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Routine inspection by insurance companies at their clients’ facility, also known as loss prevention survey, help
identify the best strategies to minimize damages when there is a high-speed wind event. More specifically, wind
vulnerabilities associated with a building are evaluated using a process known as windstorm risk inspection. This
routine inspection helps clients reduce the extent of damages caused by high-speed wind events including
hurricane and tornado. Risk engineers make use of their subjective and analytical deduction skills to successfully
carry out the inspection tasks. In this research the researchers investigated the effect of context-based visuali-
zation strategies on situation awareness and their understanding of the situation. The study examined how
different types of information contribute towards the three levels of situation awareness. Following a between-
subjects study design, 65 participants completed the study. Each session lasted 90-120 min. A checklist based
and predictive display-based decision aids were tested and found to be effective in supporting the situation
awareness requirements as well as performance of risk engineers. However, the predictive display only helped
with certain tasks such as understanding the interaction among different components on the rooftop. For
remaining tasks such as perceiving obvious issues like membrane tear, clogged drains and vegetation growth,
checklist alone was sufficient. This study helped the understanding of the advantages and disadvantages of the
decision aids tested. More specifically, these decision aids can improve the mental model of novice risk engineers.
Additionally, this study provided insights that could help design training materials for infrastructure inspectors.

1. Introduction and severity of such damages (Schlesinger and Venezian, 1986). Though

this windstorm loss prevention survey or risk inspection can benefit both

Over the past ten years, on an average, United States experienced
170 wind-related fatalities (NWS Analyze Forecast and Support Office,
2018). Such fatalities as hurricanes, tornados and thunderstorms affect
people and society as well as the economy (Tokgoz, 2012). The effect of
these disasters range from direct damages such as physical destruction of
assets and capital to indirect damages (Khazai et al., 2013). More spe-
cifically, property damage costs billions of dollars in losses (Fernandez,
2001). In 2017 alone, such weather events resulted in a cumulative cost
of $306.2 billion (Hurricane Costs, 2019). To limit the extent of these
damages, wind vulnerability assessments are conducted to identify and
mitigate damage and to minimize disruption (Smith Thomas, 2011).
Specifically, insurance companies conduct routine inspection tasks or
loss prevention surveys in their clients’ facility to reduce the frequency
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the clients and insurance company, the validity of the inspection find-
ings and conclusions depend on the individual capabilities of the
personnel carrying out the survey (Agnisarman et al., 2018; Agnisarman
et al., 2019a,b).

A previous qualitative study investigating the sensemaking process
and situation awareness of loss prevention inspection professionals
identified the lack of a standardized survey protocol as one reason for
the disparity in their findings (Agnisarman et al., 2018). Furthermore,
individual differences in the ability and experience level of these engi-
neers contribute to this subjectivity (Agnisarman et al., 2018), with the
latter being one of the most important factors contributing to the ac-
curacy of the inspection report. Experienced engineers are better
equipped to comprehend the elements in the environment to assess the
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current state and predict potential damages and structural changes to
the building than their novice counterparts who, due to their lack of
experience, may find it challenging to perceive and comprehend infor-
mation to better understand the infrastructure system (Agnisarman
et al., 2018).

Automation-assisted technologies and Artificial Intelligence (AI)
based decision aids have been used by researchers and practitioners to
improve the accuracy of the infrastructure inspection process (Agni-
sarman et al., 2019a,b). Such smart decision aids can facilitate decision
making by reducing the mental demand on the risk engineers by
assisting them with the preliminary data analysis and cue the engineers
to look for relevant information when completing the risk inspection
task. However, such technologies are not without limitations. Though,
these technologies can assist in conducting infrastructure inspection, the
engineers’ ability to interpret and synthesize the data is important
(Agnisarman et al., 2018), especially since the performance of the per-
son operating such systems is affected by factors such as drop in vigi-
lance, automation complacency and loss of situation awareness
(Endsley, 1999; Endsley and Kiris, 1995).

In the risk inspection domain, automated decision aids are not ex-
pected to completely automate the risk inspection process. Instead, it
can augment the risk engineers’ decision making with the help of pre-
dictive algorithms, which generally outperform expert judgement as risk
engineers’ ability to predict the potential damages to the infrastructure
system is limited. However, human involvement is required to make
decisions about unusual situations that are not accurately modeled using
historical data (Guszcza, 2018). Such situations require intelligent sys-
tems to generate anchor points for the experts to augment human de-
cision making (Guszcza, 2018). To support this effort, there is a need to
develop algorithms meeting contextual needs. The human-centered
design should highlight the needs and requirements of the specific
context under consideration to facilitate the optimal use of Al algo-
rithms, emphasizing the importance of considering situation awareness
in designing decision aids based on Al for risk engineers (Agnisarman
et al., 2018).

1.1. Situation awareness (SA)

Situation awareness (SA) is the perception of the elements/cues in
the environment (Level 1), comprehension of the current situation of the
elements (Level 2) and the projection of the status of the elements and
environment into the future (Level 3) (Endsley, 1995). Past studies
suggested that the systems that could throw operators out of the loop can
affect any of these levels (Endsley and Kiris, 1995; Khasawneh et al.,
2019). The application of this 3-level situation awareness framework
(Endsley, 1995) can be seen in many domains such as aviation, aircraft
maintenance and surgery in an effort to improve operator performance
(Endsley and Robertson, 2000; Fioratou et al., 2010; Jones and Endsley,
1996). However, our systematic literature search (Agnisarman et al.,
2019a,b) did not retrieve any articles in the domain of loss prevention
inspection or building inspection focusing on the SA requirements of
inspectors/engineers. To address this lack of research, this study focuses
on designing visual decision aids to improve the situation awareness of
infrastructure inspectors.

1.2. Relevance of SA in infrastructure risk inspection

Windstorm risk inspection process involves identifying wind vul-
nerabilities associated with a building to reduce the extent of damage in
the event of a hurricane or windstorm. Though the 3-level SA framework
has been primarily used to identify SA requirements in dynamic systems,
this concept is relevant to the inspection and maintenance domain as
well (Endsley and Robertson, 2000). Though the infrastructure inspec-
tion process does not involve a dynamic environment, risk engineers
need to assess the current state and extrapolate it to the future. However,
there are a number of unknown factors such as wind speed and
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direction, the overall condition of the infrastructure, and other in-
terdependencies such as the distance between potential windborne
projectiles known as missiles and infrastructure system and locations of
other objects that make predicting the future state of the infrastructure a
challenging task. More importantly, the dynamic events and behavior
patterns of the components of an infrastructure following a higher
category hurricane pose a real challenge for the risk engineers.

The Level 1 SA requirements of risk inspection involve perceiving
cues including, but not limited to, the type of roof, type of rooftop
equipment, age of the roof, surface roughness and missile exposure. In
Level 2 SA, the engineers comprehend the information perceived to
evaluate the current condition of the infrastructure system. During this
process, engineers may face a number of challenges, the most important
one being the lack of information available. They then predict potential
damages and failures based on its current state as well as other envi-
ronmental conditions. The sensemaking process of infrastructure risk
engineers during this process has been discussed in detail in another
article (Agnisarman et al., 2018). While automated systems are used to
support the windstorm risk inspection process, there is a need to un-
derstand how engineers’ SA is impacted. In this research we will develop
decision aids for information visualization to support the process of
synthesizing cues in the environment to achieve adequate level of SA for
risk inspectors.

1.3. Risk assessment

There are two primary methods currently being used for assessing
hurricane structural damage: the subjective method and the analytical
method (Mehta et al., 1981). The subjective method involves windstorm
engineers going to a site to obtain information about the roofing system,
envelope, connections, drawings and specifications, while the analytical
method is based on the principles of structural mechanics and an un-
derstanding of material properties to predict wind speed and potential
damages (Mehta et al., 1981). The subjective windstorm visual inspec-
tion method detailed in Agnisarman et al. (2018) formed the basis for
identifying the information needed in the visualizations. In addition,
analytical hurricane damage prediction models were also explored to
identify the elements that need to be included in the contextual
visualization.

Risk involves both the probability of risk realization and the effect of
threat realization (Vaisanen et al., 2018). Though human visual
perception is capable of detecting anomalies and patterns, the ability of
the risk engineers to predict the future state of an infrastructure is
limited. Information visualization uses external aids such as computers
to strengthen the cognitive capabilities of users/decision makers (Kapler
and Wright, 2005). Risk visualization, which involves visualizing po-
tential risks to enhance cognition to facilitate decision making, will
potentially augment the inspector’s cognition and enhance his/her sit-
uation awareness. However, presenting the specific data needed to meet
the demands of the end user can be challenging. This requires the
identification of the needs and visualization requirements of this specific
user group (Kasireddy et al., 2015). So, it is important to first evaluate
the visualization requirements of the windstorm inspectors to design
decision aids to meet their needs.

1.4. Related work

The design of technologies to support SA has been investigated
extensively in aviation and healthcare. Additionally, the SA theory
proposed by Endsley (1995) was applied to evaluate the effect of various
types of display strategies, specifically tactical vs. waterfall, for sub-
marine track management in a simulated environment (Loft et al.,
2015). Loft et al. (2015) studied the relationship between various SA
measures such as Situation Present Assessment Method (SPAM) and
Situation Awareness Global Assessment Technique (SAGAT) and per-
formance, identifying a correlation among them. Another research
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reported a reduction in self-reported SA as a result of an increased
amount of task relevant information, meaning increased task-relevant
information, despite being accurate, might not help with decision
making (Marusich et al., 2016). Researchers have also studied the effect
of the nature of information presented on the SA of mobile crane oper-
ators; they identified a general trend in improvement in operator per-
formance and SA with the use of a virtually reconstructed visualization
of a lift scene (assistance system) over traditional systems (Fang et al.,
2018). In addition to mobile crane monitoring and operations, studies
have also been conducted investigating the effect of
situation-augmented displays for UAV monitoring (Lu et al., 2013), the
findings suggesting that situation-augmented displays may provide
sufficient situation awareness to improve user performance (Lu et al.,
2013).

The application of the SA framework to investigate various infor-
mation presentation strategies can be seen in defense research as well. A
recent study investigated the effect of presentation modality, auditory
vs. visual and message presentation rate on the SA and the cognitive load
of soldiers (Hollands et al., 2019). The findings revealed that visual
messages and higher message presentation rate resulted in higher
cognitive load and reduced SA. Similar studies have been conducted in
the healthcare domain as well, for example, a study investigating the
effect of head-worn display (HWD) providing continuous patient infor-
mation on the SA of nursing students while responding to patient alarm.
The researchers observed that the participants’ responses to SA ques-
tions were more accurate when using HWD compared to the alarm only
condition (Pascale et al., 2019). Researchers have also investigated the
effect of other decision aids such as a checklist on SA. For example, one
such study investigated if the use of a checklist improves SA during
physician handoffs in a pediatric emergency department. Participants in
this study reported an improvement in their SA following the use of a
standardized checklist (Mullan et al., 2015).

However, none of the previous research developed decision aids for
supporting the SA, performance and workload of infrastructure in-
spectors. More specifically, to date, no studies have been conducted with
windstorm risk engineers. While researchers have investigated the po-
tential of using Augmented Reality (AR)-based systems for flood visu-
alization (Haynes et al., 2018), no studies have looked at the situation
awareness requirements and performance of inspectors. In the study
reported here, the researchers investigated how various visualization
techniques could be designed to enhance and support the SA of risk
engineers. The checklist and predictive display based decision aids used
here were designed to meet the requirements identified from an
exploratory research that followed an interview based approach to learn
the sensemaking process and SA requirements of windstorm engineers.
In addition, the principles proposed by Endsley for designing for situa-
tion awareness were also incorporated in the decision aids (Endsley,
2016). More specifically, this study designed and tested checklist-based
and predictive display-based decision aids. While risk engineers
currently use a high-level checklist, it is not standardized. The checklist
used in this study was reviewed by a subject matter expert and the
predictive display used in this research is a novel idea which has not yet
been used for this application. To investigate the effectiveness of these
decision aids, the following research questions were investigated:

RQ1. How is the SA of the participants affected by the context-based
decision aids developed?

RQ2. How is the performance of the participants affected by the
context-based decision aids developed?

RQ3. How does the nature of context-based visual decisions aids affect
the cognitive load imposed on the participants?

These hypotheses tested in this research were:

H1. Participants in the predictive display condition will have higher
SA compared to participants in the checklist condition and control
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condition and participants in the checklist condition will have higher SA
compared to participants in the control condition.

H2. Participants in the predictive display condition will have higher
performance score compared to participants in the checklist condition
and control condition and participants in the checklist condition will
perform better compared to participants in the control condition.

H3. Participants in the predictive display condition will have lower
cognitive load compared to participants in the checklist condition and
control condition and participants in the checklist condition will have
lower cognitive load compared to participants in the control condition.

2. Method
2.1. Study sample

For this research study, undergraduate civil engineering or con-
struction science and managements students in their 3rd or 4th year
(Junior or Senior year) or graduate students with the same background
were recruited. These students have taken roof inspection and con-
struction management related course and have basic background in this
topic. Sixty-five participants, (min = 20, max = 41 years old, M = 23.35,
SD = 3.37) were recruited for this study. Table 1 illustrates more details
about the study participants.

2.2. Apparatus

This study used a Dell desktop computer with an Intel(R) Xeon(R)
CPU E5-1620 v4 processor and a Quadro FX 5800 GPU to run the sim-
ulations of a windstorm risk survey. An LG ultrawide monitor with a
diagonal dimension of 38.8 inches was used as the display. The simu-
lations were developed using the Unity game engine (Unity, 2005). A
laptop computer was used to administer the questionnaires prior to,
during and after the study through Qualtrics Research Suite (Qualtrics,
2005). Fig. 1 illustrates the lab setup used in this study.

2.3. Simulation

The participants completed this study in a simulated environment.
An academic building located within a 10-miles radius of the Atlantic
Coast was used as the simulated scenario. The exposure category used in
this study was Category C with generally open terrain with limited ob-
structions (Windexpo, 2019). This location and exposure category were
chosen to simulate moderate wind exposure and related damages. The
location has only two buildings. The front yard of the main academic
building had a pond and the backyard had a lake. The building had a
mechanically fastened thermoplastic olefin (TPO) roof. This roof type
was used as this is one of the commonly inspected roof systems by

Table 1

Demographic characteristics of the participants.
Variable (N = 65) N %
Gender
Female 13 20
Male 52 80
Race
White 39 60
Asian 18 28
Black/African American 5 8
Other 3 4
Major
Civil Engineering 55 85
Construction Science 10 15
Degree Pursuing
Undergraduate 37 57
Graduate 17 26
Doctorate 11 17
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Fig. 1. Experimental setup.

windstorm risk engineers. The building had a number of pieces of
rooftop equipment ranging from antennas to duct work. The rooftop also
had certain issues such as ponding, missing fasteners, a flashing issue, a
membrane fissure and clogged drains. Fig. 2 illustrates four example
images of the simulation used in this study.

2.4. Visualization stimuli development

Contextual visual aids can be developed following SA design prin-
ciples (Endsley, 2016) to enhance the SA of novice as well as experi-
enced users. The requirements supporting SA in this domain were
identified from a previous exploratory research investigating the needs
and requirements of risk engineers (Agnisarman et al., 2018). This study
identified a few factors that affect the decision making process of
windstorm risk engineers. Their experience level, site conditions, wind
speed in the event of a hurricane and building code requirements are a
few examples of the factors identified. All these factors impact the
mental models of the engineers and, hence, their perception of infor-
mation. Furthermore, novice engineers fail to consider alternate frames

| .

N T

9@ @)l

a. Roof parapet and rooftop equipment

c. Rooftop equipment
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to analyze various reasons for possible damages when making sense of
cues available in the environment. This will affect their Level 1 and
Level 2 SA. Additionally, in complex situations they may have a difficult
time predicting potential damages and future state of the building. This
will affect their Level 3 SA. The decision aids developed and evaluated in
this study are expected to support their Level 1, Level 2 and Level 3 SA.

The context based visual aids developed here were expected to assist
the risk professionals when completing the inspection tasks.

2.5. Scenarios and tasks completed

To develop the study scenarios, the various components of a building
as defined by Unanwa (1997): the roof covering, the roof sheathing and
roof frame, the building envelope, the building occupancy and the
structural system were considered. These building components were
then used to develop the simulation for this study. The tasks that needed
to be completed in the risk assessment of the building were designed
based on the insights gained from the previous exploratory research
(Agnisarman et al., 2018). The participants completed the following
tasks validated by the subject matter expert:

@ Investigating the surroundings to understand missile and flood
exposure

@ Observing roof underdeck, roof condition, flashing, roof deck, and
attachments and obtaining building dimensions

@ Investigating rooftop equipment to verify the adequacy of the
securing method

@ Investigating building envelope (windows, dock doors, External
Insulation and Finishing System (EIFS))

2.6. Experimental design

2.6.1. Independent variables

This following experimental conditions were tested:

Type of context-based visual decision aids presented (3 levels): The
context-based visual aids supporting SA functioned as the between-
subjects variable in the simulation at three levels:

No visual aid/control condition. In this condition, the participants
were not provided any visual decision aids. They had to walk through
the simulation and perform various inspection activities. They were

&5
d. Perspective view of the building

Fig. 2. Four screenshots from the simulation.
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given a sheet of paper listing the tasks they needed to complete.

Checklist for aiding users and walking them through the in-
spection steps. This checklist-based visual aid used here provides par-
ticipants context-based cues to help perceive relevant details about the
infrastructure system and comprehend them to make sense of the in-
formation (Fig. 3 illustrates an example of this checklist-based display).

Interactive predictive visualization. This decision aid was devel-
oped by augmenting the checklist based visualization with an interac-
tive display illustrating potential damages to the infrastructure system.
Potential damages to the simulated infrastructure system (Damage State
4 as defined in HAZUZ) were shown in the interactive display as illus-
trated in Fig. 4. As per Hazus hurricane model user guide, severe damage
involves major window damage or roof sheathing loss, major roof cover
loss, and/or extensive damage to the interior from water (Hazus Hur-
ricane Model User Guidance, 2018; Liao, 2007). However, this visuali-
zation shows only some possibilities of damages if there is a severe
weather condition. What could actually happen will depend on several
uncertain factors such as age of the infrastructure system, wind speed,
location and materials. The interactive display prediction is hypothe-
sized to guide participants through the inspection tasks by enhancing
their Level 3 SA. The participants were not able to access both the
predictive display and the checklist at the same time.

2.6.2. Dependent variables

2.6.2.1. Situation awareness. An adaptation of the Situation Awareness
Global Assessment Technique (SAGAT) was used to assess the SA of the
participants. This measure was originally developed to quantify the SA
requirements of operators across all of its elements in the aviation
domain (Endsley, 1995). The underlying assumption behind this global
SA measure is the 3-level SA theory (Endsley, 1995). This technique is
used for objectively calculating the SA requirements of operators at
three different levels of SA using a freeze probe protocol. A higher level
of accuracy in the operator’s answer is attributed to higher levels of SA.

Checklist

@ b b N

c. Checklist for rooftop equipment inspection
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The method requires the simulation to freeze at randomly selected times
to administer SA queries. During the simulation freezes, a blank screen
was shown to the participants.

Since no standardized questions querying SA requirements for risk
inspection task exist, the SAGAT queries used in this study were devel-
oped based on the insights gained from detailed one on one interviews
with 10 risk engineers (Agnisarman et al., 2018). In addition, in this
study, these queries were not administered at randomly selected times;
rather they were administered at predefined times as was done in a
previous study investigating the SA of medical trainees (Gardner et al.,
2017). The questions were presented at five pre-selected intervals dur-
ing the simulation. However, the participants were told that the simu-
lation would freeze at randomly selected times. They didn’t know when
the simulation was going to freeze. Each set of questions was presented
following the completion of each task except for the second task (in-
spection of roof underdeck, roof condition, flashing, roof deck, attach-
ments and obtaining building dimensions). As this task involved more
steps than the other tasks, the simulation froze once during the task and
after task completion. Questions representing perception, comprehen-
sion and prediction phases of SA were included in each freeze. Questions
probing level 1 SA required participants to respond to questions about
the elements in the environment. Level 2 SA questions probed partici-
pants’ understanding of the current state of the environment. These
questions tested participants’ ability to comprehend the cues perceived.
Level 3 SA questions tested participants’ ability to predict the future
state of the building in the event of a high speed wind condition.

2.6.2.2. Workload. Uncertainty or ambiguity in information leads to
increased cognitive load while making sense of such information (Block,
2013; Zuk and Carpendale, 2006). Visualizing these uncertainties will
facilitate decision making. However, adding additional elements about
uncertainties in the visualization can, in turn, increase the cognitive load
on users (Block, 2013). Ideally, the integrated visualization design
proposed in this study should result in decreased cognitive load. Though

Checklist

Checklist

d. Checklist for rooftop envelope inspection

Fig. 3. Examples of the checklist used in the study.
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c. Heat map of wind pressure on rooftop

b. Exhaust fan failure

d. Flooding and missile impact

Fig. 4. Examples of the predictive display used in the study.

measuring cognitive load directly can be challenging, this study used
workload as an indirect measure of it (Block, 2013). The workload was
subjectively measured using The National Aeronautics and Space
Administration Task Load Index (NASA-TLX) questionnaire (Hart, 2006;
Hart and Staveland, 1988). As measuring workload after each task can
be time consuming, NASA TLX was administered upon completion of all
inspection tasks.

2.6.2.3. Performance. Higher SA does not guarantee improved perfor-
mance. According to Endsley and Garland (2000), there is only a
probabilistic relationship between SA and performance. In this research,
the performance of participants was measured to study the improve-
ment, if any, as a result of using context-based visual decision aids using
a multidimensional approach. A performance questionnaire was
designed using the format of a typical school exam, with each correct
response contributing to the overall score determined as the sum of
correct responses. This performance test was designed based on the tasks
assigned to the participants, and the survey asked questions about the
tasks completed in the simulation. Though the difference between the
SAGAT questionnaire and the performance questionnaire is subtle, the
former does not include procedural questions. The performance test was
validated by a subject matter expert.

2.6.2.4. Time. Time taken to complete the inspection task was tracked
in the simulation. In real-world, time taken to complete the inspection
task depends on factors such as complexity and size of building, type of
roof and number and type of rooftop equipment. However, in this
controlled study, all participants exposed to any experimental condi-
tions carried out the inspection tasks using the same simulation. So, any
difference in their time taken to complete the task can be attributed to
the experimental condition and their individual differences.

2.7. Procedure

To examine the context-based visual decision aids, the entire in-
spection scenario was simulated using the Unity game engine. The
complexity of the inspection tasks was simplified significantly for novice
participants. Following a between-subjects experimental design, each
participant was randomly assigned to one study condition. The study
began with the researcher explaining the study procedure. This step was
followed by the participants signing the consent form and then
completing a demographic questionnaire. A video was then presented to
the participants to explain the various steps involved in the windstorm
risk inspection process. More specifically, the video explained and
exemplified the types of issues observed in the real-world as well as the
tasks the participants were expected to complete. Next, following the
random assignment, the participants completed a training scenario in a
simulated environment, which used the simulation of a warehouse
building with various pieces of rooftop equipment. Through this simu-
lation, participants became familiar with the navigation controls and
decision aids (only for the participants in the decision aid condition).

The participants were then exposed to the study condition and the
tasks they were assigned to complete in the simulation. They were able
to take notes during the inspection process using a pen and paper pro-
vided. After each task, the participants were asked to complete the
SAGAT questions; however, they were not allowed to consult their notes
while completing the questionnaire. At the end of the final task, par-
ticipants were given the performance and NASA-TLX questionnaires;
while completing the performance questionnaire, participants were able
to use their notes. They then participated in a retrospective think aloud
session where they were asked to reflect on their performance. This
procedure is illustrated in Fig. 5.

2.8. Data analysis

R language for statistical computing (R Core Team, 2019) was used
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Fig. 5. Flow chart outlining experiment procedure.
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for data analysis. Cook’s Distance was used to identify influential cases.
Standardized deviance residuals and standardized residuals were used to
detect outlier values. The SAGAT responses were analyzed using
multilevel binary logistic regression with a logit link function. For this
variable, an additional independent variable indicating the SA level was
also considered in the analysis. The SAGAT questions were categorized
into three levels based on the SA level each represented. Questions
related to the perception phase were categorized under Level 1 SA,
questions related to the comprehension phase under Level 2 SA and
questions related to the prediction phase under Level 3 SA. This variable
was included in the analysis to identify the specific effects of the decision
aids on the perception, comprehension and prediction phases of SA.
Workload data collected using the NASA-TLX and the performance
data were analyzed using one-way between-subjects ANOVA. These
dependent variables were tested for normality using the Shapiro-Wilk’s
test, and standardized residual values were calculated to identify
extreme outliers (values greater/less than + 3). Homogeneity of vari-
ances was tested using Levene’s test of homogeneity of variances. In
addition, Cook’s Distance was used to identify any influential cases.

3. Results
3.1. SAGAT

SAGAT responses were coded as 1 (if the response is correct) and 0 (if
the response is wrong). Each SAGAT query was analyzed individually to
allow for comparisons to be made among the different conditions
(Stanton et al., 2004). Separate multilevel logistic regression analyses
were conducted to analyze the five sets of SAGAT responses recorded
following the simulation freeze. The Ime4 package available in R was
used for analyzing SAGT responses (Bates et al., 2015). The multilevel
logistic regression model for the SAGAT queries was built iteratively,
with the intercept only model being used as the baseline and the final
model including the experimental conditions presented and the SA
levels and/or the interaction between the types of visual aids and the SA
level. No extreme data points were identified as assessed by deviance
residuals and Cook’s Distance.

3.1.1. Inspection of surroundings (SAGAT 1)

The first set of SAGAT responses was recorded following the
completion of the first task, which involved the inspection of building
surroundings to identify the exposure level and to evaluate missile
impact to the building. Following this task, the first SAGAT question-
naire containing 10 questions was administered. The multilevel logistic
regression model was built iteratively. Table 2 illustrates the details of
the iterative model building.

A test of the full model with two independent variable and one 2-way
interaction effect was significant, X2 (9, N=65)=111.87, p<0.001,
R?, = 0.13. The main effects of type of visual decision aid (Ay? = 37.53,
p <0.001) and SA level are significant (AX2 =36.66, p <0.001). The
analysis revealed an interaction between experimental condition and
the SA level, Ay?>=17.42, p = 0.002. Post-hoc analysis was carried out
to investigate the nature of this interaction. This interaction effect is
illustrated in Table 3 and Fig. 6.

As illustrated in Fig. 6, participants exposed to the experimental
conditions had higher SA compared to participants exposed to the
control condition. However, this difference was moderated by the SA
level. More specifically, there was no significant difference in the SA
among participants exposed to the control, checklist and predictive
conditions when they were questioned on their perception state of SA.
Participants in the checklist condition (b =1.625, p=0.02, OR =5.08,
(95% CI: 1.10, 23.36)) and predictive display condition (b=2.98,
p=0.0001, OR =19.59, (95% CI [2.71, 141.35])) had significantly
higher SA than participants in the control condition when they were
questioned on their Level 2 SA. There was no significant difference be-
tween the SA of participants exposed to the checklist condition and the
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Model summary for multilevel logistic regression analysis for inspection of underdeck and rooftop (SAGAT 2).
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Table 5
Mean probability of correctly answering SAGAT questions for underdeck and
rooftop inspection task (SAGAT 2).

SA level
Level 1 Level 2 Level 3
Control 0.78 0.22 0.18
Type of visualization Checklist 0.88 0.59 0.37
Predictive display 0.95 0.76 0.92
1.00-
o
@
£0.75-
8
8
§ Condition
S
= ] W control
S0 L] checkist
= D Predictive display
2
2
o
=
3025~
=
0.00- J i .
Level 1 Level 2 Level 3

Situation awareness level

Fig. 7. Interaction effect of types of SA level on the relationship between SA
and the decision aids presented (inspection of underdeck and rooftop -
SAGAT 2).

they were asked questions related to the comprehension stage of SA.
However, the SA of participants exposed to the two experimental con-
ditions when probed on their Level 2 SA (b =0.88, p=0.56, OR =2.41,
(95% CI, 0.61 9.57)) did not differ significantly. Similarly, participants
exposed to the predictive display condition had significantly higher SA
than participants in both control condition (b=4.31, p<0.001,
OR=74.31, (95% CI [3.17, 1740.11])) and checklist condition
(b=3.24, p=0.002, OR = 25.41, (95% CI: 1.30, 496.28)) when they
were probed on their Level 3 SA. However, the SA of participants
exposed to the checklist decision aid and no decision aid (b=1.07,
p=0.92, OR =2.92, (095% CI [0.24, 36.07])) did not differ signifi-
cantly when probed on their Level 3 SA.

3.1.3. Inspection of underdeck and rooftop continuation (SAGAT 3)

The third set of SAGAT responses was recorded following the
completion of the second task. This questionnaire contained eight
questions, and the multilevel model was built iteratively. Table 6 illus-
trates the details of this iterative model building. As this table shows, the
model including only the main effect of SA level, and the model
including the main effects of SA level and types of visualization and the
interaction effect of these two variables are not significantly different
from the model containing only the main effect of type of visualization.
Thus, the main effect of SA level and the interaction effect between the
type of visualization and SA level were removed from the model. Model
3 is used as the final model.

A test of the model with type of visualization against the baseline
model is significant ¥* (3, N=65)=127.62, p<0.001, R% =0.09,
indicating that the predictor reliably distinguished participants who
correctly answered the SAGAT questionnaire from those who did not. As
illustrated in Fig. 8, participants exposed to the checklist (b=1.24,
p =0.0001, OR = 3.45, (95% CI [1.70, 6.98])) and the predictive display
(b=1.85,p <0.001, OR = 6.33, (95% CI [2.95, 13.59])) conditions had
higher SA than participants who were not exposed to any decision aids.
However, the SA of participants assigned to the experimental conditions
(b=0.61, p=0.16, OR =1.83, (95% CI [0.84, 4.02]) did not differ
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Table 6

Model summary for multilevel logistic regression analysis for the second part of inspection of underdeck and rooftop (SAGAT 3).
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Fig. 8. Main effect of the decision aids presented (inspection of underdeck and
rooftop continuation - SAGAT 3).

significantly. The mean probability value can be found in Table 7.

3.1.4. Inspection of rooftop equipment (SAGAT 4)

The fourth set of SAGAT responses was recorded following the
completion of the third task, which involved the inspection of rooftop
equipment. Participants had to inspect how the equipment on rooftop is
fastened to the roof in addition to how equipment and other components
on the roof will be affected in the event of extreme weather conditions.
The SAGAT questionnaire contained eight questions, and the multilevel
model was built iteratively. Table 8 illustrates the details of the iterative
model building. As shown in this table, the model containing the
interaction effect of the type of visualization and the SA level is not
significantly different from the model containing only the main effects of
the independent variables. Thus, the interaction effect was removed
from the model. Model 4 is used as the final model.

A test of model with the main effect of independent variables was
significant ¥2 (5, N =65) =135.06, p <0.001, R% =0.15. The main
effects of type of visual decision aid (Ay? = 37.75, p < 0.001) and SA
level were significant (Ay® = 33.53, p < 0.001). Participants assigned to
the predictive display conditions had higher SA than participants in the
checklist condition (b=1.45, p=0.001, OR =4.26, (95% CI [1.43,
12.75])) and the control condition (b=2.23, p <0.001, OR=9.26,
(95% CI [3.04, 28.211)). This is shown in Fig. 9. However, there was no
significant difference between SA of participants in the checklist con-
dition and control condition (b=0.78, p=0.18, OR =2.17, (95% CI
[0.86, 5.47])). The mean probability value can be found in Table 9. As
illustrated in Fig. 10, the participants’ Level 2 SA was significantly lower
than their Level 1 SA (b= -1.56, p < 0.001, OR = 0.21, (95% CI [0.09,
0.50])) and Level 3 SA (b=-1.04, p=0.003, OR=0.353, (95% CI
[0.15, 0.81])). However, Level 1 SA was not significantly different from
Level 3 SA (b=0.53, p=0.51, OR =1.70, (95% CI [0.76, 3.79]1)). The
mean probability value can be found in Table 9.

3.1.5. Inspection of envelope (SAGAT 5)

The fifth set of SAGAT responses was recorded following the
completion of the fourth and final task, which involved the inspection of
the envelope. The envelope included windows, doors/dock doors, and
EIFS. To make the inspection task less complex, the tasks only included

Table 7
Mean probability of correctly answering SAGAT questions for the second part of
underdeck and rooftop inspection task (SAGAT 3).

Type of visualization

Control 0.55
Checklist 0.80
Predictive display 0.88
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Table 8

Model summary for multilevel logistic regression analysis for inspection of rooftop equipment (SAGAT 4).

—4, p=0.30),

Model5 (Ay? = 4.91, df

2, p < 0.001),

33.53, df =

Model4 (Ay?

2,p <0.001),

Model3 (Ay? = 37.73 df

1,
AR%,

Model2 (Ay? =109.76, df

p <0.001), R%,

Modell

Variable

AR% < 0.001, R%,=0.16

AR%, =0.06, R%,=0.15

0.06, R%, =0.09

0.04

CI
Upper

CI

CI B (SE) OR

CI

CI B (SE) OR

OR CI

CI B (SE)

OR CI

CI B (SE)

CI

OR

B (SE)

Lower

Upper

Lower

Upper

Lower

Upper

Lower

Upper

Lower

1.61 0.69 199 1.21 3.35 0.66 193 1.08 3.58

0.76

3.90 0.10 1.10

2.02

2.82 1.00 2.74

1.94

2.33

0.85

Constant

(0.16) (0.19) (0.25) (0.30)

(0.09)
Experimental Condition (type of visualization)

Checklist

3.54 0.78 217 1.21 4.05 0.85 233 097 5.91

1.19

2.02

0.70

(0.46)
2.

(0.30)

0.27)
2.04

36.85

73 20.04 24 9.38  3.04

4.

9.26

22
(0.36)

4.16 15.47 2.

7.69

Predictive Display

(0.62)

(0.33)

Situation awareness level

Level 2

0.57

0.10

0.25

—1.40
(0.44)
—0.56
(0.38)

0.36

0.12

0.21

—1.56
(0.28)
—-0.53
(0.26)

1.19

0.27

0.57

0.98

0.35

0.59

Level 3

Interaction between Condition and SA Level

Checklist:

3.37

0.29

0.99

—0.01
(0.62)
—0.56
(0.76)
—0.20
(0.56)
0.87

SALevel2
Predictive display:

2.43

0.12

0.57

SALevel2
Checklist:

2.47

0.27

0.82

SALevel3
Predictive display:

14.68

0.43

2.39

(0.87)

SALevel3

11

International Journal of Industrial Ergonomics 83 (2021) 103108

1.00-

e
~
o

=
o
=]

e
]
o

Mean probability of correct response

0.00- L Biea & @
Checklist Predictive display

Type of visualization

Control

Fig. 9. Main effect of the decision aids presented (inspection of rooftop
equipment - SAGAT 4).

Table 9
Mean probability of correctly answering SAGAT questions for inspection of
rooftop equipment (SAGAT 4).

Types of visualization SA level

Control 0.52 Level 1 0.81

Checklist 0.69 Level 2 0.52

Predictive display 0.89 Level 3 0.72
1.00-

0.75-

0.50-

0.25-

Mean probability of correct response

0.00- g !
Level 2 Level 3

Situation awareness level

Level 1

Fig. 10. Main effect of situation awareness level (inspection of rooftop equip-
ment - SAGAT 4).

the inspection of the envelope of the rooms on the rooftop. The SAGAT
questionnaire contained eight questions, and the multilevel model was
built iteratively. Table 10 illustrates the details of the iterative model
building. As shown in the table, the model containing the interaction
effect of the type of visualization and SA level is not significantly
different from the model containing only the main effects. Thus, the
interaction effect was removed from the model. Model 4 is used as the
final model.

A full model with the main effect of independent variables was sig-
nificant y2 (5, N = 65) = 240.04, p < 0.001, R, = 0.23. The main effect
of type of visual decision aid (Ax? = 28.33, p < 0.001) and SA level is
significant (Ay? = 85.93, p < 0.001). As illustrated in Fig. 11, SA of the
participants in the predictive display condition significantly differed
from that of participants in the control condition (b =2.55, p < 0.001,
OR=12.80, (95% CI [2.90, 56.38])). Participants exposed to the
checklist conditions had marginally significantly higher SA than par-
ticipants in the control condition (b=1.31, p=0.06, OR =3.71, (95%
CI [0.98, 14.06])). However, the SA of participants exposed to the pre-
dictive display condition and the checklist condition (b =1.24, p =0.15,



cI

Table 10
Model summary for multilevel logistic regression analysis for inspection of envelope (SAGAT 5).

Variable Modell Model2 (A2 =141.82, df =1, Model3 (Ay2 =28.08, df =2, Model4 (Ay2 =85.93, df =2, p < 0.001), Model5 (Ax2 =2.12, df =4, p=0.71),
p <0.001), R2L =0.06 p <0.001), AR2L = 0.05, R2L =0.10 AR2L =0.15, R2L=0.23 AR2L = 0.004, R2L = 0.24
B (SE) OR CI CI B (SE) OR CI CI B (SE) OR CI CI B (SE) OR CI CI B (SE) OR CI CI
Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
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Fig. 11. Main effect of decision aids presented (inspection of envelope -
SAGAT 5).

OR =3.45, (95% CI [0.82, 14.49])) did not differ significantly. The
mean probability value can be found in Table 11.

Asillustrated in Fig. 12, the participants’ Level 2 SA was significantly
lower than their Level 1 SA (b= —2.39, p < 0.001, OR =0.09, (95% CI
[0.035, 0.24])) and Level 3 SA (b= —1.88, p < 0.001, OR =0.152, (95%
CI [0.057, 0.41])). However, Level 1 SA did not differ significantly from
Level 3 SA (b=0.51, p=0.82, OR =1.66, (95% CI [0.61, 4.56])). The
mean probability value can be found in Table 11.

3.2. Performance

Sum of the scores for correct responses to the performance ques-
tionnaire was obtained. The maximum possible score was 56, and the
individual scores were converted to percentages. This score for one
participant was missing completely at random (MCAR). Thus, this data
point was imputed using the MICE package available in R (van Buuren
and Groothuis-Oudshoorn, 2011).

A between-subjects ANOVA was carried out to analyze the impact of
type of visualization on the performance score. A significant difference
in performance was observed among participants exposed to different
conditions (F(2, 62)=17.47, p<0.001, = 0.34). The performance
score increased from the control condition (M = 54.38, SD =12.35) to
the checklist condition (M = 65.83, SD = 14.80) to the predictive display
condition (M =76.70, SD =9.38). A post-hoc analysis with Bonferroni
correction revealed that the mean increase in performance from the
control condition to the checklist condition (11.45, 95% CI [2.16, 20.7])
was statistically significant (p = 0.011). Additionally, the differences in
the performance scores between the control condition and the predictive
display condition (22.32, 95% CI [13.03, 31.6], p <0.001), and the
checklist condition and the predictive display condition (10.87, 95% CI
[1.69, 20.1], p=0.015) were significantly different. This effect of type
of visualization is illustrated in Fig. 13.

3.3. Time

The simulation tracked the time taken to complete the inspection
task. One missing data point was imputed using the MICE package. A
between-subjects ANOVA was carried out to analyze this variable. A

Table 11
Mean probability of correctly answering SAGAT questions for inspection of
envelope (SAGAT 5).

Types of visualization SA level

Control 0.48 Level 1 0.84
Checklist 0.70 Level 2 0.46
Predictive display 0.86 Level 3 0.78
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Fig. 13. Effect of decision aids presented on performance.

significant difference in time taken was observed among participants
exposed to the different conditions (F(2, 62)=34.40, p<0.001,
®2=0.51). As illustrated in Fig. 14, time taken in seconds to complete
the inspection tasks increased from the control condition (M = 961.64,
SD =47.03) to the checklist condition (M = 1623.24, SD = 64.22) and
the predictive display condition (M =1713.61, SD = 88.26). A post-hoc
analysis with Bonferroni correction revealed that the mean increase in
time taken from the control to the checklist condition (661.60, 95% CI
[419, 904], p < 0.001]) and predictive display condition (752.00, 95%
CI [509, 995], p < 0.001]) is statistically significant. However, the time
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Fig. 14. Effect of decision aids presented on time taken to complete inspec-
tion tasks.



S. Agnisarman et al.

taken by the participants in the checklist condition did not differ
significantly from the time taken in the predictive display condition
(90.4, 95% CI [-149, 330], p =0.99]).

3.4. Workload

3.4.1. Total workload

NASA TLX tool was used for assessing workload. A between-subjects
ANOVA was carried out to analyze this variable. As illustrated in Fig. 15,
total workload decreased from the control condition (M =52.51,
SD =16.81) to the checklist condition (M =49.56, SD =17.46) to the
predictive display condition (M =45.92, SD = 13.74). However, these
workload values were not statistically different across various test
conditions (F(2, 62) = 0.906, p = 0.41, ©> = —0.003).

3.4.2. Mental demand

Mental demand data was assessed using the NASA TLX tool. A
between-subjects ANOVA was used to analyze this variable. As illus-
trated in Fig. 15, perceived mental demand decreased from the control
condition (M = 18.23, SD = 9.29) to the checklist condition (M = 17.42,
SD =8.91) to the predictive display condition (M =15.61, SD = 6.54).
However, no significant difference in the mental demand experienced
was observed among participants exposed to the different conditions (F
(2, 62) =0.567, p=0.57, ®*>= —0.013).

3.4.3. Temporal demand

The perceived temporal demand was measured subjectively using
the NASA TLX tool. A between-subjects ANOVA was carried out to
analyze this variable. As illustrated in Fig. 15, perceived temporal de-
mand increased from the control condition (M = 8.19, SD = 6.57) to the
checklist condition (M =28.39, SD=7.99) to the predictive display
condition (M = 8.73, SD =9.70). However, no significant difference in
the temporal demand experienced was observed among participants
exposed to the different conditions (F(2, 62)=0.024, p=0.98,
®*=-0.031).

3.4.4. Subjective performance

The subjective performance was measured using the NASA TLX tool.
Higher values of performance rating indicate lower perceived perfor-
mance, and lower values of performance rating indicate higher
perceived performance.

A between-subjects ANOVA was conducted to investigate how the
type of visualization affected the perceived performance reported by the
participants. The perceived performance differed significantly among
the participants exposed to the different conditions (F(2, 62) =4.71,
p=0.01, ®*=0.102). As illustrated in Fig. 15, the perceived perfor-
mance rating increased from the control condition (M=11.65,
SD =6.19) to the predictive display condition (M = 8.64, SD = 5.40) to
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Fig. 15. Effect of decision aids presented on NASA TLX subscales.
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the checklist condition (M = 6.91, SD = 3.40). A post-hoc analysis with
Bonferroni correction revealed that the mean increase in perceived
performance from the control to the checklist condition (—4.74, 95% CI
[-8.58, —0.899, p =0.01]) was statistically significant. However, pre-
dictive display condition and the control condition (—3.01, 95% CI
[-6.86, 0.828, p = 0.17]), and the checklist condition and the predictive
display condition (—1.73, 95% CI [-5.53, 2.07, p=0.80]) were not
statistically different.

3.4.5. Effort

The subjective effort rating was measured using the NASA TLX tool.
A between-subjects ANOVA was carried to analyze this variable. As
illustrated in Fig. 15, perceived effort increased from the predictive
display condition (M =10.35, SD=6.36) to the control condition
(M =10.59, SD =6.89) to the checklist (M =11.80, SD = 6.81). How-
ever, these differences were not significantly different from each other
(F(2, 62) =0.299, p=0.74, o?=-0.022).

3.4.6. Frustration

The subjective frustration was measured using the NASA TLX tool.
The homogeneity of variance assumption was violated as assessed by
Levene’s test (p = 0.03); as a result, Welch’s F test was used to test the
hypothesis.

A one-way analysis of means not assuming equal variances using
Welch’s test was carried out. As illustrated in Fig. 15, perceived frus-
tration increased from the predictive display condition (M=2.17,
SD =2.57) to the control condition (M =2.06, SD=2.27) to the
checklist condition (M =4.76, SD = 5.52). However, no significant dif-
ference in the perceived effort reported was observed among partici-
pants exposed to different conditions (F(2, 38.91) =2.28, p=0.12).

4. Discussion

This article investigated how context-enabled visual decision aids
can be used to enhance the situation awareness and performance of risk
inspectors. Sixty-five civil engineering and construction science students
were recruited for this study. The dependent variables measured were
SAGAT, performance, NASA TLX and task time.

The visual decision aids used in this study were designed based on
the user-centered design approach proposed by Endsley (2016). A
checklist based decision aid and an interactive predictive visual aid were
tested in this study. In general, participants exposed to these test con-
ditions reported higher SA compared to those who were not exposed to
any decision aids, suggesting that these decision aids developed for risk
inspection were effective in supporting the SA requirements of the
participants. Additionally, participants had higher Level 1 and Level 3
SA, a result that appears counterintuitive as the latter is more complex
and difficult to achieve. However, accurate prediction of potential
damages to the building led to significantly higher Level 3 SA than Level
2 SA.

For tasks requiring the participants to inspect the building sur-
roundings and assess potential missile impact and water damage, those
received the decision aids exhibited a higher Level 2 SA. Past studies
have suggested that using procedural checklists could improve the SA of
participants. For example, a longitudinal descriptive study investigating
the effectiveness of a checklist in improving SA during physician
handoffs in a pediatric emergency department reported that the users
experienced improved SA with the help of a standardized checklist
(Mullan et al., 2015). For the task that involves the inspection of
building surroundings, participants in the predictive display condition
achieved a higher Level 3 SA compared to other participants. Interactive
predictive visualizations showed participants what if scenarios in the
event of a Category 4 hurricane. This knowledge may have contributed
to the significantly higher Level 3 SA for those participants and helped
them better predict the building’s future state. The cues presented in the
predictive visualization situated around their SA requirements and
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translated the captured data into a meaningful prediction, resulting in
higher SA (Endsley and Connors, 2008). A study investigating the effect
of a situation-augmented display on an unmanned aerial vehicle moni-
toring task suggested that use of such displays may improve the SA of
participants. However, this study used time to detect abnormalities as a
measure of SA (Lu et al., 2013). Use of measures like SAGAT or SART
may be more useful in identifying the actual effect of such visualizations
on SA.

A similar trend was observed for tasks requiring the participants to
inspect the general condition of a roof underdeck and a rooftop. Par-
ticipants in all three conditions had the same Level 1 SA. Both experi-
enced as well as novice personnel can have the same Level 1 SA.
However, integrating this information to comprehend the situation can
be challenging for novice engineers (Endsley, 2016). Though we
recruited novice participants for this study, those exposed to the
experimental condition achieved higher Level 2 and Level 3 SA. Par-
ticipants also had to take several measurements including fastener
spacing and parapet dimensions. A previous study investigating the
needs and requirements of windstorm engineers revealed that taking
dimensions is one of the tasks they frequently forget (Agnisarman et al.,
2018). Thus, providing context-based decision aids to support this SA
requirement through a checklist resulted in improved SA. Endsley
(2016) suggested that providing assistance for Level 2 SA and Level 3 SA
will positively influence situation awareness. The checklist helped par-
ticipants thoroughly investigate the surroundings through cues and re-
minders. Additionally, the predictive display processed the Level 1
information and presented details supporting their Level 2 SA and pro-
vided assistance to predict potential damages to the infrastructure,
leading to higher Level 2 and Level 3 SA. For example, all participants
were asked to identify the areas experiencing higher wind pressure
based on the presence of parapet and fastener spacing. The predictive
display used a heat map to directly show this information as illustrated
in Fig. 4c, leading to higher SA.

The second task additionally required the participants to inspect
other roof issues including roof drainage, parapet and the general con-
dition of the roof membrane. Most of the tasks they were asked to
complete were related to such obvious issues as the identification of a
clogged drain, stagnant water on the rooftop and a membrane tear.
However, the interactive predictive visualization and the checklist
assisted them better inspect the building, resulting in higher SA. The
checklist explicitly asked them to look for these issues, leading to higher
probability in correctly answering the SAGAT questions. The predictive
display did not have any additional value compared to the checklist
condition. Though the predictive display showed the participants the
potential damages to the building under severe weather condition,
participants found it easier to predict the consequence of some obvious
issues like a clogged drain and discontinuous parapet.

For tasks requiring the inspection of the condition of rooftop
equipment, participants in the predictive display condition had higher
SA compared to participants in the control condition and the checklist
condition. Building rooftop housed several improperly attached pieces
of equipment. Predicting the specific behavior of some of them and some
of their potential impacts was not a straightforward task. For this reason,
the checklist alone was not useful enough to complete this task. How-
ever, the predictive display helped them develop a better mental model
of the potential interaction among different building components. For
example, as illustrated in Fig. 4d, the dislodged exhaust fan could impact
the dock door and damage it. Additionally, the dock door was not impact
rated or pressure rated, both of which could exacerbate the damage.
Participants in the predictive display condition were given sufficient
information for integrating the available cues to create an accurate
mental model, leading to higher SA.

The final task required the participants to inspect the building en-
velope. For simplicity, participants had to inspect only the envelope of
the rooms on the rooftop. Participants who used the decision aids
exhibited higher SA compared to participants who did not receive any
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decision aids. Participants who completed the inspection tasks without
any decision aids failed to identify if the windows and dock doors in the
rooftop were impact rated or pressure rated. Additionally, they failed to
inspect the condition of the EIFS. As the checklist and interactive visu-
alization guided the participants through these steps and given cues to
look for these details, they achieved a higher SA. The participants in the
predictive display condition, nonetheless, did not have better SA than
that of those in the checklist condition. As some participants suggested,
predicting what could happen to a dock door that was not impact rated is
pretty straightforward, suggesting that predictive visualization did not
add any additional value beyond the value of checklist.

According to Endsley and Garland (2000), higher SA might lead to
better performance. In this study, participants in the checklist condition
performed better than those receiving no decision aids. Participants
mentioned that the step by step instructions helped them keep track of
all the tasks they had to complete. Additionally, it avoided the need to
remember the inspection steps in their working memory. Checklists
have been extensively used in commercial aviation and past research
suggests they provide retrieval cues that help pilots activate the
sequence of activities they must perform (Degani and Wiener, 1990;
Reason, 1990; Wickens et al., 2015). Though in the domain of infra-
structure risk inspection, errors of omission may not always result in a
catastrophe, it could lead to building owners having to pay for a loss that
could have been avoided if the inspector had detected the issue in
advance. Use of a checklist reduces the chance of an omission error by
limiting the reliance on memory (Rosenfield and Chang, 2009), resulting
in higher performance. There is sufficient evidence in the literature
suggesting improved performance with the use of checklists. For
instance, a past study investigated the application of a checklist for
controlling severe local anesthetic systemic toxicity situation reported
improved performance for the group exposed to the checklist in a
simulated environment (Neal et al., 2012). In addition to the healthcare
domain, checklists are considered one of the simplest tools for reducing
human error across different disciplines including aviation and product
manufacturing (Hales and Pronovost, 2006). However, their effective-
ness in infrastructure inspection still needs to be comprehensively
investigated. To improve the effectiveness of digital checklists, as sug-
gested by some participants, it can be augmented with pictures of issues
to help users identify them in the building.

The participants in the predictive display condition exhibited higher
performance than those in the checklist condition as well as those who
did not receive any test conditions. For tasks involving the assessment of
complex interactions like the one illustrated in Fig. 4d, the predictive
display was particularly useful. These participants were aware of various
direct as well as indirect consequences of a loosely attached exhaust
hood. They saw how the fan hood could damage the non-impact rated
dock door and the EIFS. However, for much less complicated tasks,
checklists alone are sufficient. The predictive display can train novice
engineers to probe the scene thoroughly to identify various interactions
among different components in the building. Thus, providing an option
to activate the predictive display, if necessary, will help the novice en-
gineers. Most participants appreciated the predictive display; nonethe-
less, they suggested that its usefulness is limited to the training phase.
However, their significant benefit to expert engineers may be limited as
their experience helps them achieve Level 3 SA and predict potential
damages to the building.

Though participants in both test conditions exhibited higher SAGAT
and performance values, the NASA TLX workload measure was not
affected by these decision aids. Despite the lack of significance in the
workload score, the score was lower for the checklist and lowest for the
predictive display condition in the sample. Though the use of the
checklist did not result in significant reduction in workload, this finding
is promising as it did not place any additional workload on participants.
This research is in agreement with the findings from past studies
investigating the use of a checklist for pediatric trauma resuscitation
(Parsons et al., 2014). Higher workload can have a detrimental effect on
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SA because of users’ inability to comprehend and synthesize the cues
available in the environment and by requiring the use of already limited
working memory (Endsley, 2016; Mahadevan, 2009). Decision aids that
reduce the demands on working memory can, in turn, eliminate exces-
sive workload and improve SA. One example of such a decision aid is
automation, which has been found to reduce mental demand and
thereby improve SA (Endsley, 2016). The predictive display reduced
users’ mental demand by providing additional support for analyzing and
interpreting the data available. It helped the participants integrate
seemingly disparate cues and comprehend the data. Furthermore, par-
ticipants exposed to the experimental conditions spent more time in the
field completing the inspection task, a finding that was not unexpected
as those participants completed more required steps than the partici-
pants in the control condition. For example, participants in the checklist
and predictive display condition measured fastener spacing, welded
connection spacing and parapet height. Additionally, the checklist
prompted the participant to look for the general condition of rooftop
equipment and roof such as tear ponding and vegetation. However, most
participants in control condition failed to inspect these aspects.
Furthermore, participants in the predictive display condition interacted
with the predictive visualization during the inspection task. This resul-
ted in increased task completion time for these participants.

Though the application of the decision aids had significant positive
effects on performance and SA, it is important to discuss some of the
behaviors observed during the study. Some participants failed to use the
checklist effectively. They forgot to open it and had to be reminded to
use it from time to time. Participants activated the checklist whenever
they wanted. However, keeping them static in the device would elimi-
nate the need for them to remember to activate the checklist. Further,
using the checklist can lead to errors of omission if it is not compre-
hensive. The checklist used in this study was designed specifically for the
building used in the simulation. In the real world, risk engineers
encounter facilities with different roof systems, components and occu-
pancy. Thus, there is a need to develop checklists that can be adapted to
the specific condition the engineers will be investigating. It can also be
augmented with representative images from real-world situations to
improve cue saliency. In addition, using a predictive display can have
several consequences as a result of an increased reliability on the system,
leading to automation complacency (Wickens et al., 2015); because of
increased clue reliance, participants failed to observe other areas despite
the fact they may have issues that the predictive display failed to
highlight.

This phenomenon associated with automation complacency is
known as attentional narrowing or tunneling (Wickens et al., 2015). For
example, the predictive display showed the potential damage for
building flashing under severe weather condition. Subsequently, the
participants based their conclusion about the flashing solely on the
predictive visualization, failing to look for flashing issues in the other
locations. Though these did not create any significant issues for the
participants’ SA or performance for the simplified inspection task used
in this study, in a real-world application with complicated inspection
tasks, these issues might affect inspectors’ performance. Thus, it is
important to study attentional tunneling in detail when designing
Al-based decision aids for risk engineers. Multimodal cues based on
Al-based algorithms can be developed to provide different types of cues
such as visual, auditory and haptic to reduce the information processing
demands on users (Burke et al., 2006). Multimodal displays exemplify
the framework of multiple resources theory by utilizing our capability to
process compatible resources at the same time (Burke et al., 2006;
Wickens, 2008). We need to further investigate the performance of risk
engineers while controlling automation enabled technologies such as
drones to collect inspection data. Multimodal displays can be used to
provide feedback on inspection tasks as well as controlling tasks.
Furthermore, the usability of these systems needs to be evaluated to
improve acceptance by its users (Agnisarman et al., 2017; Narasimha
et al., 2018).
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Furthermore, this cross-sectional study investigated how context-
based decision aids influenced participants’ SA and performance
immediately after watching the training video and completing the
training scenario. The retention effect or the training value of these
decision aids is still unknown. Further follow-up studies need to be
conducted without these decision aids to investigate the retention effect
of these aids on user performance and SA.

This study is not without limitations. The use of convenient sampling
is a major limitation of this study. This study recruited university stu-
dents with relevant academic background. Furthermore, the perfor-
mance questionnaire used in this study is not a validated questionnaire.
The questionnaire tested participants’ awareness about the scenario
presented. An experienced windstorm engineer validated the
questionnaire.

5. Conclusions

This experimental study investigated how checklist and predictive
display based decision aids influenced the performance and situation
awareness of participants using a simulated environment. The findings
suggest that the participants exposed to the decision aids had higher
performance and SA compared to the participants who did not receive
any decision aids. The application of decision aids had a positive effect
by reducing the reliance on memory. Additionally, the decision aids
helped users integrate the cues available to make sense of the environ-
ment. More specifically, the checklist alone was sufficient for some tasks
including the inspection of obvious issues like roof ponding, cracking
and clogged drainage. However, for other tasks involving the identifi-
cation of the interaction among different components in the building,
the predictive display provided additional benefits. This finding is
important to consider when selecting decision aids for infrastructure
inspection. By providing predictive visualization for only complicated
tasks, the computational demands may also be reduced.

The results suggest that the use of checklist and predictive display
might result in reduced workload. However, the decision aids need to be
tested with the actual windstorm risk engineers in real inspection sce-
narios to learn the effect of these aids on their SA and performance in a
real-world situation. In addition, we noticed that use of these decision
aids can lead to attentional tunneling. The potential of using additional
decision aids such as haptic cues based on Al algorithms need to be
investigated in detail in future research endeavors. Finally, the potential
of these decision aids on training risk engineers needs to be investigated
further to learn how they can be used to impart procedural knowledge as
well as to improve SA. There is a need to investigate the long-term effect
of these decision aids on the SA requirements of participants.
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