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Macros provide a powerful means of extending languages. They have proven useful in both general-purpose

and domain-specific programming contexts. This paper presents an architecture for implementing macro-

extensible DSLs on top of macro-extensible host languages. The macro expanders of these DSLs inherit the

syntax system, hygienic expansion, and more from the host. They transform the extensible DSL syntax into

a DSL core language. This arrangement has several important consequences. It becomes straightforward

to integrate the syntax of various DSLs and the host language when their expanders share these inherited

components. Also, a DSL compiler may be designed around a fixed core language, even for an extensible DSL.

Finally, macros empower programmers to safely grow DSLs on their own and tailor them to their needs.
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1 INHERITING EXTENSIBILITY

Macros have been used for nearly sixty years as an extension mechanism for programming lan-
guages. Though some such extensions are little more than convenient syntactic abbreviations,
others implement entire domain-specific languages (DSLs). For example, the Racket match macro
extends the grammar of expressions with a pattern matching DSL:

(match (list 1 2 3) [(list a _ b) (+ a b)]) ;=> 4

This implementation technique benefits both language authors and language users:

(1) It simplifies the Racket compiler, which need only provide efficient compilation for a small
core language comprising essential constructs like define and lambda.

(2) It empowers users to add features the compiler authors did not have the foresight to implement.
This is especially important for DSLs, which do not belong in the core language at all.

Though match is implemented as a macro, its pattern language is quite rich. Consequently,
match’s implementation resembles a miniature compiler, complete with parser, intermediate repre-
sentation, optimizer, and code generator. It is not hard to imagine that the aforementioned benefits
of extensibility could apply just as well to match’s pattern language as they do to Racket.1For
example, a programmer might wish to use CSS selectors to match nodes in an HTML document:

(match (read-html "in.html") [(css .content p es) (map element-text es)])
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Surprisingly, existing macro systems do not provide any mechanism for DSLs, such as match, to
inherit the extensibility of their host language. The draw of macro-extensibility leads some DSL
authors to instead emulate the host macro system, equipping their DSLs with ad-hoc extensibility
mechanisms. Because they reimplement rather than reuse extensibility features, such emulations
are complex and do not cooperate with advanced features of the host macro system, such as
hygiene [Dybvig et al. 1993; Flatt 2016; Kohlbecker et al. 1986], modules with reliable separate
compilation [Flatt 2002], and protocols for IDE integration [Findler et al. 2002].
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Fig. 1. Extensible DSL implementation architecture

This paper presents the first architecture that allows DSLs to inherit the macro-extensibility of
their host language with all of the associated advantages (sec. 3). Figure 1 illustrates the architecture
with a diagram. An extensible DSL is equipped with a custom macro expander that maps terms in
the DSL’s surface syntax to fully-expanded terms of a DSL-specific core language. From there, the
DSL implementation employs a traditional compiler architecture with passes for static analysis,
optimization, and code generation. The target language may be the host language (e.g. Racket) or
another DSL.

The key novelty is an API that enables DSL authors to reuse essential pieces of the host language
macro expander: its syntax representation, its scoping model, its binding environment, and its
module system (sec. 7). Broadly, the API offers DSL authors two concrete advantages:

(1) The DSL’s author need not worry about the low-level subtleties of hygienic macro expansion
and can focus entirely on the DSL grammar, scoping rules, and static semantics.

(2) Because all such DSLs share a common understanding of scope and names, they naturally
cooperate with the host language and with each other.

We have realized this architecture in Racket. Using our new API, Racket programmers implement
DSL expanders and compilers as compile-time Racket code packaged as łlanguages as librariesž
[Tobin-Hochstadt et al. 2011]. To guide DSL implementors, we provide a recipe that shows how to
turn a DSL design into an expander implementation (sec. 6).
The remainder of this paper illustrates the implementation of DSL macro expanders using a

Parsing Expression Grammars (PEG) DSL (sec. 4-5) and shows how DSL extensibility enables
towers of DSLs and syntactic integration between DSLs and other program components (sec. 8).
The evaluation section (9) presents revisions to four existing extensible DSL implementations to
take advantage of our API.

2 BACKGROUND: MACROS AND HOSTED DSLS IN RACKET

Our work builds on the idea of using procedural macros to create and integrate DSLs. Procedural
macros originated with Lisp in the 1960s and are now found in modern languages such as Clojure,
Elixir, Julia, Rust, and Scala. The word macro refers to a syntactic form defined via rewriting to

1Many stand-alone DSLs recognize the value of extensibility and support macros, such as Tex [Knuth 1979], SystemVerilog

[Group 2005], SWI Prolog [Wielemaker et al. 2012], and some parser generators [Thiemann and Neubauer 2008].
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other syntactic forms. Procedural macro systems allow programmers to use arbitrary host-language
code to define these rewritings. At compile-time, a macro expander traverses the program and
iteratively applies applicable rewritings until all syntax has been expanded to the core language.

This section introduces Racket’s macros, the basics of its macro expander, and the kind of macro-
based, extensible DSLs we imagine. In particular, we highlight the features that such DSLs should
inherit.

2.1 Macros in Racket

In Racket, programmers define macros using define-syntax:

(define-syntax <racket-id> <racket-exp>)

The expression on the right is evaluated at compile time to obtain a transformer procedure, which
the macro expander associates with the macro name on the left in a compile-time environment.
Transformer procedures receive syntax objectsÐS-expressions enhanced with scope (and other)
informationÐrepresenting uses of macros and return syntax objects representing their expan-
sions. When the expander encounters a syntax object beginning with <racket-id>, it applies the
transformer procedure and resumes the expansion process with the replacement syntax.

1 #lang racket match-list.rkt

2 (provide match-list)

3 (require (for-syntax syntax/parse))

4

5 (define (match-list-error) (error 'match-list "expected a pair or empty list"))

6

7 (define-syntax match-list

8 (lambda (stx)

9 (syntax-parse stx

10 [(_ e:expr [() null-body ...+] [(a:id d:id) pair-body ...+])

11 #'(let ([v e])

12 (cond [(null? v) null-body ...]

13 [(pair? v) (let ([a (car v)] [d (cdr v)]) pair-body ...)]

14 [else (match-list-error)]))])))

1 #lang racket example.rkt

2 (require "match-list.rkt")

3 (define (append l1 l2)

4 (match-list l1

5 [() l2]

6 [(head rest) (cons head (append rest l2))]))

Fig. 2. A simple pattern matching macro

Figure 2 defines a sample macro for pattern-matching lists in match-list.rkt and a module
example.rkt that imports the macro and uses it. Transformer procedures may use the full Racket
language, including previously defined language extensions and DSLs. The match-list transformer
uses the syntax-parse DSL, which provides a declarative syntax transformation system. Simple
macros such as match-list are usually written declaratively, but syntax-parse also allows more
sophisticated macros to mix procedural and declarative code.
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The pattern on line 10 looks much like a use of the macro. Actual subexpressions are represented
by pattern variables that are annotated with syntax classes such as expr and id. These syntax
classes indicate that these positions must contain Racket expressions and identifiers, respectively.
The ...+ ellipses indicate that one instance or more of the preceding pattern are expected. Together
these annotations allow syntax-parse to automatically issue descriptive syntax errors.
The template on lines 11ś14, introduced by #', combines literal syntax and syntax bound to

pattern variables into the replacement syntax. Ellipses in the template replicate the preceding
portion of the template once for each value in the sequence bound by corresponding pattern
variables with ellipses.

Macros that Work Together. Racket’s macro system allows macros to cooperate in order to
implement extensions that go beyond syntactic shorthands. For example, Racket’s web server
language [McCarthy 2010] implements serializable continuations by transforming servlet code.
Racket’s extensibility means that such transformations cannot directly process surface syntax.
Instead, they must first must apply the expander to eliminate all uses of syntax extensions, and
then transform the core language code. Racket’s local-expand API allows macros to reflectively
invoke the expander for this purpose.

Other language extensions require the exchange of static information among macros. In support
of this need, Racket’s define-syntax may associate compile-time identifiers with arbitrary data
and macros may retrieve this data as needed. For example, match needs to know the field names
that a struct definition introduces so that it can validate struct patterns; hence, the latter macro
deposits the list of names in the compile-time environment for use by the former.

Reliable macros. Two key features of Racket’s macro system ensure that macros work reliably:
hygiene and phases. A macro transformation demands mutual substitution of syntax from the
definition-site and use-site of the macro. The use of naive substitution would not preserve lexical
scoping. Instead, Racket uses the łsets of scopesž model [Flatt 2016], which preserves lexical scope
through macro transformations. Consider this use of match-list:

(let ([v #t] [match-list-error #f])

(match-list l [() match-list-error] [(first rest) v]))

It naively expands to:

(let ([v #t] [match-list-error #f])

(let ([v l])

(cond [(null? v) match-list-error]

[(pair? v) (let ([a (car v)] [d (cdr v)]) v)]

[else (match-list-error)])))

The temporary variable v introduced by the macro appears to capture the reference v from the
use-site, and the use-site binding of match-list-error appears to capture the reference to the
helper procedure defined in match-list.rkt. Hygienic expansion automatically ensures that the
references refer to the intended bindings.

Phases. Expansion requires evaluating transformer code. Racket is careful to isolate this compile-
time evaluation from run-time evaluation via phase separation. Different phases cannot share
bindings or values, which ensures that separate compilation works reliably [Flatt 2002]. Programs
can import libraries for use in compile-time code using the for-syntax form of require, as in
line 3 of figure 2, and define compile-time code locally within begin-for-syntax blocks.
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2.2 Racket’s Macro Expander

Racket programs are first processed by the reader, which parses parenthetical structure, symbols,
and literals to produce a syntax object. The macro expander implements the remainder of the
language’s front-end and module system. It accepts modules that define and use macros, and
produces syntax in a fixed core language. The Racket compiler, debugging tools, and static analyses
process only the core language.
The expander traverses syntax, records macro definitions, and expands macro applications.

Because the syntax is extensible and macro definitions may shadow any name, the expander
recognizes syntactic forms via the compile-time environment.

To ensure hygiene, the expander annotates syntax with scope tokens and resolves names accord-
ing to the scope sets model [Flatt 2016]. At scoping forms2, the expander annotates the body with
a unique scope. At macro uses, the expander attaches one scope to syntax from the use-site and
another to syntax generated by the macro. According to the scope sets resolution rule, a reference
may refer to bindings whose scope sets are a subset of the scopes attached to the reference. Among
those bindings, one shadows the others when its set is a proper superset of the others’.

1 (let ([v{example.rkt, let1} #t] [match-list-error{example.rkt, let1} #f])

2 (let ([v{match-list.rkt, macro, let2} l])

3 (cond [(null? v) match-list-error{example.rkt, let1, use-site, let2}]

4 [(pair? v{match-list.rkt, macro, let2})

5 (let ([a (car v)] [d (cdr v)]) v{example.rkt, let1, use-site, let2, let3})]

6 [else (match-list-error{match-list.rkt, macro, let2})])))

Fig. 3. Scope set annotations for macro hygiene

Figure 3 annotates the match-list example from above with set superscripts showing the
scopes applied by the expander. The macro scope on the macro-introduced v (line 2) prevents
it from capturing the use-site v (line 5) that lacks this scope. Similarly the use-site scope on the
match-list-error binding (line 1) means it does not capture the macro-introduced reference
(line 6).

2.3 Hosted DSLs

Full-fledged DSLs extending Racket naturally arise from the use of procedural macros; we call these
hosted DSLs. An interface macro connects the DSL with Racket. It invokes a DSL compiler, written
as compile-time code. This compiler parses, analyzes, and optimizes DSL syntax before it generates
target-language syntax.
Figure 4 illustrates the idea with the example of Racket’s pattern matching DSL. The interface

macro, match, invokes the DSL compiler, compile-pattern-matrix, to generate an optimized
sequence of conditions. The macro uses define/syntax-parse to bind the clause pattern variable
to the compiler’s output and integrates the conditions into a cond expression. The DSL thus exploits
standard pattern-matching compilation research, such as Augustsson [1985]’s implementation, plus
additional optimizations now found in OCaml [Le Fessant and Maranget 2001; Maranget 2008].
This paper is concerned specifically with hosted DSLs, but there are other styles of DSL imple-

mentation using macros. Section 10 provides a comparison.

2It is important to distinguish between scoping forms such as Racket’s block and binding forms such as Racket’s define

when implementing macro hygiene for a language that supports macro-abstraction over binding forms.
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(begin-for-syntax

(define (compile-pattern-matrix scrutinee patterns bodies)

#| elided |#))

(define-syntax match

(lambda (stx)

(syntax-parse stx

[(_ expr [pat body] ...)

(define body-list (syntax->list #'(body ...)))

(define pats-list (stx-map parse-pattern #'(pat ...)))

(define/syntax-parse (clause ...)

(compile-pattern-matrix #'val pats-list body-list))

#'(let ([val expr])

(cond clause ... [else (error 'match "no clause matched")]))])))

Fig. 4. match interface macro and DSL compiler

3 AN ARCHITECTURE FOR EXTENSIBLE DSLS

This section presents an architecture for making hosted DSLs macro-extensible. The basic idea
is to augment the DSL compiler’s parser with a macro expander. Because the DSL compiler runs
within the context of host-language macro expansion, we can provide an API that allows the DSL
expander to reuse key elements of the host macro system. This arrangment allows macro-extensible
DSLs to integrate tightly with the host language and other DSLs. Nevertheless, these DSLs can
provide custom syntax, scoping and binding rules, static checks, and compiler optimizations just as
standard hosted DSLs do.
Each DSL requires an expander that is specific to the DSL’s syntax and static semantics. The

expander is responsible for issuing syntax errors, so it must understand the core grammar of the
DSL. Macro hygiene requires interleaving expansion steps with binding analysis, so the expander
must understand the DSL’s scoping and binding rules. Finally, each DSL offers macro extensibility
at particular points in its grammar, and may support a relationship between extensions and the
DSL’s static semantics.
One concern common to all DSL expanders is management of bindings. Not only does each

language need to maintain a binding table and support hygienic name resolution, this information
must be shared among all languages if they are to freely intermingle. Therefore, all expanders
directly reuse the binding table, representation of scoped syntax, and module system provided by
the host language, just as ordinary macros do. Another concern is source-location tracking, which
allows errors in expanded code to be reported in terms of the surface syntax. DSL expanders inherit
source-location tracking via reuse of host-langauge syntax objects.

syntax, scopes, compile-time environment, module system

Racket PEG miniKanren Rash
command 

line
types …Expanders:

Common layer:

Fig. 5. A common syntax system shared by the Racket and DSL expanders

These requirements naturally lead to the two-layered architecture shown in figure 5. A language-
agnostic system of syntax, scope, binding, and modules is shared by all languages. A specialized
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macro expander for each language traverses the DSL syntax and creates the appropriate scopes
and bindings in the shared system. The shared layer is part of the base system (outlined in black)
and is reflected into Racket as an API that compile-time code (outlined in green) uses to implement
DSL macro expanders. While the Racket expander is implemented using the shared layer, it must
be part of the base system in order to bootstrap the other expanders.
This separation between the two layers is already partially reflected in the macro expander’s

compile-time API [Flatt 2016; Flatt et al. 2012], which provides both low-level access to syntax
objects and binding tables and high-level access to the Racket expander. However, the existing
API focuses on macros that add individual features to Racket, and it intertwines Racket-specific
elements with the language-agnostic syntax system.

We contribute a new API which is designed to support the creation of DSL-specific expanders.3 It
completes the set of tools needed to implement DSL expanders at the right level of abstraction. The
API operations support name binding, reference resolution, scoping, macro application, and phased
evaluation. Together they use the set of scopes model to implement macro hygiene. Critically, the
new API is language-agnostic. It does not bake-in assumptions specific to Racket’s core language.

The following sections introduce the details of our new API and architecture in the context of a
running example. We return to further discuss the rationale behind our new API design and its
innovations over Racket’s previous expander API in section 7.

4 PARSING EXPRESSION GRAMMARS AS A HOSTED DSL

This section illustrates our architecture with the case study of a Parsing Expression Grammar (PEG)
DSL. Ford [2004] introduced PEGs as an alternative to context free grammars that avoids ambiguity
by relying on prioritized choice between alternatives. This section presents PEGs as a hosted DSL
integrated with Racket. It also discusses the static semantics and optimizations offered by its DSL
compiler. Finally, it extends the PEG DSL via macros.

4.1 PEG Syntax as an Extension to Racket

Figure 6 specifies the grammar of the PEG DSL and its interface to Racket. Figure 7 demonstrates
its use with a fragment of a PEG parser for Python.4The DSL can parse text from a string or tokens
from a list. Here the example parses a list of tokens represented as Racket string and number
values. The first line of the example imports the DSL library, making its syntax and runtime support
available within the module.

Parsing requires recognizing elements from a token stream and constructing a syntax tree. In our
PEG DSL the basic expressions recognize patterns of tokens such as sequences (seq), alternatives
(alt), and repetition (*). Semantic actions (=>) use Racket expressions in order to construct abstract
syntax as Racket data. As illustrated in figure 7, PEG non-terminals such as arith-expr are defined
in Racket modules alongside Racket structures and functions such as left-associate-binops.
Thus the syntax of Racket and the PEG DSL integrate in two ways: PEG non-terminal definitions
live in Racket modules, and Racket expressions are embedded in PEG’s semantic actions.

3Our current implementation uses low-level tricks to build the new API on top of the existing Racket macro API by extracting

the behaviors we need from existing operations. We chose this implementation strategy to avoid changes to the core Racket

implementation. While our API does not strictly provide new expressive power, it supports behaviors that the existing API

design did not intend. In a from-scratch design, the expander would provide our API directly or would provide direct access

to the low-level set of scopes primitives to allow our API to be built cleanly as a library.
4This example is motivated by projects that implement Python atop Racket in order to take advantage of Racket’s pedagogical

tools [Ramos and Leitão 2014], explore cross-language interoperability [Meunier and Silva 2003], and investigate Python’s

semantics [Politz et al. 2013].
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<racket-def> := ... | (define-peg <nonterminal-id> <peg>) (interface macro)

<racket-exp> := ... | (parse <nonterminal-id> <racket-exp>) (interface macro)

<terminal-literal> := <string> | (token <racket-exp>) | ...

<nonterminal-id> := <identifier>

<peg> := <nonterminal-id> nonterminal reference

| eps empty match

| <terminal-literal> terminal

| (seq <peg> <peg>) sequence

| (alt <peg> <peg>) ordered choice

| (* <peg>) zero or more

| (! <peg>) negative lookahead

| (: <racket-id> <peg>) parse variable binding

| (=> <peg> <racket-exp>) semantic action

Fig. 6. PEG DSL syntax

Name bindings are key to the interaction between the two languages. PEG non-terminal bindings
may be used with require and provide of Racket’s modules to import and export PEG non-
terminals alongside other Racket bindings such as those for functions. Parse variables mediate
between the parts of semantic actions: PEG binding expressions (:) in the parser part bind parse
variables that can be referred to in the Racket action expression. These variables contain the result
of the semantic action for the corresponding PEG subexpression, or if the binding occurs nested
within repetition expressions (*), the variable contains lists of results nested to the same depth. For
example, the parse variable e* in figure 7 contains a list of semantic-action results from parsing all
but the first subexpression of the arithmetic expression, a term.

#lang racket

(require peg)

(struct binop-ast [lhs op rhs])

(define-peg term #| elided #|)

(define-peg arith-expr

(=> (seq (: e1 term) (* (seq (: op* (alt "+" "-")) (: e* term))))

(left-associate-binops e1 op* e*)))

(define (left-associate-binops e1 op* e*)

(foldl (lambda (op e base) (binop-ast base op e))

e1 op* e*))

(parse arith-expr '(1 "+" 2 "-" 3))

;; evaluates to:

;; (binop-ast (binop-ast 1 "+" 2) "-" 3)

Fig. 7. Fragment of a PEG parser for Python arithmetic expressions

Although the lexical syntax uses S-expressions, the DSL is not embedded in Racket’s syntactic
forms. Instead it adds the new syntactic category of PEG expressions, and extends Racket’s definition
and expression categories via the define-peg and parse interface macros, respectively. The two
languages cannot be freely intermixedÐwriting a Racket expression where a PEG expression is
expected leads to a compile-time error message describing the mistake. Similarly, PEG non-terminal
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bindings belong to a separate category from Racket variable bindings, and referring to a Racket
variable in a PEG expression or vice versa leads to a compile-time error.

4.2 PEG Static Semantics

The PEG DSL has a custom static semantics. Its DSL compiler rejects left-recursive non-terminals.
Parsing with left-recursive PEGs may fail to terminate. Consider this alternate expression of the
arith-expr non-terminal:

(define-peg arith-expr-leftrec

(alt term

(=> (seq (: e1 arith-expr-leftrec) (: op (alt "+" "-")) (: e2 term))

(binop-ast e1 op e2))))

Parsing with this definition correctly accepts arithmetic expressions because the term alternative
is attempted before the left recursion, but loops forever if the term alternative never matches.
Without the static check it would be easy to write buggy code. Because non-terminal definitions
may be mutually recursive, checking for left recursion involves a fixed point computation across
all the definitions in a module. Because a parser may be composed of non-terminals defined
in different modules, the left-recursion check must communicate information between separate
module compilations.
Static checks are most useful to programmers when their IDE provides feedback as they type.

Racket’s macro system integrates tightly with its IDE, DrRacket, and this extends to hosted DSLs.
Here DrRacket uses the DSL’s static semantics to highlight the specific non-terminal references
which create the left recursion, as soon as the definitions are complete.

4.3 PEG Compilation and Optimization

The PEG DSL’s compiler performs optimizations. For example, scannerless parsers often include
non-terminals that consist of a choice among fixed character sequences, as in this definition of
Python comparison operators:

(define-peg comp-op

(alt "==" ">=" "<=" "<" ">" "!=" "in" "not" "is"))

Naive execution must check every alternative and backtrack as needed. A proper compiler for
the PEG DSL can use binary search and a single backtrack point. Note that this optimization
applies for our DSL only when parsing text, not tokens. As illustrated in section 8.2, the DSL is
designed to integrate with arbitrary token representations. These may lack the operations needed
to support the binary search optimization. A variety of other optimizations have been proposed
in previous work on PEGs [Grimm 2004], and our approach can accommodate many of them.
These optimizations rely on analyzing and transforming DSL syntax, so it is important that our
architecture for extensibility allows DSL compilers to assume a fixed core language.

4.4 PEG Macros

Built with our architecture, the PEG DSL is naturally macro-extensible. It uses macros to implement
features that are abbreviations over terms of the core language. For example, the DSL includes a
(? e) expression indicating an optional element of a sequence, and it expands to (alt e eps).

PEG DSL users can also define macros to create syntactic sugar for commonly-seen patterns in
their parser definitions. For example, the Python grammar includes many non-terminals such as
arith-expr for binary and prefix operators, structured to encode operator precedence. Thiemann
and Neubauer [2008] propose using grammar macros to simplify such definitions. The binops
macro captures the pattern for parsing binary operators:
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(define-syntax binops

(peg-macro

(lambda (stx)

(syntax-parse stx

[(_ op-e subexpr-e)

#'(=> (seq (: e1 subexpr-e) (* (seq (: op* op-e (: e* subexpr-e)))))

(left-associate-binops e1 op* e*))]))))

The peg-macro constructor indicates that the macro is intended to extend the PEG language.
Using the macro in another context, such as a Racket expression position, results in a syntax error.
Otherwise the macro is defined in just the same way as a Racket macro: as compile-time Racket
code using the syntax-parse DSL. PEG expressions generated by PEG macros can contain Racket
subexpressions, and macro hygiene works for cross-language bindings such as e1 and e*.

Of course, the verbose combination of define-syntax, peg-macro, lambda, and syntax-parse
is boilerplate and calls for a syntactic abstraction: define-peg-syntax-parser. With it, The
binops macro may be expressed more concisely as:

(define-peg-syntax-parser binops

[(_ op-e subexpr-e)

#'(=> (seq (: e1 subexpr-e) (* (seq (: op* op-e (: e* subexpr-e)))))

(left-associate-binops e1 op* e*))])

Togther with a similar macro for prefix operators, the binops macro allows for concise specifica-
tion of precedence hierarchies:

(define-peg or-test

(binops "or"

(binops "and"

(prefix "not"

(binops comp-op

expr)))))

The PEG DSL also provides a local-expand-peg procedure much like Racket’s local-expand
procedure, which allows PEG macros to reflectively expand and then operate on PEG syntax. More
elaborate extensions to the PEG DSL appear in section 8.

5 A MACRO SYSTEM FOR THE PEG DSL

The implementation of the PEG DSL of the preceding section rests on our new architecture
and syntax system API. It couples a custom DSL macro expander with a conventional compiler
architecture. This section explains the PEG DSL implementation and, in parallel, introduces the key
elements of our new API. For clarity, the latter are presented in shaded boxes, to set them apart
from the explanation of the implementation.
DSL expanders act just like the Racket expander: they check that DSL syntax is well formed,

attach scopes, create bindings, check references, and apply macro transformers. Figure 8 sketches
the expander for the PEG DSL. It illustrates how these functions are realized using our new API to
Racket’s syntax system. In general, a DSL expander is structured as a collection of compile-time
functions, one per syntactic category of the DSL. Each of these functions handles the core forms
and extensibility points of that syntactic category. The PEG DSL comes with only one new syntactic
category (peg). Its expander thus has one expand function: expand-peg. The function accepts
syntax objects that represent terms in the extensible language and returns syntax objects that
represent programs using only core DSL forms. Its definition may reuse the syntax-parse DSL
because our architecture shares host-language syntax objects.
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1 (define-literal-forms peg-literals

2 (: => eps seq alt * + token))

3

4 (begin-for-syntax

5 (struct peg-non-terminal [])

6 (struct peg-macro [transformer])

7

8 ; (-> syntax? syntax?)

9 (define/hygienic (expand-peg stx) #:definition

10 (syntax-parse stx #:literal-sets (peg-literals)

11 [nonterm-name:id #:when (lookup #'nonterm-name peg-non-terminal?)

12 #'nonterm-name]

13 [(: var-name:id subexp:peg)

14 (define/syntax-parse subexp^ (expand-peg #'subexp))

15 (define/syntax-parse var-name^ (bind! #'var-name (racket-var)))

16 #'(: var-name^ subexp^)]

17 [(=> subexp:peg action:expr)

18 (with-scope sc

19 (define/syntax-parse subexp^ (expand-peg (add-scope #'subexp sc)))

20 (define/syntax-parse action^ (local-expand (add-scope #'action sc)))

21 #'(=> subexp^ action^))]

22

23 ;; elided cases for eps, seq, alt, *, +, token, peg-datum

24

25 [(macro-name:id rest ...) #:when (lookup #'macro-name peg-macro?)

26 (define transformer (peg-macro-transformer (lookup #'macro-name peg-macro?)))

27 (expand-peg (transformer stx))])))

Fig. 8. Sketch of the PEG DSL expander

In order to produce expanded syntax, the cases for each core language form recursively expand
their subexpressions and reconstruct the core form using the expanded subexpressions. The ex-
pander uses structural recursion, calling expand-peg for PEG subexpressions, and local-expand

for Racket subexpressions. For example, the clause for (=> <peg> <racket-exp>) expands its
PEG subexpression on line 19 and its Racket action expression on line 20. The code follows the
convention of using a name such as subexpˆ to refer to the expanded version of an expression
subexp. The final part of each clause uses a #' template to reconstruct the core form with the
expanded subexpressions.

Recognizing Syntax. Expand functions use syntax-parse both to identify the core form or macro
application being expanded and to provide error messages for incorrect syntax. Syntax class
annotations such as expr and peg help provide informative syntax errors. Definitions of these
syntax classes (not shown) provide the text that syntax-parse uses to describe the expected syntax.
Like Racket users, DSL users can replace core language forms with macros by shadowing their

names. This possibility complicates the task of recognizing core forms. The expander cannot simply
match the symbolic name of the identifier at the head of an expression to determine whether it
corresponds to a core form. Instead, it consults the compile-time environment for the binding of
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that identifier. This design allows core forms to be exported and imported by modules, shadowed,
and renamed.
Thus, core forms must have compile-time environment bindings just as macros do. Whereas

environment bindings for macros contain the transformer procedure, only the identity of bindings
for core forms is meaningful; they do not contain any information.

(define-literal-forms litset-name:id (form-name:id ...+))

The define-literal-forms syntax defines a core form binding for each form-name. It also
defines a literals set litset-name, containing the form-name identifiers. Literals sets specify
names that syntax-parse should match according to their binding, rather than treat as pattern
variables when they appear in patterns.

Line 1 of figure 8 uses define-literal-forms to create bindings for the PEG core forms, along
with the peg-literals literals set which expand-peg uses to recognize the core forms via their
environment bindings. In figure 8, the : and => symbols in the patterns for the second and third
clauses match this way.

The Compile-time Environment. The PEG language includes bindings for parse variables, non-
terminals, and PEG expression macros. Parse variables bind information for use in Racket action
expressions, so they are represented as Racket variable bindings using the racket-var datatype
provided by our API. Non-terminals and PEG expression macros are new kinds of bindings specific
to the PEG DSL and therefore need new datatypes for their representation in the compile-time
environment. Lines 5 and 6 of figure 8 define appropriate structure types. The structure types
are used at compile time, so they are defined within a begin-for-syntax block. Non-terminal
bindings have no associated comple-time information, so the structure type has no fields. Macro
bindings store the transformer procedure.
The PEG expander creates parse variable bindings so that the Racket expander can check

references in action expressions. The define-peg macro creates non-terminal bindings (sec. 5.1).
DSL users create macro bindings directly, using define-syntax together with the peg-macro

datatype constructor. The PEG expander checks references to non-terminals, ensuring they have a
corresponding binding. The PEG expander also relies on PEG macro bindings to find the macro
transformers needed for macro expansion.

(bind! name value) -> identifier?

The bind! procedure creates a binding with an associated value in the compile-time environ-
ment. It returns a new binding identifier for the DSL expander to use in place of the original in
the fully-expanded program.

(lookup name predicate) -> (or/c #f any/c)

The lookup procedure looks for a binding of the given identifier in the compile-time environ-
ment. If the value stored in the compile-time environment satisfies the given predicate, the
value is returned. If the name is unbound or fails to match the predicate, lookup returns #f.

Non-terminal references are checked on line 11 of figure 8. There, the expander looks up iden-
tifiers in the compile-time environment and checks that they are bound to an instance of the
peg-non-terminal datatype. Parse variables are bound to an instance of the racket-var datatype
in the clause for the (: <id> <peg>) binding form, on line 15.
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Implementing Scope with Scope Sets. The (=> <peg> <racket-exp>) PEG core form exemplifies a
form that introduces scope. Just like the Racket expander, the PEG expander implements scope
by attaching scope objects to syntax. The sets of scopes attached to bindings and references
subsequently determine how references are resolved.

(with-scope v:id body ...)

(add-scope syntax scope) -> syntax?

The with-scope syntax introduces a scope. It binds the identifier v to a new scope object,
which should be attached to syntax objects that originate within the (conceptual) scope using
the add-scope procedure. Bindings created within the with-scope body are available for
reference via lookup during the body’s dynamic extent.

Line 18 of the expander creates a new scope, line 19 applies the scope to the PEG subexpression
which may contain parse variable bindings, and line 20 applies the scope to the Racket action
expression which may refer to those bindings. Because of the scope, the parse variable bindings are
only visible within this => form and not in other action expressions elsewhere in the overall PEG
expression.

Hygienic Macro Expansion. The final clause in figure 8 expands PEG macro applications. On line 25
it consults the compile-time environment to check whether the initial identifier is bound as a macro.
If it is, line 26 extracts the macro transformer from the environment. Finally, line 27 applies the
transformer and continues expansion with the result.

(define/hygienic (name:id arg:id ...) ctx-type body ...)

ctx-type := #:expression | #:definition

The define/hygienic syntax defines a compile-time function for which invocations are
hygienic. That is, names generated during the function call are fresh and do not inter-bind
with names from the function call’s context. The ctx-type specifies whether the hygiene
mechanism should consider syntax expanded during calls to this function as belonging to
an expression or a definition context. In a definition context, a define-like form may add a
binding to a surrounding scope. In an expression context, bindings are always contained within
a nested scope. The set of scopes hygiene model manipulates scopes differently depending on
the type of context [Flatt 2016, 3.4].

The entire PEG DSL expander is defined using define/hygienic, which ensures that every
application of expand-peg is hygienic. It is useful to apply hygiene to the entire macro expander
rather than only the macro application clause. This ensures that any rewriting rules that are built
into the expander are automatically hygienic just as macro-based extensions are.

5.1 The Boundary Between DSLs and Racket

The define-peg and parse interface macros apply the DSL expander and compiler to generate
Racket code. The define-peg definition form must also integrate with Racket’s module system to
support separate compilation, mutually recursive definitions, and whole-module static checks such
as left-recursion detection.
The (simplified) definition of define-peg in figure 9 illustrates how to account for several

of these concerns. Line 5 expands the PEG expression and line 6 invokes a compiler from PEG
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expressions to Racket, peg->racket. The expansion includes a Racket definition that binds the
generated identifier compiled-nonterm-name to refer to the compiled expression.

1 (define-syntax define-peg

2 (lambda (stx)

3 (syntax-parse stx

4 [(_ nonterm-name:id rhs:peg)

5 (define/syntax-parse rhs^ (expand-peg #'rhs))

6 (define/syntax-parse rhs-compiled (peg->racket #'rhs^))

7 #'(begin

8 (define compiled-nonterm-name rhs-compiled)

9 (define-syntax nonterm-name (peg-non-terminal))

10 (begin-for-syntax

11 (symbol-table-set! compiled-non-terminals

12 #'nonterm-name #'compiled-nonterm-name)))])))

Fig. 9. Sketch of the define-peg macro, which integrates the PEG DSL with Racket’s module system

Separate Compilation. In order to support the expansion of non-terminal references, define-peg
must add an entry to the compile-time environment. And to support the compilation of references
to the non-terminal, it needs to record the association between the non-terminal name and the
generated identifier that compiled code uses to refer to the compiled parser. It is not enough for
this compile-time information to be available during the expansion of the current module, however.
PEGs in other separately compiled modules may refer to the definition.

The define-peg macro must leave behind code in the fully-expanded module that reconstructs
the compile-time information when needed by other modules. Racket’s module system re-installs
bindings created by define-syntax and re-evaluates code within begin-for-syntax blocks
each time a module is loaded during the expansion of another module [Flatt 2002]. As such,
the define-peg macro expands to define-syntax to bind the name as a non-terminal in the
compile-time environment (line 9) and a begin-for-syntax block that updates a symbol table
associating non-terminal names with compiled parser names (lines 10-12).

Multiple Passes of Module Expansion. Figure 9 is a simplified sketch. The complete definition
splits the work of define-peg into several whole-module passes to support mutual recursion and
the left-recursion check. The first pass simply establishes the compile-time environment binding
indicating that a name refers to a non-terminal. This allows expansion of the PEG expressions
to check non-terminal references. The final pass checks for left recursion in the fully-expanded
definitions and compiles them to Racket code. The implementation of define-peg creates these
separate passes using a hook provided by Racket’s module system5 to add syntax at the end of the
module. Racket expands the new syntax after all other previously-existing module syntax.

Exporting the Language as a Library. Finally, the DSL library must export the DSL core form names,
interface macros, and local expansion procedure:

(provide : => eps seq alt * + token parse define-peg

(rename-out [expand-peg local-expand-peg]))

5We use the procedure syntax-local-lift-module-end-declaration.
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In this case we directly provide the expand-peg procedure as the local-expand-peg API for PEG
macro programmers. A more complex DSL expander might provide a local expansion procedure
that validates arguments or fixes initial values for expander parameters related to static semantics.

6 A RECIPE FOR DSL EXPANDERS

The construction of a DSL expander proceeds directly from the DSL’s design, extension points,
and interfaces with host languages. To make the connection explicit, we provide a recipe that DSL
authors can follow to implement DSL expanders. Our process begins with a DSL design, up to the
DSL author’s taste:

• a grammar for the core language, with named non-terminals and productions;
• name binding rules, including kinds of names, reference and binding positions for each kind,
and scoping rules;

• extension points, indicating the extensible positions in the grammar and possible interactions
between extensions and the DSL’s static semantics;

• interface points with the host language and other DSLs, specifying how the DSL’s grammar
connects with the grammars of existing languages.

Our introduction of the PEG DSL in section 4 illustrates each of these design elements.
Given a design, the author follows our recipe to turn it into code. Each step below points back to

its corresponding description in the PEG DSL implementation of section 5:

(1) Define bindings for the DSL’s core form names using define-literal-forms (page 11).
(2) Define structure types to represent variable and macro bindings in the compile-time envi-

ronment. Each kind of variable requires a structure type with fields for any information
needed for static checking. Each extensibility point needs a structure type with a field for the
transformer (page 12).

(3) Develop a template of the expander as a collection of mutually recursive compile-time
functions, following the language grammar. Each non-terminal requires an expand function
with a syntax-parse clause parsing each production. Each clause recursively expands the
form’s subexpressions and reconstructs the core form with the expanded results (page 10).
Define the procedures using define/hygienic to ensure hygiene.

(4) Elaborate the template expand functions with code for name binding, reference checks,
and scope. Use lookup to access the compile-time environment and bind! to add bindings
(page 12). Use with-scope to create scope objects and add-scope to annotate syntax with
scopes (page 13).

(5) Add an expansion clause for each extensibility point. Use lookup to access transformer
procedures from the compile-time environment. Apply transformer procedures within a
function defined with define/hygienic to ensure macro hygiene (page 13).

(6) Create macros that form the interface between the DSL and the host or other DSLs. The inter-
face macros should invoke the DSL expander and compiler to generate target code. Module-
level definition forms may integrate with separate compilation by generating define-syntax
declarations for compile-time environment extensions and begin-for-syntax blocks for
symbol table updates that are re-evaluated for each module instantiation (page 13).

(7) Export the language as a library, providing the core form names, interface macros, and expand
functions for macro authors to use for local expansion (page 14).

7 THE DESIGN OF OUR SYNTAX SYSTEM API

As mentioned in section 3, our new syntax system API differs from Racket’s previous expander API
in two important ways. First, it provides high-level operations designed specifically for creating
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DSL expanders. Second, it separates the language-agnostic part of the syntax system from elements
specific to the Racket core language. The key elements of the API are introduced in the shaded
boxes of section 5 above: define-literal-forms, bind!, lookup, with-scope, add-scope, and
define/hygienic. This section discusses the differences in detail for those readers with a thorough
understanding of Racket’s existing expander API.

High-level Syntax Operations for DSL Expanders. The set of scopes model involves many compo-
nents: the binding store, expander environment, outside edge scopes, inside-edge scopes, macro-
introduction scopes, and use-site scopes. The existing Racket macro API provides combinations of
operations on these elements that are too low level for DSL expanders.

Our API provides abstractions that combine the set of scopes primitives to make DSL expander
definitions convenient. In particular, our API simplifies DSL expanders by managing the compile-
time environment implicitly, rather than requiring DSL expanders to pass it as an argument to each
recursion. Furthermore, our API’s operations cooperate to apply inside-edge scopes automatically.
Inside-edge scopes ensure that bindings never capture references found outside of a scoping form,
even if the binding identifier is moved into the scoping form using an intentially-unhygienic macro.

Our API also automatically tracks disappeared bindings and disappeared uses. These are identifiers
that act as bindings or references in the DSL program, but do not appear in the compilation of the
DSL program to Racket. Macros need to provide information about such identifiers in support of
IDE integration. The bind! and lookup procedures automate this task by automatically recording
such information for DrRacket.

Separating Hygienic Expansion from Expansion of Racket Terms. The low-level operation underlying
define/hygienic is the apply-as-transformer procedure:

(apply-as-transformer f ctx-type arg ...) -> any ...

It invokes the procedure f with the arguments arg .... For any arguments and return values
that are syntax objects, it manipulates macro-introduction and use-site scopes in the same manner
as local-expand; this behavior depends on the ctx-type argument. The define/hygienic form
defines a procedure where every call automatically uses apply-as-transformer.

This operation is essential because it provides reflective access to Racket’s hygiene mechanism
in a language-independent way. In contrast, the existing local-expand API requires that macros
eventually expand to Racket core syntax. With apply-as-transformer, DSL expanders can re-use
hygiene while targeting a different core language.

The operation also allows hygienically-applied procedures to take multiple arguments and return
multiple values. This supports DSL expanders and macros that do more than just expand syntax,
such as performing static checks. An extra argument might be a syntax object representing an
expected type, and an extra return value might be a syntax object representing an inferred type.

8 THE POWER THAT COMESWITH EXTENSIBLE DSLS

Macros enable powerful extensions to DSLs that go beyond syntactic sugar. They enable DSL
programmers to create towers of DSLs to allow each program component to be written at the right
level of abstraction. They also allow programmers to customize the syntax of a DSL to smoothly
integrate with other components of their software system [Felleisen et al. 2018].

8.1 Layering DSLs

When designing a DSL, language authors must make a choice along a spectrum of specialization.
A specialized DSL allows the most direct expression of programs within its narrow purview. A
general DSL demands more programming effort in exchange for flexibility. Luckily there is a way
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to escape the tradeoff through towers of multiple DSLs, each at a different degree of specialization.
The most specialized languages are at the top of the tower, and they are implemented by translation
to the layers below. This arrangement allows specialized DSLs to take advantage of the shared
languages at the lower layers [Andersen et al. 2017; Ward 1994].

Extensible DSLs enable another way of using towers of DSLs: programs can combine components
written in DSLs belonging to different layers of the tower to achieve a mixture of concision and
custom behavior. Higher-level DSLs are implemented as macro extensions of the base DSLs, just as
the base DSLs are implemented as extensions to Racket, as illustrated in section 4. The result is
that the syntax and static semantics of DSLs at different layers of the tower are tightly integrated
and programs may mix languages easily.
Parsing tools reflect a spectrum of specialization regarding abstract syntax tree construction.

Some tools automatically construct syntax trees based on the structure of the grammar, whereas
others leave the parser programmer to build syntax trees using semantic actions. Our PEG DSL
uses the second approach so that parsers can construct syntax trees corresponding to the structure
of the grammar even when left factoring requires a reorganization. For example, the arith-expr
semantic action constructs a left-associated syntax tree.

In other cases, however, the PEG closely matches the structure of the parsed language. Consider
an abstract syntax definition and parser for Python’s raise form. Assume the additional feature of
propagating source locations from tokens to ASTs:

(struct raise-ast ast [exn from]) ; a structure with a super type, `ast`

(define-peg raise

(=> (:src-span srcloc

(seq "raise" (? (seq (: exn test) (? (seq "from" (: from test)))))))

(raise-ast srcloc exn from)))

The new :src-span PEG form captures a source location description spanning the first and last
tokens parsed by the interior PEG. In this example, the parse variable bindings in the PEG correspond
exactly to the fields of the structure used for the abstract syntax tree: exn and from. Other statements
in the Python grammar such as return and assert exhibit a similar correspondence.
Parsing these forms is more convenient with a DSL that automatically constructs syntax trees

based on the parse variable bindings in the grammar. Such a specialized DSL is easily realized as a
define-peg-ast macro atop the PEG DSL. With the extension, the raise parser becomes

(define-peg-ast raise raise-ast

(seq "raise" (? (seq (: exn test) (? (seq "from" (: from test)))))))

This defines both the raise-ast structure with exn and from fields, and the raise PEG non-
terminal. Source locations propagate into the AST automatically. A complete Python parser can
use a mixture of define-peg-ast for syntactically simple non-terminals and define-peg for
non-terminals that require specialized processing.

Implementation. Figure 10 shows the definition of the define-peg-ast macro. It simultaneously
defines a structure type to represent abstract syntax (ast-name) and a PEG parser non-terminal for
parsing the concrete syntax (peg-name). The field names for the structure type are inferred from
parse variable bindings in the PEG expression, such as exn and from in the example above.

To implement this behavior, the macro transformer must discover the variable bindings within
the given PEG expression p. It cannot analyze the syntax directly because p may contain macro
uses, so it invokes local-expend-peg to obtain expanded syntax that uses only the core language.
It can then use a procedure find-parse-var-bindings (not shown) to walk the expanded core
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AST and build a list of binding variable names. In the template, the names are used as the field
names of a struct definition and as parse variable references in the semantic action.

(struct ast [srcloc])

(define-syntax define-peg-ast

(lambda (stx)

(syntax-parse stx

[(_ peg-name:id ast-name:id p:peg)

(define/syntax-parse (var ...) (find-parse-var-bindings (local-expand-peg #'p)))

#'(begin

(struct ast-name ast [var ...])

(define-peg peg-name

(=> (:src-span srcloc p) (ast-name srcloc var ...))))])))

Fig. 10. Implementation of define-peg-ast

8.2 Integrating with Other Components

Any given DSL addresses only one domain of the many involved in creating a large, complex
software system. It is thus essential that each DSL provide programmers with tools to integrate it
with other program components. Using macros, programmers can customize the syntaxes of DSLs
to integrate with other parts of their program.
Consider the integration of the PEG-based Python parser with a Python lexer written in plain

Racket. To allow integration with any lexer, the PEG DSL does not fix a specific token representation.
Instead, programmers provide a Racket predicate which the parser uses to recognize tokens. For
example, our Python lexer represents keyword tokens as structures:

(struct keyword-token [name])

To integrate the PEG DSL with this token representation, we first write a function that generates
predicates matching keyword-token structs whose name field is equal to a given value:

;; (-> string? (-> any/c boolean?))

(define (keyword expected-name)

(lambda (t)

(and (keyword-token? t) (equal? (keyword-token-name t) expected-name))))

The PEG DSL provides a (token <racket-exp>) syntax for parsing tokens. The Racket expression
argument provides the predicate the parser uses to recognize tokens. Thus the following PEG
expression matches Python return statements:

(seq (token (keyword "return")) (? (: exp testlist-star-expr)))

This integration via Racket procedures is effective, but also syntactically verbose. Macros permit
customization of the syntax of the PEG DSL to improve integration with the Python lexer in two
ways. First, we can repurpose string literal syntax to match keywords concisely:

(seq "return" (? (: exp testlist-star-expr)))

Second, we can raise compile-time syntax errors for misspelled keywords by checking against a list
of Python keyword names.

Implementation. Figure 11 shows the implementation of a PEG macro that adds these features to
our DSL. The macro takes advantage of an interposition point to change the meaning of string
literals. These special extensibility points allow macros to change the meaning of elements of DSL
syntax that lack explicit names, such as function application or literal syntax for datums such as
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strings and numbers. The PEG DSL offers the #%peg-datum interposition point to allow users to
change how string literals are interpreted.

This implementation of #%peg-datum first checks that the string corresponds to an actual Python
keyword name. Then it expands to a use of the token PEG expression syntax with a token-matching
function constructed by the keyword function. In order to identify valid Python keywords, the
macro uses a python-keyword-list provided by the lexer.

(require (for-syntax python-lexer))

(define-syntax #%peg-datum

(peg-macro

(lambda (stx)

(syntax-parse stx

[(_ s:string)

(unless (member (syntax-e #'s) python-keyword-list)

(raise-syntax-error #f "Invalid keyword token" #'s))

#'(token (keyword 's))])

Fig. 11. Changing the meaning of string literals in PEG expressions to match keyword tokens

9 EVALUATION

A new architecture of an essential part of a programming language calls for a systematic evaluation.
This section describes our re-implementations of four existing DSL front-ends and how each DSL
benefits from the new architecture.

9.1 Corpus

miniKanren. The miniKanren constraint logic DSL is used for teaching [Friedman et al. 2018] and
program synthesis research [Byrd et al. 2017]. It has been implemented as an embedded DSL in
many host languages. Here is an example of a relation between two lists l1 and l2 and their
concatenation l3, written in a Racket implementation of miniKanren:

(defrel (append l1 l2 l3)

(disj

(conj (== l1 '()) (== l2 l3))

(fresh (first rest result)

(conj (== (cons first rest) l1)

(== (cons first result) l3)

(append rest l2 result)))))

The defrel syntax defines a relation, disj is logical disjunction, conj is logical conjunction, fresh
creates new logic variables, and == is a unification constraint. Racket programmers can query the
relation for instantiations of logic variables using run. For example, the following query finds three
instantiations of l1 and l2 such that their concatenation is ’(1 2):

(run 3 (l1 l2) (append l1 l2 '(1 2)))

=> ;; evaluates to

(((1 2) ()) ((1) (2)) (() (1 2)))

An exciting application of miniKanren employs relations that define programming language inter-
preters to synthesize programs that satisfy input-output examples.
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Rash. Rash is a shell language and REPL that integrates tightly with Racket [Hatch and Flatt 2018].
It is used much like an ordinary Unix shell, but its pipelines work with arbitrary Racket objects in
addition to text streams and may include Racket code. A user could employ Rash to process a CSV
file representing bank records to compute the amount of money spent:

> cd ~/finances

> cat purchases.csv |> csv->list |> rest |> map fourth \

|> map string->number |> apply +

835.10

The first REPL interaction is a shell command to change to the directory where the CSV is stored.
The second line begins by executing the Unix cat program to read the file. Its remainder converts
the resulting string into Racket lists and uses standard Racket list functions to remove the header,
extract data from the fourth column, and compute the sum.

Command-line argument parsing. The racket/cmdline command-line argument parsing DSL is
included in the Racket standard library. We use a version of that DSL as a case study, modified
to use a syntax that accommodates the possibility of language extensions. To define optimization
level and linking flags for a C compiler executable, a user of the DSL might write:

(define/command-line-options

[optimize-level

(choice #:default 0

["-O0" "Set the optimization level to 0" 0]

["-O1" "Set the optimization level to 1" 1]

["-O2" "Set the optimization level to 2" 2]

["-O3" "Set the optimization level to 3" 3])]

[link-flags (multi '() ["-l" l "Link with the library <l>"

(lambda (lst) (add-to-end lst l))])])

When the executable receives the flags "-O3 -l ssh -l sqlite3", the DSL defines the variable
optimize-level to be 3 and the variable link-flags to be the list ’("ssh" "sqlite3").

Typed Racket. Typed Racket is a typed sister language of Racket that supports incremental migration
of code from untyped Racket via gradual typing [Tobin-Hochstadt and Felleisen 2008]. To enable
migration from untyped code, Typed Racket supports idioms that are common in untyped contexts.
For example, Racket programmers sometimes emulate objects as functions that react to messages:

(define (new-posn x y)

(lambda (msg)

(match msg

[`(get-x) x]

[`(get-y) y]

[`(distance ,other)

(sqrt (+ (sqr (- (other '(get-x)) x))

(sqr (- (other '(get-y)) y))))])))

((new-posn 1 3) (list 'distance (new-posn 4 5)))

;; => evaluates to

3.605551275463989

To migrate this code, a programmer can define a type that captures the behavior of these łobjectsž
using singleton types, precise types for S-expressions, and a function type defined by cases:
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(define-type Posn

(case->

[(List 'get-x) -> Number]

[(List 'get-y) -> Number]

[(List 'distance Posn) -> Number]))

Then, the programmer can assign new-posn the type (-> Number Number Posn).

9.2 Equipping the DSLs with DSL Expanders

miniKanren. The existing version of miniKanren is implemented as a collection of Racket macros,
one per language form. This approach already allows users to extend the language, using Racket
macros. For example, the append relation can be written with a more concise pattern matching
syntax that is defined by a macro:

(defrel/match (append l1 l2 l3)

[('() _ _) (== l2 l3)]

[((cons first rest) _ (cons first result)) (append rest l2 result)])

However, the existing architecture precludes the implementation of analyses or code transforma-
tions. Our alternate implementation with a DSL expander enables two improvements.

The first concernsminiKanren’s syntactic categories. Its grammar separates the syntactic category
of goals from terms. Our implementation raises an error at compile-time when programmers mix
these pieces of syntax incorrectly, as in this example:

(run 1 (q) (== (fresh (x) (== x 1)) q))

=> ;; evaluates to

'(#<procedure>)

The programmer provides a goal, (fresh (x) (== x 1)), as an argument to the == constraint.
While this should be an error, in the existing miniKanren implementation it runs and the logic
variable q is assigned to a procedure object that is part of the run-time implementation. By contrast,
our implementation using a DSL expander highlights the fresh expression and raises a compile-time

error indicating that term syntax is expected.
The second improvement implements a program transformation. It takes advantage of the

intermediate representation produced by the DSL expander and the understanding that logic
programs have both a declarative meaning and a computational meaning. While the order of
arguments to a conjunction does not matter to the logical meaning, it may impact the termination
behavior of the computation. For example, a programmer might write the conjuncts of the append
relation above in a different order:

(conj (== (cons first rest) l1)

(append rest l2 result)

(== (cons first result) l3))

The choice of ordering sometimes determines the termination behavior of queries. If a query asks
for more answers than exist, it may loop forever or it may terminate and thus prove that there are
no more answers. A query asking for four pairs of lists whose concatenation is ’(1 2) exhibits
this difference in behavior:

(run 4 (l1 l2) (append l1 l2 '(1 2)))

The ordering with all unifications first makes the query terminate. Novices, however, often write
the ordering with the recursive relation call in the middle, which makes the query loop forever.
Our implementation permits a program transformation that automatically chooses a terminating
ordering when it is easy to determine statically.
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Rash. Rash allows extensions to its pipeline syntax with macros, but the macros expand directly to
Racket code. Our reimplementation with a DSL expander introduces a core language and back-end
compiler. This change enables a new feature: pipelines may bind intermediate results for use in
later commands. Returning to the previous Rash example, consider how a user might perform the
same task after forgetting the format of the purchases.csv file. The user might first write:

> cat purchases.csv |> csv->list =bind= purchases |> take _ 3

'(("Date" "Type" "Description" "Amount")

("12/28/2019" "VISA" "Taxi" "22.40")

("12/27/2019" "VISA" "Groceries" "10.13"))

This command first reads and parses the CSV file. The final part of the command selects only
the first three lines to print. In between, the new =bind= syntax saves the intermediate result in
the purchases variable for later use. Having seen that the amount is in the fourth column, the
programmer can finally write:

> |> rest purchases |> map fourth |> map string->number |> apply +

The revised implementation also turns some run-time errors of the old implementation into compile-
time errors.

Command-line argument parsing. The original command-line argument DSL is implemented by a
DSL compiler in a procedural macro. It is not extensible. By adding a DSL expander, we allow users
to define macros that abstract over common patterns of command-line flag specifications. The
compiler-flags example from above presents two opportunities for abstraction. First, the definitions
of the optimization-level flags are repetitive. A numbered-flags macro can generate the variants
from a general specification and a range of numbers. Second, flags such as the -l link flag that
may be given multiple times and accumulate arguments into a list are common, so it makes sense
to include a list-option macro in the DSL’s standard library to abstract over the pattern. Using
these abstractions, the parser is truly compact:

(define/command-line-options

[optimize-level

(choice #:default 0

(numbered-flags "-O" [0 3] "optimization level"))]

[link-flags (list-option ["-l" l "Link with the library <l>"])])

Typed Racket. Suzanne Soy6 previously created a macro expander for the type language of Typed
Racket, to allow programmers to abstract over syntactic patterns in types. A programmer migrating
a large Racket program that widely uses functions to emulate objects could use a macro to abstract
over the pattern of case->, S-expression, and singleton symbol types discussed previously. Here is
the Posn type expressed using such an abstraction:

(define-type Posn

(fn-object

[get-x (-> Number)]

[get-y (-> Number)]

[distance (-> Posn Number)]))

The fn-object macro makes the type easier to understand by expressing it at the level of the
intended object structure, rather than at the level of the encoding.

Unlike expanders based on our architecture, the existing expander reimplements the scope sets
hygienic resolution algorithm. It also manually applies macro-introduction scopes at transformer

6https://github.com/jsmaniac/type-expander
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applications, rather than reusing Racket’s implementation. We modified the expander to use our
architecture and high-level API to Racket’s syntax system. Our modifications remove the need to
reimplement hygienic name resolution and transformer application. Longer-term, using an API
common to other DSL expanders should also facilitate maintenance of the code.

9.3 Summary

Table 1 summarizes the results of our evaluation. Each of the DSLs now benefits from macro
extensibility. Each DSL also includes features enabled by implementation as an (extensbile) hosted
DSL: a customized grammar, static semantics, or non-local transformations. In addition, the language
of Typed Racket’s types illustrates that our approach enables macro-extensibility for languages
that do not compile to Racket terms. To give a sense of the size of each implementation, we
report the number of lines of code in each expander, including the literal definitions, environment
representations, and interface macros. Finally, to characterize the difficulty of adapting the existing
expanders for Rash and Typed Racket’s types, we report the lines of code added and removed in
those modifications.

Table 1. Summary of case studies

PEG miniKanren cmdline Rash Types

Macro extensible ✓ ✓ ✓ ✓ ✓

Custom grammar ✓ ✓ ✓ ✓ ✓

Static semantics ✓ ✓ - - ✓

Non-local transformation ✓ ✓ - ✓ -
Does not compile to Racket - - - - ✓

Lines of expander code 135 206 93 515 640

Lines added / removed - - - +388 / -283 +124 / -230

10 COMPARING EXTENSIBLE HOSTED DSLS WITH MACRO-EMBEDDED DSLS

The hosted DSLs that we make macro-extensible represent one of two major kinds of macro-based
DSL implementations. The alternative approach embeds DSLs in the host language using one
macro per DSL construct. Such macro-embedded DSLs are naturally macro-extensible using host
language macros. However, macro-embedded DSLs suffer from serious drawbacks which motivate
our research.
Most importantly, macro-embedded DSLs do not allow a DSL compiler to perform non-local

analysis and transformation. To see why, consider the expansion process for each approach. In our
macro-extensible hosted DSLs, the DSL macro expander first expands terms of the extensible DSL
syntax to a DSL core language. In subsequent passes, the DSL compiler analyzes and transforms
the core language and emits target-language syntax. In contrast, the expansion process for macro-
embedded DSLs relies on the host language expander, which performs a single pass. This pass
interleaves the expansion of DSL macros and the expansion of macros that compile core DSL
constructs to the host language.

Consider the expansion of the PEG comp-op non terminal from section 4.3. The example uses a
syntax for alternatives that supports arbitrarily many subexpressions, defined by a macro:

(define-peg-syntax-parser alt*

[(_ e) e]

[(_ e1 e ...) (alt e1 (alt* e ...))])

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 229. Publication date: November 2020.



229:24 Michael Ballantyne, Alexis King, and Matthias Felleisen

Using a DSL expander, the n-ary alternative first completely expands to the binary alt forms of
the DSL core language:

(alt* "==" ">=" "<=" "<" ">" "!=" "in" "not" "is")

; => expands to:

(alt (text "==") (alt* ">=" "<=" "<" ">" "!=" "in" "not" "is"))

; =>* expands after several steps to:

(alt "=="

(alt ">=" (alt "<=" (alt "<" (alt ">" (alt "!=" (alt "in" (alt "not" "is"))))))

The expansion relies on the alt* macro and the DSL expander’s expansion rule for the core alt
syntax.
In a macro-embedded implementation of the PEG DSL, alt is not a core form implemented

by a DSL expander, but instead a macro that compiles the binary alternative to its host-language
implementation. The first two expansion steps for the same PEG expression are as follows:

(alt* "==" ">=" "<=" "<" ">" "!=" "in" "not" "is")

; => expands to:

(alt (text "==") (alt* ">=" "<=" "<" ">" "!=" "in" "not" "is"))

; => expands to:

(let-values ([(in^ res) "=="])

(if (failure? in^)

(alt* ">=" "<=" "<" ">" "!=" "in" "not" "is")

(values in^ res)))

After the first alt* step, the newly-exposed outermost binary alternative expands to a host-language
implementation. This happens before the remaining alternatives are expanded. As a result, the
PEG compilation cannot analyze the complete set of alternatives and generate efficient branches.
Instead, it can only compile to a linear search.

Furthermore, the design space of macro-embedded DSL syntax is limited. Because they rely on
the host-language macro expander, host-language macros can add new grammar productions, but
not new non-terminals. In Racket, this means that every macro-embedded DSL shares Racket’s
extensible non-terminal of definitions and expressions. The miniKanren case study in section 9.1
illustrates how this limitation requires DSLs to perform additional dynamic checks to ensure DSL
forms are composed as expected. The reliance on the host-language expander also means that
certain syntaxes such as string and number literals cannot be given a different interpretation in
the context of a DSL. For example, with macro-embedding all languages share the same #%datum
interpretation of literals, whereas with our approach the PEG DSL has its own #%peg-datum

interpretation of literals in the context of the PEG non terminal.
In essence, macro-embedded DSLs improve upon the syntax of shallowly-embedded DSLs [Gib-

bons and Wu 2014] but mostly do not improve upon their expressivity in terms of static semantics
and compile-time optimization.7 In contrast, hosted DSLs allow DSL compilers to implement arbi-
trary static semantics and compile-time optimizations and yet are still tightly integrated with the
host language via interface macros. With our DSL expander technique, these hosted DSLs become
macro-extensible without inheriting syntactic assumptions from the host language.

11 RELATED WORK

Work on extensible programming languages dates back to the 1960s [Cheatham 1969; McCarthy
et al. 1965]. We discuss the most relevant and modern approaches below. Unlike most extensible

7Racket’s support for macros that work together via compile-time bindings does constitute a limited improvement in the

expressivity of static semantics as compared to shallowly embedded DSLs.
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language approaches, our work uses S-expressions rather than extensible lexical syntax, but see
the work of Rafkind and Flatt [2012] on integrating macros and conventional syntax.

11.1 Macros

DSLs are often implemented by collections of host-language macros, one for each syntactic form of
the DSL. This approach makes the DSL macro-extensible (with macro hygiene, if the host macro
system supports it). However, macro expansion directly produces host language code, skipping
the DSL core language. Hence such DSL implementations cannot perform any useful analyses and
transformations. This approach also works only for DSLs whose compilation target is the host
language. In contrast, DSL expanders in principle enable macro-extensible DSLs that compile to
non-Racket targets, such as JavaScript, C, or CUDA, and yet syntactically integrate with Racket.

Chang et al. [2017]’s łType Systems as Macrosž approach defines DSLs with static semantics by
leveraging Racket’s local-expand API and syntax properties, roughly analagous to AST attributes.
Turnstile’s reliance on local-expand means that DSL syntax expands directly to Racket, resulting
in the same problems described in the previous paragraph. Worse, type syntax must also be
expanded to an encoding in Racket’s core language. This expanded syntax is nonsensical as Racket
code and is only interpreted via a transformation that reverses the encoding. This approach is
particularly problematic for normalization of dependent types [Chang et al. 2019], which requires
repeated expansion and decoding. The original motivation of our research was to resolve these
difficulties. We anticipate that our new expander API could serve as an improved foundation for
Chang’s approach, and that a variant of Chang’s Turnstile DSL could provide a high-level syntax for
defining DSL expanders whose static semantics fit within the bidirectional typechecking paradigm.

Racket’s match [Tobin-Hochstadt 2011], require, provide, and syntax-parse DSLs have been
extensible via simplistic, ad hoc versions of the DSL expander approach for some time. However,
they reimplement rather than reuse aspects of Racket’s hygiene mechanism and do not address
syntax that introduces binding scopes. Firth [2015]’s generic syntax expander system provides a
common macro expander that applies to any DSL, but ignores the structure of the DSL’s grammar
and does not address bindings or hygiene. Our command-line argument parser case study was
inspired by Firth’s work. As discussed in section 9, Suzanne Soy implemented a macro expander for
the language of Typed Racket types, which does handle syntax that creates binding scopes. That
approach required reimplementing the expander’s binding environment and hygiene algorithm.
Reusing the host expander’s implementation of these elements in each DSL expander is critical to
support name bindings that cross languages, as seen in the PEG DSL.

Fisher and Shivers [2008]’s Ziggurat supports a version of user-defined hygienic macro expanders.
However, Ziggurat is a meta-language for defining extensible languages as opposed to a macro-
extensible language itself. As a consequence, it does not support modules that integrate programs
and meta-programs into łlanguages as librariesž. Also, code implementing DSLs and macros cannot
use DSLs previously implemented within the system. Ziggurat’s primary focus is to allow language
extensions to augment static analyses defined for a core language. This additional capability greatly
complicates language definitions. DSL implementors must define both a parser for a concrete
syntax tree representation and an object-based, graph-structured IR, whereas our approach requires
only the concrete syntax tree. IR analyses and transformations must be defined using generic
method dispatch rather than pattern matching and must account for the possibility of user-defined
extensions to the IR. Ziggurat employs a hybrid of two early hygiene algorithms [Clinger and Rees
1991; Dybvig et al. 1993], whereas we employ the modern scope sets algorithm to support hygiene
in the presence of definition-style bindings, repeated and partial expansions of syntax, and macros
that work together [Flatt 2016].
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In the McMicMac system of Krishnamurthi [2001], łmicrosž implement functionality similar
to DSL expanders, but the system does not address hygiene and requires users who wish to use
multiple DSLs together to explicitly create a combined language rather than simply import each
DSL.

Shivers [2005] uses macros written in continuation-passing style (CPS) [Hilsdale and Friedman
2000] to create an expander for a loop DSL. This technique successfully reuses the host expander’s
hygiene only for macros defined outside of the DSL, whereas our approach supports local macro
definitions. Furthermore, writing macros in CPS is awkward, and the technique produces poor
error messages for DSL users [Culpepper 2012].

11.2 Embedded DSLs

Embedded DSLs in typed functional programming languages [Carette et al. 2009; Gibbons and Wu
2014; Hudak 1996] offer an alternative to hosted DSLs. Like extension, embedding can achieve
fluid integration with the host language, enforce static semantics, and support extensibility. Deep
embedding enables arbitrary analysis and compilation, though this occurs at host run time rather
than host compile time. However, the syntax and static semantics of embedded DSLs must be
encoded into the corresponding elements of the host language, which can limit DSL implementations
from offering the full gamut of domain-specific features. DSL forms with binding structure must be
written using host language binding forms. This works well for simple lambda-like bindings, but
deeply encoding (mutually) recursive binding is quite inconvenient [Gill 2009] and embedding does
not accommodate custom binding shapes like that of our PEG syntax. Programmers can combine
meta-programming tools such as Template Haskell quasiquotes [Mainland 2007] with embedding
approaches to support custom syntax, but these syntaxes are not extensible. Furthermore, static
semantics must be encoded in the host language type system in order to be enforced at host compile-
time. Encoding complex properties such as the PEG DSL’s fixed-point check for left recursion is
nontrivial, and complex encodings can lead to inscrutable error messages.

11.3 Other Approaches to Extensible DSLs

SugarJ [Erdweg et al. 2011] and MPS [Voelter 2011] share our objective of supporting full-fledged
DSLs in an extensible language, and DSLs built with these tools can be extended. However, these
extensions are not as lightweight as macros. For each new syntactic form the programmer must
define a parser or projectional editor, an abstract syntax representation, and a static semantics, in
addition to the transformer that compiles the extension to the existing language. While extensions
in these systems take more work to define, they do support more flexible concrete syntax and
deeper IDE integration than we achieve with DSL expanders.

The Silver [Kaminski et al. 2017; VanWyk et al. 2008] attribute grammar system allows extensions
to augment static checks as well as concrete syntax. The system includes meta-language static
checks to ensure compositions of extensions are well-defined. However, Silver operates as an
external pre-processor rather than fully integrating with the extended language. The compile-time
and run-time components of a DSL must be imported separately in Silver and the object language,
respectively. Hence, builds are managed externally in Makefiles, and the system does not provide
hygiene.

Spoofax [Kats and Visser 2010] offers meta-DSLs for defining syntax, scope, statics, and rewritings.
While Spoofax emphasizes stand-alone DSLs over DSLs integrated with an extensible host language,
we view its meta-DSLs as inspiration for future work on a declarative specification of DSL expanders.
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11.4 Models of Scope and Binding

The scope graphs model [Neron et al. 2015; van Antwerpen et al. 2016] underlying Spoofax’s statics
DSLs such as Statix [van Antwerpen et al. 2018] is similar to our syntax system API in that it
provides a language-agnostic model of scope and binding. As in our approach, multiple languages
can be integrated with each other by creating representations of their scopes and bindings in the
shared model.

The set of scopes model that we rely on structures scopes differently from scope graphs in order
to support macro hygiene. In scope graphs, the scope corresponding to the innermost scoping
form (such as let) surrounding a reference fully determines how the reference is resolved. In the
presence of macro expansion, however, identifiers from the definition-site and a use-site of a macro
may be placed within the same scoping form. Hygiene requires that these names not inter-bind, so
name resolution must account for the origin of the different identifiers. Thus in scope sets, scope
information accumulates throughout the process of expansion to track the origin of each identifier.
Our API reflects this organization. Rather than resolve an identifier via a singular scope as in Statix,
DSL expanders separately use the add-scope operation to attach scope tokens to identifiers and
the lookup operation to resolve using the accumulated scopes.
Our API is also imperative, whereas Statix uses dependencies between binding and resolution

constraints to decide the order in which to solve them. Racket and the hosted DSLs we define are
macro-extensible and support recursive binding contexts. Bindings for a given definition context
may be incrementally exposed as definition-like macros expand. Macro expansion itself involves
resolving references, so we cannot use dependency ordering and delay reference resolution until
all bindings in the context are established. Thus binding is imperative and the order of expansion
in a definition context is semantically significant.

12 CONCLUSION

This paper shows how to create extensible hosted DSLs using a DSL macro expander front-end and
a traditional DSL compiler back-end. In essence, each hosted DSL reproduces in miniature Racket’s
own architecture for extensibility. Through our new API, all DSLs share the language-agnostic
features of Racket’s syntax system. The resulting towers of extensible DSLs integrate smoothly.
We view this work as an instantiation of a larger principle: as programmers increasingly write

large parts of their programs using DSLs, programming languages should treat DSLs as first-
class citizens. Meta-programming features should apply equally to host and DSL syntax, allowing
programmers to build towers of linguistic abstractions, rather than merely a single layer. We apply
this principle to Racket’s macro extensibility. We hope that future work applies the same idea to
other meta-programming approaches.

ACKNOWLEDGMENTS

William Hatch worked with us to adapt Rash to use a DSL expander. We thank Leif Andersen,
William Byrd, Stephen Chang, Olek Gierczak, Benjamin Greenman, William Hatch, Jason Hemann,
Benjamin Lerner, and the anonymous reviewers for their helpful comments on early drafts. This
material is partially based upon work supported by the National Science Foundation under Grant
No. 1823244 and 20050550.

REFERENCES

Leif Andersen, Stephen Chang, and Matthias Felleisen. 2017. Super 8 languages for making movies (functional pearl). Proc.

ACM Program. Lang. 1, ICFP, Article 30 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110274

Lennart Augustsson. 1985. Compiling pattern matching. In Proc. Functional Programming Languages and Computer Architec-

ture. 368ś381.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 229. Publication date: November 2020.

https://doi.org/10.1145/3110274


229:28 Michael Ballantyne, Alexis King, and Matthias Felleisen

William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. 2017. A unified approach to solving

seven programming problems (functional pearl). Proc. ACM Program. Lang. 1, ICFP, Article 8 (Aug. 2017), 26 pages.

https://doi.org/10.1145/3110252

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally tagless, partially evaluated: Tagless staged interpreters

for simpler typed languages. Journal of Functional Programming 19, 5 (Sept. 2009), 509ś543. https://doi.org/10.1017/

S0956796809007205

Stephen Chang, Michael Ballantyne, Milo Turner, and William J. Bowman. 2019. Dependent type systems as macros. Proc.

ACM Program. Lang. 4, POPL, Article 3 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371071

Stephen Chang, Alex Knauth, and Ben Greenman. 2017. Type systems as macros. In Proc. Principles of Programming

Languages (POPL 2017). 694ś705. https://doi.org/10.1145/3009837.3009886

Thomas E. Cheatham. 1969. Motivation for extensible languages. ACM SIGPLAN Notices 4, 8 (Aug. 1969), 45ś49. https:

//doi.org/10.1145/1115858.1115869

William Clinger and Jonathan Rees. 1991. Macros that work. In Proc. Principles of Programming Languages (POPL ’91).

155ś162. https://doi.org/10.1145/99583.99607

Ryan Culpepper. 2012. Fortifying macros. Journal of Functional Programming 22, 4ś5 (Sept. 2012), 439ś476. https:

//doi.org/10.1017/S0956796812000275

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. 1993. Syntactic abstraction in Scheme. Lisp and Symbolic Computation 5,

4 (Dec. 1993), 295ś326. https://doi.org/10.1007/BF01806308

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. 2011. SugarJ: Library-based syntactic

language extensibility. In Proc. Object-Oriented Programming Systems, Languages & Applications (OOPSLA ’11). 391ś406.

https://doi.org/10.1145/2048066.2048099

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam

Tobin-Hochstadt. 2018. A programmable programming language. Commun. ACM 61, 3 (Feb. 2018), 62ś71. https:

//doi.org/10.1145/3127323

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias

Felleisen. 2002. DrScheme: A programming environment for Scheme. Journal of Functional Programming 12, 2 (2002),

159ś182. https://doi.org/10.1017/S0956796801004208

Jack Firth. 2015. Generic syntax expanders and extensible macros. Video. In Fifth RacketCon. Retrieved September 14, 2020

from https://www.youtube.com/watch?v=PoHGvY4RZ9U

David Fisher and Olin Shivers. 2008. Building language towers with Ziggurat. Journal of Functional Programming 18, 5/6

(Sept. 2008), 707ś780. https://doi.org/10.1017/S0956796808006928

Matthew Flatt. 2002. Composable and compilable macros: You want it when?. In Proc. International Conference on Functional

Programming (ICFP ’02). 72ś83. https://doi.org/10.1145/581478.581486

Matthew Flatt. 2016. Binding as sets of scopes. In Proc. Principles of Programming Languages (POPL ’16). 705ś717. https:

//doi.org/10.1145/2837614.2837620

Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. 2012. Macros that work together: Compile-time

bindings, partial expansion, and definition contexts. Journal of Functional Programming 22, 2 (March 2012), 181ś216.

https://doi.org/10.1017/S0956796812000093

Bryan Ford. 2004. Parsing expression grammars: A recognition-based syntactic foundation. In Proc. Principles of Programming

Languages (POPL ’04). 111ś122. https://doi.org/10.1145/964001.964011

Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason Hemann. 2018. The Reasoned Schemer (second ed.). The MIT

Press, Cambridge, MA.

Jeremy Gibbons and Nicolas Wu. 2014. Folding domain-specific languages: Deep and shallow embeddings. In Proc.

International Conference on Functional Programming (ICFP ’14). 339ś347. https://doi.org/10.1145/2628136.2628138

Andy Gill. 2009. Type-safe observable sharing in Haskell. In Proc. Symposium on Haskell (Haskell ’09). 117ś128. https:

//doi.org/10.1145/1596638.1596653

Robert Grimm. 2004. Practical Packrat Parsing. Technical Report TR2004-854. New York University.

SystemVerilog Language Working Group. 2005. IEEE standard for SystemVerilog: Unified hardware design, specification

and verification language. IEEE Std 1800-2005 (Nov. 2005), 1ś648. https://doi.org/10.1109/IEEESTD.2005.97972

William Gallard Hatch and Matthew Flatt. 2018. Rash: From reckless interactions to reliable programs. In Proc. Generative

Programming: Concepts & Experience (GPCE 2018). 28ś39. https://doi.org/10.1145/3278122.3278129

Erik Hilsdale and Daniel P. Friedman. 2000. Writing macros in continuation-passing style. In Proc. Workshop on Scheme and

Functional Programming. 53.

Paul Hudak. 1996. Building domain-specific embedded languages. ACM Comput. Surv. 28, 4es (Dec. 1996), 196śes. https:

//doi.org/10.1145/242224.242477

Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017. Reliable and automatic composition of language

extensions to C: The ableC extensible language framework. Proc. ACM Program. Lang. 1, OOPSLA, Article 98 (Oct. 2017),

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 229. Publication date: November 2020.

https://doi.org/10.1145/3110252
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/3371071
https://doi.org/10.1145/3009837.3009886
https://doi.org/10.1145/1115858.1115869
https://doi.org/10.1145/1115858.1115869
https://doi.org/10.1145/99583.99607
https://doi.org/10.1017/S0956796812000275
https://doi.org/10.1017/S0956796812000275
https://doi.org/10.1007/BF01806308
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1017/S0956796801004208
https://www.youtube.com/watch?v=PoHGvY4RZ9U
https://doi.org/10.1017/S0956796808006928
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1017/S0956796812000093
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/1596638.1596653
https://doi.org/10.1145/1596638.1596653
https://doi.org/10.1109/IEEESTD.2005.97972
https://doi.org/10.1145/3278122.3278129
https://doi.org/10.1145/242224.242477
https://doi.org/10.1145/242224.242477


Macros for Domain-Specific Languages 229:29

29 pages. https://doi.org/10.1145/3138224

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language workbench: Rules for declarative specification of languages

and IDEs. In Proc. Object-Oriented Programming Systems, Languages & Applications. 444ś463. https://doi.org/10.1145/

1869459.1869497

Donald Ervin Knuth. 1979. TEX and METAFONT: New directions in typesetting. American Mathematical Society.

Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba. 1986. Hygienic macro expansion. In Proc.

Lisp and Functional Programming (LFP ’86). 151ś161. https://doi.org/10.1145/319838.319859

Shriram Krishnamurthi. 2001. Linguistic Reuse. Ph.D. Dissertation. Rice University.

Fabrice Le Fessant and Luc Maranget. 2001. Optimizing pattern matching. In Proc. International Conference on Functional

Programming (ICFP ’01). 26ś37. https://doi.org/10.1145/507635.507641

Geoffrey Mainland. 2007. Why it’s nice to be quoted: quasiquoting for Haskell. In Proc. Symposium on Haskell (Haskell ’07).

73ś82. https://doi.org/10.1145/1291201.1291211

Luc Maranget. 2008. Compiling pattern matching to good decision trees. In Proc. Workshop on ML (ML ’08). 35ś46.

https://doi.org/10.1145/1411304.1411311

Jay McCarthy. 2010. The two-state solution. In Proc. Object-Oriented Programming Systems, Languages & Applications

(OOPSLA ’10). 567ś582.

John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and Michael I. Levin. 1965. LISP 1.5 Programmer’s

Manual. The MIT Press, Cambridge, Massachusetts. Retrieved September 14, 2020 from http://www.softwarepreservation.

org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf

Philippe Meunier and Daniel Silva. 2003. From Python to PLT Scheme. In Proc. Workshop on Scheme and Functional

Programming. 24ś29.

Pierre Neron, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth. 2015. A theory of name resolution. In Proc. European

Symposium on Programming (ESOP ’15). 205ś231. https://doi.org/10.1007/978-3-662-46669-8_9

Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson, Junsong Li, Anand Chitipothu,

and Shriram Krishnamurthi. 2013. Python: The full monty. In Proc. Object-Oriented Programming Systems, Languages &

Applications (OOPSLA ’13). 217ś232. https://doi.org/10.1145/2509136.2509536

Jon Rafkind and Matthew Flatt. 2012. Honu: Syntactic extension for algebraic notation through enforestation. In Proc.

Generative Programming and Component Engineering (GPCE ’12). 122ś131. https://doi.org/10.1145/2371401.2371420

Pedro Palma Ramos and António Menezes Leitão. 2014. Implementing Python for DrRacket. In Proc. Symposium on

Languages, Applications and Technologies. 127ś141. https://doi.org/10.4230/OASIcs.SLATE.2014.127

Olin Shivers. 2005. The anatomy of a loop: A story of scope and control. In Proc. International Conference on Functional

Programming (ICFP ’05). 2ś14. https://doi.org/10.1145/1086365.1086368

Peter Thiemann and Matthias Neubauer. 2008. Macros for context-free grammars. In Proc. Principles and Practice of

Declarative Programming (PPDP ’08). 120ś130. https://doi.org/10.1145/1389449.1389465

Sam Tobin-Hochstadt. 2011. Extensible pattern matching in an extensible language. (2011). arXiv:1106.2578v1

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementation of Typed Scheme. In Proc. Principles of

Programming Languages (POPL ’08). 395ś406. https://doi.org/10.1145/1328438.1328486

SamTobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, andMatthias Felleisen. 2011. Languages as libraries.

In Proc. Programming Language Design and Implementation (PLDI ’11). 132ś141. https://doi.org/10.1145/1993498.1993514

Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. 2018. Scopes as types. Proc. ACM Program.

Lang. 2, OOPSLA, Article 114 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276484

Hendrik van Antwerpen, Pierre Néron, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth. 2016. A Constraint Language

for Static Semantic Analysis Based on Scope Graphs. In Proc. Partial Evaluation and Program Manipulation (PEPM ’16).

49ś60. https://doi.org/10.1145/2847538.2847543

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2008. Silver: An extensible attribute grammar system. In Proc.

Workshop on Language Descriptions, Tools, and Applications (LDTA ’07). 103ś116. https://doi.org/10.1016/j.entcs.2008.03.

047

Markus Voelter. 2011. Language and IDE modularization and composition with MPS. In International Summer School on

Generative and Transformational Techniques in Software Engineering (GTTSE ’11). 383ś430. https://doi.org/10.1007/978-3-

642-35992-7_11

Martin P Ward. 1994. Language-oriented programming. Software Concepts and Tools 15, 4 (1994), 147ś161. https:

//doi.org/10.1007/978-1-4302-2390-0_12

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. 2012. SWI-Prolog. Theory and Practice of Logic

Programming 12, 1-2 (2012), 67ś96. https://doi.org/10.1017/S1471068411000494

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 229. Publication date: November 2020.

https://doi.org/10.1145/3138224
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/507635.507641
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1411304.1411311
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/2371401.2371420
https://doi.org/10.4230/OASIcs.SLATE.2014.127
https://doi.org/10.1145/1086365.1086368
https://doi.org/10.1145/1389449.1389465
https://arxiv.org/abs/1106.2578v1
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/3276484
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/978-1-4302-2390-0_12
https://doi.org/10.1007/978-1-4302-2390-0_12
https://doi.org/10.1017/S1471068411000494

	Abstract
	1 Inheriting Extensibility
	2 Background: Macros and Hosted DSLs in Racket
	2.1 Macros in Racket
	2.2 Racket's Macro Expander
	2.3 Hosted DSLs

	3 An Architecture for Extensible DSLs
	4 Parsing Expression Grammars as a Hosted DSL
	4.1 PEG Syntax as an Extension to Racket
	4.2 PEG Static Semantics
	4.3 PEG Compilation and Optimization
	4.4 PEG Macros

	5 A Macro System for the PEG DSL
	5.1 The Boundary Between DSLs and Racket

	6 A Recipe for DSL Expanders
	7 The Design of our Syntax System API
	8 The Power that Comes With Extensible DSLs
	8.1 Layering DSLs
	8.2 Integrating with Other Components

	9 Evaluation
	9.1 Corpus
	9.2 Equipping the DSLs with DSL Expanders
	9.3 Summary

	10 Comparing Extensible Hosted DSLs with Macro-embedded DSLs
	11 Related Work
	11.1 Macros
	11.2 Embedded DSLs
	11.3 Other Approaches to Extensible DSLs
	11.4 Models of Scope and Binding

	12 Conclusion
	References

