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A B S T R A C T

Routine inspection by insurance companies at their clients’ facility, also known as loss prevention survey, help 
identify the best strategies to minimize damages when there is a high-speed wind event. More specifically, wind 
vulnerabilities associated with a building are evaluated using a process known as windstorm risk inspection. This 
routine inspection helps clients reduce the extent of damages caused by high-speed wind events including 
hurricane and tornado. Risk engineers make use of their subjective and analytical deduction skills to successfully 
carry out the inspection tasks. In this research the researchers investigated the effect of context-based visuali
zation strategies on situation awareness and their understanding of the situation. The study examined how 
different types of information contribute towards the three levels of situation awareness. Following a between- 
subjects study design, 65 participants completed the study. Each session lasted 90–120 min. A checklist based 
and predictive display-based decision aids were tested and found to be effective in supporting the situation 
awareness requirements as well as performance of risk engineers. However, the predictive display only helped 
with certain tasks such as understanding the interaction among different components on the rooftop. For 
remaining tasks such as perceiving obvious issues like membrane tear, clogged drains and vegetation growth, 
checklist alone was sufficient. This study helped the understanding of the advantages and disadvantages of the 
decision aids tested. More specifically, these decision aids can improve the mental model of novice risk engineers. 
Additionally, this study provided insights that could help design training materials for infrastructure inspectors.   

1. Introduction

Over the past ten years, on an average, United States experienced
170 wind-related fatalities (NWS Analyze Forecast and Support Office, 
2018). Such fatalities as hurricanes, tornados and thunderstorms affect 
people and society as well as the economy (Tokgoz, 2012). The effect of 
these disasters range from direct damages such as physical destruction of 
assets and capital to indirect damages (Khazai et al., 2013). More spe
cifically, property damage costs billions of dollars in losses (Fernández, 
2001). In 2017 alone, such weather events resulted in a cumulative cost 
of $306.2 billion (Hurricane Costs, 2019). To limit the extent of these 
damages, wind vulnerability assessments are conducted to identify and 
mitigate damage and to minimize disruption (Smith Thomas, 2011). 
Specifically, insurance companies conduct routine inspection tasks or 
loss prevention surveys in their clients’ facility to reduce the frequency 

and severity of such damages (Schlesinger and Venezian, 1986). Though 
this windstorm loss prevention survey or risk inspection can benefit both 
the clients and insurance company, the validity of the inspection find
ings and conclusions depend on the individual capabilities of the 
personnel carrying out the survey (Agnisarman et al., 2018; Agnisarman 
et al., 2019a,b). 

A previous qualitative study investigating the sensemaking process 
and situation awareness of loss prevention inspection professionals 
identified the lack of a standardized survey protocol as one reason for 
the disparity in their findings (Agnisarman et al., 2018). Furthermore, 
individual differences in the ability and experience level of these engi
neers contribute to this subjectivity (Agnisarman et al., 2018), with the 
latter being one of the most important factors contributing to the ac
curacy of the inspection report. Experienced engineers are better 
equipped to comprehend the elements in the environment to assess the 
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current state and predict potential damages and structural changes to 
the building than their novice counterparts who, due to their lack of 
experience, may find it challenging to perceive and comprehend infor
mation to better understand the infrastructure system (Agnisarman 
et al., 2018). 

Automation-assisted technologies and Artificial Intelligence (AI) 
based decision aids have been used by researchers and practitioners to 
improve the accuracy of the infrastructure inspection process (Agni
sarman et al., 2019a,b). Such smart decision aids can facilitate decision 
making by reducing the mental demand on the risk engineers by 
assisting them with the preliminary data analysis and cue the engineers 
to look for relevant information when completing the risk inspection 
task. However, such technologies are not without limitations. Though, 
these technologies can assist in conducting infrastructure inspection, the 
engineers’ ability to interpret and synthesize the data is important 
(Agnisarman et al., 2018), especially since the performance of the per
son operating such systems is affected by factors such as drop in vigi
lance, automation complacency and loss of situation awareness 
(Endsley, 1999; Endsley and Kiris, 1995). 

In the risk inspection domain, automated decision aids are not ex
pected to completely automate the risk inspection process. Instead, it 
can augment the risk engineers’ decision making with the help of pre
dictive algorithms, which generally outperform expert judgement as risk 
engineers’ ability to predict the potential damages to the infrastructure 
system is limited. However, human involvement is required to make 
decisions about unusual situations that are not accurately modeled using 
historical data (Guszcza, 2018). Such situations require intelligent sys
tems to generate anchor points for the experts to augment human de
cision making (Guszcza, 2018). To support this effort, there is a need to 
develop algorithms meeting contextual needs. The human-centered 
design should highlight the needs and requirements of the specific 
context under consideration to facilitate the optimal use of AI algo
rithms, emphasizing the importance of considering situation awareness 
in designing decision aids based on AI for risk engineers (Agnisarman 
et al., 2018). 

1.1. Situation awareness (SA) 

Situation awareness (SA) is the perception of the elements/cues in 
the environment (Level 1), comprehension of the current situation of the 
elements (Level 2) and the projection of the status of the elements and 
environment into the future (Level 3) (Endsley, 1995). Past studies 
suggested that the systems that could throw operators out of the loop can 
affect any of these levels (Endsley and Kiris, 1995; Khasawneh et al., 
2019). The application of this 3-level situation awareness framework 
(Endsley, 1995) can be seen in many domains such as aviation, aircraft 
maintenance and surgery in an effort to improve operator performance 
(Endsley and Robertson, 2000; Fioratou et al., 2010; Jones and Endsley, 
1996). However, our systematic literature search (Agnisarman et al., 
2019a,b) did not retrieve any articles in the domain of loss prevention 
inspection or building inspection focusing on the SA requirements of 
inspectors/engineers. To address this lack of research, this study focuses 
on designing visual decision aids to improve the situation awareness of 
infrastructure inspectors. 

1.2. Relevance of SA in infrastructure risk inspection 

Windstorm risk inspection process involves identifying wind vul
nerabilities associated with a building to reduce the extent of damage in 
the event of a hurricane or windstorm. Though the 3-level SA framework 
has been primarily used to identify SA requirements in dynamic systems, 
this concept is relevant to the inspection and maintenance domain as 
well (Endsley and Robertson, 2000). Though the infrastructure inspec
tion process does not involve a dynamic environment, risk engineers 
need to assess the current state and extrapolate it to the future. However, 
there are a number of unknown factors such as wind speed and 

direction, the overall condition of the infrastructure, and other in
terdependencies such as the distance between potential windborne 
projectiles known as missiles and infrastructure system and locations of 
other objects that make predicting the future state of the infrastructure a 
challenging task. More importantly, the dynamic events and behavior 
patterns of the components of an infrastructure following a higher 
category hurricane pose a real challenge for the risk engineers. 

The Level 1 SA requirements of risk inspection involve perceiving 
cues including, but not limited to, the type of roof, type of rooftop 
equipment, age of the roof, surface roughness and missile exposure. In 
Level 2 SA, the engineers comprehend the information perceived to 
evaluate the current condition of the infrastructure system. During this 
process, engineers may face a number of challenges, the most important 
one being the lack of information available. They then predict potential 
damages and failures based on its current state as well as other envi
ronmental conditions. The sensemaking process of infrastructure risk 
engineers during this process has been discussed in detail in another 
article (Agnisarman et al., 2018). While automated systems are used to 
support the windstorm risk inspection process, there is a need to un
derstand how engineers’ SA is impacted. In this research we will develop 
decision aids for information visualization to support the process of 
synthesizing cues in the environment to achieve adequate level of SA for 
risk inspectors. 

1.3. Risk assessment 

There are two primary methods currently being used for assessing 
hurricane structural damage: the subjective method and the analytical 
method (Mehta et al., 1981). The subjective method involves windstorm 
engineers going to a site to obtain information about the roofing system, 
envelope, connections, drawings and specifications, while the analytical 
method is based on the principles of structural mechanics and an un
derstanding of material properties to predict wind speed and potential 
damages (Mehta et al., 1981). The subjective windstorm visual inspec
tion method detailed in Agnisarman et al. (2018) formed the basis for 
identifying the information needed in the visualizations. In addition, 
analytical hurricane damage prediction models were also explored to 
identify the elements that need to be included in the contextual 
visualization. 

Risk involves both the probability of risk realization and the effect of 
threat realization (Väisänen et al., 2018). Though human visual 
perception is capable of detecting anomalies and patterns, the ability of 
the risk engineers to predict the future state of an infrastructure is 
limited. Information visualization uses external aids such as computers 
to strengthen the cognitive capabilities of users/decision makers (Kapler 
and Wright, 2005). Risk visualization, which involves visualizing po
tential risks to enhance cognition to facilitate decision making, will 
potentially augment the inspector’s cognition and enhance his/her sit
uation awareness. However, presenting the specific data needed to meet 
the demands of the end user can be challenging. This requires the 
identification of the needs and visualization requirements of this specific 
user group (Kasireddy et al., 2015). So, it is important to first evaluate 
the visualization requirements of the windstorm inspectors to design 
decision aids to meet their needs. 

1.4. Related work 

The design of technologies to support SA has been investigated 
extensively in aviation and healthcare. Additionally, the SA theory 
proposed by Endsley (1995) was applied to evaluate the effect of various 
types of display strategies, specifically tactical vs. waterfall, for sub
marine track management in a simulated environment (Loft et al., 
2015). Loft et al. (2015) studied the relationship between various SA 
measures such as Situation Present Assessment Method (SPAM) and 
Situation Awareness Global Assessment Technique (SAGAT) and per
formance, identifying a correlation among them. Another research 
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reported a reduction in self-reported SA as a result of an increased 
amount of task relevant information, meaning increased task-relevant 
information, despite being accurate, might not help with decision 
making (Marusich et al., 2016). Researchers have also studied the effect 
of the nature of information presented on the SA of mobile crane oper
ators; they identified a general trend in improvement in operator per
formance and SA with the use of a virtually reconstructed visualization 
of a lift scene (assistance system) over traditional systems (Fang et al., 
2018). In addition to mobile crane monitoring and operations, studies 
have also been conducted investigating the effect of 
situation-augmented displays for UAV monitoring (Lu et al., 2013), the 
findings suggesting that situation-augmented displays may provide 
sufficient situation awareness to improve user performance (Lu et al., 
2013). 

The application of the SA framework to investigate various infor
mation presentation strategies can be seen in defense research as well. A 
recent study investigated the effect of presentation modality, auditory 
vs. visual and message presentation rate on the SA and the cognitive load 
of soldiers (Hollands et al., 2019). The findings revealed that visual 
messages and higher message presentation rate resulted in higher 
cognitive load and reduced SA. Similar studies have been conducted in 
the healthcare domain as well, for example, a study investigating the 
effect of head-worn display (HWD) providing continuous patient infor
mation on the SA of nursing students while responding to patient alarm. 
The researchers observed that the participants’ responses to SA ques
tions were more accurate when using HWD compared to the alarm only 
condition (Pascale et al., 2019). Researchers have also investigated the 
effect of other decision aids such as a checklist on SA. For example, one 
such study investigated if the use of a checklist improves SA during 
physician handoffs in a pediatric emergency department. Participants in 
this study reported an improvement in their SA following the use of a 
standardized checklist (Mullan et al., 2015). 

However, none of the previous research developed decision aids for 
supporting the SA, performance and workload of infrastructure in
spectors. More specifically, to date, no studies have been conducted with 
windstorm risk engineers. While researchers have investigated the po
tential of using Augmented Reality (AR)-based systems for flood visu
alization (Haynes et al., 2018), no studies have looked at the situation 
awareness requirements and performance of inspectors. In the study 
reported here, the researchers investigated how various visualization 
techniques could be designed to enhance and support the SA of risk 
engineers. The checklist and predictive display based decision aids used 
here were designed to meet the requirements identified from an 
exploratory research that followed an interview based approach to learn 
the sensemaking process and SA requirements of windstorm engineers. 
In addition, the principles proposed by Endsley for designing for situa
tion awareness were also incorporated in the decision aids (Endsley, 
2016). More specifically, this study designed and tested checklist-based 
and predictive display-based decision aids. While risk engineers 
currently use a high-level checklist, it is not standardized. The checklist 
used in this study was reviewed by a subject matter expert and the 
predictive display used in this research is a novel idea which has not yet 
been used for this application. To investigate the effectiveness of these 
decision aids, the following research questions were investigated: 

RQ1. How is the SA of the participants affected by the context-based 
decision aids developed? 

RQ2. How is the performance of the participants affected by the 
context-based decision aids developed? 

RQ3. How does the nature of context-based visual decisions aids affect 
the cognitive load imposed on the participants? 

These hypotheses tested in this research were: 

H1. Participants in the predictive display condition will have higher 
SA compared to participants in the checklist condition and control 

condition and participants in the checklist condition will have higher SA 
compared to participants in the control condition. 

H2. Participants in the predictive display condition will have higher 
performance score compared to participants in the checklist condition 
and control condition and participants in the checklist condition will 
perform better compared to participants in the control condition. 

H3. Participants in the predictive display condition will have lower 
cognitive load compared to participants in the checklist condition and 
control condition and participants in the checklist condition will have 
lower cognitive load compared to participants in the control condition. 

2. Method 

2.1. Study sample 

For this research study, undergraduate civil engineering or con
struction science and managements students in their 3rd or 4th year 
(Junior or Senior year) or graduate students with the same background 
were recruited. These students have taken roof inspection and con
struction management related course and have basic background in this 
topic. Sixty-five participants, (min = 20, max = 41 years old, M = 23.35, 
SD = 3.37) were recruited for this study. Table 1 illustrates more details 
about the study participants. 

2.2. Apparatus 

This study used a Dell desktop computer with an Intel(R) Xeon(R) 
CPU E5-1620 v4 processor and a Quadro FX 5800 GPU to run the sim
ulations of a windstorm risk survey. An LG ultrawide monitor with a 
diagonal dimension of 38.8 inches was used as the display. The simu
lations were developed using the Unity game engine (Unity, 2005). A 
laptop computer was used to administer the questionnaires prior to, 
during and after the study through Qualtrics Research Suite (Qualtrics, 
2005). Fig. 1 illustrates the lab setup used in this study. 

2.3. Simulation 

The participants completed this study in a simulated environment. 
An academic building located within a 10-miles radius of the Atlantic 
Coast was used as the simulated scenario. The exposure category used in 
this study was Category C with generally open terrain with limited ob
structions (Windexpo, 2019). This location and exposure category were 
chosen to simulate moderate wind exposure and related damages. The 
location has only two buildings. The front yard of the main academic 
building had a pond and the backyard had a lake. The building had a 
mechanically fastened thermoplastic olefin (TPO) roof. This roof type 
was used as this is one of the commonly inspected roof systems by 

Table 1 
Demographic characteristics of the participants.  

Variable (N = 65) N % 

Gender 
Female 13 20 
Male 52 80 
Race 
White 39 60 
Asian 18 28 
Black/African American 5 8 
Other 3 4 
Major 
Civil Engineering 55 85 
Construction Science 10 15 
Degree Pursuing 
Undergraduate 37 57 
Graduate 17 26 
Doctorate 11 17  
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windstorm risk engineers. The building had a number of pieces of 
rooftop equipment ranging from antennas to duct work. The rooftop also 
had certain issues such as ponding, missing fasteners, a flashing issue, a 
membrane fissure and clogged drains. Fig. 2 illustrates four example 
images of the simulation used in this study. 

2.4. Visualization stimuli development 

Contextual visual aids can be developed following SA design prin
ciples (Endsley, 2016) to enhance the SA of novice as well as experi
enced users. The requirements supporting SA in this domain were 
identified from a previous exploratory research investigating the needs 
and requirements of risk engineers (Agnisarman et al., 2018). This study 
identified a few factors that affect the decision making process of 
windstorm risk engineers. Their experience level, site conditions, wind 
speed in the event of a hurricane and building code requirements are a 
few examples of the factors identified. All these factors impact the 
mental models of the engineers and, hence, their perception of infor
mation. Furthermore, novice engineers fail to consider alternate frames 

to analyze various reasons for possible damages when making sense of 
cues available in the environment. This will affect their Level 1 and 
Level 2 SA. Additionally, in complex situations they may have a difficult 
time predicting potential damages and future state of the building. This 
will affect their Level 3 SA. The decision aids developed and evaluated in 
this study are expected to support their Level 1, Level 2 and Level 3 SA. 

The context based visual aids developed here were expected to assist 
the risk professionals when completing the inspection tasks. 

2.5. Scenarios and tasks completed 

To develop the study scenarios, the various components of a building 
as defined by Unanwa (1997): the roof covering, the roof sheathing and 
roof frame, the building envelope, the building occupancy and the 
structural system were considered. These building components were 
then used to develop the simulation for this study. The tasks that needed 
to be completed in the risk assessment of the building were designed 
based on the insights gained from the previous exploratory research 
(Agnisarman et al., 2018). The participants completed the following 
tasks validated by the subject matter expert:  

● Investigating the surroundings to understand missile and flood 
exposure  

● Observing roof underdeck, roof condition, flashing, roof deck, and 
attachments and obtaining building dimensions  

● Investigating rooftop equipment to verify the adequacy of the 
securing method  

● Investigating building envelope (windows, dock doors, External 
Insulation and Finishing System (EIFS)) 

2.6. Experimental design 

2.6.1. Independent variables 
This following experimental conditions were tested: 
Type of context-based visual decision aids presented (3 levels): The 

context-based visual aids supporting SA functioned as the between- 
subjects variable in the simulation at three levels: 

No visual aid/control condition. In this condition, the participants 
were not provided any visual decision aids. They had to walk through 
the simulation and perform various inspection activities. They were 

Fig. 1. Experimental setup.  

Fig. 2. Four screenshots from the simulation.  

S. Agnisarman et al.                                                                                                                                                                                                                            



International Journal of Industrial Ergonomics 83 (2021) 103108

5

given a sheet of paper listing the tasks they needed to complete. 
Checklist for aiding users and walking them through the in

spection steps. This checklist-based visual aid used here provides par
ticipants context-based cues to help perceive relevant details about the 
infrastructure system and comprehend them to make sense of the in
formation (Fig. 3 illustrates an example of this checklist-based display). 

Interactive predictive visualization. This decision aid was devel
oped by augmenting the checklist based visualization with an interac
tive display illustrating potential damages to the infrastructure system. 
Potential damages to the simulated infrastructure system (Damage State 
4 as defined in HAZUZ) were shown in the interactive display as illus
trated in Fig. 4. As per Hazus hurricane model user guide, severe damage 
involves major window damage or roof sheathing loss, major roof cover 
loss, and/or extensive damage to the interior from water (Hazus Hur
ricane Model User Guidance, 2018; Liao, 2007). However, this visuali
zation shows only some possibilities of damages if there is a severe 
weather condition. What could actually happen will depend on several 
uncertain factors such as age of the infrastructure system, wind speed, 
location and materials. The interactive display prediction is hypothe
sized to guide participants through the inspection tasks by enhancing 
their Level 3 SA. The participants were not able to access both the 
predictive display and the checklist at the same time. 

2.6.2. Dependent variables 

2.6.2.1. Situation awareness. An adaptation of the Situation Awareness 
Global Assessment Technique (SAGAT) was used to assess the SA of the 
participants. This measure was originally developed to quantify the SA 
requirements of operators across all of its elements in the aviation 
domain (Endsley, 1995). The underlying assumption behind this global 
SA measure is the 3-level SA theory (Endsley, 1995). This technique is 
used for objectively calculating the SA requirements of operators at 
three different levels of SA using a freeze probe protocol. A higher level 
of accuracy in the operator’s answer is attributed to higher levels of SA. 

The method requires the simulation to freeze at randomly selected times 
to administer SA queries. During the simulation freezes, a blank screen 
was shown to the participants. 

Since no standardized questions querying SA requirements for risk 
inspection task exist, the SAGAT queries used in this study were devel
oped based on the insights gained from detailed one on one interviews 
with 10 risk engineers (Agnisarman et al., 2018). In addition, in this 
study, these queries were not administered at randomly selected times; 
rather they were administered at predefined times as was done in a 
previous study investigating the SA of medical trainees (Gardner et al., 
2017). The questions were presented at five pre-selected intervals dur
ing the simulation. However, the participants were told that the simu
lation would freeze at randomly selected times. They didn’t know when 
the simulation was going to freeze. Each set of questions was presented 
following the completion of each task except for the second task (in
spection of roof underdeck, roof condition, flashing, roof deck, attach
ments and obtaining building dimensions). As this task involved more 
steps than the other tasks, the simulation froze once during the task and 
after task completion. Questions representing perception, comprehen
sion and prediction phases of SA were included in each freeze. Questions 
probing level 1 SA required participants to respond to questions about 
the elements in the environment. Level 2 SA questions probed partici
pants’ understanding of the current state of the environment. These 
questions tested participants’ ability to comprehend the cues perceived. 
Level 3 SA questions tested participants’ ability to predict the future 
state of the building in the event of a high speed wind condition. 

2.6.2.2. Workload. Uncertainty or ambiguity in information leads to 
increased cognitive load while making sense of such information (Block, 
2013; Zuk and Carpendale, 2006). Visualizing these uncertainties will 
facilitate decision making. However, adding additional elements about 
uncertainties in the visualization can, in turn, increase the cognitive load 
on users (Block, 2013). Ideally, the integrated visualization design 
proposed in this study should result in decreased cognitive load. Though 

Fig. 3. Examples of the checklist used in the study.  
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measuring cognitive load directly can be challenging, this study used 
workload as an indirect measure of it (Block, 2013). The workload was 
subjectively measured using The National Aeronautics and Space 
Administration Task Load Index (NASA-TLX) questionnaire (Hart, 2006; 
Hart and Staveland, 1988). As measuring workload after each task can 
be time consuming, NASA TLX was administered upon completion of all 
inspection tasks. 

2.6.2.3. Performance. Higher SA does not guarantee improved perfor
mance. According to Endsley and Garland (2000), there is only a 
probabilistic relationship between SA and performance. In this research, 
the performance of participants was measured to study the improve
ment, if any, as a result of using context-based visual decision aids using 
a multidimensional approach. A performance questionnaire was 
designed using the format of a typical school exam, with each correct 
response contributing to the overall score determined as the sum of 
correct responses. This performance test was designed based on the tasks 
assigned to the participants, and the survey asked questions about the 
tasks completed in the simulation. Though the difference between the 
SAGAT questionnaire and the performance questionnaire is subtle, the 
former does not include procedural questions. The performance test was 
validated by a subject matter expert. 

2.6.2.4. Time. Time taken to complete the inspection task was tracked 
in the simulation. In real-world, time taken to complete the inspection 
task depends on factors such as complexity and size of building, type of 
roof and number and type of rooftop equipment. However, in this 
controlled study, all participants exposed to any experimental condi
tions carried out the inspection tasks using the same simulation. So, any 
difference in their time taken to complete the task can be attributed to 
the experimental condition and their individual differences. 

2.7. Procedure 

To examine the context-based visual decision aids, the entire in
spection scenario was simulated using the Unity game engine. The 
complexity of the inspection tasks was simplified significantly for novice 
participants. Following a between-subjects experimental design, each 
participant was randomly assigned to one study condition. The study 
began with the researcher explaining the study procedure. This step was 
followed by the participants signing the consent form and then 
completing a demographic questionnaire. A video was then presented to 
the participants to explain the various steps involved in the windstorm 
risk inspection process. More specifically, the video explained and 
exemplified the types of issues observed in the real-world as well as the 
tasks the participants were expected to complete. Next, following the 
random assignment, the participants completed a training scenario in a 
simulated environment, which used the simulation of a warehouse 
building with various pieces of rooftop equipment. Through this simu
lation, participants became familiar with the navigation controls and 
decision aids (only for the participants in the decision aid condition). 

The participants were then exposed to the study condition and the 
tasks they were assigned to complete in the simulation. They were able 
to take notes during the inspection process using a pen and paper pro
vided. After each task, the participants were asked to complete the 
SAGAT questions; however, they were not allowed to consult their notes 
while completing the questionnaire. At the end of the final task, par
ticipants were given the performance and NASA-TLX questionnaires; 
while completing the performance questionnaire, participants were able 
to use their notes. They then participated in a retrospective think aloud 
session where they were asked to reflect on their performance. This 
procedure is illustrated in Fig. 5. 

2.8. Data analysis 

R language for statistical computing (R Core Team, 2019) was used 

Fig. 4. Examples of the predictive display used in the study.  
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for data analysis. Cook’s Distance was used to identify influential cases. 
Standardized deviance residuals and standardized residuals were used to 
detect outlier values. The SAGAT responses were analyzed using 
multilevel binary logistic regression with a logit link function. For this 
variable, an additional independent variable indicating the SA level was 
also considered in the analysis. The SAGAT questions were categorized 
into three levels based on the SA level each represented. Questions 
related to the perception phase were categorized under Level 1 SA, 
questions related to the comprehension phase under Level 2 SA and 
questions related to the prediction phase under Level 3 SA. This variable 
was included in the analysis to identify the specific effects of the decision 
aids on the perception, comprehension and prediction phases of SA. 

Workload data collected using the NASA-TLX and the performance 
data were analyzed using one-way between-subjects ANOVA. These 
dependent variables were tested for normality using the Shapiro-Wilk’s 
test, and standardized residual values were calculated to identify 
extreme outliers (values greater/less than ± 3). Homogeneity of vari
ances was tested using Levene’s test of homogeneity of variances. In 
addition, Cook’s Distance was used to identify any influential cases. 

3. Results 

3.1. SAGAT 

SAGAT responses were coded as 1 (if the response is correct) and 0 (if 
the response is wrong). Each SAGAT query was analyzed individually to 
allow for comparisons to be made among the different conditions 
(Stanton et al., 2004). Separate multilevel logistic regression analyses 
were conducted to analyze the five sets of SAGAT responses recorded 
following the simulation freeze. The lme4 package available in R was 
used for analyzing SAGT responses (Bates et al., 2015). The multilevel 
logistic regression model for the SAGAT queries was built iteratively, 
with the intercept only model being used as the baseline and the final 
model including the experimental conditions presented and the SA 
levels and/or the interaction between the types of visual aids and the SA 
level. No extreme data points were identified as assessed by deviance 
residuals and Cook’s Distance. 

3.1.1. Inspection of surroundings (SAGAT 1) 
The first set of SAGAT responses was recorded following the 

completion of the first task, which involved the inspection of building 
surroundings to identify the exposure level and to evaluate missile 
impact to the building. Following this task, the first SAGAT question
naire containing 10 questions was administered. The multilevel logistic 
regression model was built iteratively. Table 2 illustrates the details of 
the iterative model building. 

A test of the full model with two independent variable and one 2-way 
interaction effect was significant, χ2 (9, N = 65) = 111.87, p < 0.001, 
R2

L = 0.13. The main effects of type of visual decision aid (Δχ2 = 37.53, 
p < 0.001) and SA level are significant (Δχ2 = 36.66, p < 0.001). The 
analysis revealed an interaction between experimental condition and 
the SA level, Δχ2 = 17.42, p = 0.002. Post-hoc analysis was carried out 
to investigate the nature of this interaction. This interaction effect is 
illustrated in Table 3 and Fig. 6. 

As illustrated in Fig. 6, participants exposed to the experimental 
conditions had higher SA compared to participants exposed to the 
control condition. However, this difference was moderated by the SA 
level. More specifically, there was no significant difference in the SA 
among participants exposed to the control, checklist and predictive 
conditions when they were questioned on their perception state of SA. 
Participants in the checklist condition (b = 1.625, p = 0.02, OR = 5.08, 
(95% CI: 1.10, 23.36)) and predictive display condition (b = 2.98, 
p = 0.0001, OR = 19.59, (95% CI [2.71, 141.35])) had significantly 
higher SA than participants in the control condition when they were 
questioned on their Level 2 SA. There was no significant difference be
tween the SA of participants exposed to the checklist condition and the 

Fig. 5. Flow chart outlining experiment procedure.  
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predictive display condition when questioned on their Level 2 SA 
(b = 1.35, p = 0.47, OR = 3.86, (095% CI: 0.53, 28.11)). Furthermore, 
participants exposed to the checklist (b = 3.43, p = 0.03, OR = 30.97, 
(95% CI: 1.12, 850.39)) and the predictive display condition (b = 2.71, 
p = 0.02, OR = 15.11, (95% CI [1.25, 182.24])) had significantly higher 
SA than participants in the control condition when they were probed on 
their Level 3 SA. However, the SA of participants exposed to the pre
dictive display condition and the checklist condition when probed on 
their Level 3 SA (b = - 0.49, p = 0.57, OR = 0.49, (95% CI [0.01, 
23.46])) were not significantly different. 

3.1.2. Inspection of underdeck and rooftop (SAGAT 2) 
The second set of SAGAT responses was recorded during the second 

task, which involved underdeck inspection and rooftop inspection. More 
specifically, the participants measured the underdeck and rooftop 
fastener spacing and the distance between joist welded connections and 
inspected the general condition of the roof deck. In the middle of this 
task, the second SAGAT questionnaire containing eight questions was 
administered, and the multilevel model was again built iteratively. 
Table 4 illustrates the details of iterative model building. 

A test of the full model with two independent variables and one 2- 
way interaction effect was significant, χ2 (9, N = 65) = 237.02, 
p < 0.001, R2

L = 0.25. The main effects of type of visual decision aid 
(Δχ2 = 17.42, p = 0.002) and SA level were significant (Δχ2 = 82.96, 
p < 0.001). The analysis revealed an interaction between experimental 
condition and the SA level, Δχ2 = 9.78, p = 0.04. Table 5 and Fig. 7 
explain this interaction effect. 

As illustrated in Fig. 7, participants exposed to both the experimental 
conditions had higher situation awareness compared to participants 
exposed to the control condition. However, this difference is moderated 
by the SA level. More specifically, the SA of participants exposed to the 
control, checklist and predictive display condition did not differ signif
icantly when they were asked questions about the perception phase of 
SA. However, participants in the checklist condition (b = 1.73, 
p = 0.005, OR = 5.66, (95% CI, 1.36 to 23.62)) and predictive display 
condition (b = 2.61, p < 0.001, OR = 13.62, (95% CI [3.11, 59.68])) had 
significantly higher SA than participants in the control condition when 

Table 3 
Mean probability of correctly answering SAGAT questions for inspection of 
surroundings task (SAGAT 1).    

SA level 

Level 1 Level 2 Level 3 

Type of visualization Control 0.69 0.35 0.60 
Checklist 0.83 0.73 0.98 
Predictive display 0.86 0.91 0.96  

Fig. 6. Interaction effect of types of SA level on the relationship between SA 
and the decision aids presented (inspection of surroundings - SAGAT 1). Ta
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they were asked questions related to the comprehension stage of SA. 
However, the SA of participants exposed to the two experimental con
ditions when probed on their Level 2 SA (b = 0.88, p = 0.56, OR = 2.41, 
(95% CI, 0.61 9.57)) did not differ significantly. Similarly, participants 
exposed to the predictive display condition had significantly higher SA 
than participants in both control condition (b = 4.31, p < 0.001, 
OR = 74.31, (95% CI [3.17, 1740.11])) and checklist condition 
(b = 3.24, p = 0.002, OR = 25.41, (95% CI: 1.30, 496.28)) when they 
were probed on their Level 3 SA. However, the SA of participants 
exposed to the checklist decision aid and no decision aid (b = 1.07, 
p = 0.92, OR = 2.92, (095% CI [0.24, 36.07])) did not differ signifi
cantly when probed on their Level 3 SA. 

3.1.3. Inspection of underdeck and rooftop continuation (SAGAT 3) 
The third set of SAGAT responses was recorded following the 

completion of the second task. This questionnaire contained eight 
questions, and the multilevel model was built iteratively. Table 6 illus
trates the details of this iterative model building. As this table shows, the 
model including only the main effect of SA level, and the model 
including the main effects of SA level and types of visualization and the 
interaction effect of these two variables are not significantly different 
from the model containing only the main effect of type of visualization. 
Thus, the main effect of SA level and the interaction effect between the 
type of visualization and SA level were removed from the model. Model 
3 is used as the final model. 

A test of the model with type of visualization against the baseline 
model is significant χ2 (3, N = 65) = 127.62, p < 0.001, R2

L = 0.09, 
indicating that the predictor reliably distinguished participants who 
correctly answered the SAGAT questionnaire from those who did not. As 
illustrated in Fig. 8, participants exposed to the checklist (b = 1.24, 
p = 0.0001, OR = 3.45, (95% CI [1.70, 6.98])) and the predictive display 
(b = 1.85, p < 0.001, OR = 6.33, (95% CI [2.95, 13.59])) conditions had 
higher SA than participants who were not exposed to any decision aids. 
However, the SA of participants assigned to the experimental conditions 
(b = 0.61, p = 0.16, OR = 1.83, (95% CI [0.84, 4.02]) did not differ 
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Table 5 
Mean probability of correctly answering SAGAT questions for underdeck and 
rooftop inspection task (SAGAT 2).  

SA level   

Level 1 Level 2 Level 3  

Control 0.78 0.22 0.18 
Type of visualization Checklist 0.88 0.59 0.37 

Predictive display 0.95 0.76 0.92  

Fig. 7. Interaction effect of types of SA level on the relationship between SA 
and the decision aids presented (inspection of underdeck and rooftop - 
SAGAT 2). 
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significantly. The mean probability value can be found in Table 7. 

3.1.4. Inspection of rooftop equipment (SAGAT 4) 
The fourth set of SAGAT responses was recorded following the 

completion of the third task, which involved the inspection of rooftop 
equipment. Participants had to inspect how the equipment on rooftop is 
fastened to the roof in addition to how equipment and other components 
on the roof will be affected in the event of extreme weather conditions. 
The SAGAT questionnaire contained eight questions, and the multilevel 
model was built iteratively. Table 8 illustrates the details of the iterative 
model building. As shown in this table, the model containing the 
interaction effect of the type of visualization and the SA level is not 
significantly different from the model containing only the main effects of 
the independent variables. Thus, the interaction effect was removed 
from the model. Model 4 is used as the final model. 

A test of model with the main effect of independent variables was 
significant χ2 (5, N = 65) = 135.06, p < 0.001, R2

L = 0.15. The main 
effects of type of visual decision aid (Δχ2 = 37.75, p < 0.001) and SA 
level were significant (Δχ2 = 33.53, p < 0.001). Participants assigned to 
the predictive display conditions had higher SA than participants in the 
checklist condition (b = 1.45, p = 0.001, OR = 4.26, (95% CI [1.43, 
12.75])) and the control condition (b = 2.23, p < 0.001, OR = 9.26, 
(95% CI [3.04, 28.21])). This is shown in Fig. 9. However, there was no 
significant difference between SA of participants in the checklist con
dition and control condition (b = 0.78, p = 0.18, OR = 2.17, (95% CI 
[0.86, 5.47])). The mean probability value can be found in Table 9. As 
illustrated in Fig. 10, the participants’ Level 2 SA was significantly lower 
than their Level 1 SA (b = −1.56, p < 0.001, OR = 0.21, (95% CI [0.09, 
0.50])) and Level 3 SA (b = −1.04, p = 0.003, OR = 0.353, (95% CI 
[0.15, 0.81])). However, Level 1 SA was not significantly different from 
Level 3 SA (b = 0.53, p = 0.51, OR = 1.70, (95% CI [0.76, 3.79])). The 
mean probability value can be found in Table 9. 

3.1.5. Inspection of envelope (SAGAT 5) 
The fifth set of SAGAT responses was recorded following the 

completion of the fourth and final task, which involved the inspection of 
the envelope. The envelope included windows, doors/dock doors, and 
EIFS. To make the inspection task less complex, the tasks only included 
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Fig. 8. Main effect of the decision aids presented (inspection of underdeck and 
rooftop continuation - SAGAT 3). 

Table 7 
Mean probability of correctly answering SAGAT questions for the second part of 
underdeck and rooftop inspection task (SAGAT 3).  

Type of visualization 

Control 0.55 
Checklist 0.80 
Predictive display 0.88  
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the inspection of the envelope of the rooms on the rooftop. The SAGAT 
questionnaire contained eight questions, and the multilevel model was 
built iteratively. Table 10 illustrates the details of the iterative model 
building. As shown in the table, the model containing the interaction 
effect of the type of visualization and SA level is not significantly 
different from the model containing only the main effects. Thus, the 
interaction effect was removed from the model. Model 4 is used as the 
final model. 

A full model with the main effect of independent variables was sig
nificant χ2 (5, N = 65) = 240.04, p < 0.001, R2

L = 0.23. The main effect 
of type of visual decision aid (Δχ2 = 28.33, p < 0.001) and SA level is 
significant (Δχ2 = 85.93, p < 0.001). As illustrated in Fig. 11, SA of the 
participants in the predictive display condition significantly differed 
from that of participants in the control condition (b = 2.55, p < 0.001, 
OR = 12.80, (95% CI [2.90, 56.38])). Participants exposed to the 
checklist conditions had marginally significantly higher SA than par
ticipants in the control condition (b = 1.31, p = 0.06, OR = 3.71, (95% 
CI [0.98, 14.06])). However, the SA of participants exposed to the pre
dictive display condition and the checklist condition (b = 1.24, p = 0.15, Ta
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Fig. 9. Main effect of the decision aids presented (inspection of rooftop 
equipment - SAGAT 4). 

Table 9 
Mean probability of correctly answering SAGAT questions for inspection of 
rooftop equipment (SAGAT 4).  

Types of visualization SA level 

Control 0.52 Level 1 0.81 
Checklist 0.69 Level 2 0.52 
Predictive display 0.89 Level 3 0.72  

Fig. 10. Main effect of situation awareness level (inspection of rooftop equip
ment - SAGAT 4). 
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Table 10 
Model summary for multilevel logistic regression analysis for inspection of envelope (SAGAT 5).  

Variable Model1 Model2 (Δχ2 = 141.82, df = 1, 
p < 0.001), R2L = 0.06 

Model3 (Δχ2 = 28.08, df = 2, 
p < 0.001), ΔR2L = 0.05, R2L = 0.10 

Model4 (Δχ2 = 85.93, df = 2, p < 0.001), 
ΔR2L = 0.15, R2L = 0.23 

Model5 (Δχ2 = 2.12, df = 4, p = 0.71), 
ΔR2L = 0.004, R2L = 0.24 

B (SE) OR CI 
Lower 

CI 
Upper 

B (SE) OR CI 
Lower 

CI 
Upper 

B (SE) OR CI 
Lower 

CI 
Upper 

B (SE) OR CI 
Lower 

CI 
Upper 

B (SE) OR CI 
Lower 

CI 
Upper 

Constant 0.75 
(0.09) 

2.11 1.76 2.55 0.94 
(0.18) 

2.55 1.82 3.72 −0.08 
(0.23) 

0.92 0.58 1.45 0.89 
(0.34) 

2.45 1.26 4.92 0.94 
(0.38) 

2.56 1.22 5.61 

Experimental Condition (type of visualization) 
Checklist         1.02 

(0.34) 
2.78 1.44 5.35 1.31 

(0.43) 
3.71 1.60 9.04 1.42 

(0.61) 
4.12 1.29 14.33 

Predictive 
Display         

2.00 
(0.37) 

7.42 3.40 15.32 2.55 
(0.48) 

12.79 5.22 35.37 2.11 
(0.69) 

8.21 2.28 35.58 

Situation awareness level     
Level 2             −2.39 

(0.31) 
0.09 0.05 0.16 −2.36 

(0.46) 
0.09 0.04 0.23 

Level 3             −0.51 
(0.33) 

0.60 0.32 1.14 −0.70 
(0.46) 

0.49 0.20 1.21 

Interaction between Condition and SA Level 
Predictive 

display: 
SALevel2                 

−0.23 
(0.67) 

0.79 0.21 2.93 

Predictive 
display: 
SALevel2                 

0.35 
(0.74) 

1.42 0.31 5.91 

Checklist: 
SALevel3                 

−0.01 
(0.73) 

0.99 0.24 4.16 

Predictive 
display: 
SALevel3                 

1.31 
(1.02) 

3.70 0.55 33.84  
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OR = 3.45, (95% CI [0.82, 14.49])) did not differ significantly. The 
mean probability value can be found in Table 11. 

As illustrated in Fig. 12, the participants’ Level 2 SA was significantly 
lower than their Level 1 SA (b = −2.39, p < 0.001, OR = 0.09, (95% CI 
[0.035, 0.24])) and Level 3 SA (b = −1.88, p < 0.001, OR = 0.152, (95% 
CI [0.057, 0.41])). However, Level 1 SA did not differ significantly from 
Level 3 SA (b = 0.51, p = 0.82, OR = 1.66, (95% CI [0.61, 4.56])). The 
mean probability value can be found in Table 11. 

3.2. Performance 

Sum of the scores for correct responses to the performance ques
tionnaire was obtained. The maximum possible score was 56, and the 
individual scores were converted to percentages. This score for one 
participant was missing completely at random (MCAR). Thus, this data 
point was imputed using the MICE package available in R (van Buuren 
and Groothuis-Oudshoorn, 2011). 

A between-subjects ANOVA was carried out to analyze the impact of 
type of visualization on the performance score. A significant difference 
in performance was observed among participants exposed to different 
conditions (F(2, 62) = 17.47, p < 0.001, ω2 = 0.34). The performance 
score increased from the control condition (M = 54.38, SD = 12.35) to 
the checklist condition (M = 65.83, SD = 14.80) to the predictive display 
condition (M = 76.70, SD = 9.38). A post-hoc analysis with Bonferroni 
correction revealed that the mean increase in performance from the 
control condition to the checklist condition (11.45, 95% CI [2.16, 20.7]) 
was statistically significant (p = 0.011). Additionally, the differences in 
the performance scores between the control condition and the predictive 
display condition (22.32, 95% CI [13.03, 31.6], p < 0.001), and the 
checklist condition and the predictive display condition (10.87, 95% CI 
[1.69, 20.1], p = 0.015) were significantly different. This effect of type 
of visualization is illustrated in Fig. 13. 

3.3. Time 

The simulation tracked the time taken to complete the inspection 
task. One missing data point was imputed using the MICE package. A 
between-subjects ANOVA was carried out to analyze this variable. A 

significant difference in time taken was observed among participants 
exposed to the different conditions (F(2, 62) = 34.40, p < 0.001, 
ω2 = 0.51). As illustrated in Fig. 14, time taken in seconds to complete 
the inspection tasks increased from the control condition (M = 961.64, 
SD = 47.03) to the checklist condition (M = 1623.24, SD = 64.22) and 
the predictive display condition (M = 1713.61, SD = 88.26). A post-hoc 
analysis with Bonferroni correction revealed that the mean increase in 
time taken from the control to the checklist condition (661.60, 95% CI 
[419, 904], p < 0.001]) and predictive display condition (752.00, 95% 
CI [509, 995], p < 0.001]) is statistically significant. However, the time 

Fig. 11. Main effect of decision aids presented (inspection of envelope - 
SAGAT 5). 

Table 11 
Mean probability of correctly answering SAGAT questions for inspection of 
envelope (SAGAT 5).  

Types of visualization SA level 

Control 0.48 Level 1 0.84 
Checklist 0.70 Level 2 0.46 
Predictive display 0.86 Level 3 0.78  

Fig. 12. Main effect of situation awareness level (inspection of envelope - 
SAGAT 5). 

Fig. 13. Effect of decision aids presented on performance.  

Fig. 14. Effect of decision aids presented on time taken to complete inspec
tion tasks. 
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taken by the participants in the checklist condition did not differ 
significantly from the time taken in the predictive display condition 
(90.4, 95% CI [-149, 330], p = 0.99]). 

3.4. Workload 

3.4.1. Total workload 
NASA TLX tool was used for assessing workload. A between-subjects 

ANOVA was carried out to analyze this variable. As illustrated in Fig. 15, 
total workload decreased from the control condition (M = 52.51, 
SD = 16.81) to the checklist condition (M = 49.56, SD = 17.46) to the 
predictive display condition (M = 45.92, SD = 13.74). However, these 
workload values were not statistically different across various test 
conditions (F(2, 62) = 0.906, p = 0.41, ω2 = −0.003). 

3.4.2. Mental demand 
Mental demand data was assessed using the NASA TLX tool. A 

between-subjects ANOVA was used to analyze this variable. As illus
trated in Fig. 15, perceived mental demand decreased from the control 
condition (M = 18.23, SD = 9.29) to the checklist condition (M = 17.42, 
SD = 8.91) to the predictive display condition (M = 15.61, SD = 6.54). 
However, no significant difference in the mental demand experienced 
was observed among participants exposed to the different conditions (F 
(2, 62) = 0.567, p = 0.57, ω2 = −0.013). 

3.4.3. Temporal demand 
The perceived temporal demand was measured subjectively using 

the NASA TLX tool. A between-subjects ANOVA was carried out to 
analyze this variable. As illustrated in Fig. 15, perceived temporal de
mand increased from the control condition (M = 8.19, SD = 6.57) to the 
checklist condition (M = 8.39, SD = 7.99) to the predictive display 
condition (M = 8.73, SD = 9.70). However, no significant difference in 
the temporal demand experienced was observed among participants 
exposed to the different conditions (F(2, 62) = 0.024, p = 0.98, 
ω2 = −0.031). 

3.4.4. Subjective performance 
The subjective performance was measured using the NASA TLX tool. 

Higher values of performance rating indicate lower perceived perfor
mance, and lower values of performance rating indicate higher 
perceived performance. 

A between-subjects ANOVA was conducted to investigate how the 
type of visualization affected the perceived performance reported by the 
participants. The perceived performance differed significantly among 
the participants exposed to the different conditions (F(2, 62) = 4.71, 
p = 0.01, ω2 = 0.102). As illustrated in Fig. 15, the perceived perfor
mance rating increased from the control condition (M = 11.65, 
SD = 6.19) to the predictive display condition (M = 8.64, SD = 5.40) to 

the checklist condition (M = 6.91, SD = 3.40). A post-hoc analysis with 
Bonferroni correction revealed that the mean increase in perceived 
performance from the control to the checklist condition (−4.74, 95% CI 
[-8.58, −0.899, p = 0.01]) was statistically significant. However, pre
dictive display condition and the control condition (−3.01, 95% CI 
[-6.86, 0.828, p = 0.17]), and the checklist condition and the predictive 
display condition (−1.73, 95% CI [-5.53, 2.07, p = 0.80]) were not 
statistically different. 

3.4.5. Effort 
The subjective effort rating was measured using the NASA TLX tool. 

A between-subjects ANOVA was carried to analyze this variable. As 
illustrated in Fig. 15, perceived effort increased from the predictive 
display condition (M = 10.35, SD = 6.36) to the control condition 
(M = 10.59, SD = 6.89) to the checklist (M = 11.80, SD = 6.81). How
ever, these differences were not significantly different from each other 
(F(2, 62) = 0.299, p = 0.74, ω2 = −0.022). 

3.4.6. Frustration 
The subjective frustration was measured using the NASA TLX tool. 

The homogeneity of variance assumption was violated as assessed by 
Levene’s test (p = 0.03); as a result, Welch’s F test was used to test the 
hypothesis. 

A one-way analysis of means not assuming equal variances using 
Welch’s test was carried out. As illustrated in Fig. 15, perceived frus
tration increased from the predictive display condition (M = 2.17, 
SD = 2.57) to the control condition (M = 2.06, SD = 2.27) to the 
checklist condition (M = 4.76, SD = 5.52). However, no significant dif
ference in the perceived effort reported was observed among partici
pants exposed to different conditions (F(2, 38.91) = 2.28, p = 0.12). 

4. Discussion 

This article investigated how context-enabled visual decision aids 
can be used to enhance the situation awareness and performance of risk 
inspectors. Sixty-five civil engineering and construction science students 
were recruited for this study. The dependent variables measured were 
SAGAT, performance, NASA TLX and task time. 

The visual decision aids used in this study were designed based on 
the user-centered design approach proposed by Endsley (2016). A 
checklist based decision aid and an interactive predictive visual aid were 
tested in this study. In general, participants exposed to these test con
ditions reported higher SA compared to those who were not exposed to 
any decision aids, suggesting that these decision aids developed for risk 
inspection were effective in supporting the SA requirements of the 
participants. Additionally, participants had higher Level 1 and Level 3 
SA, a result that appears counterintuitive as the latter is more complex 
and difficult to achieve. However, accurate prediction of potential 
damages to the building led to significantly higher Level 3 SA than Level 
2 SA. 

For tasks requiring the participants to inspect the building sur
roundings and assess potential missile impact and water damage, those 
received the decision aids exhibited a higher Level 2 SA. Past studies 
have suggested that using procedural checklists could improve the SA of 
participants. For example, a longitudinal descriptive study investigating 
the effectiveness of a checklist in improving SA during physician 
handoffs in a pediatric emergency department reported that the users 
experienced improved SA with the help of a standardized checklist 
(Mullan et al., 2015). For the task that involves the inspection of 
building surroundings, participants in the predictive display condition 
achieved a higher Level 3 SA compared to other participants. Interactive 
predictive visualizations showed participants what if scenarios in the 
event of a Category 4 hurricane. This knowledge may have contributed 
to the significantly higher Level 3 SA for those participants and helped 
them better predict the building’s future state. The cues presented in the 
predictive visualization situated around their SA requirements and Fig. 15. Effect of decision aids presented on NASA TLX subscales.  
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translated the captured data into a meaningful prediction, resulting in 
higher SA (Endsley and Connors, 2008). A study investigating the effect 
of a situation-augmented display on an unmanned aerial vehicle moni
toring task suggested that use of such displays may improve the SA of 
participants. However, this study used time to detect abnormalities as a 
measure of SA (Lu et al., 2013). Use of measures like SAGAT or SART 
may be more useful in identifying the actual effect of such visualizations 
on SA. 

A similar trend was observed for tasks requiring the participants to 
inspect the general condition of a roof underdeck and a rooftop. Par
ticipants in all three conditions had the same Level 1 SA. Both experi
enced as well as novice personnel can have the same Level 1 SA. 
However, integrating this information to comprehend the situation can 
be challenging for novice engineers (Endsley, 2016). Though we 
recruited novice participants for this study, those exposed to the 
experimental condition achieved higher Level 2 and Level 3 SA. Par
ticipants also had to take several measurements including fastener 
spacing and parapet dimensions. A previous study investigating the 
needs and requirements of windstorm engineers revealed that taking 
dimensions is one of the tasks they frequently forget (Agnisarman et al., 
2018). Thus, providing context-based decision aids to support this SA 
requirement through a checklist resulted in improved SA. Endsley 
(2016) suggested that providing assistance for Level 2 SA and Level 3 SA 
will positively influence situation awareness. The checklist helped par
ticipants thoroughly investigate the surroundings through cues and re
minders. Additionally, the predictive display processed the Level 1 
information and presented details supporting their Level 2 SA and pro
vided assistance to predict potential damages to the infrastructure, 
leading to higher Level 2 and Level 3 SA. For example, all participants 
were asked to identify the areas experiencing higher wind pressure 
based on the presence of parapet and fastener spacing. The predictive 
display used a heat map to directly show this information as illustrated 
in Fig. 4c, leading to higher SA. 

The second task additionally required the participants to inspect 
other roof issues including roof drainage, parapet and the general con
dition of the roof membrane. Most of the tasks they were asked to 
complete were related to such obvious issues as the identification of a 
clogged drain, stagnant water on the rooftop and a membrane tear. 
However, the interactive predictive visualization and the checklist 
assisted them better inspect the building, resulting in higher SA. The 
checklist explicitly asked them to look for these issues, leading to higher 
probability in correctly answering the SAGAT questions. The predictive 
display did not have any additional value compared to the checklist 
condition. Though the predictive display showed the participants the 
potential damages to the building under severe weather condition, 
participants found it easier to predict the consequence of some obvious 
issues like a clogged drain and discontinuous parapet. 

For tasks requiring the inspection of the condition of rooftop 
equipment, participants in the predictive display condition had higher 
SA compared to participants in the control condition and the checklist 
condition. Building rooftop housed several improperly attached pieces 
of equipment. Predicting the specific behavior of some of them and some 
of their potential impacts was not a straightforward task. For this reason, 
the checklist alone was not useful enough to complete this task. How
ever, the predictive display helped them develop a better mental model 
of the potential interaction among different building components. For 
example, as illustrated in Fig. 4d, the dislodged exhaust fan could impact 
the dock door and damage it. Additionally, the dock door was not impact 
rated or pressure rated, both of which could exacerbate the damage. 
Participants in the predictive display condition were given sufficient 
information for integrating the available cues to create an accurate 
mental model, leading to higher SA. 

The final task required the participants to inspect the building en
velope. For simplicity, participants had to inspect only the envelope of 
the rooms on the rooftop. Participants who used the decision aids 
exhibited higher SA compared to participants who did not receive any 

decision aids. Participants who completed the inspection tasks without 
any decision aids failed to identify if the windows and dock doors in the 
rooftop were impact rated or pressure rated. Additionally, they failed to 
inspect the condition of the EIFS. As the checklist and interactive visu
alization guided the participants through these steps and given cues to 
look for these details, they achieved a higher SA. The participants in the 
predictive display condition, nonetheless, did not have better SA than 
that of those in the checklist condition. As some participants suggested, 
predicting what could happen to a dock door that was not impact rated is 
pretty straightforward, suggesting that predictive visualization did not 
add any additional value beyond the value of checklist. 

According to Endsley and Garland (2000), higher SA might lead to 
better performance. In this study, participants in the checklist condition 
performed better than those receiving no decision aids. Participants 
mentioned that the step by step instructions helped them keep track of 
all the tasks they had to complete. Additionally, it avoided the need to 
remember the inspection steps in their working memory. Checklists 
have been extensively used in commercial aviation and past research 
suggests they provide retrieval cues that help pilots activate the 
sequence of activities they must perform (Degani and Wiener, 1990; 
Reason, 1990; Wickens et al., 2015). Though in the domain of infra
structure risk inspection, errors of omission may not always result in a 
catastrophe, it could lead to building owners having to pay for a loss that 
could have been avoided if the inspector had detected the issue in 
advance. Use of a checklist reduces the chance of an omission error by 
limiting the reliance on memory (Rosenfield and Chang, 2009), resulting 
in higher performance. There is sufficient evidence in the literature 
suggesting improved performance with the use of checklists. For 
instance, a past study investigated the application of a checklist for 
controlling severe local anesthetic systemic toxicity situation reported 
improved performance for the group exposed to the checklist in a 
simulated environment (Neal et al., 2012). In addition to the healthcare 
domain, checklists are considered one of the simplest tools for reducing 
human error across different disciplines including aviation and product 
manufacturing (Hales and Pronovost, 2006). However, their effective
ness in infrastructure inspection still needs to be comprehensively 
investigated. To improve the effectiveness of digital checklists, as sug
gested by some participants, it can be augmented with pictures of issues 
to help users identify them in the building. 

The participants in the predictive display condition exhibited higher 
performance than those in the checklist condition as well as those who 
did not receive any test conditions. For tasks involving the assessment of 
complex interactions like the one illustrated in Fig. 4d, the predictive 
display was particularly useful. These participants were aware of various 
direct as well as indirect consequences of a loosely attached exhaust 
hood. They saw how the fan hood could damage the non-impact rated 
dock door and the EIFS. However, for much less complicated tasks, 
checklists alone are sufficient. The predictive display can train novice 
engineers to probe the scene thoroughly to identify various interactions 
among different components in the building. Thus, providing an option 
to activate the predictive display, if necessary, will help the novice en
gineers. Most participants appreciated the predictive display; nonethe
less, they suggested that its usefulness is limited to the training phase. 
However, their significant benefit to expert engineers may be limited as 
their experience helps them achieve Level 3 SA and predict potential 
damages to the building. 

Though participants in both test conditions exhibited higher SAGAT 
and performance values, the NASA TLX workload measure was not 
affected by these decision aids. Despite the lack of significance in the 
workload score, the score was lower for the checklist and lowest for the 
predictive display condition in the sample. Though the use of the 
checklist did not result in significant reduction in workload, this finding 
is promising as it did not place any additional workload on participants. 
This research is in agreement with the findings from past studies 
investigating the use of a checklist for pediatric trauma resuscitation 
(Parsons et al., 2014). Higher workload can have a detrimental effect on 
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SA because of users’ inability to comprehend and synthesize the cues 
available in the environment and by requiring the use of already limited 
working memory (Endsley, 2016; Mahadevan, 2009). Decision aids that 
reduce the demands on working memory can, in turn, eliminate exces
sive workload and improve SA. One example of such a decision aid is 
automation, which has been found to reduce mental demand and 
thereby improve SA (Endsley, 2016). The predictive display reduced 
users’ mental demand by providing additional support for analyzing and 
interpreting the data available. It helped the participants integrate 
seemingly disparate cues and comprehend the data. Furthermore, par
ticipants exposed to the experimental conditions spent more time in the 
field completing the inspection task, a finding that was not unexpected 
as those participants completed more required steps than the partici
pants in the control condition. For example, participants in the checklist 
and predictive display condition measured fastener spacing, welded 
connection spacing and parapet height. Additionally, the checklist 
prompted the participant to look for the general condition of rooftop 
equipment and roof such as tear ponding and vegetation. However, most 
participants in control condition failed to inspect these aspects. 
Furthermore, participants in the predictive display condition interacted 
with the predictive visualization during the inspection task. This resul
ted in increased task completion time for these participants. 

Though the application of the decision aids had significant positive 
effects on performance and SA, it is important to discuss some of the 
behaviors observed during the study. Some participants failed to use the 
checklist effectively. They forgot to open it and had to be reminded to 
use it from time to time. Participants activated the checklist whenever 
they wanted. However, keeping them static in the device would elimi
nate the need for them to remember to activate the checklist. Further, 
using the checklist can lead to errors of omission if it is not compre
hensive. The checklist used in this study was designed specifically for the 
building used in the simulation. In the real world, risk engineers 
encounter facilities with different roof systems, components and occu
pancy. Thus, there is a need to develop checklists that can be adapted to 
the specific condition the engineers will be investigating. It can also be 
augmented with representative images from real-world situations to 
improve cue saliency. In addition, using a predictive display can have 
several consequences as a result of an increased reliability on the system, 
leading to automation complacency (Wickens et al., 2015); because of 
increased clue reliance, participants failed to observe other areas despite 
the fact they may have issues that the predictive display failed to 
highlight. 

This phenomenon associated with automation complacency is 
known as attentional narrowing or tunneling (Wickens et al., 2015). For 
example, the predictive display showed the potential damage for 
building flashing under severe weather condition. Subsequently, the 
participants based their conclusion about the flashing solely on the 
predictive visualization, failing to look for flashing issues in the other 
locations. Though these did not create any significant issues for the 
participants’ SA or performance for the simplified inspection task used 
in this study, in a real-world application with complicated inspection 
tasks, these issues might affect inspectors’ performance. Thus, it is 
important to study attentional tunneling in detail when designing 
AI-based decision aids for risk engineers. Multimodal cues based on 
AI-based algorithms can be developed to provide different types of cues 
such as visual, auditory and haptic to reduce the information processing 
demands on users (Burke et al., 2006). Multimodal displays exemplify 
the framework of multiple resources theory by utilizing our capability to 
process compatible resources at the same time (Burke et al., 2006; 
Wickens, 2008). We need to further investigate the performance of risk 
engineers while controlling automation enabled technologies such as 
drones to collect inspection data. Multimodal displays can be used to 
provide feedback on inspection tasks as well as controlling tasks. 
Furthermore, the usability of these systems needs to be evaluated to 
improve acceptance by its users (Agnisarman et al., 2017; Narasimha 
et al., 2018). 

Furthermore, this cross-sectional study investigated how context- 
based decision aids influenced participants’ SA and performance 
immediately after watching the training video and completing the 
training scenario. The retention effect or the training value of these 
decision aids is still unknown. Further follow-up studies need to be 
conducted without these decision aids to investigate the retention effect 
of these aids on user performance and SA. 

This study is not without limitations. The use of convenient sampling 
is a major limitation of this study. This study recruited university stu
dents with relevant academic background. Furthermore, the perfor
mance questionnaire used in this study is not a validated questionnaire. 
The questionnaire tested participants’ awareness about the scenario 
presented. An experienced windstorm engineer validated the 
questionnaire. 

5. Conclusions 

This experimental study investigated how checklist and predictive 
display based decision aids influenced the performance and situation 
awareness of participants using a simulated environment. The findings 
suggest that the participants exposed to the decision aids had higher 
performance and SA compared to the participants who did not receive 
any decision aids. The application of decision aids had a positive effect 
by reducing the reliance on memory. Additionally, the decision aids 
helped users integrate the cues available to make sense of the environ
ment. More specifically, the checklist alone was sufficient for some tasks 
including the inspection of obvious issues like roof ponding, cracking 
and clogged drainage. However, for other tasks involving the identifi
cation of the interaction among different components in the building, 
the predictive display provided additional benefits. This finding is 
important to consider when selecting decision aids for infrastructure 
inspection. By providing predictive visualization for only complicated 
tasks, the computational demands may also be reduced. 

The results suggest that the use of checklist and predictive display 
might result in reduced workload. However, the decision aids need to be 
tested with the actual windstorm risk engineers in real inspection sce
narios to learn the effect of these aids on their SA and performance in a 
real-world situation. In addition, we noticed that use of these decision 
aids can lead to attentional tunneling. The potential of using additional 
decision aids such as haptic cues based on AI algorithms need to be 
investigated in detail in future research endeavors. Finally, the potential 
of these decision aids on training risk engineers needs to be investigated 
further to learn how they can be used to impart procedural knowledge as 
well as to improve SA. There is a need to investigate the long-term effect 
of these decision aids on the SA requirements of participants. 
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