π )) = ϕy(ϕx(π )) for any π ∈ Sn.

roof. Let π ∈ Sn, then

ϕx(ϕy(π )) = ϕx
(
w0(φw0(y)(w0π ))

)
by (2) applied to ϕy

= w0

(
φw0(x)

(
w0

(
w0φw0(y)(w0π )

)))
by (2) applied to ϕx

= w0

(
φw0(x)

(
φw0(y)(w0π )

))
as w0 is an idempotent

= w0

(
φw0(y)

(
φw0(x)(w0π )

))
since φw0(x) and φw0(y) commute

= w0

(
φw0(y)

(
w0

(
w0φw0(x)(w0π )

)))
as w0 is an idempotent

= ϕy
(
w0(φw0(x)(w0π ))

)
by (2) applied to ϕy

= ϕy(ϕx(π )) by (2) applied to ϕx. □

Given S ⊆ [n], Foata and Strehl [4] define

φS(π ) =

∏
x∈S

φx(π )

here the product notation denotes the composition of the functions φx for all x ∈ S, and if S = ∅, then φS is the identity
ap on Sn. Since φx and φy commute for all x, y ∈ [n], then φS(π ) is well defined. This can be interpreted as a group
ction φ : Zn

2 × Sn → Sn defined by φ(a, π ) = φXa (π ) where Xa := {i : ai = 1}. We call φS the Foata–Strehl action.
Given S ⊆ [n], we can similarly define

ϕS(π ) =

∏
x∈S

ϕx(π )

here the product notation denotes the composition of the functions ϕx for all x ∈ S. When S = ∅, define ϕS to be the
dentity map on Sn. Since ϕx and ϕy commute for all x, y ∈ [n], then ϕS is well defined. Similarly, the group Zn

2 acts
n the symmetric group Sn via the function ϕS . To be precise, ϕ : Zn

2 × Sn → Sn defined by ϕ(a, π ) = ϕXa (π ) where
a := {i : ai = 1} is a group action. We henceforth refer to ϕS as the dual Foata–Strehl action.
Our first result establishes that the dual Foata–Strehl action preserves the pinnacle set of a permutation.

heorem 2.3. For any S ⊂ [n] and any π ∈ Sn, Pin(π ) = Pin(ϕS(π )).

roof. First, note that it is enough to show that for any x ∈ [n], Pin(π ) = Pin(ϕx(π )). We write

π = w1w2xw4w5 (3)
ϕx(π ) = w1w4xw2w5. (4)

Since ϕx is an involution, it is enough to prove that Pin(π ) ⊂ Pin(ϕx(π )). Let y ∈ Pin(π ). We show y ∈ Pin(ϕx(π )). First,
onsider the case that y = x. It is clear that y will still be a pinnacle of ϕx(π ), as the subwords w2 and w4 are defined to
e strictly smaller than y, and swapping the two words around y will preserve the fact that y is still a pinnacle.
3
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Table 1
Partitioning of S4 by the orbits of the dual Foata–Strehl action.
Pinnacle set Equivalence class

P = ∅ 1234 2134 3124 4123 3214 4213 4312 4321
P = {3} 1324 2314 4132 4231
P = {4} 1243 2143 3412 3421
P = {4} 1342 3142 2413 2431
P = {4} 1423 1432 2341 3241

Now, we consider the cases such that the pinnacle y is contained in subwords w1, w2, w4, or w5. Note that it is enough
to consider the cases when y is on one of the ends of the words that comprise the factorization. Indeed, since the action
preserves the structure of the subwords themselves, changes to the pinnacle set will only arise at the junctions between
the subwords.

We first consider the case that y ∈ w1. Since the left-most letter of w1 cannot be a pinnacle by definition, we consider
the case when y is the right-most letter of w1. If y is a pinnacle of π , it must be greater than its neighbor to the left in
w1, which remains the same in ϕx(π ). Since y ∈ w1, it must be the case that y > x, by definition of the x-factorization.
Moreover, all letters of w4 will be less than x, which is also less than y. Furthermore, if w4 is empty, then the neighbor
to the right of y in ϕx(π ) is x itself. So, y is always greater than its neighbor to the right in ϕx(π ) and is thus a pinnacle.
his argument similarly applies to the case that y is the left-most letter of w5.
We claim that it is impossible to have a pinnacle on the ends of w2 and w4. We consider the case of w2 and note that

n analogous argument applies to w4. Suppose y is a pinnacle sitting at the right-most end of w2. Because it is a pinnacle,
must be greater than its neighbor to the right, namely x. However, by definition of the x-factorization, the letter y would
ot be in w2, as w2 is the longest contiguous word to the left of x whose letters are all less than x. Now suppose y is a

pinnacle sitting at the left-most end of w2. By definition of pinnacle, y must be greater than its left neighbor, which is in
w1. On the other hand, by definition of the x-factorization, all letters of w2 – and thus y – are less than x, and the neighbor
to the left of y in w1 must be greater than x and thus greater than y. We have arrived at a contradiction and conclude
that the left-most end of w2 cannot be a pinnacle.

Thus, we have shown that Pin(π ) ⊂ Pin(ϕx(π )), which implies that Pin(π ) = Pin(ϕx(π )) for arbitrary x ∈ [n]. Thus, we
can conclude that the dual Foata–Strehl action preserves pinnacle sets. □

Let ∼ be the equivalence relation on Sn defined by the action of Zn
2. Namely, π ∼ τ if and only if there exists a ∈ Zn

2
such that ϕXa (π ) = τ . The equivalence classes under this relation are precisely the orbits of the dual Foata–Strehl action.
In light of Theorem 2.3, we know that these orbits partition Sn into subsets of permutations sharing a pinnacle set.

The following example illustrates that there may be multiple equivalence classes with the same pinnacle set.

Example 2.4. In Table 1, each row represents an equivalence class of S4 arising from the dual Foata–Strehl action, and
we have labeled the pinnacle set of each class at the left of the row. Note that there are three equivalence classes with
the same pinnacle set P = {4}.

Next we measure the size of each equivalence class and do so by examining the relationship between pinnacles and
vales of permutations.

In what follows we let v(π ) denote the number of vales in π .

Lemma 2.5. If P is an n-admissible pinnacle set, then v(π ) = |P| + 1 for all π ∈ Pin(P; n).

Proof. Since π0 = πn+1 = ∞, and since vales and pinnacles alternate we know there will be one more vale than
pinnacles. □

For any π ∈ Sn, let Orbϕ(π ) := {ϕS(π ) : S ⊆ [n]} denote the orbit of π under the dual Foata–Strehl action ϕ. Similarly,
let Orbφ(π ) := {φS(π ) : S ⊆ [n]} denote the orbit of π under the Foata–Strehl action φ. In [4, Section 3], Foata and Strehl
roved that

|Orbφ(π )| = 2n−v(π ).

e now prove the analogous result for Orbϕ(π ).

roposition 2.6. If π ∈ Sn, then |Orbϕ(π )| = 2n−v(π ).

roof. For a set S ⊆ [n], let w0(S) = {w0(s) : s ∈ S}, where w0(s) = n − s + 1. We now create a bijection between
rbϕ(π ) and Orbφ(w0π ). Let
F : Orbϕ(π ) → Orbφ(w0π ) such that F (ϕS(π )) = φw0(S)(w0π )

4
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G : Orbφ(w0π ) → Orbϕ(π ) such that G(φS(w0π )) = ϕw0(S)(π ).

hen F ◦ G and G ◦ F are the identity maps on Orbφ(w0π ) and Orbϕ(π ), respectively. Thus,

|Orbϕ(π )| = |Orbφ(w0π )| = 2n−v(π ). □

emark 2.7. We remark that Foata and Strehl determined that the number of orbits under φ is given by the nth tangent
r secant number, depending on whether n is odd or even [4]. The nth tangent number (resp. nth secant number) is
efined as the coefficient of un/n! in the exponential power series of the tangent function (resp. secant function), i.e., the
oefficient of un/n! in the series

tan(u) = 1 ·
u
1!

+ 2 ·
u3

3!
+ 16 ·

u5

5!
+ 272 ·

u7

7!
+ · · · and sec(u) = 1 + 1 ·

u2

2!
+ 5 ·

u4

4!
+ 61 ·

u6

6!
+ · · · .

y Proposition 2.6, the same is true for the number of orbits under ϕ. In the subsequent sections of this paper, we count
he number of orbits of ϕ that have a prescribed pinnacle set P .

emark 2.8. In [2], Petter Brändén defined a modified function, which we call ϕ′
x, such that ϕ′

x(π ) = ϕx(π ) if x is neither
pinnacle nor a vale, and ϕ′

x(π ) = π if x is a pinnacle or a vale. Similar to φ and ϕ, the author defines ϕ′ as an action of
n
2 on Sn and uses it to prove that for any T ⊆ Sn, the polynomial defined by

A(T ; x) =

∑
π∈T

xdes(π )

s γ -nonnegative, where des(π ) = |{i ∈ [n] | πi > πi+1}|. In [6], Postnikov, Reiner and Williams defined a modified
unction, which we call ϕ′′, such that ϕ′′

x (π ) = φx(π ) if x is neither a pinnacle nor a vale and ϕ′′(π ) = π if x is a pinnacle
r a vale. Similar to φ, ϕ, and ϕ′, they define an action ϕ′′ of Zn

2 on Sn and use it to prove Gal’s conjecture for the chordal
estohedra, [6, Theorem 11.6].

. Representatives of dual Foata–Strehl orbits

In this section, we describe a collection of permutations, called FS-minimal permutations, that characterize the orbits
f the dual Foata–Strehl action ϕ. Then in Section 4, we provide a construction of all FS-minimal permutations with a
iven pinnacle set. These results will allow us to count all permutations with a given pinnacle set.

efinition 3.1 (Admissibility). A pair of sets (P, V ) is considered admissible if there is a permutation with pinnacle set P
nd vale set V . Given a pinnacle set P , define V(P) to be the set of all vale sets V for which the pair (P, V ) is admissible.

Throughout the section, let π be a permutation with pinnacle set P = {p1, . . . , pℓ} and vale set V = {v1, . . . , vℓ+1},
espectively. We will often list the pinnacles and vales in the order in which they appear in π , from left to right. We will
lso restrict π to permutations of the sets P , V , and P ∪ V ⊆ [n]. For instance, we write π |P= p1p2 · · · pℓ to denote the
estriction of the permutation π to just the values at which π has pinnacles, which we list in the order they appear in π .
imilarly, π |V= v1v2 · · · vℓ+1 denotes the restriction of the permutation π to just the values at which π has vales, which
e list in the order they appear in π . Similarly, we let

π |P∪V= v1p1v2p2 · · · pℓvℓ+1

enote the restriction of π to just the values at which π has vales and pinnacles, listed in the order they appear in π . For
xample, if π = 32814756, then P = {7, 8}, V = {1, 2, 5}, π |P= 87, π |V= 215, and π |P∪V= 28175.
In what follows, we present three technical lemmas used to prove the main theorem of the section, Theorem 3.6.

emma 3.2. If π is a permutation with pinnacle set P = {p1, . . . , pℓ}, then for all i ∈ [ℓ], π and ϕpi (π ) have the same
umber of descents.

roof. For any i ∈ [ℓ], consider the pi-factorization of π ,

π = w1w2piw4w5 = π1 · · · πk1  
w1

πk1+1 · · · πk2  
w2

pi πk4 · · · πk5−1  
w4

πk5 · · · πn  
w5

.

y the definition of this factorization pi > max(w2), pi > max(w4) and πk1 > pi < πk5 . Applying ϕpi we get

ϕpi (π ) = w1w4piw2w5 = π1 · · · πk1  πk4 · · · πk5−1   pi πk1+1 · · · πk2  πk5 · · · πn   .
w1 w4 w2 w5

5
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Fig. 1. Let x = 6, y = 8. In the left, we show the permutation π = 756348291, bolding the subpermutation w2yw4 in the y-factorization of π and
ighlighting in red the subpermutation v2xv4 in the x-factorization of π . In the right, we show the permutation ϕy(π ), bolding the subpermutation
2yβ4 in the y-factorization of ϕy(π ) and highlighting in red the subpermutation α2xα4 in the x-factorization of ϕy(π ).

ince the content in w1, w2, w4, w5 did not change, it is enough to study the places where these subwords meet in ϕpi (π ),
amely πk1πk4 , πk5−1pi, piπk1+1, and πk2πk5 . Since πk4 < pi < πk1 and pi > πk1+1, the descents πk1πk1+1 and piπk4 in π
ot replaced by the descents πk1πk4 and piπk1+1 in ϕpi (π ), respectively. Similarly, the ascents πk2pi and πk5−1πk5 in π got
eplaced by the ascents πk5−1pi and πk2πk5 in ϕpi (π ), respectively. Thus, the number of descents remained constant. □

emma 3.3. Let π ∈ Sn and let x, y be two distinct elements in [n]. If

v1 v2 x v4 v5 is the x-factorization of π and
α1 α2 xα4 α5 is the x-factorization of ϕy(π ),

hen max(v2) = max(α2) and max(v4) = max(α4).

roof. Let x, y be two distinct elements in [n]. Let

v1 v2 x v4 v5 denote the x-factorization of π ,
w1 w2 yw4 w5 denote the y-factorization of π ,

α1 α2 xα4 α5 denote the x-factorization of ϕy(π ), and
β1 β2 yβ4 β5 denote the y-factorization of ϕy(π ).

here are six possible cases to consider. In the first four cases, detailed below, the subword v2xv4 remains unchanged in
y(π ), hence v2xv4 = α2xα4.

(1) If v2xv4 lies in w2 then the subword v2xv4 remains together, but is moved to within β4 in ϕy(π ). In this case
v2xv4 = α2xα4. An example of this is shown in Fig. 1.

(2) If v2xv4 lies in w4 then v2xv4 remains together, but is moved to β2 in ϕy(π ). In this case v2xv4 = α2xα4.
(3) If v2xv4 lies in w1 then v2xv4 remains in β1 in ϕy(π ). In this case v2xv4 = α2xα4.
(4) If v2xv4 lies in w5 then v2xv4 remains together in β5 in ϕy(π ).

n the last two cases, described below, either v2 or v4 is rearranged slightly in α2 or α4, but this does not affect the
aximum element of α2 or α4 in ϕy(π ).

(5) If v2x lies in w1 but v4 does not lie entirely in w1 then y is contained in v4. In this case the subword v2x remains
unchanged in ϕy(π ) in the sense that v2x = α2x, and v4 has some of its elements rearranged by ϕy but the set of
elements appearing in α4 remains the same (i.e. v2 = α2 and the underlying set of v4 is equal to the underlying set
of α4). Hence max(v2) = max(α2) and max(v4) = max(α4) in this case. An example of this is shown in Fig. 2.

(6) If xv4 lies in w5 but v2 does not lie entirely in w5, then y is contained in v2. In this case the word xv4 remains
unchanged in ϕy(π ) in the sense that xv4 = xα4, and v2 has some of its elements rearranged by ϕy but the set of
elements appearing in v2 remains the same. Hence max(v2) = max(α2) and max(v4) = max(α4) in this case. □

We can also define an x-factorization of any subword of a permutation. That is, given a subword σ = s1s2 · · · sℓ of a
ermutation π ∈ Sn, and x = si for some 1 ≤ i ≤ ℓ, the x-factorization of σ is w1w2xw4w5 where w2 is the longest
ontiguous subword immediately to the left of x such that all values are less than x and w4 is the longest contiguous
ubword immediately to the right of x such that all letters of w4 are less than x. We then define ϕx(σ ) to be

ϕx(σ ) = w1w4xw2w5.
6
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Fig. 2. Let x = 7, y = 4. In the left, we show the permutation π = 287563491, bolding the subpermutation w2yw4 in the y-factorization of π and
ighlighting in red the subpermutation v2xv4 in the x-factorization of π . In the right, we show the permutation ϕy(π ), bolding the subpermutation
2yβ4 in the y-factorization of ϕy(π ) and highlighting in red the subpermutation α2xα4 in the x-factorization of ϕy(π ).

emma 3.4. Let π be a permutation with pinnacle set P and vale set V . If π |P= p1p2 · · · pℓ and π |V= v1v2 · · · vℓ+1, then
ϕpi (π )|P∪V= ϕpi (π |P∪V ) for any i ∈ [ℓ].

Proof. Fix a pinnacle pi in π and consider the pi-factorization π = w1w2piw4w5. Now define αi = wi|P∪V for each
i = 1, 2, 4, 5. Then,

ϕpi (π )|P∪V = (w1 w4 pi w2 w5)|P∪V

= w1|P∪V w4|P∪V pi w2|P∪V w5|P∪V

= α1 α4 pi α2 α5.

In the case where neither w1 nor w5 are empty, suppose p′ is the right most pinnacle in w1, and p′′ is the left most
innacle in w5. Hence, p′ > pi and p′′ > pi. Now consider

π |P∪V= v1 p1 v2 p2 . . . vi pi vi+1 . . . pℓ vℓ+1.

et π |P∪V= w′

1w
′

2piw
′

4w
′

5 be the pi-factorization of π |P∪V . Since p′ > pi and p′′ > pi, then p′
∈ w′

1 and p′′
∈ w′

5. It now
ollows that w′

1 = w1|P∪V= α1 and w′

5 = w5|P∪V= α5. Thus, the pi-factorization of π |P∪V is

π |P∪V= α1α2piα4α5.

herefore

ϕpi (π |P∪V ) = α1α4piα2α5 = ϕpi (π )|P∪V .

Note that w2, w4 cannot be empty as pi is a pinnacle, and so the proof is complete by noting that whenever w1 or w5
re empty, it implies wi = w′

i = αi = ∅ for i = 1, 5, respectively. □

We now define the notion of FS-minimal permutations and proceed to show our main theorem of the section, that
here is a unique FS-minimal permutation in each dual Foata–Strehl orbit of Sn.

efinition 3.5. A permutation π is FS-minimal if π contains no double descents and for each p ∈ Pin(π ) the
-factorization w1 w2 pw4 w5 of π |P∪V satisfies max(w2) < max(w4).

heorem 3.6. If π is a permutation with pinnacle set P and vale set V , then there is a unique FS-minimal permutation in the
ual Foata–Strehl orbit of π .

roof. We first show there is an FS-minimal permutation in each orbit and then show this permutation is unique. Let π
e a permutation with

π |P= p1p2 · · · pℓ, π |V= v1v2 . . . vℓ+1, and π |P∪V= v1p1v2p2 · · · vℓpℓvℓ+1.

et

R = {r ∈ [n] \ (P ∪ V ) : r appears left of v1 or between pk and vk+1 for some 1 ≤ k ≤ ℓ},

hat is, r is either in the beginning descending segment of π or in a descending segment strictly between a pinnacle and
vale. Note that this implies that π has |P| + |R| descents. The r-factorization of π is then w1∅rw4w5 and
ϕr (π ) = w1w4r∅w5.

7
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n ϕr (π ) we solely moved r from a descending segment to an ascending segment and left the rest of π unchanged.
ence, ϕr (π ) has one fewer descent than π , since the relative order of the entries in w4 remains unchanged. Then let
(π ) :=

∏
r∈R ϕr (π ). By this construction, ρ(π ) has only |P| descents occurring only at the indices of pinnacles (at the

peak set of π ), and none of these descents occur consecutively, i.e. there are no double descents.
Let

T = {p ∈ P : the p-factorization w1w2pw4w5 of π |P∪V satisfies max(w2) > max(w4)},

nd define τ (ρ(π )) :=
∏

t∈T ϕt (ρ(π )). We now claim that τ (ρ(π )) is FS-minimal. Since ρ(π ) has no double descents, then
y Lemma 3.2, τ (ρ(π )) has no double descents.
Let t ∈ T . By definition of the dual Foata–Strehl action, ϕt (ρ(π )) satisfies that max(w2) < max(w4) in the t-factorization

f ϕt (ρ(π ))|P∪V . By Lemma 3.3, for all other pinnacles p ∈ P , applying ϕt to ρ(π ) does not change max(w2) nor max(w4) in
he p-factorization of ρ(π ). Repeating this argument for all other elements of T and using the fact that by Lemma 3.4 we
an apply the dual Foata–Strehl action and then restrict to P ∪V or restrict to P ∪V and then apply the dual Foata–Strehl
ction and the result is the same, shows that τ (ρ(π )) is FS-minimal.
To show this permutation is unique, suppose π and σ are both FS-minimal and lie in the same dual Foata–Strehl orbit.

hen π = ϕS(σ ), for some S ⊆ [n]. We will show that S ⊆ V , and since ϕv(σ ) = σ for all v ∈ V , then π = ϕS(σ ) = σ .
Suppose p ∈ P . We will first show P ∩ S = ∅. If w′

1w
′

2pw
′

4w
′

5 is the p-factorization of ϕp(σ )|P∪V , then max(w′

2) >
ax(w′

4), since σ is FS-minimal. Lemma 3.3 shows that for any k ∈ S, applying ϕk to ϕp(σ )|P∪V would not change this
nequality, thus p ̸∈ S as otherwise max(w′

2) > max(w′

4) in the p-factorization of π , contradicting that it is FS-minimal.
ence, P ∩ S = ∅.
Since applying the dual Foata–Strehl action at a vale leaves a permutation unchanged, it suffices to show S ∩

[n] \ (P ∪ V )) = ∅ to conclude S ⊂ V and π = σS(σ ) = σ . Suppose by contradiction that there is an element r in
n] \ (P ∪V ) that lies in S. Since σ has no double descents, r must belong to an ascending segment, i.e., the r-factorization
f σ is then w1w2r∅w5 and

ϕr (σ ) = w1∅rw2w5.

n ϕr (σ ) we solely moved r from an ascending segment to a descending segment and left the rest of σ unchanged. Applying
he dual Foata–Strehl action at any other element of [n]\ (P∪V ) will simply move an element from an ascending segment
o a descending segment, hence it will not remove the double descent created in ϕr (σ ). Thus, π = ϕS(σ ) will contain a
ouble descent, which contradicts the fact it is FS-minimal. We conclude that S ⊂ V and π = σS(σ ) = σ . □

. Constructing and counting permutations with a fixed pinnacle set

In this section we count the number of dual Foata–Strehl orbits with permutations having pinnacle set P by counting
he number of FS-minimal permutations with pinnacle set P in Sn. Recall that a pair of sets (P, V ) is considered admissible
f there is a permutation with pinnacle set P and vale set V . Given an admissible tuple (P, V ) and a fixed integer k ∈ [n],
e set the following notation:

• Given a nonempty word w of some letters in [n], let max(w) be the largest number that appears in the word w.
• Let Vk = {v ∈ V : v < k}.
• Let Pk = {p ∈ P : p < k}.
• Let NPV (k) = |Vk| − |Pk|.

emma 4.1. If π is a permutation with pinnacle set P = {p1 < p2 < · · · < pℓ} and vale set V = {v1 < v2 < · · · < vℓ+1},
hen for all 1 ≤ i ≤ ℓ − 1,

(a) 1 ∈ V ,
(b) 2 ≤ NPV (pi),
(c) vi+1 < pi for all i ∈ {1, 2, . . . , ℓ},
(d) NPV (pi) ≤ NPV (pi+1) + 1,
(e) NPV (pℓ) = 2.

urthermore, properties (b) and (c) are equivalent.

roof. For part (a), since 1 appears in π , we must have πi = 1 for some i ∈ [n]. Since πi−1 > 1 < πi+1 then 1 ∈ V .
For part (b), let pi be any pinnacle in P . Consider the set P ′

= {p1, . . . , pi−1, pi} ⊆ P . Because each pinnacle has a vale
maller than it to its left and one to its right, and there is a vale between any two pinnacles, then there are at least i + 1
ales (those around the i pinnacles in P ′) smaller than pi in π . Thus,

NPV (pi) = |Vpi | − |Ppi | ≥ (i + 1) − (i − 1) = 2.

For part (c), since NPV (pi) = |Vpi | − |Ppi | ≥ 2 and Ppi = i − 1 for each i in {1, 2, . . . , ℓ}, then Vpi ≥ i + 1. That is, there
re at least i + 1 vales less than p . Hence, v < p .
i i+1 i

8
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a

For part (d), note that since pi+1 > pi, we must have |Vpi+1 | ≥ |Vpi |. Since there are j − 1 pinnacles smaller than pj for

ny pj ∈ P , we get |Ppi | = i − 1 and |Ppi+1 | = i. Thus,

NPV (pi+1) = |Vpi+1 | − |Ppi+1 | ≥ |Vpi | − (|Ppi | + 1) = |Vpi | − |Ppi | − 1 = NPV (pi) − 1.

For part (e), since vℓ+1 < pℓ by property (c), then Vpℓ
= V and

NPV (pℓ) = |Vpℓ
| − |Ppℓ

| = (ℓ + 1) − (ℓ − 1) = 2.

To prove the last statement note that we already showed (b) ⇒ (c). For the reverse, if vi+1 < pi then NPV (pi) =

|Vpi | − |Ppi | ≥ i + 1 − (i − 1) = 2. □

We now describe which pairs (P, V ) are admissible.

Proposition 4.2. Let (P, V ) be a pair of disjoint subsets of [n] with |V | = |P| + 1. Then (P, V ) is admissible if and only if
properties (a) and (b) or, equivalently, properties (a) and (c) from Lemma 4.1 hold.

Proof. The forward direction is proven in Lemma 4.1. For the backward direction, suppose P and V satisfy properties (a)
and (b) from Lemma 4.1. Thus, P and V can be written as P = {p1 < p2 < · · · < pℓ} and V = {v1 < v2 < · · · < vℓ+1}

with v1 = 1. We need to create a permutation with pinnacle set P and vale set V .
Let n = pℓ. Let α be defined as follows:

α = v1 a1 p1 v2 a2 p2 . . . vℓ aℓ pℓ vℓ+1.

where each ai is the ascending sequence containing the elements in [n] \ (P ∪ V ) between vi and vi+1. Since properties
(b) and (c) are equivalent, then vi+1 < pi for all i ∈ {1, 2, . . . , ℓ}. Thus, α has pinnacle set P and vale set V . □

4.1. Creating and counting the number of permutations with a fixed pinnacle and vale set

Given an admissible pair (P, V ) we define a PV -arrangement α to be a permutation of the elements of P ∪ V such
that every element p ∈ P is a pinnacle in α and every element v ∈ V is a vale in α. We say that a PV -arrangement α is
canonical if for each p ∈ P the p-factorization w1w2pw4w5 of α satisfies max(w2) < max(w4).

Lemma 4.3 (Counting Canonical PV -Arrangements). For an admissible pair (P, V ) the number of canonical PV-arrangements
is ∏

p∈P

(
NPV (p)

2

)
. (5)

Proof. We prove the result by induction on |P|. If P = ∅ then V is a one element set V = {v}. In this case the only
PV -arrangement is α = v, which is canonical and is counted by the empty product in (5). For a nontrivial illustration, we
show the case |P| = 1. If P = {p} then V is a set with two elements by Lemma 2.5, so V = {v1, v2} for two elements
v1, v2 ∈ [n − 1]. Without loss of generality, let v1 < v2. Then, the only PV -arrangements one could make are α1 = v1pv2
and α2 = v2pv1, of which only α1 is a canonical PV -arrangement. By Lemma 4.1(e), the product in (5) is

(NPV (p)
2

)
=

(2
2

)
= 1,

as desired.
Suppose the result is true for all pinnacle sets P with cardinality ℓ − 1. Then if |P| = ℓ, write P = {p1, . . . , pℓ} with

p1 < p2 < · · · < pℓ. Choose any two elements v1, v2 ∈ V such that v1 < p1 and v2 < p1 and let

P ′
= P \ {p1} and V ′

= (V \ {v1, v2}) ∪ {p1}.

Note that there are(
|Vp1 |

2

)
=

(
NPV (p1)

2

)
choices of v1 and v2. By Lemma 4.1(b), the number of choices is always at least 1.

For each such choice and for each canonical P ′V ′-arrangement, we will create a unique canonical PV -arrangement and
show that every canonical PV -arrangement is created in such manner. By induction, this would imply that the number
of canonical PV -arrangements is(

NPV (p1)
2

) ∏
p∈P ′

(
NP ′V ′ (p)

2

)
. (6)

Since for p ∈ P ′,

′ ′
′ ′
NP V (p) = |Vp| − |Pp| = (|Vp| − 1) − (|Pp| − 1) = |Vp| − |Pp| = NPV (p),

9
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t
hen the expression in (6) equals our desired result(
NPV (p1)

2

) ∏
p∈P ′

(
NP ′V ′ (p)

2

)
=

(
NPV (p1)

2

) ∏
p∈P ′

(
NPV (p)

2

)
=

∏
p∈P

(
NPV (p)

2

)
.

To prove our claim, suppose without loss of generality that v1 < v2. Let α′ be a canonical P ′V ′-arrangement (hence,
Pin(α′) = P ′ and Vale(α′) = V ′). Thus, the element p1 ∈ V ′ is a vale in α′, so

α′
= · · · vk pi p1 pj vk+1 . . . ,

for some pinnacles pi, pj ∈ P ′ and vales vk, vk+1 ∈ V ′. Insert v1 to the left of p1 and v2 to the right of p1 to create the
permutation

α = · · · vk pi v1 p1 v2 pj vk+1 . . . .

Note that α is a PV -arrangement, that is, a permutation of P ∪ V with pinnacle set P and vale set V . We claim this
permutation is a canonical PV -arrangement. Since α′ was a canonical P ′V ′-arrangement and we only added two numbers
v1, v2 that are less than p1 and adjacent to p1, then maxw2 is still less than maxw4 in the p′-factorization of α for any
p′

∈ P ′. For the p-factorization of α, note that w2 = v1 and w4 = v2 because all other peaks, particularly pi and pj
are greater than p1. Hence, max(w2) < max(w4) in this factorization as well. Thus, α is a canonical PV -arrangement.
Since this construction does not change α′ other than by introducing v1 and v2 to each side of p1, it follows that distinct
P ′V ′-arrangements create distinct PV -arrangements.

To finish the proof, we need to show that all canonical PV -arrangements are created in this manner. For any canonical
PV -arrangement α, it must contain a subsequence vip1vj with vi, vj ∈ Vp1 and vi < vj. If we remove vi and vj from α, we
get a canonical P ′V ′-arrangement α′. Hence, α was obtained via our construction by choosing vi, vj from Vp1 and inserting
vi and vj before and after p1, respectively. Thus, our construction gives all canonical PV -arrangements. □

We are ready to prove the main theorem of the section. In it, we count the number of FS-minimal permutations
with a given fixed pinnacle set P . By Theorem 3.6, this also counts the number of dual Foata–Strehl orbits containing
permutations with pinnacle set P .

Theorem 4.4 (FS-minimal Permutations for Each PV-arrangement). For an admissible pair (P, V ), given a canonical
PV-arrangement α, the number of FS-minimal permutations π with π |P∪V= α, denoted OPV , is

OPV =

∏
r∈[n]\(P∪V )

NPV (r).

Furthermore, the number of all FS-minimal permutations with pinnacle set P, denoted OP , is

OP =

∑
V∈V(P)

∏
p∈P

(
NPV (p)

2

) ∏
r∈[n]\(P∪V )

NPV (r),

where V(P) is the set of all vale sets V for which the pair (P, V ) is admissible.

Proof. Let α = v1p1v2p2 · · · vℓpℓvℓ+1 be a canonical PV -arrangement. Since in an FS-minimal permutation each pinnacle
is immediately followed by a vale, to count the number of FS-minimal permutations π with π |P∪V= α, note that each
element r ∈ ([n] \ (P ∪ V )) must appear to the right of a vale vi less than r and to the left of a pinnacle pi greater than r .
The number of such indices i so that r satisfies vi < r < pi is precisely |Vr | − |Pr | = NPV (r). The total number of choices
over all r ∈ ([n] \ (P ∪ V )) is then∏

r∈[n]\(P∪V )

NPV (r).

Once these choices are made, all of the elements (if any) between each vale vi and pinnacle pi must appear in ascending
order by the definition of an FS-minimal permutation. This proves the first statement. The last statement follows by
summing through all the canonical PV -arrangements and using Lemma 4.3. □

Example 4.5. A canonical PV -arrangement α for P = {7, 10, 12} and V = {1, 3, 5, 8} is depicted in Fig. 3. To construct
FS-minimal permutations from α we insert each element r ∈ [n] \ (P ∪ V ) = {2, 4, 6, 9, 11} in ascending order on the
slopes between vi and pi satisfying vi < r < pi.

Table 2 describes the possible locations where the elements r ∈ [n] \ (P ∪ V ) = {2, 4, 6, 9, 11} can be located in an
FS-minimal permutation. For example, if we choose the first possible location listed in the third column in Table 2, the
resulting FS-minimal permutation is [8, 9, 11, 12, 5, 6, 10, 1, 2, 4, 7, 3].

Hence, in this case, there are 2 · 3 · 3 · 2 = 36 FS-minimal permutations π with π |P∪V= α.
10
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Fig. 3. A canonical PV -arrangement α = [8, 12, 5, 10, 1, 7, 3] for P = {7, 10, 12} and V = {1, 3, 5, 8}.

Table 2
Example of possible locations of where to insert certain values to create an FS-minimal permutation.
r NPV (r) Possible locations of r in FS-minimal permutations

2 1 between (1, 7)
4 2 between (1, 7) or right of 3
6 3 between (5, 10), between (1, 7), or right of 3
9 3 between (8, 12), between (5, 10), or right of 3
11 2 between (8, 12) or right of 3

Corollary 4.6. If P is an admissible pinnacle set, then

|Pin(P; n)| = 2n−|P|−1
· OP = 2n−|P|−1

⎛⎝ ∑
V∈V(P)

∏
p∈P

(
NPV (p)

2

) ∏
r∈[n]\(P∪V )

NPV (r)

⎞⎠ .

Proof. By Proposition 2.6, each orbit of the dual Foata–Strehl action has 2n−|P|−1 elements. By Theorem 3.6 there is a
unique FS-minimal permutation in each orbit. By Theorem 4.4, the number of FS-minimal permutations with pinnacle set
P , denoted OP , is

OP =

∑
V∈V(P)

∏
p∈P

(
NPV (p)

2

) ∏
r∈[n]\(P∪V )

NPV (r).

Hence, we obtain our result. □

Since computing the number of permutations with a given pinnacle set P depends on the number of admissible vale
sets, we now construct and establish a count for the number of vale sets V such that (P, V ) is admissible.

4.2. Creating and counting the number of admissible vale sets

Given a nonnegative integer ℓ, we recall that a weak composition of ℓ is a sequence of nonnegative integers whose
sum is ℓ. For ℓ ≥ 1, define

C(ℓ) =

{
t = (t1, t2, . . . , tℓ)

⏐⏐⏐ ℓ∑
i=1

ti = ℓ and
k∑

i=1

ti ≥ k for each k in {1, 2, . . . , ℓ}

}
and C(0) = {()} just contains the empty tuple. Given a pinnacle set P = {p1 < p2 < · · · < pℓ}, for 1 ≤ i ≤ ℓ, let
Gi = {j ∈ [n] \ P : pi−1 < j < pi}, where p0 = 1. We call Gi the ith gap set. Let gi = |Gi|. For example, if P = {4, 8, 11}
then G1 = {2, 3},G2 = {5, 6, 7} and G3 = {9, 10}. We now proceed to create and count all possible vale sets given a fixed
pinnacle set.

Proposition 4.7. If P = {p1 < p2 < · · · < pℓ} is an admissible pinnacle set, then the number of sets V such that (P, V ) is
admissible is

|V(P)| =

∑
t∈C(ℓ)

ℓ∏
i=1

(
gi
ti

)
.

11
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P
n

f

(

roof. For each weak composition t = (t1, t2, . . . , tℓ) ∈ C(ℓ), we will construct
∏ℓ

i=1

(gi
ti

)
admissible vale sets. By definition

ote Gi ∩ Gj = ∅ whenever i ̸= j.
For each Gi, we choose a subset Ti ⊆ Gi of cardinality ti, recalling that for each 1 ≤ i ≤ ℓ, we have that

∑k
i=1 ti ≥ k,

or all k ∈ {1, . . . , ℓ}. There are
∏ℓ

i=1

(gi
ti

)
different choices for the collection of subsets Ti ⊆ Gi.

Once all the Ti are chosen, let V = {1} ∪
⋃ℓ

i=1 Ti. Since Ti ∩ Tj = ∅ then |V | = 1 +
∑ℓ

i=1 ti = 1 + ℓ. We now prove that
P, V ) is admissible by creating a permutation with pinnacle set P and vale set V . Sort V such that V = {v0, v1, v2, . . . , vℓ}

with v0 = 1 and vi−1 < vi for i ∈ {1, . . . , ℓ}. Let

α = v0p1v1p2v2 · · · pℓvℓ.

Note that α is a permutation of P ∪ V with pinnacle set P and vale set V because for any pinnacle pk, by the defining
condition of C(ℓ), we have chosen

∑k
i=1 ti elements in V , all of which are less than pk. Thus, the vales 1, v1, . . . , vk are all

less than pk, which implies that the pinnacle set (resp. vale set) of α is P (resp. V ). To complete the claim, extend α to a
permutation of [n] by inserting each element r ∈ [n] \ (P ∪ V ) in ascending order between vi and pi if vi < r < pi+1. The
resulting permutation π has pinnacle set P and vale set V . Hence, (P, V ) is admissible.

To show these are the only admissible pairs, let V ′ be any set such that (P, V ′) is admissible. Then there is a permutation
π such that Pin(π ) = P and Vale(π ) = V ′. Partition V ′ as V ′

= {1} ∪
⋃ℓ

i=1 T
′

i where for 1 ≤ i ≤ ℓ, T ′

i is defined as

T ′

i = {v ∈ V ′
: pi−1 < v < pi} with p0 = 1.

Note that, by definition of Gi, we have T ′

i ⊆ Gi and set t ′i = |T ′

i |. Since T ′

i ∩ T ′

j = ∅ whenever i ̸= j and ∪
ℓ
i=1T

′

i = V ′
\ {1},

we have that
∑ℓ

i=1 t
′

i = |V ′
| − 1 = ℓ. Thus, t = (t ′1, . . . , t

′

ℓ) is a weak composition of ℓ. Further, t is an element of C(ℓ)
since for each k in {1, 2, . . . , ℓ} the elements in ∪

k
i=1T

′

i correspond to choices of vales not equal to 1 that are less than pk,
thus

k∑
i=1

t ′i = |Vpk | − 1 = |Vpk | − |Ppk | + (k − 1) − 1 = k − 2 + NPV (pk) ≥ k,

where the last inequality follows from Lemma 4.1(b). Hence, the set V ′ is created via the construction described in this
result by starting with t ∈ C(ℓ) and making the choices so that Ti = T ′

i ⊆ Gi. Therefore, we have constructed all vale sets
V such that (P, V ) is admissible. □

We now give two examples to compute the number of permutations with pinnacle sets P = {5} and P = {4, 8, 11}.

Example 4.8. Let n = 8 and consider the admissible pinnacle set P = {5}. As 1 is always a vale, and G1 = {2, 3, 4} the
possible vale sets are V(P) = {{1, 2}, {1, 3}, {1, 4}}. Since NPV (5) = 2, by Corollary 4.6 we have that

|Pin(P; 8)| = 26

⎛⎝ ∑
V∈V(P)

(
NPV (5)

2

) ∏
r∈[n]\(P∪V )

NPV (r)

⎞⎠

= 26

⎡⎢⎢⎢⎢⎢⎣
(
2
2

) ∏
r∈{3,4,6,7,8}

NPV (r)  
V={1,2}

+

(
2
2

) ∏
r∈{2,4,6,7,8}

NPV (r)  
V={1,3}

+

(
2
2

) ∏
r∈{2,3,6,7,8}

NPV (r)  
V={1,4}

⎤⎥⎥⎥⎥⎥⎦
= 26 [1 · 2 · 2 · 1 · 1 · 1 + 1 · 1 · 2 · 1 · 1 · 1 + 1 · 1 · 1 · 1 · 1 · 1]

= 26(22
+ 2 + 1)

= 448.

Example 4.9. Let n = 12 and consider P = {4, 8, 11} so ℓ = 3. Then

C(ℓ) = {(1, 1, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (3, 0, 0)}.

The gaps are G1 = {2, 3}, G2 = {5, 6, 7}, and G3 = {9, 10}, so (g1, g2, g3) = (2, 3, 2). The number of admissible vale sets is

|V(P)| =

(
2
1

)(
3
1

)(
2
1

)
+

(
2
2

)(
3
0

)(
2
1

)
+

(
2
2

)(
3
1

)(
2
0

)
+

(
2
1

)(
3
2

)(
2
0

)
+

(
2
3

)(
3
0

)(
2
0

)
= 23.

Note that the term
(2
1

)(3
1

)(2
1

)
counts the vale sets with one element coming from each set of gaps, while the term

(2
2

)(3
0

)(2
1

)
counts the vale sets where 2 elements come from the first set of gaps, 0 come from the second set of gaps, and 1 comes
12
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f
rom the third set of gaps, etc. Thus

V(P) =

⎧⎪⎨⎪⎩
{1, 2, 5, 9}, {1, 2, 5, 10}, {1, 2, 6, 9}, {1, 2, 6, 10}, {1, 2, 7, 9}, {1, 2, 7, 10},
{1, 3, 5, 9}, {1, 3, 5, 10}, {1, 3, 6, 9}, {1, 3, 6, 10}, {1, 3, 7, 9}, {1, 3, 7, 10},

{1, 2, 3, 9}, {1, 2, 3, 10}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7},
{1, 2, 5, 6}, {1, 2, 5, 7}, {1, 2, 6, 7}, {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 6, 7}

⎫⎪⎬⎪⎭ . (7)

From this, a straight forward computation using Corollary 4.6 yields |Pin({4, 8, 11}; 12)| = 132, 480.

Remark 4.10. The partitions t ∈ C(ℓ) indexing the sum in Proposition 4.7 are counted by Catalan numbers. Particularly,
|C(ℓ)| is the ℓth Catalan number. We refer the interested reader to Exercise 86 of Richard Stanley’s book on Catalan
numbers [9].

5. Algorithms to generate all permutations with a given pinnacle set

As we saw in Section 2, the dual Foata–Strehl action preserved the pinnacles of a permutation, but the orbits did not
encompass all elements having the same set of pinnacles. In this section, we describe two algorithms that generate the
set Pin(P; n), and we compare their computational run times.

Given a pinnacle set P , let Algorithm 1 be the naive algorithm that runs through all permutations of Sn, com-
putes their pinnacle sets and returns those permutations with pinnacle set P . Let Algorithm 2 be the algorithm
that replicates the constructions detailed in Section 4. More specifically, given a set P , it first runs through all ad-
missible vale sets V using the criteria in Proposition 4.2. Then, for a given pair (P, V ), it constructs all canonical
PV -arrangements using the recursive construction described in the proof of Lemma 4.3. Then, it creates all FS-minimal
permutations from the canonical PV-arrangements as described in the proof of Theorem 4.4. Finally, it applies the dual
Foata–Strehl action on the FS-minimal permutations to create all permutations with pinnacle set P and vale set V , as
guaranteed by Theorem 3.6.

In Table 3, we provide the run times of Algorithms 1 and 2 applied to all pinnacle sets of permutations in S8. The code
and sample computations for these algorithms are provided at github.com/8080509/Pinnacles_of_Permutations.

6. Future directions

We end with a few open problems for further study.

Problem 6.1. Algorithm 2 provides an efficient algorithm to generate Pin(P; n). Are there any other algorithms for
generating Pin(P; n) that are more efficient than Algorithm 2?

A couple of days after we made a preprint of this work available, Irena Rusu presented a preprint showing a concate-
nation of three algorithms that allow you to transform any permutation with pinnacle set P to any other permutation
with the same pinnacle set. We refer the interested reader to [7]. Shortly thereafter Rusu and Tenner presented a preprint
describing, given a pinnacle set P , which ordering of the pinnacles can actually appear in permutations with pinnacle set
P . For additional open problems related to this, see [8].

In [3], Davis et al. give explicit formulas for the number of permutations with pinnacle sets of size 0, 1, and 2 as well
as two extremal cases.

Problem 6.2. Theorem 4.4 provides an expression for the number OP of orbits containing permutations with pinnacle
set P under the dual Foata–Strehl action. Find explicit expressions (only depending on n) for Pin(P; n) with |P| ≥ 3 using
Corollary 4.6.

If P is a pinnacle set and S is a peak set, by Theorem 1.1 and Corollary 4.6, we know

|Pin(P; n)| = 2n−|P|−1OP and |Pk(S, n)| = 2n−|S|−1pS(n),

where pS(n) is the peak polynomial of S and OP is given by

OP =

∑
V∈V(P)

∏
p∈P

(
NPV (p)

2

) ∏
r∈[n]\(P∪V )

NPV (r).

In light of the similarity between these equations and the fact that in the pinnacle setting the power of two describes the
size of each dual Foata–Strehl orbit in |Pin(P; n)|, and OP counts number of orbits, we pose the following question.

Problem 6.3. Is there a group action on permutations which preserves peaks sets, such that there are exactly pS(n) many
orbits each of size 2n−|S|−1?

We have presented the following conjecture at several talks concerning peaks, descents, and pinnacles of permutations
over the past year. An elegant proof of this conjecture was recently given in the preprint [5, Corollary 10]. We present
the conjecture here to have it recorded in the literature.
13
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Table 3
Run times of four algorithms constructing all permutations in S8 with pinnacle set P .
n P |Pin(P; n)| Run time Run time

Algorithm 1 Algorithm 2

8

∅ 128 327.32 ms 0.30 ms
{3} 64 286.39 ms 0.21 ms
{4} 192 300.00 ms 0.63 ms
{5} 448 346.05 ms 1.12 ms
{6} 960 360.80 ms 2.65 ms
{7} 1984 293.21 ms 6.78 ms
{8} 4032 271.34 ms 9.45 ms
{3, 5} 32 411.87 ms 0.11 ms
{3, 6} 96 480.09 ms 0.54 ms
{3, 7} 224 436.53 ms 0.59 ms
{3, 8} 480 275.81 ms 1.13 ms
{4, 5} 96 309.15 ms 0.43 ms
{4, 6} 288 306.61 ms 1.31 ms
{4, 7} 672 280.14 ms 1.64 ms
{4, 8} 1440 291.30 ms 3.67 ms
{5, 6} 576 324.70 ms 1.66 ms
{5, 7} 1376 307.15 ms 3.75 ms
{5, 8} 2976 285.69 ms 10.77 ms
{6, 7} 2400 297.79 ms 6.08 ms
{6, 8} 5280 338.10 ms 14.92 ms
{7, 8} 8640 341.82 ms 20.45 ms
{3, 5, 7} 16 298.76 ms 0.13 ms
{3, 5, 8} 48 282.71 ms 0.19 ms
{3, 6, 7} 48 269.83 ms 0.20 ms
{3, 6, 8} 144 328.53 ms 0.53 ms
{3, 7, 8} 288 305.97 ms 0.84 ms
{4, 5, 7} 48 296.36 ms 0.20 ms
{4, 5, 8} 144 341.79 ms 0.71 ms
{4, 6, 7} 144 294.63 ms 0.47 ms
{4, 6, 8} 432 296.74 ms 1.31 ms
{4, 7, 8} 864 358.77 ms 2.68 ms
{5, 6, 7} 288 294.47 ms 0.99 ms
{5, 6, 8} 864 305.26 ms 2.44 ms
{5, 7, 8} 1728 334.79 ms 4.98 ms
{6, 7, 8} 2880 276.56 ms 8.08 ms

Conjecture 6.4. If S is an admissible peak set, then the set Pk(S, n) of permutations with peak set S in Sn can be partitioned
into subsets of permutations of the same length, and the size of these subsets is palindromic about the value

(n
2

)
.

We remark that as the sets Pin(P; n) are preserved by multiplying by w0 on the right i.e., reversing the order of the
permutations, the sets Pin(P; n) have the same palindromicity property as Pk(S, n). However, unlike Pk(S; n), they are not
nimodal or log-concave in general.

roblem 6.5. For what pinnacle sets P are the cardinalities of the sets Pin(P; n) a unimodal sequence as you vary n?
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