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Foata-Strehl group action on &,

1. Introduction

Let N denote the set of the nonnegative integers. For n € N, let [n] = {1, 2,...,n} and let &, denote the set of
permutations @ = w7, - - - 7, of [n]. Given a permutation 7 = mym; - - -, € &,, throughout we let 79 = w1 = o0.
When using two digit numbers for any of the m; (as in Example 4.5), we use the notation & = [y, 72, ..., 7] to avoid

confusion. A permutation & = w7, - - - T, has a descent at a nonzero index i if 7; > m;;1, an ascent at a nonzero index
iif 7; < w1, @ peak at a nonzero index i if 7;_1 < 7 > 7,1, and a valley at a nonzero index i if 7;_1 > m; < 7it1.
Whereas, the value 7; of a permutation is a pinnacle if 7;_; < 7; > 7,1, and a vale if 7;_; > 7; < ;1. Then the peak
set of a permutation 7 € &, is Pk(;r) = {i € [n] : i is a peak of =}, the pinnacle set of 7 is the set

Pin(wr) = {i € [n] : i is a pinnacle of 7},
the valley set of 77 is Vy(rr) = {i € [n] : i is a valley of 7}, and the vale set of 7 is the set
Vale(r) = {i € [n] : i is a vale of «}.

Note that we can also think of the pinnacle set as the image of the peak set under the function 7z, and we can think of the
vale set as the image of the valley set under the function n. For example, the permutation = = 15264387 has pinnacle
set Pin(r) = {5, 6, 8}, peak set Pk(rr) = {2, 4, 7}, vale set Vale(wr) = {1, 2, 3, 7} and valley set Vy(x) = {1, 3, 6, 8}.
Although the notions of pinnacles and peaks (resp. vales and valleys) capture a sense of a rise and fall (resp. fall
and rise) in a permutation, they behave rather differently. To capture this difference, we consider T C [n] and let
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Pk(T;n) = {w € &, : Pk(xr) = T}, Pin(T; n) = {w € &, : Pin(;r) = T}, and present some previous results in the study of
peaks and pinnacles of permutations. In 2013, Billey, Burdzy, and Sagan presented a result regarding the enumeration of
permutations in &, with a specified n-admissible peak set T, that is, T C [n] such that Pk(T; n) # @. Their main result is
as follows.

Theorem 1.1 (Billey, Burdzy, and Sagan 2013 [1]). If T = {i; < --- < is} is an n-admissible peak set, then
IPK(T; n)| = p(n)2"~"~" (1
where p(n) is a polynomial depending on T such that p(m) is an integer for all integral m and degp(n) = i; — 1.

In 2017, Davis, Nelson, Petersen, and Tenner determined bounds for the number of permutations with a specified
n-admissible pinnacle set P C [n]. That is, P C [n] such that Pin(P; n) # (. Their main result is as follows.

Theorem 1.2 (Davis, Nelson, Petersen, and Tenner 2017 [3]). If P is an admissible pinnacle set, then
2P < Pin(Ps n)l < [PJ!- (IP]+ 1) 2" 2PN S(n — [P, [P+ 1)
where S(r, s) denotes the Stirling number of the second kind. Moreover, these bounds are sharp.

Davis et al. posed the question of whether there exists a class of operations which, applied to a permutation in &,, can
produce any other permutation with the same pinnacle set and no others [3, Question 4.2]. In this paper, we provide a
way to generate all permutations with a given pinnacle set by using a group action on permutations called the dual Foata-
Strehl action, which we define in Section 2. Specifically, this action partitions the set Pin(P; n) into disjoint orbits, and we
generate one permutation in each orbit. From this we then prove Theorem 1.3 to provide an answer to [3, Question 4.4]
which asks for a closed non-recursive formula for the total number of permutations with a given pinnacle set. To state
this result, for a given pinnacle set P, we define V(P) to be the set of all vale sets, V C ([n] \ P), so that P and V are an
n-admissible pinnacle and vale set combination, i.e. there are permutations in &, with P as their pinnacle set and V as
their vale set.

Theorem 1.3 (Corollary 4.6 in this paper). If P is an n-admissible pinnacle set, then

Pin(P: n) = 2" IPI-1 Z 1—[ <Np\;(l9)) 1—[ Nov() | .

Vev(P) \ peP xe[n]\(P U V)

where V, ={veV:v <k}, P, ={peP:p <k}, and Npy(k) = |Vk| — |Px|, counting the number of vales less than k, minus
the number of pinnacles less than k.

This work is organized as follows. In Section 2 we define the dual Foata-Strehl group action on permutations, recall
some known characteristics of this action, and establish that the dual Foata-Strehl group action on permutations preserves
pinnacle sets (Theorem 2.3). In Section 3 we describe a unique representative from each orbit under the dual Foata-
Strehl action (Theorem 3.6). In Section 4 we construct and count permutations with a fixed pinnacle set (Corollary 4.6)
and provide a way to construct and count all vale sets in V(P) (Proposition 4.7). In Section 5 we present computational
evidence that the algorithm based on our constructions in Section 4 is drastically faster than the naive algorithm for
generating Pin(P; n). In Section 6 we present a few open problems for further study.

2. The dual Foata-Strehl group action on &S,

Let 7 € &, and x € [n]. We can write 7 = wiw,xw4ws Where w, is the longest contiguous subword immediately to
the left of x such that all values are less than x and w, is the longest contiguous subword immediately to the right of x
such that all letters of wy are less than x. Call this the x-factorization of m, then let ¢y(7) = wqwsXw,ws, which defines
an involution on &,. Note that if x is a vale, then w, = § = w4, where ¢ denotes the empty word, and ¢y(7) = 7.

The map ¢y is a modified version of the map Foata and Strehl defined in [4]. In their paper, the x-factorization of w
was defined by letting w, be the longest contiguous subword immediately to the left of x such that all values are greater
than x and wy is the longest contiguous subword immediately to the right of x such that all letters of w4 are greater than
x. Then they use their x-factorization to define the map ¢(r) = (W1 w2XWaws) = W1WaXWoW5.

In that sense, ¢, and ¢ only differ in that one switches the values near x that are less than x and the other switches
the values near x that are greater than x. If we let wy be the longest word of &,, namely wg = n(n — 1) ... 1, and if
T = 7y - - - 7, then wo(mr;) = n — m; + 1 for all 1 < i < n. Hence, for any x € [n], we have that

@x(11) = wo(Pug(x)(worr)). (2)

Geometrically, this equation states that to obtain ¢,(7r) we can first flip the graph of & vertically along they = (n+ 1)/2
line, which is achieved by multiplying 7 by wo on the left. Then, we apply the map ¢,,,x), and finally flip the permutation
vertically again along the same line.

In the next example, we provide some computations of the maps ¢, and ¢. We then notice a commutativity property
that is later proved in Lemma 2.2.
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Example 2.1. If 7 = 6534127, then

oa(m)=qa( 65 3 4 12 7 )=6512437
wq wy w4 Wws

os(m)=9s( 6 @ 53412 7 )= 6341257,
w1 wy wy ws

and

Ga()=a(653 @ 4 @ 127)= 6534127

w1 wy wq W5
os(m)=¢s( ¥ 6 5 @ 34127) = 5634127.
wq wy wy ws

Repeating this process shows that ¢s5(@4(7)) = 6124357 = @4(@s(7)) and ¢s(p4(wr)) = 5634127 = ¢4(ps(m)).

In Section 2 of [4] Foata and Strehl prove that for any x, y € [n] and any permutation = we have that ¢,(¢,(7)) =
@y (@x()). We use this result together with Eq. (2) to show the equivalent result for ¢, and ¢,.

Lemma 2.2. Ifx,y € [n], then px(¢, (7)) = ¢y(@x()) for any w € &,

Proof. Let 7 € G, then
oxlpy(m)) = Wx(w0(¢wo(y)(w0”))) by (2) applied to ¢,
Wo (¢w0(x)(wo(wt)(ﬁwo(y)(woﬂ)))) by (2) applied to ¢y

= wp (¢w0(x) <¢w0(y)(won)>) as wyg is an idempotent

= wo (¢w0(y) ((bwo(x)(won))) since ¢uyx) and ¢y, y) commute
= Wo (¢>w0(y)(wo(woqb,,,o(x)(won)))) as wy is an idempotent

= @y (wolPuy(wor))) by (2) applied to ¢,

= @y(x(T)) by (2) applied to ¢x. O

Given S C [n], Foata and Strehl [4] define

ps() =[] dulr)

xeS

where the product notation denotes the composition of the functions ¢, for all x € S, and if S = @, then ¢s is the identity

map on &,. Since ¢, and ¢, commute for all x, y € [n], then ¢s() is well defined. This can be interpreted as a group

action ¢ : Z§ x &, — &, defined by ¢(a, ) = ¢x,(7r) where X, := {i : q; = 1}. We call ¢s the Foata-Strehl action.
Given S C [n], we can similarly define

ps(m) = [ [ oul)
xeS

where the product notation denotes the composition of the functions ¢y for all x € S. When S = #, define ¢s to be the
identity map on &,. Since ¢, and ¢, commute for all x,y € [n], then ¢s is well defined. Similarly, the group Z} acts
on the symmetric group &, via the function ¢s. To be precise, ¢ : Z} x &, — &, defined by ¢(a, m) = ¢x,(7) where
X, = {i : a; = 1} is a group action. We henceforth refer to ¢s as the dual Foata-Strehl action.

Our first result establishes that the dual Foata-Strehl action preserves the pinnacle set of a permutation.

Theorem 2.3. For any S C [n] and any w € &, Pin(;r) = Pin(gs(7)).

Proof. First, note that it is enough to show that for any x € [n], Pin(;r) = Pin(¢y(7r)). We write
T = WqWaXWaWs (3)
() = wiwaxwrws. (4)

Since ¢y is an involution, it is enough to prove that Pin(;r) C Pin(gy(7r)). Let y € Pin(rr ). We show y € Pin(gx(7r)). First,
consider the case that y = x. It is clear that y will still be a pinnacle of ¢,(7r), as the subwords w, and w, are defined to
be strictly smaller than y, and swapping the two words around y will preserve the fact that y is still a pinnacle.

3
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Table 1
Partitioning of &4 by the orbits of the dual Foata-Strehl action.
Pinnacle set Equivalence class
P=@ 1234 2134 3124 4123 3214 4213 4312 4321
P = {3} 1324 2314 4132 4231
P = {4} 1243 2143 3412 3421
P = {4} 1342 3142 2413 2431
P = {4} 1423 1432 2341 3241

Now, we consider the cases such that the pinnacle y is contained in subwords w1, w2, w4, or ws. Note that it is enough
to consider the cases when y is on one of the ends of the words that comprise the factorization. Indeed, since the action
preserves the structure of the subwords themselves, changes to the pinnacle set will only arise at the junctions between
the subwords.

We first consider the case that y € w;. Since the left-most letter of w; cannot be a pinnacle by definition, we consider
the case when y is the right-most letter of wy. If y is a pinnacle of 7, it must be greater than its neighbor to the left in
w1, which remains the same in ¢(7). Since y € w4, it must be the case that y > x, by definition of the x-factorization.
Moreover, all letters of w4 will be less than x, which is also less than y. Furthermore, if w,4 is empty, then the neighbor
to the right of y in ¢4(7r) is x itself. So, y is always greater than its neighbor to the right in ¢,(r) and is thus a pinnacle.
This argument similarly applies to the case that y is the left-most letter of ws.

We claim that it is impossible to have a pinnacle on the ends of w, and w4. We consider the case of w, and note that
an analogous argument applies to w4. Suppose y is a pinnacle sitting at the right-most end of w,. Because it is a pinnacle,
y must be greater than its neighbor to the right, namely x. However, by definition of the x-factorization, the letter y would
not be in w,, as w, is the longest contiguous word to the left of x whose letters are all less than x. Now suppose y is a
pinnacle sitting at the left-most end of w,. By definition of pinnacle, y must be greater than its left neighbor, which is in
w1. On the other hand, by definition of the x-factorization, all letters of w, — and thus y - are less than x, and the neighbor
to the left of y in w; must be greater than x and thus greater than y. We have arrived at a contradiction and conclude
that the left-most end of w, cannot be a pinnacle.

Thus, we have shown that Pin(sr) C Pin(¢y(7)), which implies that Pin(sr) = Pin(¢y(r)) for arbitrary x € [n]. Thus, we
can conclude that the dual Foata-Strehl action preserves pinnacle sets. [0

Let ~ be the equivalence relation on &, defined by the action of Z}. Namely, = ~ 7 if and only if there exists a € Z
such that ¢y, (;r) = 7. The equivalence classes under this relation are precisely the orbits of the dual Foata-Strehl action.
In light of Theorem 2.3, we know that these orbits partition &, into subsets of permutations sharing a pinnacle set.

The following example illustrates that there may be multiple equivalence classes with the same pinnacle set.

Example 2.4. In Table 1, each row represents an equivalence class of &4 arising from the dual Foata-Strehl action, and
we have labeled the pinnacle set of each class at the left of the row. Note that there are three equivalence classes with
the same pinnacle set P = {4}.

Next we measure the size of each equivalence class and do so by examining the relationship between pinnacles and
vales of permutations.
In what follows we let v(;r) denote the number of vales in 7.

Lemma 2.5. If P is an n-admissible pinnacle set, then v(rwr) = |P| 4+ 1 for all = € Pin(P; n).

Proof. Since 7y = m,y; = 00, and since vales and pinnacles alternate we know there will be one more vale than
pinnacles. O

For any w € &, let Orb, (1) := {¢s(m) : S C [n]} denote the orbit of & under the dual Foata-Strehl action ¢. Similarly,
let Orby (7)) := {¢s() : S C [n]} denote the orbit of 7 under the Foata-Strehl action ¢. In [4, Section 3], Foata and Strehl
proved that

|Orby(7r)| = 2"V

We now prove the analogous result for Orby, ().
Proposition 2.6. If 7 € &, then |Orb, ()| = 2"V(7),

Proof. For a set S C [n], let wo(S) = {wo(s) : s € S}, where wy(s) = n — s + 1. We now create a bijection between
Orby(7) and Orbg(wom). Let
F : Orby(m) — Orbg(werr) such that F(@s()) = ¢uys)(worr)

4
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and
G : Orbg(wom) — Orb,(7) such that G(¢s(wom)) = @uys)(7).

Then F o G and G o F are the identity maps on Orbg(wo7) and Orb, (7 ), respectively. Thus,
|Orb,(77)| = |Orby(wer)| = 2", O

Remark 2.7. We remark that Foata and Strehl determined that the number of orbits under ¢ is given by the nth tangent
or secant number, depending on whether n is odd or even [4]. The nth tangent number (resp. nth secant number) is
defined as the coefficient of u"/n! in the exponential power series of the tangent function (resp. secant function), i.e., the
coefficient of u"/n! in the series

anw =1-%12. % 116 1o Y d i s e
By Proposition 2.6, the same is true for the number of orbits under ¢. In the subsequent sections of this paper, we count
the number of orbits of ¢ that have a prescribed pinnacle set P.

Remark 2.8. In [2], Petter Brandén defined a modified function, which we call ¢, such that ¢}(7) = @.(7) if x is neither
a pinnacle nor a vale, and ¢, () = 7 if x is a pinnacle or a vale. Similar to ¢ and ¢, the author defines ¢’ as an action of
Z5 on &, and uses it to prove that for any T € &,, the polynomial defined by

A(T, X) — Zxdes(n)

mel

is y-nonnegative, where des() = |{i € [n] | n; > mi 1}|. In [6], Postnikov, Reiner and Williams defined a modified
function, which we call ¢”, such that ¢} () = ¢«() if x is neither a pinnacle nor a vale and ¢”(r) = 7 if x is a pinnacle
or a vale. Similar to ¢, ¢, and ¢’, they define an action ¢” of Z} on &, and use it to prove Gal’s conjecture for the chordal
nestohedra, [6, Theorem 11.6].

3. Representatives of dual Foata-Strehl orbits

In this section, we describe a collection of permutations, called FS-minimal permutations, that characterize the orbits
of the dual Foata-Strehl action ¢. Then in Section 4, we provide a construction of all FS-minimal permutations with a
given pinnacle set. These results will allow us to count all permutations with a given pinnacle set.

Definition 3.1 (Admissibility). A pair of sets (P, V) is considered admissible if there is a permutation with pinnacle set P
and vale set V. Given a pinnacle set P, define V(P) to be the set of all vale sets V for which the pair (P, V) is admissible.

Throughout the section, let ¥ be a permutation with pinnacle set P = {pq,...,p,} and vale set V. = {vy, ..., ves1},
respectively. We will often list the pinnacles and vales in the order in which they appear in 7, from left to right. We will
also restrict 7w to permutations of the sets P, V, and P UV C [n]. For instance, we write 7 |[p= p1p> - - - p¢ to denote the
restriction of the permutation 7 to just the values at which 7 has pinnacles, which we list in the order they appear in 7.
Similarly, 7 |y= viv; - - - v+ denotes the restriction of the permutation 7 to just the values at which & has vales, which
we list in the order they appear in . Similarly, we let

7 |puv= V1P1V2P2 - - - PeVet1

denote the restriction of 7 to just the values at which 7 has vales and pinnacles, listed in the order they appear in 5. For
example, if 7 = 32814756, then P = {7, 8}, V = {1, 2, 5}, w|p= 87, m|y= 215, and 7 |pyy= 28175.
In what follows, we present three technical lemmas used to prove the main theorem of the section, Theorem 3.6.

Lemma 3.2. If 7 is a permutation with pinnacle set P = {p1, ..., p.}, then for all i € [£], w and ¢,,() have the same
number of descents.

Proof. For any i € [£], consider the p;-factorization of 7,

T = W1W2PjWaWs = T+« * ey Tky4+1 " * Ty Pi Wy =+ * ks —1 ks *** T
S—— ——
w1 wy Wy ws5

By the definition of this factorization p; > max(w;), p; > max(w4) and 7y, > p; < mk,. Applying ¢, we get

@p(TT) = W1WaP;WrWs = T -+ Ty Ty ** * Tkg—1 Pi They 41 * * Ty Tk ** * T -
—— ———

w1 Wy wy ws5

5
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™ = 756348291 py(m) = 287563491

N WK Lo N 00 ©
T
|

N WER Lo 00 ©
T
|

Fig. 1. Let x = 6, y = 8. In the left, we show the permutation = = 756348291, bolding the subpermutation w,yw, in the y-factorization of = and
highlighting in red the subpermutation v,xv, in the x-factorization of 7. In the right, we show the permutation ¢,(rr), bolding the subpermutation
BoyBa in the y-factorization of ¢, () and highlighting in red the subpermutation a,xcs in the x-factorization of ¢, ().

Since the content in w, w, w4, ws did not change, it is enough to study the places where these subwords meet in ¢y, (),
namely 7y, Ty, , Tks—1Pi> PiTlk;+1, and 7y, . Since my, < p; < my, and p; > my, 41, the descents my, my, 41 and p;my, in 7
got replaced by the descents 7y, 7y, and pjmy, 41 in @y, (77 ), respectively. Similarly, the ascents 7y, p; and 7y, 17y in 7 got
replaced by the ascents my,—1p; and my, 7wy, in @y, (77 ), respectively. Thus, the number of descents remained constant. O

Lemma 3.3. Let 7 € &, and let x, y be two distinct elements in [n]. If

V1 V2 XVv4vs IS the x-factorization of = and
oy xagas s the x-factorization of ¢y (),

then max(v,) = max(ay) and max(vs) = max(ay).

Proof. Let x, y be two distinct elements in [n]. Let

v1 12 Xvga U5  denote the x-factorization of 7,
wq w2y wa ws denote the y-factorization of =,
ooy xasas  denote the x-factorization of ¢y (), and
B1 B2y BaPBs denote the y-factorization of ¢y (7).

There are six possible cases to consider. In the first four cases, detailed below, the subword v,xv, remains unchanged in
@y(), hence vyxvs = aXay.

(1) If vyxvy lies in w, then the subword v,xv4 remains together, but is moved to within B4 in ¢,(7). In this case
V2XV4 = apXa4. An example of this is shown in Fig. 1.

(2) If vyxvy lies in w4 then vyxvy remains together, but is moved to B, in ¢y(). In this case vyxvs = arXos.

(3) If voxvy lies in wq then vyxvy remains in By in @, (r). In this case voxvs = axes.

(4) If vaxvy lies in ws then vyxv, remains together in Bs in ¢y ().

In the last two cases, described below, either v, or vy is rearranged slightly in oy or ay4, but this does not affect the
maximum element of «, or o4 in ¢y ().

(5) If vyx lies in wy but vy does not lie entirely in w, then y is contained in v4. In this case the subword v,x remains
unchanged in ¢,(7r) in the sense that v,x = X, and v4 has some of its elements rearranged by ¢, but the set of
elements appearing in oy remains the same (i.e. v; = o, and the underlying set of v, is equal to the underlying set
of a4). Hence max(v,) = max(a,) and max(v4) = max(ay) in this case. An example of this is shown in Fig. 2.

(6) If xv4 lies in ws but v, does not lie entirely in ws, then y is contained in v,. In this case the word xv4 remains
unchanged in ¢,(r) in the sense that xvs = Xy, and v, has some of its elements rearranged by ¢, but the set of
elements appearing in v, remains the same. Hence max(v,) = max(«;) and max(v4) = max(cy) in this case. O

We can also define an x-factorization of any subword of a permutation. That is, given a subword o = 515, ---5, of a
permutation 7 € &,, and x = s; for some 1 < i < ¢, the x-factorization of o is wiw,xwsws where w, is the longest
contiguous subword immediately to the left of x such that all values are less than x and w, is the longest contiguous
subword immediately to the right of x such that all letters of w,4 are less than x. We then define ¢,(o’) to be

x(0) = wiwgXwows.
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T = 287563491 QOy(Tr) = 287564391
T T T T T T T T T

9 9
] x="7 gl x="7 ]
s 17F |
6| 16| |
51 y=4 151 y=4 |
n J4p .
30 13f |
2 {2t |
1{ 11} .

| | | | | | | | | | | | | | | | | |

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fig. 2. Let x =7, y = 4. In the left, we show the permutation = = 287563491, bolding the subpermutation w,yw, in the y-factorization of = and
highlighting in red the subpermutation v,xv, in the x-factorization of 7. In the right, we show the permutation ¢,(rr), bolding the subpermutation
BoyBa in the y-factorization of ¢, () and highlighting in red the subpermutation a,xcs in the x-factorization of ¢, ().

Lemma 3.4. Let w be a permutation with pinnacle set P and vale set V. If w|p= p1p2---pe and 7w|y= vqv; - - - Vg1, then
©p(7m)|puv= @p; (7w |puv) for any i € [£].

Proof. Fix a pinnacle p; in = and consider the p;-factorization 7 = wjw,p;jwsws. Now define o; = w;|pyy for each
i=1,2,4,5. Then,

@p,(m)lpuv = (w1 w4 p; wo ws)|puy
= wilpuv walpuv Pi w2lpuv Wslpuy
= 01 04 P 07 O5.

In the case where neither w; nor ws are empty, suppose p’ is the right most pinnacle in w1, and p” is the left most
pinnacle in ws. Hence, p’ > p; and p” > p;. Now consider

Tlpuv=V1P1V2P2 ... ViPiVit1 - .. D¢ Veq1.

Let 7 |puv= wiwjpjwyws be the p;-factorization of r|pyy. Since p’ > p; and p” > p;, then p’ € w} and p” € wq. It now
follows that w| = wi|puy= a1 and wg = ws|puy= as. Thus, the p;-factorization of 7 |pyy is

7T |puv= a1@2pi040t5.
Therefore
@pi(ﬂhvuv) = 0104005 = §0pi(7T)|Puv~

Note that w,, w4 cannot be empty as p; is a pinnacle, and so the proof is complete by noting that whenever w; or ws
are empty, it implies w; = w] = o; = ¥ for i = 1, 5, respectively. O

We now define the notion of FS-minimal permutations and proceed to show our main theorem of the section, that
there is a unique FS-minimal permutation in each dual Foata-Strehl orbit of &,,.

Definition 3.5. A permutation w is FS-minimal if 7 contains no double descents and for each p € Pin(x) the
p-factorization wy w, p wg ws of 7 |pyy satisfies max(w,) < max(wy).

Theorem 3.6. If i is a permutation with pinnacle set P and vale set V, then there is a unique FS-minimal permutation in the
dual Foata-Strehl orbit of .

Proof. We first show there is an FS-minimal permutation in each orbit and then show this permutation is unique. Let 7
be a permutation with

Tlp=piP2---Pe, TWly=v1V2... V41, and 7|puy= V1P1V2P2 - - VePeVet1-
Let
R={r € [n]\ (PUV):r appears left of v; or between p; and vy, for some 1 < k < ¢},

that is, r is either in the beginning descending segment of 7 or in a descending segment strictly between a pinnacle and
a vale. Note that this implies that 7 has |P| + |R| descents. The r-factorization of 7 is then wi#rwsws and

@ () = wiwarPws.
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In ¢.() we solely moved r from a descending segment to an ascending segment and left the rest of = unchanged.
Hence, ¢.(7r) has one fewer descent than 7, since the relative order of the entries in w4 remains unchanged. Then let
p() = [],cx @r(r). By this construction, p(rr) has only |P| descents occurring only at the indices of pinnacles (at the
peak set of i), and none of these descents occur consecutively, i.e. there are no double descents.

Let

T = {p € P : the p-factorization wqw,pwsws of 7 |pyy satisfies max(w,) > max(w,)},

and define t(o()) := [ [, ¢:(p()). We now claim that 7(p(rr)) is FS-minimal. Since p(;r) has no double descents, then
by Lemma 3.2, t(p(;r)) has no double descents.

Let t € T. By definition of the dual Foata-Strehl action, ¢.(o(7)) satisfies that max(w,) < max(w,) in the t-factorization
of ¢¢(p(7))|puv. By Lemma 3.3, for all other pinnacles p € P, applying ¢; to p(r) does not change max(w,) nor max(w,) in
the p-factorization of p(sr). Repeating this argument for all other elements of T and using the fact that by Lemma 3.4 we
can apply the dual Foata-Strehl action and then restrict to P UV or restrict to P UV and then apply the dual Foata-Strehl
action and the result is the same, shows that t(p(sr)) is FS-minimal.

To show this permutation is unique, suppose 7 and o are both FS-minimal and lie in the same dual Foata-Strehl orbit.
Then 7w = ¢s(o), for some S C [n]. We will show that S C V, and since ¢,(0) = o for all v € V, then 7 = gs(0) = 0.

Suppose p € P. We will first show P NS = @. If wijw)jpw,ws is the p-factorization of ¢,(o)|puy, then max(w}) >
max(wy,), since ¢ is FS-minimal. Lemma 3.3 shows that for any k € S, applying ¢y to ¢,(o)lpuy Would not change this
inequality, thus p ¢ S as otherwise max(w)) > max(w,) in the p-factorization of =, contradicting that it is FS-minimal.
Hence, PNS = (.

Since applying the dual Foata-Strehl action at a vale leaves a permutation unchanged, it suffices to show S N
([nI\(PUV)) = @ to conclude S C V and m = os(c) = o. Suppose by contradiction that there is an element r in
[n]\ (PUV) that lies in S. Since o has no double descents, r must belong to an ascending segment, i.e., the r-factorization
of o is then wqw,rdws and

¢r(0) = wilrwws.

In ¢,(0) we solely moved r from an ascending segment to a descending segment and left the rest of o unchanged. Applying
the dual Foata-Strehl action at any other element of [n]\ (P UV) will simply move an element from an ascending segment
to a descending segment, hence it will not remove the double descent created in ¢,(c). Thus, 7 = ¢s(o) will contain a
double descent, which contradicts the fact it is FS-minimal. We conclude that S C Vand 7 = o5(0) = 0. O

4. Constructing and counting permutations with a fixed pinnacle set

In this section we count the number of dual Foata-Strehl orbits with permutations having pinnacle set P by counting
the number of FS-minimal permutations with pinnacle set P in &,,. Recall that a pair of sets (P, V) is considered admissible
if there is a permutation with pinnacle set P and vale set V. Given an admissible tuple (P, V) and a fixed integer k € [n],
we set the following notation:

Given a nonempty word w of some letters in [n], let max(w) be the largest number that appears in the word w.
Let Vi ={veV: v <k
let P, ={peP:p<kl
Let Npy (k) = |Vk| — |Pxl.

Lemma 4.1. [f & is a permutation with pinnacle set P = {p; < py < --- <p¢}andvale set V = {vy < vy < -+ < vg41},
thenforall1 <i< (-1,

(a) 1€V,

(b) 2 < Npy(pi),

(c) vigg <pjforalie{1,2,...,¢},
(d) Npy(pi) < Npv(piy1) + 1,

(e) Npy(pe) = 2.

Furthermore, properties (b) and (c) are equivalent.

Proof. For part (a), since 1 appears in 7r, we must have ; = 1 for some i € [n]. Since 7;_1; > 1 < mj;; then 1 € V.

For part (b), let p; be any pinnacle in P. Consider the set P’ = {py, ..., pi_1, pi} € P. Because each pinnacle has a vale
smaller than it to its left and one to its right, and there is a vale between any two pinnacles, then there are at least i + 1
vales (those around the i pinnacles in P’) smaller than p; in 7. Thus,

Npv(pi) = [Vp | = Pl = (i+ 1) = (i—1) = 2.

For part (c), since Npy(p;) = |Vp,| — [P,,| = 2 and P,, =i — 1 for eachiin {1,2,..., ¢}, then V), > i+ 1. That is, there
are at least i 4+ 1 vales less than p;. Hence, vitq < p;.
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For part (d), note that since p;+; > p;, we must have |V,
any p; € P, we get [P, | =i—1and |P,,_,| = i. Thus,

1| = [Vp;]. Since there are j — 1 pinnacles smaller than p; for
i+1
NPV(pi+1) = |Vpi+1| - |Pp,'+1| > |Vpi| - (|Pp1| + 1) = |Vp,‘| - |Pp,'| -1= NPV(pi) -1
For part (e), since v,y < p, by property (c), then V,, =V and
Npv(pe) = [Vp, | = IPp | = (£ + 1) = (£ = 1) =2.

To prove the last statement note that we already showed (b) = (c). For the reverse, if v, < p; then Npy(p;) =
Vol = 1Pyl 2i+1—(i—1)=2. O

We now describe which pairs (P, V) are admissible.

Proposition 4.2. Let (P, V) be a pair of disjoint subsets of [n] with |V| = |P| + 1. Then (P, V) is admissible if and only if
properties (a) and (b) or, equivalently, properties (a) and (c) from Lemma 4.1 hold.

Proof. The forward direction is proven in Lemma 4.1. For the backward direction, suppose P and V satisfy properties (a)
and (b) from Lemma 4.1. Thus, P and V can be written as P = {p; < p2 < --- <pefand V = {v; < v < -+ < vp41}
with v; = 1. We need to create a permutation with pinnacle set P and vale set V.

Let n = p,. Let « be defined as follows:

0 =V10a1P1v202P2 ... Vg Qg Pe Vg1

where each g; is the ascending sequence containing the elements in [n] \ (P U V) between v; and v;;. Since properties
(b) and (c) are equivalent, then v; 1 < p; for all i € {1, 2, ..., £}. Thus, « has pinnacle set P and vale set V. O

4.1. Creating and counting the number of permutations with a fixed pinnacle and vale set

Given an admissible pair (P, V) we define a PV-arrangement « to be a permutation of the elements of P U V such
that every element p € P is a pinnacle in « and every element v € V is a vale in «. We say that a PV-arrangement « is
canonical if for each p € P the p-factorization wqw,pwsws of o satisfies max(w,) < max(wy).

Lemma 4.3 (Counting Canonical PV-Arrangements). For an admissible pair (P, V) the number of canonical PV-arrangements

is
1—[ (NP\;(P)). 5)

peP

Proof. We prove the result by induction on |P|. If P = ¢ then V is a one element set V = {v}. In this case the only
PV-arrangement is « = v, which is canonical and is counted by the empty product in (5). For a nontrivial illustration, we
show the case |[P| = 1. If P = {p} then V is a set with two elements by Lemma 2.5, so V = {vy, vy} for two elements
v1, U € [n — 1]. Without loss of generality, let v; < v,. Then, the only PV-arrangements one could make are oy = v1pv,
and «; = v,pvy, of which only o is a canonical PV-arrangement. By Lemma 4.1(e), the product in (5) is (Np‘g(p)) =() =1
as desired.

Suppose the result is true for all pinnacle sets P with cardinality ¢ — 1. Then if |P| = ¢, write P = {pq, ..., p¢} with
p1 < p2 < --- < pe. Choose any two elements vy, v, € V such that v; < p; and v, < p; and let

P'=P\{p1} and V' =(V\{v,v2})U{ps1}.
Note that there are
Vp, 1\ _ (Nev(p1)
2 ) 2

choices of vy and v,. By Lemma 4.1(b), the number of choices is always at least 1.

For each such choice and for each canonical P’V’-arrangement, we will create a unique canonical PV-arrangement and
show that every canonical PV-arrangement is created in such manner. By induction, this would imply that the number
of canonical PV-arrangements is

Npy(p1) Npvi(p)
(") (") ©
peP’
Since for p € P/,
New(p) = [V, = Pyl = (IVp] = 1) = (IPy| = 1) = [Vp| — [Pp| = Npy(p),
9
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then the expression in (6) equals our desired result

Npy(p1) Nprv/(p)\ _ (Nev(p1) Nev(p)\ Npv(p)
(")) = (7)) =T ()

peP’ peP’ peP

To prove our claim, suppose without loss of generality that v; < v,. Let o’ be a canonical P'V’-arrangement (hence,
Pin(a’) = P’ and Vale(a’) = V’). Thus, the element p; € V' is a vale in o/, so

!
o = VkPiP1DjVks1 -+,

for some pinnacles p;, p; € P’ and vales vy, vi1 € V. Insert vy to the left of p; and v, to the right of p; to create the
permutation

O =" VgPiV1P1V2Pj Vkt1 ---

Note that « is a PV-arrangement, that is, a permutation of P U V with pinnacle set P and vale set V. We claim this
permutation is a canonical PV-arrangement. Since o’ was a canonical P’'V’-arrangement and we only added two numbers
v1, vy that are less than p; and adjacent to p;, then max w, is still less than max w4 in the p’-factorization of « for any
p’ € P'. For the p-factorization of «, note that w, = vy and ws = v, because all other peaks, particularly p; and p;
are greater than p,. Hence, max(w,) < max(wy) in this factorization as well. Thus, « is a canonical PV-arrangement.
Since this construction does not change «’ other than by introducing v; and v, to each side of py, it follows that distinct
P’V’-arrangements create distinct PV-arrangements.

To finish the proof, we need to show that all canonical PV-arrangements are created in this manner. For any canonical
PV-arrangement «, it must contain a subsequence v;p1v; with v;, v; € Vp, and v; < v;. If we remove v; and v; from o, we
get a canonical P'V’-arrangement «'. Hence, o was obtained via our construction by choosing v;, vj from V,,, and inserting
v; and v; before and after pq, respectively. Thus, our construction gives all canonical PV-arrangements. 0O

We are ready to prove the main theorem of the section. In it, we count the number of FS-minimal permutations
with a given fixed pinnacle set P. By Theorem 3.6, this also counts the number of dual Foata-Strehl orbits containing
permutations with pinnacle set P.

Theorem 4.4 (FS-minimal Permutations for Each PV-arrangement). For an admissible pair (P, V), given a canonical
PV-arrangement «, the number of FS-minimal permutations w with 7 |puy= «, denoted Opy, is

Opy = l_[ Npy(1).

re[n]\(PUV)

Furthermore, the number of all FS-minimal permutations with pinnacle set P, denoted Op, is

o= S T1("") T wwi

VeV(P) peP re[n]\(PUV)

where V(P) is the set of all vale sets V for which the pair (P, V') is admissible.

Proof. Let o = v{pjvap; - - - vPeve+1 be a canonical PV-arrangement. Since in an FS-minimal permutation each pinnacle
is immediately followed by a vale, to count the number of FS-minimal permutations 7 with 7 |puy= «, note that each
element r € ([n] \ (P U V)) must appear to the right of a vale v; less than r and to the left of a pinnacle p; greater than r.
The number of such indices i so that r satisfies v; < r < p; is precisely |V;| — |P;| = Npy(r). The total number of choices
over all r € ([n] \ (P U V)) is then

l_[ Npy(r).

re[n]\(PUV)

Once these choices are made, all of the elements (if any) between each vale v; and pinnacle p; must appear in ascending
order by the definition of an FS-minimal permutation. This proves the first statement. The last statement follows by
summing through all the canonical PV-arrangements and using Lemma 4.3. O

Example 4.5. A canonical PV-arrangement « for P = {7, 10, 12} and V = {1, 3, 5, 8} is depicted in Fig. 3. To construct
FS-minimal permutations from « we insert each element r € [n] \ (P U V) = {2,4,6,9, 11} in ascending order on the
slopes between v; and p; satisfying v; < r < p;.

Table 2 describes the possible locations where the elements r € [n] \ (P U V) = {2,4,6,9, 11} can be located in an
FS-minimal permutation. For example, if we choose the first possible location listed in the third column in Table 2, the
resulting FS-minimal permutation is [8,9, 11, 12,5, 6, 10, 1, 2,4, 7, 3].

Hence, in this case, there are 2 - 3 - 3 - 2 = 36 FS-minimal permutations 7 with 7 |pyy= a.

10
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Fig. 3. A canonical PV-arrangement « = [8, 12,5, 10, 1,7, 3] for P = {7,10, 12} and V = {1, 3, 5, 8}.

Table 2
Example of possible locations of where to insert certain values to create an FS-minimal permutation.
r Npy(1) Possible locations of r in FS-minimal permutations
2 1 between (1, 7)

4 2 between (1, 7) or right of 3

6 3 between (5, 10), between (1, 7), or right of 3

9 3 between (8, 12), between (5, 10), or right of 3

11 2 between (8, 12) or right of 3

Corollary 4.6. If P is an admissible pinnacle set, then

|P1n(P, n)| — 2n—\P\—l . OP — Zn—\P\—l Z 1_[ (NP\;(p)) 1_[ va(r)

VeVv(P) peP re[n]\(PUV)

Proof. By Proposition 2.6, each orbit of the dual Foata-Strehl action has 2"~'"I~1 elements. By Theorem 3.6 there is a
unique FS-minimal permutation in each orbit. By Theorem 4.4, the number of FS-minimal permutations with pinnacle set
P, denoted Op, is

Npv(p)
o= S TI(™P) TT swtr
VeV(P) peP re[n]\(PUV)

Hence, we obtain our result. O

Since computing the number of permutations with a given pinnacle set P depends on the number of admissible vale
sets, we now construct and establish a count for the number of vale sets V such that (P, V) is admissible.

4.2. Creating and counting the number of admissible vale sets

Given a nonnegative integer ¢, we recall that a weak composition of £ is a sequence of nonnegative integers whose
sum is £. For £ > 1, define

Y4 k
c(e) = {t:(ﬁ,tz,...,tg) ‘ 3t = ¢ and Zr,»zkforeachkinu,z,...,z}}
i=1 i=1

and C(0) = {()} just contains the empty tuple. Given a pinnacle set P = {p; < p2 < --- < pe}l,for1 <i < ¢, let
Gi={je[nl\P:pi_1 <j < pi}, where pp = 1. We call G; the ith gap set. Let g; = |G;|. For example, if P = {4, 8, 11}
then G; = {2, 3}, G, = {5, 6,7} and G3 = {9, 10}. We now proceed to create and count all possible vale sets given a fixed
pinnacle set.

Proposition 4.7. IfP = {p; < p» < --- < p,} is an admissible pinnacle set, then the number of sets V such that (P, V) is
admissible is

P =3 ﬁ(‘f)

teC(t) i=1

11
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Proof. For each weak composition t = (tq, to, ..., ty) € C(£), we will construct ]_[f:1 (‘i’) admissible vale sets. By definition
note G; N G; = ¥ whenever i # j.
For each G;, we choose a subset T; C G; of cardinality t;, recalling that for each 1 < i < ¢, we have that Zf:] ti >k,

forall k € {1,..., ¢}. There are ]_[f:] (‘i’) different choices for the collection of subsets T; C G;.

Once all the T; are chosen, let V = {1} U Uf=] T;. Since ;NT; = @ then |[V| =1+ Zle t; = 1+ £. We now prove that
(P, V) is admissible by creating a permutation with pinnacle set P and vale set V. Sort V such that V = {vg, vy, vo, ..., v¢}
withvg =1and vi_; < v; forie{1,...,¢}. Let

O = Vop1V1P2V2 * - - PeVy.

Note that « is a permutation of P U V with pinnacle set P and vale set V because for any pinnacle py, by the defining
condition of C(£), we have chosen Zf;l t; elements in V, all of which are less than py. Thus, the vales 1, vy, ..., v are all
less than py, which implies that the pinnacle set (resp. vale set) of « is P (resp. V). To complete the claim, extend « to a
permutation of [n] by inserting each element r € [n] \ (P U V) in ascending order between v; and p; if v; < r < p;y;1. The
resulting permutation 7 has pinnacle set P and vale set V. Hence, (P, V) is admissible.

To show these are the only admissible pairs, let V' be any set such that (P, V') is admissible. Then there is a permutation
7t such that Pin(r) = P and Vale(rr) = V'. Partition V' as V' = {1} U Ule T/ where for 1 <i < ¢, T/ is defined as

1
T/ ={veV :p_1 <v<p}withpy =1

Note that, by definition of G;, we have T/ C G; and set t/ = |T/|. Since T/ N Tj/ = {) whenever i # jand U_ T/ = V' \ {1},

we have that Zle t/ =|V'| =1 = ¢ Thus, t = (t], ..., t;) is a weak composition of £. Further, t is an element of C(£)
since for each k in {1, 2, ..., £} the elements in UL]T{ correspond to choices of vales not equal to 1 that are less than py,
thus

k
Dot =Vl = 1= V| = 1Pyl + (k—1) = 1=k =2+ Np(pi) > k.
i=1

where the last inequality follows from Lemma 4.1(b). Hence, the set V' is created via the construction described in this
result by starting with t € C(¢) and making the choices so that T; = T/ C G;. Therefore, we have constructed all vale sets
V such that (P, V) is admissible. O

We now give two examples to compute the number of permutations with pinnacle sets P = {5} and P = {4, 8, 11}.

Example 4.8. Let n = 8 and consider the admissible pinnacle set P = {5}. As 1 is always a vale, and G, = {2, 3, 4} the
possible vale sets are V(P) = {{1, 2}, {1, 3}, {1, 4}}. Since Npy(5) = 2, by Corollary 4.6 we have that

Npv(5)
- . __ 96 PV
[Pin(P; 8)| = 2 2:( ) ) [T Nwr)
VeV(P) re[n]\(PUV)

=26 <§) H NPV(r)+(;> l_[ va(r)-l-(z) 1—[ Npy (1)
ref }

3,4,6,7,8 re{2,4,6,7,8} re{2,3,6,7,8}

L V={1,2} V={1,3} V={1,4}
=2M1.-2-2-1-1-1+1-1-2-1-1-1+1-1-1-1-1-1]
=25(22+2+1)

= 448.

Example 4.9. Let n = 12 and consider P = {4, 8, 11} so £ = 3. Then

() =1(1,1,1),(2,0,1),(2,1,0),(1,2,0),(3,0,0)}.
The gaps are G; = {2, 3}, G, = {5, 6,7}, and G3 = {9, 10}, so (g1, &2, &3) = (2, 3, 2). The number of admissible vale sets is

= (00 -6 - QO - R (EE-

Note that the term (?)(?) (%) counts the vale sets with one element coming from each set of gaps, while the term (%) (Z) (%)

counts the vale sets where 2 elements come from the first set of gaps, 0 come from the second set of gaps, and 1 comes

12
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from the third set of gaps, etc. Thus

(1,2,5,9},{1,2,5, 10}, {1,2, 6,9}, {1, 2,6, 10}, {1, 2, 7,9}, {1, 2, 7, 10},
y(p) = | (1:3:5.9),{1,3,5, 10}, {1,3,6,9), {1,3,6, 10}, {1, 3,7,9), {1, 3,7, 10}, o
= {1,2,3,9},{1,2,3, 10}, {1,2, 3,5}, {1,2, 3,6}, {1,2, 3,7}, :
{1.2.5.6).{1,2.5.7). (1. 2.6.7). {1, 3.5.6}. (1, 3.5, 7}. {1, 3.6, 7}

From this, a straight forward computation using Corollary 4.6 yields |Pin({4, 8, 11}; 12)| = 132, 480.

Remark 4.10. The partitions t € C(£) indexing the sum in Proposition 4.7 are counted by Catalan numbers. Particularly,
|C(2)| is the £th Catalan number. We refer the interested reader to Exercise 86 of Richard Stanley’s book on Catalan
numbers [9].

5. Algorithms to generate all permutations with a given pinnacle set

As we saw in Section 2, the dual Foata-Strehl action preserved the pinnacles of a permutation, but the orbits did not
encompass all elements having the same set of pinnacles. In this section, we describe two algorithms that generate the
set Pin(P; n), and we compare their computational run times.

Given a pinnacle set P, let Algorithm 1 be the naive algorithm that runs through all permutations of S,, com-
putes their pinnacle sets and returns those permutations with pinnacle set P. Let Algorithm 2 be the algorithm
that replicates the constructions detailed in Section 4. More specifically, given a set P, it first runs through all ad-
missible vale sets V using the criteria in Proposition 4.2. Then, for a given pair (P, V), it constructs all canonical
PV-arrangements using the recursive construction described in the proof of Lemma 4.3. Then, it creates all FS-minimal
permutations from the canonical PV-arrangements as described in the proof of Theorem 4.4. Finally, it applies the dual
Foata-Strehl action on the FS-minimal permutations to create all permutations with pinnacle set P and vale set V, as
guaranteed by Theorem 3.6.

In Table 3, we provide the run times of Algorithms 1 and 2 applied to all pinnacle sets of permutations in Sg. The code
and sample computations for these algorithms are provided at github.com/8080509/Pinnacles_of_Permutations.

6. Future directions
We end with a few open problems for further study.

Problem 6.1. Algorithm 2 provides an efficient algorithm to generate Pin(P; n). Are there any other algorithms for
generating Pin(P; n) that are more efficient than Algorithm 2?

A couple of days after we made a preprint of this work available, Irena Rusu presented a preprint showing a concate-
nation of three algorithms that allow you to transform any permutation with pinnacle set P to any other permutation
with the same pinnacle set. We refer the interested reader to [7]. Shortly thereafter Rusu and Tenner presented a preprint
describing, given a pinnacle set P, which ordering of the pinnacles can actually appear in permutations with pinnacle set
P. For additional open problems related to this, see [8].

In [3], Davis et al. give explicit formulas for the number of permutations with pinnacle sets of size 0, 1, and 2 as well
as two extremal cases.

Problem 6.2. Theorem 4.4 provides an expression for the number Op of orbits containing permutations with pinnacle
set P under the dual Foata-Strehl action. Find explicit expressions (only depending on n) for Pin(P; n) with |P| > 3 using
Corollary 4.6.

If P is a pinnacle set and S is a peak set, by Theorem 1.1 and Corollary 4.6, we know
[Pin(P; n)| = 2" W=10,  and  |PK(S, n)| = 2" S~ Tpg(n),
where ps(n) is the peak polynomial of S and Op is given by

o= S T1(™") T wer

VeV(P) peP re[n]\(PUV)

In light of the similarity between these equations and the fact that in the pinnacle setting the power of two describes the
size of each dual Foata-Strehl orbit in |Pin(P; n)|, and Op counts number of orbits, we pose the following question.

Problem 6.3. Is there a group action on permutations which preserves peaks sets, such that there are exactly ps(n) many
orbits each of size 2"1S1=1?

We have presented the following conjecture at several talks concerning peaks, descents, and pinnacles of permutations
over the past year. An elegant proof of this conjecture was recently given in the preprint [5, Corollary 10]. We present
the conjecture here to have it recorded in the literature.
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Table 3

Run times of four algorithms constructing all permutations in &g with pinnacle set P.

n P |Pin(P; n)| Run time Run time

Algorithm 1 Algorithm 2

7 128 327.32 ms 0.30 ms
{3} 64 286.39 ms 021 ms
{4} 192 300.00 ms 0.63 ms
{5} 448 346.05 ms 1.12 ms
{6} 960 360.80 ms 2.65 ms
{7} 1984 293.21 ms 6.78 ms
{8} 4032 271.34 ms 9.45 ms
{3, 5} 32 411.87 ms 0.11 ms
{3, 6} 96 480.09 ms 0.54 ms
{3, 7} 224 436.53 ms 0.59 ms
{3, 8} 480 275.81 ms 1.13 ms
{4, 5} 96 309.15 ms 0.43 ms
{4, 6} 288 306.61 ms 1.31 ms

3 {4, 7} 672 280.14 ms 1.64 ms
{4, 8} 1440 291.30 ms 3.67 ms
{5, 6} 576 32470 ms 1.66 ms
{5, 7} 1376 307.15 ms 3.75 ms
{5, 8} 2976 285.69 ms 10.77 ms
{6, 7} 2400 297.79 ms 6.08 ms
{6, 8} 5280 338.10 ms 14.92 ms
{7, 8} 8640 341.82 ms 20.45 ms
{3,5, 7} 16 298.76 ms 0.13 ms
{3, 5, 8} 48 282.71 ms 0.19 ms
{3,6,7} 48 269.83 ms 0.20 ms
{3, 6, 8} 144 328.53 ms 0.53 ms
{3,7, 8} 288 305.97 ms 0.84 ms
{4,5, 7} 48 296.36 ms 0.20 ms
{4, 5, 8} 144 341.79 ms 0.71 ms
{4, 6,7} 144 294.63 ms 0.47 ms
{4, 6, 8} 432 296.74 ms 1.31 ms
{4,7, 8} 864 358.77 ms 2.68 ms
{5, 6,7} 288 294.47 ms 0.99 ms
{5, 6, 8} 864 305.26 ms 2.44 ms
{5, 7, 8} 1728 334.79 ms 4.98 ms
{6, 7, 8} 2880 276.56 ms 8.08 ms

Conjecture 6.4. If S is an admissible peak set, then the set Pk(S, n) of permutations with peak set S in &, can be partitioned
into subsets of permutations of the same length, and the size of these subsets is palindromic about the value (;)

We remark that as the sets Pin(P; n) are preserved by multiplying by wg on the right i.e., reversing the order of the
permutations, the sets Pin(P; n) have the same palindromicity property as Pk(S, n). However, unlike Pk(S; n), they are not
unimodal or log-concave in general.

Problem 6.5. For what pinnacle sets P are the cardinalities of the sets Pin(P; n) a unimodal sequence as you vary n?
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