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Abstract

In the California Current Ecosystem, El Nifio acts as a natural phenomenon that is
partially representative of climate change impacts on marine bacteria at timescales relevant to
microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the
“blob”) and an El Nifio event resulted in prolonged ocean warming in the Southern California
Bight (SCB). To determine whether this “marine heatwave” resulted in shifts in microbial
populations, we sequenced the rpoC1 gene from the biogeochemically important
picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in
the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase
in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies
of ecotypes commonly associated with low-nutrient and high-temperature conditions. The
relationships between environmental and ecotype trends appeared to operate on differing
temporal scales. In contrast to ecotype trends, most microdiverse populations were static and
possibly reflect local habitat conditions. The only exceptions were microdiversity from
Prochlorococcous HLI and Synechococcus Clade 11 that shifted in response to the 2015 El Nifio
event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-
heatwave composition by the end of this study. This research demonstrates that extended

warming in the SCB can result in persistent changes in key microbial populations.
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Introduction

Ocean warming may be driving an areal increase of the globe’s oligotrophic gyres
through increased stratification and weaker nutrient entrainment [1, 2]. Marine bacterioplankton
may be sensitive to this global ocean change. To date, ocean time series efforts have shown that
marine bacteria are highly responsive to seasonal environmental cycles [3-6] and display a slow
decay in community similarity on an annual to multi-annual scales [7, 8]. Paleo-oceanographic
evidence suggests that climatic tipping points can lead to relatively rapid shifts in plankton
community composition, including cyanobacteria [9]. However, across systems, seasonal
patterns in bacterial community composition have generally been resilient to discrete, or “pulse,”
disturbances such as storms and short-term anthropogenic impacts [10-13]. Moreover,
quantitative measurements of the response of marine bacteria to warming experiments in sifu are
rare [14], particularly in comparison to the range of warming experiments in soils and other
ecosystems [15]. In contrast, a multitude of studies have shown that eukaryotic marine
phytoplankton and zooplankton show significant changes in community structure in response to
longer-term climatic warming oscillations on time scales from El Nifio to the Atlantic
Multidecadal Oscillation [16-18]. Thus, empirical observations of bacterioplankton responses to
in situ ocean warming are both limited and critical for understanding how ocean ecosystems
respond to climate change.

Given the rapid generation times of marine bacteria, El Nifio is a natural laboratory that
can be used to understand bacterioplankton responses to multiannual-scale ocean warming and
climate change impacts in the North Pacific Ocean. From 2014 through 2016, the Warm
Anomaly and a significant El Nifio event resulted in a prolonged “marine heatwave” across the

Eastern North Pacific Ocean [19, 20]. In the Southern California Bight (SCB), these events
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resulted in suppressed primary production but little to no change in C export [21, 22].
Stratification and lower nutrient supply lead to reduced particulate organic matter concentrations
with concurrent high carbon:phosphorus (C:P) and nitrogen:phosphorus (N:P) ratios [23].
Previous studies of plankton communities in the SCB revealed increasing cyanobacteria cell
abundance [5]. In addition, zooplankton populations showed significant changes in composition
at the species level [24], suggesting that warming has a significant effect on planktonic
communities in this region. Prior to the 2014-16 events, an analysis of hydrographic data (1984—
2012) from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program
revealed declining inorganic N:P ratios at coastal locations in the SCB [25]. Based on these
observations, we predicted that prolonged warming, decreased nutrient availability, and shifting
N:P ratios due to the 2014-2016 climate anomalies would also result in a shift in marine
cyanobacteria populations.

The highly abundant, widely distributed, and biogeochemically significant cyanobacteria
Prochlorococcus and Synechococcus represent an important model system that can be used to
determine the impact of changing environmental conditions on population-specific microbial
diversity. Both genera are characterized by genomic traits associated with light, temperature, and
nutrient optima that drive variable, clade-specific biogeographic patterns of abundance at high
levels of phylogenetic similarity [26-30]. Thus, phylogenetic diversity of these genera (i.e.,
ecotypes [31]) can be readily associated with subtle ocean changes due to our extensive
knowledge of their respective trait distributions [32]. Previous time series studies of
Synechococcus and Prochlorococcus have demonstrated stable interannual patterns of relative
ecotype abundance as well as seasonal switching in either ecotype or sub-ecotype taxonomic

patterns occurring at very rapid time scales [33-37]. In the SCB, cold-water ecotypes
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Synechococcus Clade I and Clade IV have been shown to dominate most of the year, with
intermittent incursions of the warm-water ecotype Clade II [33, 37, 38]. Thus, we predict that (i)
cyanobacteria will be sensitive to climatically-forced environmental changes and (ii) shifts in
diversity at specific phylogenetic levels and their associated traits will reveal how
bacterioplankton experience these environmental changes.

Here, we use cyanobacterial populations to test whether microbial populations across
differing levels of phylogenomic similarity show significant community changes in response to a
prolonged warming period. To characterize microbial populations, we sequenced the highly
variable cyanobacterial rpoC1 gene [39] from weekly-to-monthly samples between 2009 and
2018 at the Newport Pier MICRO time series. We specifically predicted that (i) the abundance of
Prochlorococcus relative to Synechococcus would increase in response to the El Nifio
conditions, (ii) warming would result in an increase in the relative abundance of the high-
temperature ecotypes of Prochlorococcus and Synechococcus, and (iii) changes in nutrient
availability would result in systematic shifts in the composition of microdiverse populations over
seasonal and annual time scales. This work has important implications for understanding how the
link between phylogenetic trait distributions and microbial populations both dictates response to

and reveals the impact of future anthropogenic ocean warming.
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Materials and methods
Sample Collection

Between September 2009 and 2018, 434 surface seawater samples were taken at varying
temporal resolutions (i.e., daily to monthly) from the MICRO time series at Newport Pier in
Newport Beach, California, USA (33.608°N and 117.928°W). In this observational field study
no permits were required to collect seawater samples. Sample collection and processing were
performed as previous [5, 23]. Briefly, two autoclaved bottles were rinsed with ocean water
before collection and immediate transport. Replicate DNA samples were collected via filtration
of 1 L of seawater through a 2.7 um GF/D and a 0.22 m polyethersulfone Sterivex filter
(Millipore, Darmstadt, Germany) using sterilized tubing and a Masterflex peristaltic pump (Cole-
Parmer, Vernon Hills, IL). DNA was preserved with 1620 ul of lysis buffer (23.4 mg/ml NaCl,
257 mg/ml sucrose, 50 mM Tris-HCI, 20 mM EDTA) and stored at -20°C. Nitrate and phosphate
samples were collected in prewashed 50 mL Falcon tubes and filtered through a 0.2 pm syringe
filter and stored at —20°C. Nutrient samples were analyzed at the Marine Science Institute at the
University of California, Santa Barbara or at University of California, Irvine for measurement of
NOs™ and PO4* as soluble reactive phosphorus (SRP). Finally, temperature was recorded via an
automated shore station. The data was downloaded from the SCCOOS website for the data range
2009-2018. Environmental trends can be accessed via the MICRO BCO-DMO deployment (bco-

dmo.org/deployment/632387).
DNA Extraction and Amplification

Bacterial DNA was extracted from Sterivex syringe filters (Millipore). The filters were

incubated at 37°C for 30 minutes with lysozyme (50 mg/ml final concentration) before
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Proteinase K (1 mg/ml) and 10% SDS buffer were added and incubated at 55°C overnight. The
DNA was precipitated using a solution of ice-cold isopropanol (100%) and sodium acetate (245
mg/ml, pH 5.2), pelleted via centrifuge, and resuspended in TE buffer (10 mM Tris-HCI, 1 mM
EDTA) in a 37°C water bath for 30 min. DNA was purified using a genomic DNA Clean and
Concentrator kit (Zymo Research Corp., Irvine, CA), and the concentration was quantified using

a Qubit dsDNA HS Assay kit and Qubit fluorometer (ThermoFisher, Waltham, MA).
Sequencing of rpoC1 Gene

Polymerase chain reaction (PCR) was used to amplify the cyanobacterial rpoC1 gene
using degenerative rpoC1 primers, SAC1039R (5'- CYT GYT TNC CYT CDA TDA TRT) and
5M_newF (5'-GAR CAR ATH GTY TAY TTY A). A total of 4 ng DNA was added to 20 pl
reactions [0.3 puM primers, 2.5 units 5-Prime HotMaster DNA Taq Polymerase (Quantabio,
Beverly, MA), MasterAmp 1x Premix F (Epicenter Biotechnologies, Wisconsin, USA)].

Amplified samples from 2009-2013 were sequenced on a 454 Titanium platform (Roche,
Switzerland). Amplification was performed with the following PCR steps: 95°C for 2 min, 10
cycles of 95°C for 30 s, 50°C for 40 s, and 72°C for 60 s. The resulting PCR product was
retrieved and a forward primer with the Roche 454 Titanium flow cell adapter sequences and a
12 base pair Golay barcode sequence was added to the reaction at a concentration of 1 ng/ul. The
barcoded sequences were amplified under the following conditions: 23 cycles of 95°C for 30 s,
50°C for 40 s, 72°C for 60 s, and a final extension step 72°C for 10 min.

Samples from 2014-2018 as well as select samples from 2011-2013 were sequenced
using a MiSeq platform (Illumina, San Diego, CA) with 300 bp paired-end chemistry.
Amplification occurred under the following conditions: 94°C for 2 min, 34 cycles of 94°C for 30

s, 48°C for 40 s, and 72°C for 60 s. Next, 1 ul each of I5 and I7 Nextera v2 barcoded indices
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with Illumina adapters (1 ng/ul) were added to the PCR products. Annealing of the barcoded
indices to the amplicon occurred as follows: 10 cycles of 94°C for 30 s, 55°C for 40 s, and 72°C
for 60 s, and a final extension at 72 °C for 10 min.

The resulting PCR product length was analyzed via agarose gel electrophoresis and the
barcoded products were pooled. Dimers that were less than 500 nucleotides long were then
removed using magnetic bead purification (Agencourt AMPure XP beads, Beckman Coulter Inc.,
Brea, CA). Product purity and length distribution was checked using a 2100 Bioanalyzer high
sensitivity DNA trace (Agilent, Santa Clara, CA). Roche 454 sequencing was performed using a
454 GS FLX+ Titanium (Roche, Basel, Switzerland) resulting in 323,143 reads. Illumina
sequencing was performed using a MiSeq 300 bp paired-end platform with 600 cycles (Illumina,
San Diego, CA) resulting in 14,492,986 reads. Sequence files are available from the NCBI

Sequence Read Archive (accession #PRINA624320).
Sequence Analysis

Both 454 and Illumina sequences were quality filtered using the same processing steps.
First, PhiX control sequences were removed using Bowtie 1.1.2. FASTQC was then used to
determine where read quality dropped below Q20. The 454 reads were truncated to 385 bp and
the Illumina forward reads were truncated to 255 bp. Next, fastq-mcf [40] was used to filter reads
with a mean quality score below 20 or with more than 1% of bases below Q20. Finally,
sequences were trimmed to the same 248 bp fragment (BioPython, v. 1.7.0, [41]). Quality
filtered and truncated sequences were imported into QIIME 2 (v. 2.2018.11, [42]).

The 454 and Illumina demultiplexed sequences were denoised independently using the
QIIME 2 command dada2 denoise-single with the following parameters (--p-trunc-len 0 --p-

max-ee 3 --p-n-reads-learn 800000). Next, the datasets were merged and sequences were
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taxonomically identified using the vsearch classifier (default parameters) to compare sequences
to a hand-curated database of 115 Prochlorococcus, Synechococcus, and other common marine
bacterial reference genomes. Statistical analyses of taxonomic patterns were performed in the R
computing environment [43]. Prior to calculations of ecotype relative abundance, samples were
rarefied to a consistent sequencing depth of 3000 sequences per sample (“rrarefy” in the “vegan”
package, [44]). A depth of 3000 was selected via the protocol outlined in [45]. Briefly, the
species matrix was rarefied to a range of depths 10 times each, then both richness and Shannon’s
diversity trends were compared to the overall dataset via Pearson correlation. A rarefaction depth
of 3000 resulted in diversity trends that were > 95% similar to the overall dataset (S1 Fig). All
samples were rarefied 100 times and the median count for each taxon in each sample was used in
all relative abundance and temporal trend analyses.

To identify microdiverse populations, sequence feature IDs associated with known
Prochlorococcus and Synechococcus reference genomes were used to extract and align ecotype-
specific 7poC1 sequences. Sequence codons were aligned (MEGA, version 7.0.21) and
sequences with frameshift mutations were removed. The ecotype-specific majority sequence for
each sample was calculated (BioPython) based on the 30% nucleotide consensus at each base
pair position using all sequences associated with the ecotype of interest. Highly conserved single
nucleotide polymorphisms (SNPs) in the station-specific majority sequences were identified via
comparison to the rpoC1 sequence from a reference genome.

SNP-delineated microdiverse “haplotypes” were identified in one Prochlorococcus and
one Synechococcus ecotype (HLI and Clade II). Specifically, aligned reads were used to
calculate the pairwise Euclidean distance between all sequences (i.e., no. of nucleotide

differences). This distance matrix was then clustered via average-linkage hierarchical clustering
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(“hclust” in the “stats” package). Within-cluster sum of squares was used to determine the
optimum number of SNP clusters, then the stability of the SNP clusters was assessed via Jaccard
bootstrapping (“cluster.stats” and “clusterboot” in the “fpc” package, [46]). Three basepair
positions in the consensus sequence were used to distinguish between the two largest stable
haplotype clusters for each ecotype (HLI: base pairs 9, 57, 108; Clade II: base pairs 48, 78, 81].
Sequences from each sample that matched the haplotype-specific SNP profiles were counted and

transformed into relative abundance by dividing by the sequence count for each ecotype.

Environmental Trends

To quantify both seasonal and interannual trends in the environment and microbial

community, we fit the following ANOVA model to our data:

Yijk = U+ @yearXvearj + BumonthXmonthk + Eijk (1)

Specifically, we performed Type Il ANOV As on categorical linear regressions of temperature,
nitrate, phosphate, or relative clade abundance observations (Y; ;) as a function of year (X;) and
month (X)) with corresponding regression coefficients (i.e., treatment effects) @yqqr and Lyontn-
Thus, in this manuscript a, represents the annual nitrate trend, and fp represents the monthly
phosphate trend, etc. We used the “Anova” function in the “car” package [47] and the “Im”

function in the “stats” package of R to perform this analysis.
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Results

We tested the prediction that warming and declining nutrient supply in the Southern
California Bight (SCB) would result in an increase in the oligotrophic ecotypes of
Prochlorococcus and Synechococcus. Therefore, we collected temperature, nutrient, and
microbial genomic DNA samples for »poC1 gene sequencing at 434 time points from 9
September 2009 to 5 December 2018 as a part of the Newport Beach Pier MICRO time series
(33.608°N, 117.928°W). Specifically, we compared the effects of seasonal and interannual
environmental variability on microbial populations at the genus, ecotype, and microdiverse

phylogenomic level.
Decomposing Environmental Variability

As reported in Martiny ef al. 2016 and Fagan ef al. 2019, temperature and inorganic
nutrient concentrations showed significant seasonal and interannual variability across the
MICRO time series. To lend context to our novel cyanobacterial population trends, here we add
environmental information for 2018 (Fig 1A). Both month and year of sampling had a significant
effect on the observed environmental patterns, demonstrating both seasonality and interannual
variation (Table 1). Temperature and nutrient concentrations were anti-correlated across the
seasonal cycle. Nutrient concentrations were highest in the Winter and Spring, whereas
temperature was highest in the Summer and Fall (Fig 1A,C). However, these trends became
partially decoupled across multi-year scales. Specifically, temperature and nitrate both showed
decreasing trends in 2013 (Fig 1C). Next, nitrate continued to decrease but temperature rose
sharply in 2014-2015. Temperature began to decrease in 2016 concurrently with an increase in
nitrate, but these trends reversed in 2017. Here, we additionally report that both temperature and

nitrate had increasing trends in 2018. In contrast, phosphate had a decreasing trend throughout

11
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most of the time series with slight increases in 2012, 2017, and 2018. As a result, the warmest
years were 2014, 2015 and 2018, but whereas low nutrient concentrations were observed in
2014-2015, 2018 had relatively high inorganic nutrients. Overall, these results support the
conclusion that El Nifio peaked in 2015 [5, 23, 48] . However, nitrate began to decrease at the
sampling site prior to the marine heatwave, suggesting that multiple physical oceanographic or

anthropogenic processes could have regulated the environmental changes at this location.
Shifts in Cyanobacteria Lineages

The ratio of Prochlorococcus to Synechococcus reads also showed significant seasonal
and interannual trends. In an ANOV A model, month and year explained a combined 47% of the
variance in the Prochlorococcus/Synechococcus ratio (Table 1). On a seasonal cycle, this ratio
had its highest increase in the early Winter concurrent with decreasing temperature (S2 Fig).
However, the ratio increased across all 9 years of the transect (S2 Fig). The largest increases in
the Prochlorococcus/Synechococcus ratio were observed in 2014 and 2015 with the onset of low
inorganic nutrient conditions and El Nifio. A similar shift from a Synechococcus-dominated
system to an increased abundance of Prochlorococcus was also observed using flow cytometry
[5]. As seen in other studies [3], there was a significant relationship between the sequence read
ratio and the cell count ratio when DNA and flow cytometry samples were collected
simultaneously (S3 Fig). This ratio was not dependent on sequencing platform but both platforms
overestimated the ratio of Prochlorococcus to Synechococcus reads when Prochlorococcus cell
counts were below 15 cells/ml (S3 Fig). Thus, the sequence and cell counts were mostly
correlated and suggested an increase in the Prochlorococcus/Synechococcus ratio and an

increasingly oligotrophic system.

12



Fig 1: Seasonal and interannual changes in environmental conditions and ecotype frequencies.
(A) Temperature (°C), nitrate and phosphate concentrations (uM), and the logio-transformed ratio of
Prochlorococcus sequence counts relative to Synechococcus sequence counts in the MICRO time
series. (B) Interpolated relative abundance of 7poC1 reads taxonomically assigned to the six most
abundant Prochlorococcus (Pro.) and Synechococcus (Syn.) ecotypes. The sampling dates are marked
along the top of the time series. (C) Linear model regression coefficients for environmental variables
and relative ecotype abundance as a function month and year (see Methods). A trend of 0 is marked
with horizontal dashed lines.

260

261 Ecotype Level Trends

262 During the 2014-2016 SCB marine heatwave, we observed an increase in the relative

263  abundance of Prochlorococcus and Synechococcus ecotypes commonly associated with high
264  temperature conditions. Month and year explained between 21-44% of the variance in relative
265  ecotype abundance across the MICRO time series (Table 1). On seasonal time scales,

266  Symechococcus Clade I increased in the Spring (~Feb.-Jun.), Synechococcus Clade I and

267  Prochlorococcus High Light I (HLI) increased in the Summer and Fall (~Jul.-Oct.), and

268  Prochlorococcus Low Light I (LLI) and High Light IT (HLII) demonstrated slight increases in
269  the Winter (Dec.) (Fig 1C). Only the Synechococcus Clade IV ecotype did not show significant
270  monthly variability (Table 1).

271 At annual time-scales, the system was initially dominated by the cold-water

272 Symechococcus ecotypes Clade I and Clade IV [28] (Fig 1B). However, in 2014, there was a

273  large increase in the relative abundance of Prochlorococcus cooler water ecotype HLI [27] as
274  well as a slight increase in the relative abundance of the warm-water Synechococcus Clade I1.
275  Moreover, at the peak of El Nifio in the fall of 2015, we detected the high-light, high-temperature
276  Prochlorococcus ecotype HLIL. As the marine heatwave abated in 2017, Synechococcus Clade 11
277  persisted in the system but Prochlorococcus HLII disappeared. Overall, Clade II and all

278  Prochlorococcus ecotypes had an increasing trend throughout the entire time series, with the

279  highest frequencies seen during the 2014-2015 El Nifio period (Fig 1C). Conversely, Clade I and

13



280

281

282

283

284
285

286

287

288

289

290

291

292

Clade IV largely had decreasing trends across the time series. In sum, relative ecotype abundance
showed systematic seasonal and interannual variability that partially aligned with environmental

trends in temperature and nutrients.

Table 1: Type I ANOVA results relating seasonality and interannual variability to
environmental trends.

Total Month Year Month Year Adjusted
SS SS SS P-Value P-Value R?
Temperature 3255.39 2091.83 160.35 <0.001 <0.001 0.68
Nitrate 2157.63 331.79 80.48 <0.001 0.015 0.16
Phosphate 17.69 1.67 2.07 <0.001 <0.001 0.18
Pro/Syn Ratio 1200.51 366.46 259.23 <0.001 <0.001 0.47
Pro.HLI 7.63 1.55 2.10 <0.001 <0.001 0.44
Pro.HLII 0.35 0.07 0.03 0.004 <0.001 0.28
Pro.LLI 0.12 0.01 0.03 <0.001 0.015 0.21
Syn.I 7.03 2.53 0.64 <0.001 0.001 0.39
Syn.IV 6.12 0.24 2.25 0.38 <0.001 0.37
Syn.II 0.69 0.08 0.17 0.001 <0.001 0.29
Pro.HLL2 44.01 1.10 21.85 0.15 <0.001 0.51
Syn.IL.2 28.49 2.53 10.93 0.03 <0.001 0.44

Seasonality (month) and interannual variability (year) each have a significant effect on almost every
variable examined, including environmental patterns, the ratio of Prochlorococcus/Synechococcus,

and the relative abundance of cyanobacterial taxa. SS = Sum of Squares.

Relative ecotype abundance trends generally showed significant correspondence with

changes in temperature and inorganic nutrients. However, the strength of each relationship was

dependent on the temporal factor and the taxa level examined (Fig 2; for data associated with Fig

2 see Table S1). We wanted to determine whether the non-independent relationship between the

relative abundance of Prochlorococcus and Synechococcus influenced their apparent temporal

trends. Therefore, we examined the relative abundance of the ecotypes normalized to all

CyaHObaCteria (PTOAll = PrOEcotype Abundance / (PrOAbundance + SynAbundance) and SynAl] = SynEcotype

Abundance / (PTOAbundance + SyNAabundance) ) versus normalized to within Prochlorococcus (Prowithin =

14
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Prokcotype Abundance / PTOAbundance) ot Synechococcus (Synwithin = SYNEcotype Abundance / SYNAbundance). In
almost all cases, the link between ecotype trend and environmental trend was the same for both
Synan and Synwimin (Fig 2). In contrast, Proan and Prowimin showed very different correlations
depending on the normalization. HLI, LLI, and HLII all increased relative to the major
Synechococcus clades (i.e., I and IV). However, the trend was more complicated within
Prochlorococcus, where LLI and HLII showed non-linear relationships with HLI. Thus, the
observed trends were dependent on the phylogenomic level of the analysis. On a seasonal cycle,
when examining the within-genus trends, HLI and Clade IV had significant positive correlations
with temperature trends; LLI had a significant positive correlation with phosphate trends; Clade I
had a significant positive correlation with nitrate trends; and Clade IV had a significant negative
correlation with nitrate trends (Fig 2). Across all Cyanobacteria on an interannual scale, Clade |
had a significant negative relationship and all Prochlorococcus ecotypes had significant positive
relationships with temperature trends. Within Syrnechococcus, Clade 11 had a significant positive
correlation with interannual temperature trends. Additionally, HLI had a significant negative and
Clade IV had a significant positive correlation with nitrate interannually. There were no
significant correlations between interannual phosphate and ecotype trends. Overall, temperature
trends had a stronger relationship with relative ecotype abundance across years, whereas nitrate
had a similar relationship with the ecotype trends across months and years, suggesting that the

effects of changing nitrate and temperature operate on different temporal scales.

Fig 2: Pearson correlation coefficients () between relative abundance trends and environmental
trends. The significance of each correlation is marked as p-value: * < 0.05, ** <0.01, *** <0.001.
Bars without a mark had a non-significant correlation.
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Microdiversity Trends

Most microdiverse Synechococcus and Prochlorococcus populations were dominated by
a single SNP-delineated population across the time series. We identified microdiverse
populations (i.e. “haplotypes”) based on conserved single nucleotide polymorphisms (SNPs) in
the rpoCl1 gene (Fig 3). A limited set of closely related haplotypes were present in four of the six
most abundant ecotypes (LLI, HLII, Clade I and Clade IV) across all seasons and years. Stable
SNPs were particularly prominent for the Synechococcus Clade I (Fig 3). Conversely, the
Synechococcus Clade IV and Prochlorococcus LLI ecotypes had few unique SNPs across the
time series. The final ecotype with a single dominant haplotype, Prochlorococcus HLIL, had a
highly stochastic distribution of SNPs, which may be influenced by its generally low sequence
counts and associated sequencing errors. In contrast, there were clear shifts in Prochlorococcus

HLI and Synechococcus 11 haplotypes.

Figure 3: Microdiversity clusters within the most abundant Prochlorococcus and Synechococcus
ecotypes were temporally and statistically stable. Dendrograms represent the average-linkage
hierarchical clustering of single nucleotide polymorphisms (SNP) differences between a rpoCl
reference sequence and the majority consensus sequence at each sampling time point. Each row of the
dendrogram represents the consensus #poC1 sequence at a time point, where only SNPs (in
comparison to the reference sequence) are depicted. Only time points where the ecotype was present
are shown. The reference rpoC1 sequence is depicted at the top of each dendrogram. Reference
genomes used to compare #poC1 sequences included: HLI — MIT9515; LLI - NATL2A; HLII —
MIT9301; Clade I - WH8016; Clade IV — CC9902; and, Clade II — CC9605. Within-cluster sum of
squares was used to determine the optimum number of SNP-based clusters (i.e., haplotypes). Cluster
labels (red) indicate bootstrapped Jaccard similarity values for the most stable clusters (values < 0.5
are unstable, 0.6 — 0.75 weak stability, 0.75-0.85 stable, and > 0.85 highly stable). Stable clusters are
alternately shaded in grey for emphasis.

The SCB marine heatwave appeared to induce shifts in the relative abundance of
Prochlorococcus HLI and Synechococcus 11 haplotypes. For both HLI and Clade II, two
statistically stable haplotypes were identified (Fig 4). On average 90.2% of the HLI and 99.8%

Clade Il reads were associated with one of two haplotypes, respectively. The two Synechococcus
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Clade II haplotypes, but not the Prochlorococcus HLI haplotypes, showed significant seasonal
variability (Table 1 and Fig 4B). The haplotypes Pro.HLI.1 and Syn.II.1 were frequent from the
Spring/Summer of 2010 through the Summer/Fall of 2012 (Fig 4A). During this time, the second
haplotypes (Pro.HLI.2 and Syn.I1.2) appeared during short periods. However, starting in 2013-
2014, Pro.HLIL.2 and Syn.I1.2 rose in frequency (Fig 4B). A systematic reversal of this trend
occurred briefly for Synechococcus 11 in the first half of 2017, when Syn.IL.2 decreased in
relative abundance before increasing again in 2018. The Pro.HLI.2 and Syn.II.2 seasonal and
interannual patterns were also compared to the trends in environmental parameters, but only
phosphate had a significant correlation with seasonal HLI haplotype trends (Fig 4C).
Comparisons to trends in the ratio of inorganic nitrate:phosphate were also non-significant (data
not shown). Thus, although year of sampling had a strong influence on relative haplotype
abundance, interannual changes in the dominant haplotype could not be attributed to a specific

environmental factor.

Figure 4: Prochlorococcus HLI haplotypes (Pro.HLI.1 and Pro.HLI.2) and Synechococcus 11
haplotypes (Syn.IL.1 and Syn.I1.2) showed significant shifts in composition across the time series.
(A) Interpolated relative abundance of the haplotypes. Samples with less than 10 reads were removed
from the analysis. (B) Linear regression coefficients for monthly and yearly trends in the Pro.HLI.2
and Syn.I1.2 haplotypes. (C) Pearson’s correlation coefficients (p) comparing haplotype to
environmental monthly and yearly trends. The significance of each correlation is marked as p-value: *
< 0.05. Bars without a mark had a non-significant correlation.

Testing for Endemism Among Warm Water Ecotypes

The contrast between ecotypes with stable versus variable haplotypes raised the question
as to whether some haplotypes were endemic to our study site. Alternatively, they may have
represented populations physically transported from the broader eastern Pacific Ocean. To place
the microdiversity of our warm water ecotypes in the context of other Pacific Ocean regions, we

compared our Prochlorococcus HLII and Synechococcus Clade 11 haplotypes to previously
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collected surface samples from the central Pacific Ocean [49]. For HLII, the majority of samples
taken from gyre and equatorial regions clustered separately from the MICRO samples (Fig 5).
However, 12 of the Newport samples were a part of stable clusters that included the open ocean
samples. Although these samples showed similar SNPs, they did not have similar in situ
temperature or nitrate concentrations. For Clade I, equatorial samples with high nitrate
concentrations clustered separately but were most closely related to the Syn.II.1 haplotype. In
contrast, Clade II samples from the low nutrient, high temperature North Pacific Subtropical
Gyre clustered with the Syn.I1.2 haplotype, which was most abundant later in the time series.
This result suggests that the microdiversity of populations observed in the SCB is at least

partially connected to other locations in the Pacific Ocean.

Fig 5: Comparison of Prochlorococcus HLII and Synechococcus Clade 11 rpoC1 highly
conserved SNPs detected at the Newport MICRO times series and on Pacific Ocean cruise
NH1418 (September-October 2014; 19.00°N, -158.00°W to -3.00°N, -149.67°W; 5m depth).
Newport and NH1418 samples largely clustered separately but had some overlap in SNPs. Samples
with less than 10 sequences were removed from the analysis. Clade labels (red) indicate
bootstrapped Jaccard similarity values for the most stable clusters with more than two samples
(values < 0.5 are unstable, 0.6 — 0.75 weak stability, 0.75-0.85 stable, and > 0.85 highly stable).
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Discussion

Our data suggests that long-term warming in the Southern California Bight initiated a
significant change in picocyanobacteria populations that persisted for 2-5 years (Fig 1). In
contrast, zooplankton communities typically return to pre-El Nifio states within 1-2 years [24].
Although “alternative stable states” have been documented in macroecology [50, 51], few studies
have reported persistent changes in microbial communities [52, 53]. Stable, long-term shifts in
microbial composition have generally been driven by changes in conditions linked to deeply
conserved traits such as shifts from iron-reduction to sulfate-reduction [54], oxic to anoxic
conditions [55], or increased photoinhibition [56]. In the marine environment, multi-centennial
changes in temperature and nutrient availability may have led to shifts in the abundance of N»-
fixing cyanobacteria in the North Pacific Subtropical Gyre (NPSG) [9]. Moreover, a polarity
reversal of the Pacific Decadal Oscillation in 1976 may have caused increased mixed layer
stratification and shoaling, decreased nutrient availability, and a regime shift from a eukaryote-
to a prokaryote-dominated system in the central Pacific Ocean [57]. In the MICRO time series,
the marine heatwave of 2014-2016 and concurrent 2015 El Nifio resulted in an increase in
ecotypes associated with warmer conditions including Prochlorococcus HLI, LLI, and HLII as
well as Synechococcus Clade II (Fig 1). Moreover, the HLI and Clade II microdiverse haplotypes
demonstrated persistent, altered community composition in response to the 2015 El Nifio
disturbance (Fig 4A). Here, similar processes as those observed in the NPSG may be operating
concurrently to drive community composition changes in the SCB.

Given the systematic and persistent changes in Cyanobacteria populations in the SCB,
what are the ecosystem processes driving this shift in microbial communities? Both

Prochlorococcus as a whole, which is more abundant in high temperature biomes than
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385  Synechococcus [58], and the Synechococcus high temperature Clade II increased in relative

386  abundance across the entire time series (Fig 1 and S2 Fig). In addition, it is well-documented that
387  20°C represents a temperature threshold above which Prochlorococcus HLII outpaces HLI

388  ecotype growth [27, 59). At MICRO, in situ temperatures were above 20°C for greater than

389  20.8% of dates in 2014, 2015, 2017, and 2018 and less than 14.2% of dates in 2010-2013 and
390  2016. Thus, the increased abundance of all Prochlorococcus, Prochlorococcus HLII, and

391  Synechococcus Clade Il may all reflect this warming. However, the

392 Prochlorococcus/Synechococccus ratio as well as HLII relative abundance peaked in the winter
393  (Fig 1 and S2 Fig). Additionally, the within-genus HLII monthly trends were negatively

394  correlated with temperature (Fig 2). These results may indicate an important role of regional
395  warming and advection of both oligotrophic water and microbial communities into the SCB [5,
396  23]. The 2015 El Nifo event was one of the strongest on record in terms of broad-scale regional
397  warming, even though reductions in upwelling and upwelling-favorable winds were relatively
398  weak in comparison to previous, strong El Nifio events such as 1982-1983 and 1997-1998 [48].
399  In addition, the SCB represents a transition zone between the southward California Current (CC)
400  and the northward California Undercurrent (CUC). Thus, relatively small changes in source

401  waters for the SCB may significantly change microbial populations. An increase in the

402  northward CUC signal in SCB waters was observed between 1984-2012 [25]. The CC is

403  characterized by cold, low-salinity, nutrient-poor “young” temperate water, whereas the CUC
404  has high-salinity, nutrient-rich “old” equatorial waters [60]. Therefore, changes in water mass
405  may result in the influx of oligotrophic communities with a higher abundance of

406  Prochlorococcus cells from the HLII ecotype. Comparison of microdiverse HLII and Clade II

407  populations at MICRO and in the NPSG supports the conclusion that these populations are
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phylogenomically linked (Fig 5). We hypothesize that an increased percentage of high-
temperature days locally but also a larger-scale regional warming trend that promotes the
advection of oligotrophic populations into the SCB, contribute to a shifting picocyanobacteria
community at MICRO.

There are several important caveats to our conclusions including the application of
multiple sequencing platforms and temporal co-variance between environmental factors. The
sequencing platform was partially associated with year of sampling and thus confounded with
the shift in Prochlorococcus/Synechococcus sequence read ratios. However, the relationship
between the sequence read ratio and the cell count-ratio of Prochlorococcus/Synechococcus was
not dependent on sequencing platform (S3 Fig). Moreover, out of the six instances of samples
collected with 48 hours but sequenced on different platforms, only one date showed significantly
different ecotype frequencies between 454 and Illumina (S4 Fig). Previous studies have
similarly shown that the ratio of major marine microbial taxa is consistent across genomic
platforms [61]. In addition, a large number of highly conserved SNPs in the 7poC1 consensus
sequences were observed throughout the time series, regardless of sequencing platform (Fig 3).
Rapid changes in sequencing platforms and technology, both in terms of read length and depth of
coverage, are likely to continue into the future. Our analysis suggests that conserved SNPs can
be integrated across platforms. The strong seasonal co-variance of multiple environmental
factors also makes it challenging to separate the effects of temperature and nutrient
concentrations on picocyanobacteria populations. However, our multi-year sampling regime
partially addressed this issue as temperature and nutrient concentrations were less correlated at
this time-scale. Overall, temperature disturbances including the El Nifio event, the partial

interannual decoupling of environmental trends, and the prevalence of stable microdiversity
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across the 9 years of the MICRO time series has made it an excellent natural laboratory to study

the effects of climatic shifts on microbial populations.

Fig 6: Conceptual diagram of picocyanobacterial community shifts at the MICRO time series
from 2009 — 2018. Synechococcus cells are outlined in purple and Prochlorococcus cells are outlined
in green. Blue cell shading indicates cold temperature-adapted ecotypes and yellow cell shading
indicates warm temperature-adapted ecotypes. The blue line indicates the nitrate trend (N) and the red
line indicates the temperature trend (T).

The MICRO picocyanobacteria time series illustrates how we can “bi-directionally” link
shifts in microbial diversity and environmental conditions to develop a deeper understanding of
the impact of global changes. Past studies have revealed a rich understanding of the phylogenetic
conservatism of response traits in microbial populations [62-64]. One of the main trait
differences between the Prochlorococcus and Synechococcus genera is cell size, which results in
a competitive advantage of Prochlorococcus under warm, low nutrient conditions [65]. Within
the genera, it is also well-established that different light, temperature, and iron response traits are
linked to specific ecotypes [27-29, 66]. In contrast, responses to biotic interactions, subtle
temperature shifts, and nutrient supply ratios have been associated with microdiverse clades [30,
49, 67, 68]. Prochlorococus and Synechococcus responses to environmental change at MICRO
generally conformed to the phylogenomically predicted response at the genus and ecotype level
(Fig. 6). Prochlorococcus likely increased relative to Synechcococcus across the time series due
to traits conferring a competitive advantage in warm, oligotrophic conditions. Similarly, on
annual scales, HLI, HLII, and Clade II likely increased over Synechococcus Clade I and Clade
IV due to traits related to high temperatures and low nutrient concentrations [28]. However,
several responses to environmental change did not conform to our knowledge of expected
response traits. Prochlorococus HLII and Synechococcus Clade IV showed a seasonally negative

and positive correlation with temperature, respectively, and thus a divergent trend compared to
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past studies. We attribute these unexpected observations to advection of genotypes from the
broader eastern Pacific Ocean region that is also experienced warming. Overall, we saw limited
changes at the microdiversity level, suggesting that the effect of shifts in environmental
conditions or biotic interactions [37, 49, 69] were muted for most haplotypes here. However,
some of these processes likely elicited the large responses in HLI and Clade II haplotypes
observed in 2014-2015 (Fig 4), which supports our conclusion of a persistent shift in
picocyanobacteria populations. It is too early to state whether this shift is indicative of a new
ecosystem state in terms of nutrients, temperature, and cyanobacteria (Fig 6), but future time
series efforts should continue to monitor climatic changes in the SCB. Global climate change is
expected to have a complex impact on marine microorganisms as a result of nonlinear
biophysical interactions between environmental conditions [70, 71]. Shifts in microbial
populations and their traits can act as a “biosensor” and allow us to develop a stronger

understanding of how climatic changes affect ecosystem functioning.
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Supporting Information

S1 Fig: Comparison of taxa richness (no. of taxa) and diversity (Shannon’s Diversity Index)
in rarefied datasets to the overall dataset revealed high correlations (Pearson’s correlation
coefficient of determination, r?). Amplicon datasets were rarefied to a range of depths 10 times
each and the correlation between each rarefaction and overall dataset was calculated. A
rarefaction depth of 3000 sequences was selected for relative abundance analysis as it was the

minimum depth at which all correlations had * > 0.95.

S2 Fig: Linear model regression coefficients for the logio-transformed ratio of
Prochlorococcus sequence counts relative to Synechococcus sequence counts in the MICRO
time series as a function month and year (see Methods). A trend of 0 is marked with
horizontal dashed lines. The Prochlorococcus/Synechococcus ratio show significant seasonal

variability and has an increasing trend across all years of the study.

S3 Fig: Comparison of the logio-transformed (Prochlorococcus + 1)/(Synechococcus + 1)
ratio calculated by sequence read count and by flow cytometry cell count shows concordant
patterns in the MICRO time series. (A) Sequence read ratio across the MICRO time series.
Either a Roche 454 (purple) or an [llumina MiSeq (red) platform was used to sequence the rpoCl
gene. (B) Cell count ratio from 2012-2015. Flow cytometry data was collected as in (Martiny et
al. 2016). (C) Comparison of read count ratios and cell count ratios in samples where DNA and
flow cytometry were collected concurrently. When Prochlorococcus cellular abundance was
above 15 cells/ml, the sequence ratio showed a significant linear relationship (blue line) with the

cell count ratio (p-value < 0.001, R’ = 0.48).
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697  S4 Fig: Relative ecotype abundance for select MICRO samples collected within a two-day
698  window and sequenced on a Roche 454 versus an Illumina MiSeq. The distribution of

699  ecotype frequencies between sequencing platforms was compared using Pearson’s chi-square test
700  for homogeneity (10000 permutations, * = p-value < 0.05). The distribution of ecotype

701  frequencies was only significantly different between sequencing platforms for 1 out 6

702 comparisons (R = Roche 454, I = Illumina MiSeq).

703 Table S1: Pearson’s correlation coefficients () and corresponding p-values for the

704  comparison of seasonal (month) and interannual (year) environmental trends to taxa-
705  specific trends.

700 TEMPERATURE NITRATE PHOSPHATE
Month Year Month Year Month Year
r p-value | r p-value | r p-value | r p-value | r p-value | r p-value

HLI 0.47 0.12 0.77 0.01 -0.60 0.04 -0.71 0.03 -0.33 0.29 -0.41 0.27
LLI 0.25 0.43 0.87  0.002 | -0.33 0.29 -0.49 0.18 -0.07 0.84 -0.25 0.52
HLIT 0.19 0.56 0.80 0.01 -0.31 0.32 -0.41 0.28 -0.03 0.92 -0.39 0.30
HLLW 0.61 0.03 0.08 0.84 -0.54 0.07 -0.81  0.008 | -0.76  0.004 | -0.09 0.83
LLIL.W -0.51 0.09 -0.25 0.52 0.06 0.85 0.62 0.07 0.54 0.07 -0.02 0.96
HLIL.W -0.13 0.69 0.45 0.22 -0.02 0.94 -0.46 0.21 0.15 0.64 -0.35 0.35
SYN.I -0.56 0.06 -0.91 <0.001 | 0.67 0.02 0.33 0.39 0.37 0.24 -0.04 0.92
SYN.IV 0.12 0.70 -0.65 0.06 0.13 0.68 0.69 0.04 -0.18 0.58 0.40 0.28
SYN.II 0.43 0.16 0.64 0.06 -0.52 0.08 -0.27 0.48 -0.18 0.58 0.34 0.37
SYN.LW -0.58  0.048 | -0.34 0.37 0.69 0.01 -0.24 0.53 0.37 0.23 -0.51 0.16
SYN.IV.W | 0.68 0.02 -0.52 0.15 -0.64 0.03 0.60 0.09 -0.55 0.06 0.47 0.20
SYN.ILW | 0.49 0.11 093 <0.001 | -0.57 0.05 -0.50 0.17 -0.21 0.52 -0.13 0.74
HLI.2 -0.57 0.05 0.65 0.06 0.48 0.11 -0.61 0.08 0.65 0.02 0.14 0.73
SYN.IIL.2 0.11 0.74 0.63 0.07 -0.16 0.62 -0.41 0.27 0.19 0.56 0.02 0.96

707

708  Trend values were calculated via linear regression and type I ANOVA (see Methods).
709  Significant correlations are bolded.
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