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Abstract 22 

In the California Current Ecosystem, El Niño acts as a natural phenomenon that is 23 

partially representative of climate change impacts on marine bacteria at timescales relevant to 24 

microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the 25 

“blob”) and an El Niño event resulted in prolonged ocean warming in the Southern California 26 

Bight (SCB). To determine whether this “marine heatwave” resulted in shifts in microbial 27 

populations, we sequenced the rpoC1 gene from the biogeochemically important 28 

picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in 29 

the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase 30 

in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies 31 

of ecotypes commonly associated with low-nutrient and high-temperature conditions. The 32 

relationships between environmental and ecotype trends appeared to operate on differing 33 

temporal scales. In contrast to ecotype trends, most microdiverse populations were static and 34 

possibly reflect local habitat conditions. The only exceptions were microdiversity from 35 

Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño 36 

event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-37 

heatwave composition by the end of this study. This research demonstrates that extended 38 

warming in the SCB can result in persistent changes in key microbial populations.   39 
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Introduction  40 

Ocean warming may be driving an areal increase of the globe’s oligotrophic gyres 41 

through increased stratification and weaker nutrient entrainment [1, 2]. Marine bacterioplankton 42 

may be sensitive to this global ocean change. To date, ocean time series efforts have shown that 43 

marine bacteria are highly responsive to seasonal environmental cycles [3-6] and display a slow 44 

decay in community similarity on an annual to multi-annual scales [7, 8]. Paleo-oceanographic 45 

evidence suggests that climatic tipping points can lead to relatively rapid shifts in plankton 46 

community composition, including cyanobacteria [9]. However, across systems, seasonal 47 

patterns in bacterial community composition have generally been resilient to discrete, or “pulse,” 48 

disturbances such as storms and short-term anthropogenic impacts [10-13]. Moreover, 49 

quantitative measurements of the response of marine bacteria to warming experiments in situ are 50 

rare [14], particularly in comparison to the range of warming experiments in soils and other 51 

ecosystems [15]. In contrast, a multitude of studies have shown that eukaryotic marine 52 

phytoplankton and zooplankton show significant changes in community structure in response to 53 

longer-term climatic warming oscillations on time scales from El Niño to the Atlantic 54 

Multidecadal Oscillation [16-18]. Thus, empirical observations of bacterioplankton responses to 55 

in situ ocean warming are both limited and critical for understanding how ocean ecosystems 56 

respond to climate change.    57 

Given the rapid generation times of marine bacteria, El Niño is a natural laboratory that 58 

can be used to understand bacterioplankton responses to multiannual-scale ocean warming and 59 

climate change impacts in the North Pacific Ocean. From 2014 through 2016, the Warm 60 

Anomaly and a significant El Niño event resulted in a prolonged “marine heatwave” across the 61 

Eastern North Pacific Ocean [19, 20]. In the Southern California Bight (SCB), these events 62 
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resulted in suppressed primary production but little to no change in C export [21, 22]. 63 

Stratification and lower nutrient supply lead to reduced particulate organic matter concentrations 64 

with concurrent high carbon:phosphorus (C:P) and nitrogen:phosphorus (N:P) ratios [23]. 65 

Previous studies of plankton communities in the SCB revealed increasing cyanobacteria cell 66 

abundance [5]. In addition, zooplankton populations showed significant changes in composition 67 

at the species level [24], suggesting that warming has a significant effect on planktonic 68 

communities in this region. Prior to the 2014-16 events, an analysis of hydrographic data (1984–69 

2012) from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program 70 

revealed declining inorganic N:P ratios at coastal locations in the SCB [25]. Based on these 71 

observations, we predicted that prolonged warming, decreased nutrient availability, and shifting 72 

N:P ratios due to the 2014-2016 climate anomalies would also result in a shift in marine 73 

cyanobacteria populations.  74 

The highly abundant, widely distributed, and biogeochemically significant cyanobacteria 75 

Prochlorococcus and Synechococcus represent an important model system that can be used to 76 

determine the impact of changing environmental conditions on population-specific microbial 77 

diversity. Both genera are characterized by genomic traits associated with light, temperature, and 78 

nutrient optima that drive variable, clade-specific biogeographic patterns of abundance at high 79 

levels of phylogenetic similarity [26-30]. Thus, phylogenetic diversity of these genera (i.e., 80 

ecotypes [31]) can be readily associated with subtle ocean changes due to our extensive 81 

knowledge of their respective trait distributions [32]. Previous time series studies of 82 

Synechococcus and Prochlorococcus have demonstrated stable interannual patterns of relative 83 

ecotype abundance as well as seasonal switching in either ecotype or sub-ecotype taxonomic 84 

patterns occurring at very rapid time scales [33-37]. In the SCB, cold-water ecotypes 85 
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Synechococcus Clade I and Clade IV have been shown to dominate most of the year, with 86 

intermittent incursions of the warm-water ecotype Clade II [33, 37, 38]. Thus, we predict that (i) 87 

cyanobacteria will be sensitive to climatically-forced environmental changes and (ii) shifts in 88 

diversity at specific phylogenetic levels and their associated traits will reveal how 89 

bacterioplankton experience these environmental changes.  90 

Here, we use cyanobacterial populations to test whether microbial populations across 91 

differing levels of phylogenomic similarity show significant community changes in response to a 92 

prolonged warming period. To characterize microbial populations, we sequenced the highly 93 

variable cyanobacterial rpoC1 gene [39] from weekly-to-monthly samples between 2009 and 94 

2018 at the Newport Pier MICRO time series. We specifically predicted that (i) the abundance of 95 

Prochlorococcus relative to Synechococcus would increase in response to the El Niño 96 

conditions, (ii) warming would result in an increase in the relative abundance of the high-97 

temperature ecotypes of Prochlorococcus and Synechococcus, and (iii) changes in nutrient 98 

availability would result in systematic shifts in the composition of microdiverse populations over 99 

seasonal and annual time scales. This work has important implications for understanding how the 100 

link between phylogenetic trait distributions and microbial populations both dictates response to 101 

and reveals the impact of future anthropogenic ocean warming.  102 

  103 
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Materials and methods 104 

Sample Collection 105 

 Between September 2009 and 2018, 434 surface seawater samples were taken at varying 106 

temporal resolutions (i.e., daily to monthly) from the MICRO time series at Newport Pier in 107 

Newport Beach, California, USA (33.608N and 117.928W). In this observational field study 108 

no permits were required to collect seawater samples. Sample collection and processing were 109 

performed as previous [5, 23]. Briefly, two autoclaved bottles were rinsed with ocean water 110 

before collection and immediate transport. Replicate DNA samples were collected via filtration 111 

of 1 L of seawater through a 2.7 m GF/D and a 0.22 m polyethersulfone Sterivex filter 112 

(Millipore, Darmstadt, Germany) using sterilized tubing and a Masterflex peristaltic pump (Cole-113 

Parmer, Vernon Hills, IL). DNA was preserved with 1620 l of lysis buffer (23.4 mg/ml NaCl, 114 

257 mg/ml sucrose, 50 mM Tris-HCl, 20 mM EDTA) and stored at -20C. Nitrate and phosphate 115 

samples were collected in prewashed 50 mL Falcon tubes and filtered through a 0.2 μm syringe 116 

filter and stored at −20C. Nutrient samples were analyzed at the Marine Science Institute at the 117 

University of California, Santa Barbara or at University of California, Irvine for measurement of 118 

NO3
- and PO4

3- as soluble reactive phosphorus (SRP). Finally, temperature was recorded via an 119 

automated shore station. The data was downloaded from the SCCOOS website for the data range 120 

2009-2018. Environmental trends can be accessed via the MICRO BCO-DMO deployment (bco-121 

dmo.org/deployment/632387). 122 

DNA Extraction and Amplification 123 

 Bacterial DNA was extracted from Sterivex syringe filters (Millipore). The filters were 124 

incubated at 37oC for 30 minutes with lysozyme (50 mg/ml final concentration) before 125 
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Proteinase K (1 mg/ml) and 10% SDS buffer were added and incubated at 55oC overnight. The 126 

DNA was precipitated using a solution of ice-cold isopropanol (100%) and sodium acetate (245 127 

mg/ml, pH 5.2), pelleted via centrifuge, and resuspended in TE buffer (10 mM Tris-HCl, 1 mM 128 

EDTA) in a 37oC water bath for 30 min. DNA was purified using a genomic DNA Clean and 129 

Concentrator kit (Zymo Research Corp., Irvine, CA), and the concentration was quantified using 130 

a Qubit dsDNA HS Assay kit and Qubit fluorometer (ThermoFisher, Waltham, MA). 131 

Sequencing of rpoC1 Gene 132 

 Polymerase chain reaction (PCR) was used to amplify the cyanobacterial rpoC1 gene 133 

using degenerative rpoC1 primers, SAC1039R (5'- CYT GYT TNC CYT CDA TDA TRT) and 134 

5M_newF (5'-GAR CAR ATH GTY TAY TTY A). A total of 4 ng DNA was added to 20 μl 135 

reactions [0.3 μM primers, 2.5 units 5-Prime HotMaster DNA Taq Polymerase (Quantabio, 136 

Beverly, MA), MasterAmp 1× Premix F (Epicenter Biotechnologies, Wisconsin, USA)].  137 

 Amplified samples from 2009-2013 were sequenced on a 454 Titanium platform (Roche, 138 

Switzerland). Amplification was performed with the following PCR steps: 95°C for 2 min, 10 139 

cycles of 95°C for 30 s, 50°C for 40 s, and 72°C for 60 s. The resulting PCR product was 140 

retrieved and a forward primer with the Roche 454 Titanium flow cell adapter sequences and a 141 

12 base pair Golay barcode sequence was added to the reaction at a concentration of 1 ng/μl. The 142 

barcoded sequences were amplified under the following conditions: 23 cycles of 95°C for 30 s, 143 

50°C for 40 s, 72°C for 60 s, and a final extension step 72°C for 10 min.  144 

 Samples from 2014-2018 as well as select samples from 2011-2013 were sequenced 145 

using a MiSeq platform (Illumina, San Diego, CA) with 300 bp paired-end chemistry. 146 

Amplification occurred under the following conditions: 94°C for 2 min, 34 cycles of 94°C for 30 147 

s, 48°C for 40 s, and 72°C for 60 s. Next, 1 μl each of I5 and I7 Nextera v2 barcoded indices 148 
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with Illumina adapters (1 ng/μl) were added to the PCR products. Annealing of the barcoded 149 

indices to the amplicon occurred as follows: 10 cycles of 94°C for 30 s, 55°C for 40 s, and 72°C 150 

for 60 s, and a final extension at 72 °C for 10 min. 151 

The resulting PCR product length was analyzed via agarose gel electrophoresis and the 152 

barcoded products were pooled. Dimers that were less than 500 nucleotides long were then 153 

removed using magnetic bead purification (Agencourt AMPure XP beads, Beckman Coulter Inc., 154 

Brea, CA). Product purity and length distribution was checked using a 2100 Bioanalyzer high 155 

sensitivity DNA trace (Agilent, Santa Clara, CA). Roche 454 sequencing was performed using a 156 

454 GS FLX+ Titanium (Roche, Basel, Switzerland) resulting in 323,143 reads. Illumina 157 

sequencing was performed using a MiSeq 300 bp paired-end platform with 600 cycles (Illumina, 158 

San Diego, CA) resulting in 14,492,986 reads. Sequence files are available from the NCBI 159 

Sequence Read Archive (accession #PRJNA624320).  160 

Sequence Analysis 161 

 Both 454 and Illumina sequences were quality filtered using the same processing steps. 162 

First, PhiX control sequences were removed using Bowtie 1.1.2. FASTQC was then used to 163 

determine where read quality dropped below Q20. The 454 reads were truncated to 385 bp and 164 

the Illumina forward reads were truncated to 255 bp. Next, fastq-mcf [40] was used to filter reads 165 

with a mean quality score below 20 or with more than 1% of bases below Q20. Finally, 166 

sequences were trimmed to the same 248 bp fragment (BioPython, v. 1.7.0, [41]). Quality 167 

filtered and truncated sequences were imported into QIIME 2 (v. 2.2018.11, [42]). 168 

The 454 and Illumina demultiplexed sequences were denoised independently using the 169 

QIIME 2 command dada2 denoise-single with the following parameters (--p-trunc-len 0 --p-170 

max-ee 3 --p-n-reads-learn 800000). Next, the datasets were merged and sequences were 171 
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taxonomically identified using the vsearch classifier (default parameters) to compare sequences 172 

to a hand-curated database of 115 Prochlorococcus, Synechococcus, and other common marine 173 

bacterial reference genomes. Statistical analyses of taxonomic patterns were performed in the R 174 

computing environment [43]. Prior to calculations of ecotype relative abundance, samples were 175 

rarefied to a consistent sequencing depth of 3000 sequences per sample (“rrarefy” in the “vegan” 176 

package, [44]). A depth of 3000 was selected via the protocol outlined in [45]. Briefly, the 177 

species matrix was rarefied to a range of depths 10 times each, then both richness and Shannon’s 178 

diversity trends were compared to the overall dataset via Pearson correlation. A rarefaction depth 179 

of 3000 resulted in diversity trends that were > 95% similar to the overall dataset (S1 Fig). All 180 

samples were rarefied 100 times and the median count for each taxon in each sample was used in 181 

all relative abundance and temporal trend analyses.  182 

To identify microdiverse populations, sequence feature IDs associated with known 183 

Prochlorococcus and Synechococcus reference genomes were used to extract and align ecotype-184 

specific rpoC1 sequences. Sequence codons were aligned (MEGA, version 7.0.21) and 185 

sequences with frameshift mutations were removed. The ecotype-specific majority sequence for 186 

each sample was calculated (BioPython) based on the 30% nucleotide consensus at each base 187 

pair position using all sequences associated with the ecotype of interest. Highly conserved single 188 

nucleotide polymorphisms (SNPs) in the station-specific majority sequences were identified via 189 

comparison to the rpoC1 sequence from a reference genome.  190 

 SNP-delineated microdiverse “haplotypes” were identified in one Prochlorococcus and 191 

one Synechococcus ecotype (HLI and Clade II). Specifically, aligned reads were used to 192 

calculate the pairwise Euclidean distance between all sequences (i.e., no. of nucleotide 193 

differences). This distance matrix was then clustered via average-linkage hierarchical clustering 194 
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(“hclust” in the “stats” package). Within-cluster sum of squares was used to determine the 195 

optimum number of SNP clusters, then the stability of the SNP clusters was assessed via Jaccard 196 

bootstrapping (“cluster.stats” and “clusterboot” in the “fpc” package, [46]). Three basepair 197 

positions in the consensus sequence were used to distinguish between the two largest stable 198 

haplotype clusters for each ecotype (HLI: base pairs 9, 57, 108; Clade II: base pairs 48, 78, 81]. 199 

Sequences from each sample that matched the haplotype-specific SNP profiles were counted and 200 

transformed into relative abundance by dividing by the sequence count for each ecotype.  201 

Environmental Trends  202 

 To quantify both seasonal and interannual trends in the environment and microbial 203 

community, we fit the following ANOVA model to our data:  204 

 205 
𝑌𝑖𝑗𝑘 =  𝜇 +  𝛼𝑌𝑒𝑎𝑟𝑋𝑌𝑒𝑎𝑟,𝑗 + 𝛽𝑀𝑜𝑛𝑡ℎ𝑋𝑀𝑜𝑛𝑡ℎ,𝑘 +  𝜀𝑖𝑗𝑘  (1) 206 

 207 

Specifically, we performed Type II ANOVAs on categorical linear regressions of temperature, 208 

nitrate, phosphate, or relative clade abundance observations (𝑌𝑖𝑗𝑘) as a function of year (𝑋𝑗) and 209 

month (𝑋𝑘) with corresponding regression coefficients (i.e., treatment effects) 𝛼𝑌𝑒𝑎𝑟 and 𝛽𝑀𝑜𝑛𝑡ℎ. 210 

Thus, in this manuscript 𝛼𝑁 represents the annual nitrate trend, and 𝛽𝑃 represents the monthly 211 

phosphate trend, etc. We used the “Anova” function in the “car” package [47] and the “lm” 212 

function in the “stats” package of R to perform this analysis.  213 

  214 
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Results  215 

 We tested the prediction that warming and declining nutrient supply in the Southern 216 

California Bight  (SCB) would result in an increase in the oligotrophic ecotypes of 217 

Prochlorococcus and Synechococcus. Therefore, we collected temperature, nutrient, and 218 

microbial genomic DNA samples for rpoC1 gene sequencing at 434 time points from 9 219 

September 2009 to 5 December 2018 as a part of the Newport Beach Pier MICRO time series 220 

(33.608N, 117.928W). Specifically, we compared the effects of seasonal and interannual 221 

environmental variability on microbial populations at the genus, ecotype, and microdiverse 222 

phylogenomic level.  223 

Decomposing Environmental Variability  224 

 As reported in Martiny et al. 2016 and Fagan et al. 2019, temperature and inorganic 225 

nutrient concentrations showed significant seasonal and interannual variability across the 226 

MICRO time series. To lend context to our novel cyanobacterial population trends, here we add 227 

environmental information for 2018 (Fig 1A). Both month and year of sampling had a significant 228 

effect on the observed environmental patterns, demonstrating both seasonality and interannual 229 

variation (Table 1). Temperature and nutrient concentrations were anti-correlated across the 230 

seasonal cycle. Nutrient concentrations were highest in the Winter and Spring, whereas 231 

temperature was highest in the Summer and Fall (Fig 1A,C). However, these trends became 232 

partially decoupled across multi-year scales. Specifically, temperature and nitrate both showed 233 

decreasing trends in 2013 (Fig 1C). Next, nitrate continued to decrease but temperature rose 234 

sharply in 2014-2015. Temperature began to decrease in 2016 concurrently with an increase in 235 

nitrate, but these trends reversed in 2017. Here, we additionally report that both temperature and 236 

nitrate had increasing trends in 2018. In contrast, phosphate had a decreasing trend throughout 237 
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most of the time series with slight increases in 2012, 2017, and 2018. As a result, the warmest 238 

years were 2014, 2015 and 2018, but whereas low nutrient concentrations were observed in 239 

2014-2015, 2018 had relatively high inorganic nutrients. Overall, these results support the 240 

conclusion that El Niño peaked in 2015 [5, 23, 48] . However, nitrate began to decrease at the 241 

sampling site prior to the marine heatwave, suggesting that multiple physical oceanographic or 242 

anthropogenic processes could have regulated the environmental changes at this location. 243 

Shifts in Cyanobacteria Lineages 244 

The ratio of Prochlorococcus to Synechococcus reads also showed significant seasonal 245 

and interannual trends. In an ANOVA model, month and year explained a combined 47% of the 246 

variance in the Prochlorococcus/Synechococcus ratio (Table 1). On a seasonal cycle, this ratio 247 

had its highest increase in the early Winter concurrent with decreasing temperature (S2 Fig). 248 

However, the ratio increased across all 9 years of the transect (S2 Fig). The largest increases in 249 

the Prochlorococcus/Synechococcus ratio were observed in 2014 and 2015 with the onset of low 250 

inorganic nutrient conditions and El Niño. A similar shift from a Synechococcus-dominated 251 

system to an increased abundance of Prochlorococcus was also observed using flow cytometry 252 

[5]. As seen in other studies [3], there was a significant relationship between the sequence read 253 

ratio and the cell count ratio when DNA and flow cytometry samples were collected 254 

simultaneously (S3 Fig). This ratio was not dependent on sequencing platform but both platforms 255 

overestimated the ratio of Prochlorococcus to Synechococcus reads when Prochlorococcus cell 256 

counts were below 15 cells/ml (S3 Fig). Thus, the sequence and cell counts were mostly 257 

correlated and suggested an increase in the Prochlorococcus/Synechococcus ratio and an 258 

increasingly oligotrophic system.  259 
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 260 

Ecotype Level Trends 261 

During the 2014-2016 SCB marine heatwave, we observed an increase in the relative 262 

abundance of Prochlorococcus and Synechococcus ecotypes commonly associated with high 263 

temperature conditions. Month and year explained between 21-44% of the variance in relative 264 

ecotype abundance across the MICRO time series (Table 1). On seasonal time scales, 265 

Synechococcus Clade I increased in the Spring (~Feb.-Jun.), Synechococcus Clade II and 266 

Prochlorococcus High Light I (HLI) increased in the Summer and Fall (~Jul.-Oct.), and 267 

Prochlorococcus Low Light I (LLI) and High Light II (HLII)  demonstrated slight increases in 268 

the Winter (Dec.) (Fig 1C). Only the Synechococcus Clade IV ecotype did not show significant 269 

monthly variability (Table 1).  270 

At annual time-scales, the system was initially dominated by the cold-water 271 

Synechococcus ecotypes Clade I and Clade IV [28] (Fig 1B). However, in 2014, there was a 272 

large increase in the relative abundance of Prochlorococcus cooler water ecotype HLI [27] as 273 

well as a slight increase in the relative abundance of the warm-water Synechococcus Clade II. 274 

Moreover, at the peak of El Niño in the fall of 2015, we detected the high-light, high-temperature 275 

Prochlorococcus ecotype HLII. As the marine heatwave abated in 2017, Synechococcus Clade II 276 

persisted in the system but Prochlorococcus HLII disappeared. Overall, Clade II and all 277 

Prochlorococcus ecotypes had an increasing trend throughout the entire time series, with the 278 

highest frequencies seen during the 2014-2015 El Niño period (Fig 1C). Conversely, Clade I and 279 

Fig 1: Seasonal and interannual changes in environmental conditions and ecotype frequencies. 

(A) Temperature (C), nitrate and phosphate concentrations (M), and the log10-transformed ratio of 

Prochlorococcus sequence counts relative to Synechococcus sequence counts in the MICRO time 

series. (B) Interpolated relative abundance of rpoC1 reads taxonomically assigned to the six most 

abundant Prochlorococcus (Pro.) and Synechococcus (Syn.) ecotypes. The sampling dates are marked 

along the top of the time series. (C) Linear model regression coefficients for environmental variables 

and relative ecotype abundance as a function month and year (see Methods). A trend of 0 is marked 

with horizontal dashed lines.  
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Clade IV largely had decreasing trends across the time series. In sum, relative ecotype abundance 280 

showed systematic seasonal and interannual variability that partially aligned with environmental 281 

trends in temperature and nutrients.  282 

 283 

 Total  

SS 

Month 

SS 

Year 

SS 

Month 

P-Value 

Year 

P-Value 

Adjusted  

R2 

Temperature 3255.39 2091.83 160.35 < 0.001 < 0.001 0.68 

Nitrate 2157.63 331.79 80.48 < 0.001 0.015 0.16 

Phosphate 

 
17.69 

 

1.67 

 

2.07 

 

< 0.001 

 

< 0.001 

 

0.18 

 
Pro/Syn Ratio 

 
1200.51 

 

366.46 

 

259.23 

 

< 0.001 

 

< 0.001 

 

0.47 

 
Pro.HLI 7.63 1.55 2.10 < 0.001 < 0.001 0.44 

Pro.HLII 0.35 0.07 0.03 0.004 < 0.001 0.28 

Pro.LLI 

 
0.12 

 

0.01 

 

0.03 

 

< 0.001 

 

0.015 

 

0.21 

 
Syn.I 7.03 2.53 0.64 < 0.001 0.001 0.39 

Syn.IV 6.12 0.24 2.25 0.38 < 0.001 0.37 

Syn.II 
 

0.69 

 

0.08 

 

0.17 

 

0.001 

 

< 0.001 

 

0.29 

 
Pro.HLI.2 44.01 1.10 21.85 0.15 < 0.001 0.51 

Syn.II.2 28.49 2.53 10.93 0.03 < 0.001 0.44 

 284 

 Relative ecotype abundance trends generally showed significant correspondence with 285 

changes in temperature and inorganic nutrients. However, the strength of each relationship was 286 

dependent on the temporal factor and the taxa level examined (Fig 2; for data associated with Fig 287 

2 see Table S1). We wanted to determine whether the non-independent relationship between the 288 

relative abundance of Prochlorococcus and Synechococcus influenced their apparent temporal 289 

trends. Therefore, we examined the relative abundance of the ecotypes normalized to all 290 

Cyanobacteria (ProAll = ProEcotype Abundance / (ProAbundance + SynAbundance) and SynAll = SynEcotype 291 

Abundance / (ProAbundance + SynAbundance) ) versus normalized to within Prochlorococcus (ProWithin = 292 

Table 1: Type II ANOVA results relating seasonality and interannual variability to 

environmental  trends. 
 

Seasonality (month) and interannual variability (year) each have a significant effect on almost every 

variable examined, including environmental patterns, the ratio of Prochlorococcus/Synechococcus, 

and the relative abundance of cyanobacterial taxa. SS = Sum of Squares. 



 15 

ProEcotype Abundance / ProAbundance) or Synechococcus (SynWithin = SynEcotype Abundance / SynAbundance). In 293 

almost all cases, the link between ecotype trend and environmental trend was the same for both 294 

SynAll and SynWithin (Fig 2). In contrast, ProAll and ProWithin showed very different correlations 295 

depending on the normalization. HLI, LLI, and HLII all increased relative to the major 296 

Synechococcus clades (i.e., I and IV). However, the trend was more complicated within 297 

Prochlorococcus, where LLI and HLII showed non-linear relationships with HLI. Thus, the 298 

observed trends were dependent on the phylogenomic level of the analysis. On a seasonal cycle, 299 

when examining the within-genus trends, HLI and Clade IV had significant positive correlations 300 

with temperature trends; LLI had a significant positive correlation with phosphate trends; Clade I 301 

had a significant positive correlation with nitrate trends; and Clade IV had a significant negative 302 

correlation with nitrate trends (Fig 2). Across all Cyanobacteria on an interannual scale, Clade I 303 

had a significant negative relationship and all Prochlorococcus ecotypes had significant positive 304 

relationships with temperature trends. Within Synechococcus, Clade II had a significant positive 305 

correlation with interannual temperature trends. Additionally, HLI had a significant negative and 306 

Clade IV had a significant positive correlation with nitrate interannually. There were no 307 

significant correlations between interannual phosphate and ecotype trends. Overall, temperature 308 

trends had a stronger relationship with relative ecotype abundance across years, whereas nitrate 309 

had a similar relationship with the ecotype trends across months and years, suggesting that the 310 

effects of changing nitrate and temperature operate on different temporal scales.  311 

 312 

Fig 2: Pearson correlation coefficients (r) between relative abundance trends and environmental 

trends. The significance of each correlation is marked as p-value: * < 0.05, ** < 0.01, *** <0.001. 

Bars without a mark had a non-significant correlation.  



 16 

Microdiversity Trends 313 

Most microdiverse Synechococcus and Prochlorococcus populations were dominated by 314 

a single SNP-delineated population across the time series. We identified microdiverse 315 

populations (i.e. “haplotypes”) based on conserved single nucleotide polymorphisms (SNPs) in 316 

the rpoC1 gene (Fig 3). A limited set of closely related haplotypes were present in four of the six 317 

most abundant ecotypes (LLI, HLII, Clade I and Clade IV) across all seasons and years. Stable 318 

SNPs were particularly prominent for the Synechococcus Clade I (Fig 3). Conversely, the 319 

Synechococcus Clade IV and Prochlorococcus LLI ecotypes had few unique SNPs across the 320 

time series. The final ecotype with a single dominant haplotype, Prochlorococcus HLII, had a 321 

highly stochastic distribution of SNPs, which may be influenced by its generally low sequence 322 

counts and associated sequencing errors. In contrast, there were clear shifts in Prochlorococcus 323 

HLI and Synechococcus II haplotypes.  324 

 325 

The SCB marine heatwave appeared to induce shifts in the relative abundance of 326 

Prochlorococcus HLI and Synechococcus II haplotypes. For both HLI and Clade II, two 327 

statistically stable haplotypes were identified (Fig 4). On average 90.2% of the HLI and 99.8%  328 

Clade II reads were associated with one of two haplotypes, respectively. The two Synechococcus 329 

Figure 3: Microdiversity clusters within the most abundant Prochlorococcus and Synechococcus 

ecotypes were temporally and statistically stable. Dendrograms represent the average-linkage 

hierarchical clustering of single nucleotide polymorphisms (SNP) differences between a rpoC1 

reference sequence and the majority consensus sequence at each sampling time point. Each row of the 

dendrogram represents the consensus rpoC1 sequence at a time point, where only SNPs (in 

comparison to the reference sequence) are depicted. Only time points where the ecotype was present 

are shown. The reference rpoC1 sequence is depicted at the top of each dendrogram. Reference 

genomes used to compare rpoC1 sequences included: HLI – MIT9515; LLI – NATL2A; HLII – 

MIT9301; Clade I – WH8016; Clade IV – CC9902; and, Clade II – CC9605. Within-cluster sum of 

squares was used to determine the optimum number of SNP-based clusters (i.e., haplotypes). Cluster 

labels (red) indicate bootstrapped Jaccard similarity values for the most stable clusters (values < 0.5 

are unstable, 0.6 – 0.75 weak stability, 0.75-0.85 stable, and > 0.85 highly stable). Stable clusters are 

alternately shaded in grey for emphasis. 
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Clade II haplotypes, but not the Prochlorococcus HLI haplotypes, showed significant seasonal 330 

variability (Table 1 and Fig 4B). The haplotypes Pro.HLI.1 and Syn.II.1 were frequent from the 331 

Spring/Summer of 2010 through the Summer/Fall of 2012 (Fig 4A). During this time, the second 332 

haplotypes (Pro.HLI.2 and Syn.II.2) appeared during short periods. However, starting in 2013-333 

2014, Pro.HLI.2 and Syn.II.2 rose in frequency (Fig 4B). A systematic reversal of this trend 334 

occurred briefly for Synechococcus II in the first half of 2017, when Syn.II.2 decreased in 335 

relative abundance before increasing again in 2018. The Pro.HLI.2 and Syn.II.2 seasonal and 336 

interannual patterns were also compared to the trends in environmental parameters, but only 337 

phosphate had a significant correlation with seasonal HLI haplotype trends (Fig 4C). 338 

Comparisons to trends in the ratio of inorganic nitrate:phosphate were also non-significant (data 339 

not shown). Thus, although year of sampling had a strong influence on relative haplotype 340 

abundance, interannual changes in the dominant haplotype could not be attributed to a specific 341 

environmental factor.  342 

 343 

Testing for Endemism Among Warm Water Ecotypes  344 

 The contrast between ecotypes with stable versus variable haplotypes raised the question 345 

as to whether some haplotypes were endemic to our study site. Alternatively, they may have 346 

represented populations physically transported from the broader eastern Pacific Ocean. To place 347 

the microdiversity of our warm water ecotypes in the context of other Pacific Ocean regions, we 348 

compared our Prochlorococcus HLII and Synechococcus Clade II haplotypes to previously 349 

Figure 4: Prochlorococcus HLI haplotypes (Pro.HLI.1 and Pro.HLI.2) and Synechococcus II 

haplotypes (Syn.II.1 and Syn.II.2) showed significant shifts in composition across the time series. 
(A) Interpolated relative abundance of the haplotypes. Samples with less than 10 reads were removed 

from the analysis. (B) Linear regression coefficients for monthly and yearly trends in the Pro.HLI.2 

and Syn.II.2 haplotypes. (C) Pearson’s correlation coefficients () comparing haplotype to 

environmental monthly and yearly trends. The significance of each correlation is marked as p-value: * 

< 0.05. Bars without a mark had a non-significant correlation. 
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collected surface samples from the central Pacific Ocean [49]. For HLII, the majority of samples 350 

taken from gyre and equatorial regions clustered separately from the MICRO samples (Fig 5). 351 

However, 12 of the Newport samples were a part of stable clusters that included the open ocean 352 

samples. Although these samples showed similar SNPs, they did not have similar in situ 353 

temperature or nitrate concentrations. For Clade II, equatorial samples with high nitrate 354 

concentrations clustered separately but were most closely related to the Syn.II.1 haplotype. In 355 

contrast, Clade II samples from the low nutrient, high temperature North Pacific Subtropical 356 

Gyre clustered with the Syn.II.2 haplotype, which was most abundant later in the time series. 357 

This result suggests that the microdiversity of populations observed in the SCB is at least 358 

partially connected to other locations in the Pacific Ocean.  359 

 360 
  361 

Fig 5: Comparison of Prochlorococcus HLII and Synechococcus Clade II rpoC1 highly 

conserved SNPs detected at the Newport MICRO times series and on Pacific Ocean cruise 

NH1418 (September-October 2014; 19.00N, -158.00W to -3.00N, -149.67W; 5m depth).  

Newport and NH1418 samples largely clustered separately but had some overlap in SNPs. Samples 

with less than 10 sequences were removed from the analysis. Clade labels (red) indicate 

bootstrapped Jaccard similarity values for the most stable clusters with more than two samples 

(values < 0.5 are unstable, 0.6 – 0.75 weak stability, 0.75-0.85 stable, and > 0.85 highly stable). 
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Discussion 362 

Our data suggests that long-term warming in the Southern California Bight initiated a 363 

significant change in picocyanobacteria populations that persisted for 2-5 years (Fig 1). In 364 

contrast, zooplankton communities typically return to pre-El Niño states within 1-2 years [24]. 365 

Although “alternative stable states” have been documented in macroecology [50, 51], few studies 366 

have reported persistent changes in microbial communities [52, 53]. Stable, long-term shifts in 367 

microbial composition have generally been driven by changes in conditions linked to deeply 368 

conserved traits such as shifts from iron-reduction to sulfate-reduction [54], oxic to anoxic 369 

conditions [55], or increased photoinhibition [56]. In the marine environment, multi-centennial 370 

changes in temperature and nutrient availability may have led to shifts in the abundance of N2-371 

fixing cyanobacteria in the North Pacific Subtropical Gyre (NPSG) [9]. Moreover, a polarity 372 

reversal of the Pacific Decadal Oscillation in 1976 may have caused increased mixed layer 373 

stratification and shoaling, decreased nutrient availability, and a regime shift from a eukaryote- 374 

to a prokaryote-dominated system in the central Pacific Ocean [57]. In the MICRO time series, 375 

the marine heatwave of 2014-2016 and concurrent 2015 El Niño resulted in an increase in 376 

ecotypes associated with warmer conditions including Prochlorococcus HLI, LLI, and HLII as 377 

well as Synechococcus Clade II (Fig 1). Moreover, the HLI and Clade II microdiverse haplotypes 378 

demonstrated persistent, altered community composition in response to the 2015 El Niño 379 

disturbance (Fig 4A). Here, similar processes as those observed in the NPSG  may be operating 380 

concurrently to drive community composition changes in the SCB. 381 

Given the systematic and persistent changes in Cyanobacteria populations in the SCB, 382 

what are the ecosystem processes driving this shift in microbial communities? Both 383 

Prochlorococcus as a whole, which is more abundant in high temperature biomes than 384 
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Synechococcus [58], and the Synechococcus high temperature Clade II increased in relative 385 

abundance across the entire time series (Fig 1 and S2 Fig). In addition, it is well-documented that 386 

20C represents a temperature threshold above which Prochlorococcus HLII outpaces HLI 387 

ecotype growth [27, 59). At MICRO, in situ temperatures were above 20C for greater than 388 

20.8% of dates in 2014, 2015, 2017, and 2018 and less than 14.2% of dates in 2010-2013 and 389 

2016. Thus, the increased abundance of all Prochlorococcus, Prochlorococcus HLII, and 390 

Synechococcus Clade II may all reflect this warming. However, the 391 

Prochlorococcus/Synechococccus ratio as well as HLII relative abundance peaked in the winter 392 

(Fig 1 and S2 Fig). Additionally, the within-genus HLII monthly trends were negatively 393 

correlated with temperature (Fig 2). These results may indicate an important role of regional 394 

warming and advection of both oligotrophic water and microbial communities into the SCB [5, 395 

23]. The 2015 El Niño event was one of the strongest on record in terms of broad-scale regional 396 

warming, even though reductions in upwelling and upwelling-favorable winds were relatively 397 

weak in comparison to previous, strong El Niño events such as 1982-1983 and 1997-1998 [48]. 398 

In addition, the SCB represents a transition zone between the southward California Current (CC) 399 

and the northward California Undercurrent (CUC). Thus, relatively small changes in source 400 

waters for the SCB may significantly change microbial populations. An increase in the 401 

northward CUC signal in SCB waters was observed between 1984-2012 [25]. The CC is 402 

characterized by cold, low-salinity, nutrient-poor “young” temperate water, whereas the CUC 403 

has high-salinity, nutrient-rich “old” equatorial waters [60]. Therefore, changes in water mass 404 

may result in the influx of oligotrophic communities with a higher abundance of 405 

Prochlorococcus cells from the HLII ecotype. Comparison of microdiverse HLII and Clade II 406 

populations at MICRO and in the NPSG supports the conclusion that these populations are 407 
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phylogenomically linked (Fig 5). We hypothesize that an increased percentage of high-408 

temperature days locally but also a larger-scale regional warming trend that promotes the 409 

advection of oligotrophic populations into the SCB, contribute to a shifting picocyanobacteria 410 

community at MICRO.  411 

There are several important caveats to our conclusions including the application of 412 

multiple sequencing platforms and temporal co-variance between environmental factors. The 413 

sequencing platform was partially associated with year of sampling and thus confounded with 414 

the shift in Prochlorococcus/Synechococcus sequence read ratios. However, the relationship 415 

between the sequence read ratio and the cell count-ratio of Prochlorococcus/Synechococcus was 416 

not dependent on sequencing platform (S3 Fig). Moreover, out of the six instances of samples 417 

collected with 48 hours but sequenced on different platforms, only one date showed significantly 418 

different ecotype frequencies between 454 and Illumina (S4 Fig).  Previous studies have 419 

similarly shown that the ratio of major marine microbial taxa is consistent across genomic 420 

platforms [61]. In addition, a large number of highly conserved SNPs in the rpoC1 consensus 421 

sequences were observed throughout the time series, regardless of sequencing platform (Fig 3). 422 

Rapid changes in sequencing platforms and technology, both in terms of read length and depth of 423 

coverage, are likely to continue into the future. Our analysis suggests that conserved SNPs can 424 

be integrated across platforms. The strong seasonal co-variance of multiple environmental 425 

factors also makes it challenging to separate the effects of temperature and nutrient 426 

concentrations on picocyanobacteria populations. However, our multi-year sampling regime 427 

partially addressed this issue as temperature and nutrient concentrations were less correlated at 428 

this time-scale. Overall, temperature disturbances including the El Niño event, the partial 429 

interannual decoupling of environmental trends, and the prevalence of stable microdiversity 430 
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across the 9 years of the MICRO time series has made it an excellent natural laboratory to study 431 

the effects of climatic shifts on microbial populations.  432 

 433 

The MICRO picocyanobacteria time series illustrates how we can “bi-directionally” link 434 

shifts in microbial diversity and environmental conditions to develop a deeper understanding of 435 

the impact of global changes. Past studies have revealed a rich understanding of the phylogenetic 436 

conservatism of response traits in microbial populations [62-64]. One of the main trait 437 

differences between the Prochlorococcus and Synechococcus genera is cell size, which results in 438 

a competitive advantage of Prochlorococcus under warm, low nutrient conditions [65]. Within 439 

the genera, it is also well-established that different light, temperature, and iron response traits are 440 

linked to specific ecotypes [27-29, 66].  In contrast, responses to biotic interactions, subtle 441 

temperature shifts, and nutrient supply ratios have been associated with microdiverse clades [30, 442 

49, 67, 68]. Prochlorococus and Synechococcus responses to environmental change at MICRO 443 

generally conformed to the phylogenomically predicted response at the genus and ecotype level 444 

(Fig. 6). Prochlorococcus likely increased relative to Synechcococcus across the time series due 445 

to traits conferring a competitive advantage in warm, oligotrophic conditions. Similarly, on 446 

annual scales, HLI, HLII, and Clade II likely increased over Synechococcus Clade I and Clade 447 

IV due to traits related to high temperatures and low nutrient concentrations [28]. However, 448 

several responses to environmental change did not conform to our knowledge of expected 449 

response traits. Prochlorococus HLII and Synechococcus Clade IV showed a seasonally negative 450 

and positive correlation with temperature, respectively, and thus a divergent trend compared to 451 

Fig 6: Conceptual diagram of picocyanobacterial community shifts at the MICRO time series 

from 2009 – 2018. Synechococcus cells are outlined in purple and Prochlorococcus cells are outlined 

in green. Blue cell shading indicates cold temperature-adapted ecotypes and yellow cell shading 

indicates warm temperature-adapted ecotypes. The blue line indicates the nitrate trend (N) and the red 

line indicates the temperature trend (T).  
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past studies. We attribute these unexpected observations to advection of genotypes from the 452 

broader eastern Pacific Ocean region that is also experienced warming. Overall, we saw limited 453 

changes at the microdiversity level, suggesting that the effect of shifts in environmental 454 

conditions or biotic interactions [37, 49, 69] were muted for most haplotypes here. However, 455 

some of these processes likely elicited the large responses in HLI and Clade II haplotypes 456 

observed in 2014-2015 (Fig 4), which supports our conclusion of a persistent shift in 457 

picocyanobacteria populations.  It is too early to state whether this shift is indicative of a new 458 

ecosystem state in terms of nutrients, temperature, and cyanobacteria (Fig 6), but future time 459 

series efforts should continue to monitor climatic changes in the SCB. Global climate change is 460 

expected to have a complex impact on marine microorganisms as a result of nonlinear 461 

biophysical interactions between environmental conditions [70, 71]. Shifts in microbial 462 

populations and their traits can act as a “biosensor” and allow us to develop a stronger 463 

understanding of how climatic changes affect ecosystem functioning. 464 

465 
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Supporting Information 674 

S1 Fig: Comparison of taxa richness (no. of taxa) and diversity (Shannon’s Diversity Index) 675 

in rarefied datasets to the overall dataset revealed high correlations (Pearson’s correlation 676 

coefficient of determination, r2). Amplicon datasets were rarefied to a range of depths 10 times 677 

each and the correlation between each rarefaction and overall dataset was calculated. A 678 

rarefaction depth of 3000 sequences was selected for relative abundance analysis as it was the 679 

minimum depth at which all correlations had r2 > 0.95.  680 

 681 

S2 Fig: Linear model regression coefficients for the log10-transformed ratio of 682 

Prochlorococcus sequence counts relative to Synechococcus sequence counts in the MICRO 683 

time series as a function month and year (see Methods). A trend of 0 is marked with 684 

horizontal dashed lines. The Prochlorococcus/Synechococcus ratio show significant seasonal 685 

variability and has an increasing trend across all years of the study.  686 

 687 

S3 Fig: Comparison of the log10-transformed (Prochlorococcus  + 1)/(Synechococcus + 1) 688 

ratio calculated by sequence read count and by flow cytometry cell count shows concordant 689 

patterns in the MICRO time series. (A) Sequence read ratio across the MICRO time series. 690 

Either a Roche 454 (purple) or an Illumina MiSeq (red) platform was used to sequence the rpoC1 691 

gene. (B) Cell count ratio from 2012-2015. Flow cytometry data was collected as in (Martiny et 692 

al. 2016). (C) Comparison of read count ratios and cell count ratios in samples where DNA and 693 

flow cytometry were collected concurrently. When Prochlorococcus cellular abundance was 694 

above 15 cells/ml, the sequence ratio showed a significant linear relationship (blue line) with the 695 

cell count ratio (p-value < 0.001, R2 = 0.48).  696 
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S4 Fig: Relative ecotype abundance for select MICRO samples collected within a two-day 697 

window and sequenced on a Roche 454 versus an Illumina MiSeq. The distribution of 698 

ecotype frequencies between sequencing platforms was compared using Pearson’s chi-square test 699 

for homogeneity (10000 permutations, * = p-value < 0.05). The distribution of ecotype 700 

frequencies was only significantly different between sequencing platforms for 1 out 6 701 

comparisons (R = Roche 454, I = Illumina MiSeq).  702 

Table S1: Pearson’s correlation coefficients (r) and corresponding p-values for the 703 
comparison of seasonal (month) and interannual (year) environmental trends to taxa-704 
specific trends.  705 

 706 
 TEMPERATURE NITRATE PHOSPHATE 

 Month Year Month Year Month Year 

 r p-value r p-value r p-value r p-value r p-value r p-value 

HLI 0.47 0.12 0.77 0.01 -0.60 0.04 -0.71 0.03 -0.33 0.29 -0.41 0.27 

LLI 0.25 0.43 0.87 0.002 -0.33 0.29 -0.49 0.18 -0.07 0.84 -0.25 0.52 

HLII 0.19 0.56 0.80 0.01 -0.31 0.32 -0.41 0.28 -0.03 0.92 -0.39 0.30 

HLI.W 0.61 0.03 0.08 0.84 -0.54 0.07 -0.81 0.008 -0.76 0.004 -0.09 0.83 

LLI.W -0.51 0.09 -0.25 0.52 0.06 0.85 0.62 0.07 0.54 0.07 -0.02 0.96 

HLII.W -0.13 0.69 0.45 0.22 -0.02 0.94 -0.46 0.21 0.15 0.64 -0.35 0.35 

SYN.I -0.56 0.06 -0.91 < 0.001 0.67 0.02 0.33 0.39 0.37 0.24 -0.04 0.92 

SYN.IV 0.12 0.70 -0.65 0.06 0.13 0.68 0.69 0.04 -0.18 0.58 0.40 0.28 

SYN.II 0.43 0.16 0.64 0.06 -0.52 0.08 -0.27 0.48 -0.18 0.58 0.34 0.37 

SYN.I.W -0.58 0.048 -0.34 0.37 0.69 0.01 -0.24 0.53 0.37 0.23 -0.51 0.16 

SYN.IV.W 0.68 0.02 -0.52 0.15 -0.64 0.03 0.60 0.09 -0.55 0.06 0.47 0.20 

SYN.II.W 0.49 0.11 0.93 < 0.001 -0.57 0.05 -0.50 0.17 -0.21 0.52 -0.13 0.74 

HLI.2 -0.57 0.05 0.65 0.06 0.48 0.11 -0.61 0.08 0.65 0.02 0.14 0.73 

SYN.II.2 0.11 0.74 0.63 0.07 -0.16 0.62 -0.41 0.27 0.19 0.56 0.02 0.96 

 707 
Trend values were calculated via linear regression and type II ANOVA (see Methods). 708 
Significant correlations are bolded. 709 
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