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SPECTRA OF PRODUCTS OF DIGRAPHS*

MINERVA CATRALT, LORENZO CIARDO?f, LESLIE HOGBEN®!, AND CAROLYN REINHARTY

Abstract. A unified approach to the determination of eigenvalues and eigenvectors of specific matrices associated with
directed graphs is presented. Matrices studied include the distance matrix, with natural extensions to the distance Laplacian and
distance signless Laplacian, in addition to the adjacency matrix, with natural extensions to the Laplacian and signless Laplacian.
Various sums of Kronecker products of nonnegative matrices are introduced to model the Cartesian and lexicographic products
of digraphs. The Jordan canonical form is applied extensively to the analysis of spectra and eigenvectors. The analysis shows
that Cartesian products provide a method for building infinite families of transmission regular digraphs with few distinct
distance eigenvalues.
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1. Introduction. Spectral graph theory has traditionally been the study of the relation between proper-
ties of (undirected) graphs and the spectrum of the adjacency matrix, Laplacian matrix, or signless Laplacian
matrix of the graph [5]. The distance matrix of a graph was introduced in the study of a data communica-
tion problem [11] and has attracted a lot of interest recently (see, e.g, [2] for a survey on distance spectra of
graphs). Recently the distance Laplacian and distance signless Laplacian of a graph have been studied (see,
for example, [1]). Spectral theory of digraphs is a developing area of research but so far focused primarily
on the spectral radius of the adjacency matrix (see [6] for a survey on spectra of digraphs).

A graph G = (V(G), E(G)) consists of a finite set V(G) = {v1,...,v,} of vertices and a set E(G) of two-
element subsets {v;, v,} called edges; the order is the number of vertices. A digraph I' = (V(I'), E(T")) consists
of a finite set V/(I') = {v1,..., v, } of vertices and a set E(I") of ordered pairs of distinct vertices (v;,v;) called
arcs. Observe that neither a graph nor digraph can have a loop (an edge or arc with the vertices equal).
For a digraph T (respectively, graph G), a dipath (respectively, path) from u to v is a sequence of vertices
and arcs (respectively, edges) u = wy,e1 = (wy,ws), w2, e2 = (Wa,w3),..., Wk, e = (Wk, Wgt1), Wgt1 = U
(in a path, the arcs are replaced by unordered edges). A digraph (or graph) of order at least two is strongly
connected (or connected) if for every pair of vertices u, v, there is a dipath (or path) from wu to v.

The adjacency matriz of T' (or G) with order n, denoted by A(T") (or A(G)), is the n x n matrix with
(4,j) entry equal to 1 if (v, v;) (or {v;,v;}) is an arc (or edge) of I' (or G), and 0 otherwise. The Laplacian
matriz of T' (or G), denoted by L(T") (or L(G)), is defined as D(T") — A(T") (or D(G) — A(G)), where D(T)
(or D(@)) is the diagonal matrix having the i-th diagonal entry equal to the out-degree (or degree) of the
vertex v;, i.e., the number of arcs (or edges) starting at v;. The matrix D(T") + A(T") (or D(G) + A(Q)) is
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called the signless Laplacian matriz of I' (or G) and is denoted by Q(I') (or Q(G)). For a strongly connected
digraph T" (or a connected graph G), the distance matriz, denoted D(T') (or D(G)), is the n x n matrix with
(1,7) entry equal to d(v;,v;), the distance from v; to vj, i.e., the length of a shortest dipath (or path) from
v; to v;; use of a distance matrix implies the digraph (or graph) is strongly connected (or connected). The
transmission of vertex v; is defined as t(v;) = Z;‘L=1 d(v;, v;). The transmission of a vertex in a digraph could
have been called the out-transmission because it is the sum of the out-distances, i.e., the distances from v;
to other vertices. The distance Laplacian matrix and the distance signless Laplacian matrix, denoted by D
and DY, respectively, are defined by DX(I') = T(T') — D(I') and DO(I") = T(T") + D(I'), where T(T) is the
diagonal matrix with ¢(v;) as the i-th diagonal entry; DY (G) and D?(G) are defined analogously. A digraph
is out-reqular or r-out-regular if every vertex has out-degree r. A strongly connected digraph is transmission
regular or t-transmission reqular if every vertex has transmission ¢. The terms regular, r-reqular, transmission
reqular, and t-transmission reqular are defined analogously for graphs.

For a real m x m matrix M, the algebraic multiplicity multys(2) of a number z € C with respect to
M is the number of times (x — z) appears as a factor in the characteristic polynomial p(z) of M, and the
geometric multiplicity gmult,,(z) is the dimension of the eigenspace ESps(2) of M relative to z (multps(z) =
gmult,,(z) = 0 if z is not an eigenvalue of M). The spectrum of M, denoted by spec(M), is the multiset
whose elements are the n (complex) eigenvalues of M (i.e., the number of times each eigenvalue appears in
spec(M) is its algebraic multiplicity). The spectrum is often written as spec(M) = {/\gml), ey /\((Im“)} where
A1, ..., Aq are the distinct eigenvalues of M and m, ..., m, are the (algebraic) multiplicities.

For a digraph I, the adjacency spectrum is denoted spec 4(I') = spec(A(I')) and the distance spectrum
is denoted specp(I') = spec(D(T')). For a graph G, the relevant spectra are spec4(G) = spec(A(G)),
specp(G) = spec(D(G)), with the same terminology.

This paper contributes to the study of the spectra of digraphs, particularly by presenting new results
on eigenvalues and eigenvectors of the distance and adjacency matrix of various products of digraphs. The
techniques used are more general and apply to nonnegative matrices (with various additional hypotheses). We
often develop such nonnegative matrix results first and then apply them to matrices of digraphs. In Section
2, we analyze the construction of matrices (sums of Kronecker products) that produces distance matrices
of Cartesian products of digraphs. We use the Jordan canonical form to derive formulas for the spectra of
these constructions in terms of the spectra of the original matrices, and apply these results to determine
the distance spectrum of a Cartesian product of two transmission regular digraphs in terms of the distance
spectra of the digraphs. These formulas show that Cartesian products provide a method for building infinite
families of transmission regular digraphs with few distinct distance eigenvalues; this is discussed in Section
5. In some cases we establish formulas for the Jordan canonical form, geometric multiplicities of eigenvalues,
or eigenvectors of the constructed matrix. In Section 3, we investigate the spectra of lexicographic products
of digraphs by similar methods, applying these results to adjacency and distance matrices. Section 4 gives
a brief discussion on the spectra of the direct and strong products.

In the remainder of this introduction, we define various digraph products and the matrix constructions
that describe the matrices associated with these digraphs, and state elementary results we will use.

1.1. Digraph products and matrix constructions. Let I and I be digraphs of orders n and n/,
respectively. We consider the four standard associative digraph products, namely the Cartesian product
a1, the lexicographic product T © T, the direct product T x T” and the strong product T KT [12]. Each
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has vertex set V(I") x V(I'") and their arc sets are:

I), or x =y and (2/,y') € E(T")},
I) and (2/,y') € E(I")}, and
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Rather than establishing spectral results just for the matrices associated with these digraph products,
we develop a general theory of the spectra of matrices constructed in a specified form as a sum of Kronecker
products of matrices with the identity or with the all ones matrix. The Kronecker product of an n x n matrix
A =[a;;] and a n' x n’ matrix A’ is the nn’ x nn’ block matrix

allA’ algA/ tee alnA’

/ / /

Ao A an A" agAl - ax, A
KA = . .

anlAl anQA/ e annA/

Let M € C™ ™ and M’ € C"*"". We use the following notation: The n X n identity matrix is denoted by
[, The n x n all ones matrix is denoted by J,,. The all ones n-vector is denoted by 1,,. The all zeros matrix
is denoted by O. The all zeros vector is denoted by 0. Define the matrix constructions

M@M’ =M®l, +1, ®M/ c C(nn’)x(nn/),

MM = M ® J + J, ® M’ € Cm)x(n)

and
MOM =M Jy +1, @ M' € clmm)xtnn),

Then, as in the case with graphs,
ATOT) = AD)[1]A(T) and DTOI) =D()[s]DIT).

The matrix construction M @) M’ arises naturally for the adjacency matrix of the lexicographic product,
because AT ©T) = A(T) © A(I”) (as is the case for graphs), and has some uses for the distance matrix
D' ©T), as discussed in Section 3 (in particular, see Observation 3.10).

For many cases, we determine the spectrum of the construction of M and M’ by using the construction
of Jordan canonical forms of M and M’ to obtain a triangular matrix that is similar to the construction of
M and M’. In one case, M M ', we obtain a significantly stronger result, producing an explicit formula
for the Jordan canonical form of the product of M and M’ in terms of the Jordan canonical forms of M and
M'. This allows the determination of the geometric multiplicities of the eigenvalues of the construction from
the geometric multiplicities of the eigenvalues of M and M’. We also show that such a determination is not
possible for M [1] M’ (see Example 2.3). In another case, M © M’, we determine the geometric multiplicities
of the eigenvalues of the construction from the geometric multiplicities of the eigenvalues of M and M’ and
the geometry of the eigenspaces of M and M’.

1.2. Useful lemmas. The next remark contains useful well-known linear algebra results about nonneg-
ative and irreducible nonnegative matrices (including Perron-Frobenius theory) that will be used throughout
the paper.
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REMARK 1.1. Let M = [m;;] be a nonnegative nxn matrix. Then p(M) < max 2?21 m;; [13, Theorem

8.1.22]. Furthermore, p(M) is an eigenvalue of M and there is a nonnegative nonzero eigenvector x such
that Mx = p(M)x. If M is also irreducible, then p(M) > 0, multys(p(M)) = 1, x has positive entries, and
all positive eigenvectors of M are multiples of x [13, Theorems 8.3.1, 8.4.4].

The following result is used throughout the paper (there are many ways it could be proved).

LEMMA 1.2. Consider the block matrices E = {é g] and F = [gl g] where A € C"*", B € C"'*"' |

and suppose that spec(A) Nspec(B) = 0. Then E and F are similar.
Proof. The Sylvester equation AX —X B = C has a unique solution X € C"*"' | since spec(A)Nspec(B) =

() [13, Theorem 2.4.4.1]. Then, P~'EP = F where P = [HO" _I]X]; observe that P~! = [I]O” I]X} 0

The next lemma is well known, and follows from standard facts about Kronecker products (see, for
example, [19, Fact 11.4.16]).

LEMMA 1.3. Let ay,...,a; € R™ be linearly independent and let by, ..., by € R™ be linearly indepen-
dent. Then a; @ b; fori=1,...,k,j=1,...,k" are linearly independent in R

2. Cartesian products. In this section, we derive a formula for the distance spectra of a Cartesian
product of two digraphs in terms of the distance spectra of the digraphs under certain conditions. These
formulas show that Cartesian products provide a method for building infinite families of transmission regular
digraphs with few distinct distance eigenvalues; this is discussed in Section 5. The formulas (and the idea of
constructing digraphs with few distance eigenvalues) parallel similar results for graphs. However, the proofs
of the eigenvalue formulas are quite different.

Formulas analogous to the ones we derive for digraphs are known for graphs. In the case of graphs,
each of the matrices involved is real and symmetric, so its eigenvalues are real and there is a basis of
eigenvectors. Furthermore, the distance matrix of a transmission regular graph G of order n commutes with
J,,, allowing simultaneous diagonalization of D(G) and J,,. Unfortunately, the eigenvalues of distance or
adjacency matrices of digraphs may be non-real and there may not be a basis of eigenvectors. Examples
27i) /n

include the directed cycle C_"n, which has eigenvalues 1,w,...,w" ! where w = e A transmission

regular digraph of diameter two that lacks a basis of eigenvectors is exhibited in the next example.

FIGURE 2.1. A transmission reqular digraph with diameter two and no basis of eigenvectors. Here and elsewhere, a bold
line indicates both arcs are present.
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EXAMPLE 2.1. Let T' be the digraph shown in Figure 2.1. Then D(T') = 110 2l specp(T) =
1 2 1 0

{4,—1,—1,-2}, and every eigenvector for —1 is a multiple of [4, —1, -1, —1]T.

If the matrices M and M’ are real and symmetric, then formulas for the spectra of M [1]M" and M [s]M'
in terms of those of M and M’ are well known. The formula for spec(M [1]M’) is also known without any
other assumptions.

REMARK 2.2. Let M € C™" with spec(M) = {A1,...,A\,} and M’ € C"*" with spec(M’') =
{\, ... AL} Then spec(M[1]M') = it ri=1,...,n, j=1,...,n'} [14, Theorem 4.4.5]. This implies
the (known) formula for the adjacency spectra of cartesian products of any digraphs: Let T" and IV be di-
graphs of orders n and n’, respectively, with spec 4(I') = {1, aa,...,a,} and spec 4 (I') = {a], a5, ..., }.
Then spec (I'OTY) = {ai +alii=1,...,n, j= L...,n’} [10, Theorem 3].

As the next example shows, the geometric multiplicity of the eigenvalues of M[1]M’ is not entirely
determined from the eigenvalues of M and M’ and their geometric multiplicities.

EXAMPLE 2.3. Let

0 1 0 O 0 1 0 O

0 0 0
M=o 0 1|, M= 0 0 0 O ML= 0 010
00 0 0 0 01 0 0 0O
0 0 0 O 0 0 0 O

We observe that the eigenvalue 0 has geometric multiplicity 2 (and algebraic multiplicity 4) for both M] and
M. Nevertheless, one can check that rank(M [1]M{) = 6 while rank(M [1]M3) = 7, so that the geometric
multiplicity of 0 for M [1]M{ and for M[i1]M; differs.

The formula for spec(M[1]M’) can be proved by using the Jordan canonical form (as we do in other
theorems). The geometric multiplicity of the eigenvalues of M EM " is fully determined from the Jordan
canonical forms of M and M’; these, in turn, are fully determined from their Weyr characteristics (see for
example [13, §3.1]). We conclude that, in addition to the geometric multiplicities, other elements of the
Weyr characteristics of M and M’ determine the geometric multiplicity of the eigenvalues of M [1]M’.

Next we turn our attention to M[s]M’.

PROPOSITION 2.4. Suppose M € R™*™ is a nonnegative matriz that satisfies M1,, = pl,,. Then p is the
spectral radius of M and there exists an invertible matriz C € C™*™ such that

T T
11,0 = {” 0 ] and C~IMC = {p X]

0 O 0 R
. 1 . "y o . p 0T
for some Jordan matrix R and x € R™*. If in addition M is irreducible, then Jy; = o Rl
Proof. Since M is a nonnegative matrix that satisfies M1, = pl,,, its spectral radius is p. Choose a
basis of (real) eigenvectors ¢; = 1, ca,. .., ¢, for J,, and define C; = [cl Cy - cn]. Then CflJJnCl =

[n oT

T
0 o] and C7'MC, = [p -‘%] Choose Cy € C(*=Dx(n=1) gych that C; *BCy = Jg. Then C~'MC =

0
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T
[g );%} with C' = C1([1] @ C3) and R = Jp. If M is irreducible, then p is a simple eigenvalue and Jp; has

the required form. 0

Observe that any Jordan matrix R can be expressed as R = D + N, where D is a diagonal matrix and
N is nilpotent. Then for any ¢ € R, J.g = c¢D + N.

THEOREM 2.5. Suppose M € R"™*"™ M’ € R™ > gre irreducible nonnegative matrices that satisfy

M1, = pl,, and M'1,, = p'1 Let Jo = | 0% and Jy = / 0% where D and D' are

0 D +N’
diagonal and N and N’ are nilpotent. Then

np' +n'p ot ot oT

] B 0 nD' + N’ 0 0]
M[3]mr 0 0) nD+N O
0 O O O

Proof. Let R = D+ N and R" = D’ + N’. Use Proposition 2.4 to choose C and C’ such that

oT T ' T
C1J,C = {8 O} = diag(n,0,...,0), C-1MC = [g ’H C'=13,,C" = [Té 0} = diag(n’,0,...,0),
B p/ X/T
and C'"1M'C’ = [0 R’]' Then
(C*1 ® C’*l)(MM/)(C ®C) =
T / 1T
[g );%} ® diag(n/,0,...,0) + diag(n,0,...,0) ® [/()) );%/] =
[ pn’ 0T | zin’ 0T | zen’ 0T | -+ | zp_in’ 0T ] [np nxT |0 o0oT |0 of o ot 7
0 o 0 o 0 o |- 0 @] 0 nR' |0 O |0 O 0o O
0 0T | rign’ 0T | rian’ 0T 0 oT 0 oT o oT |o o 0o oT
[e) 0 o) 0 [0) 0 e} 0 o |o o|o o 0o O
o oT 0 0T | roon’ 07T 0 ot | 4 0 o (o oT|o of o of | _
o o 0 o 0 1e) 0 ) 0 o |o ol]o o o o
o of 0 oT 0 oT | ... | rpun’ 0T 0 oT |o oT|o oT o oT
L o o© 1e) 1e) 0 o | L o |o ol]o o o o |
[ on' +np’ nxT | zyn/ 0T | zon/ OT |- | z,_n/ 0T 1
0 nR’ 0 0] 0 O 0 O
0 OT 7‘1171/ OT 7"1271/ OT O OT
0 O 0 0] 0 O 0 O
(2.1) 0 oT 0 0T | r9on/ 0T 0 oT
0 O 0 0] 0 O 0 O
0 oT o oT| o oT|.-.-| r,n OF
I 0 O 0 0] 0 O 0 O ]
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The matrix in (2.1) is permutation similar to

B pn/+np/ nx'T np'xT 07T ot

0 nR' o O o

0 O 7R O 0

(2:2) 0 o 0 o o
0 o o 0 - 0|

Since pn’ +np’ is not an eigenvalue of nR' or n’ R, Lemma 1.2 implies that the Jordan canonical form of the
matrix in (2.2) is

np' +n'p 0T 0T oT np' +n'p ot ot ot
0 Jore O O _ 0 nD" + N’ O O
0 O Jur O] 0 O nD+N O
0 0 0O O 0 0 O 0 0

COROLLARY 2.6. Suppose M € R™ "™ M’ ¢ R™*"" gre irreducible nonnegative matrices that satisfy
M1, = pl,, and M'1,, = p'1,,. Let spec(M) = {p, Aa,..., A\n} and spec(M’) = {p/, A, ..., A, }. Then

spec(M[T]M') = {ng +n'p,n'Da, ... o0 Ay, Xy, X, 0 D1,

Considering M and M’ in Corollary 2.6 to be the distance matrices of two transmission regular digraphs
we immediately obtain the next result.

THEOREM 2.7. Let T and T be transmission regular digraphs of orders n and n' with transmissions t
and t', and let specpy (') = (¢,02,...,0n), specp(I”) = (t,05,...,0,). Then

" Yn/

specp (D OT) = {nt' +n't,n'0y, ..., 0p,ndh, ... N0, 0("_1)(”_1)} .

The formula for the distance spectrum of a Cartesian product of graphs (analogous to that in Theorem
2.7) was originally proved by Indulal for distance regular graphs [15, Theorem 2.1], and it was noted in [3]
that the proof applies to transmission regular graphs. The proof used the facts that the distance matrix of a
transmission regular graph commutes with J,, and every real symmetric matrix has a basis of eigenvectors.

Having found the spectrum of D(I' JT"), we now focus on describing its eigenvectors.

THEOREM 2.8. Let M € R™™ and M’ € R™*"" be irreducible nonnegative matrices, and suppose that
M1, = plyn, M1, = p'1, for some p,p’ > 0. Let {va,...,vi} be a linearly independent set of eigenvectors
of M with Mv; = \iv;, A\; € spec(M), and let {v},..., v}, } be a linearly independent set of eigenvectors of
M" with M'v’; = N;v%, X, € spec(M'). Then
(1) 1, ® 1,/ is an eigenvector of M[3]M' corresponding to the spectral radius, np’ + n'p.

T /
(2) Fori=2,....k, vi @ 1 +1, ® 1, where ; = #ﬁp‘inp,, is an eigenvector of M[3]M' corre-

sponding to the eigenvalue n'X;.

(3) For j = 2,....k, 1, ® Vi + 71, ® 1, where v =

corresponding to the eigenvalue n)\;-.

'
vl p . .
ir is an eigenvector of M[J]M'

n)\; —np'—n'p’



A publication of the International Linear Algebra Society
Volume 36, pp. 744-763, December 2020.

http://repository.uwyo.edu/ela ! S

751 Spectra of Products of Digraphs

Electronic Journal of Linear Algebra, ISSN 1081-3810 I L

(4) Let {z1,...,2n_1}, Tespectively {z1,...,2,,_,}, be a linearly independent set of null vectors of J,,, re-
spectively . Then, fori=1,....n—1, j=1,...,n" —1, z; ® 2} is a null vector of M[3]M’.

Furthermore, the set of eigenvectors of MM’ described in (1)—(4) is linearly independent. If {v; =
1, va, ..., v} and {v] = 1, v5, ..., v} are bases of eigenvectors for M and M’, then the set of eigen-
vectors of M[3] M’ described in (1)-(4) is a basis of eigenvectors.

Proof.

(1) MM (1, @ 1) =[M&Jpy + 3, @ M'|(1, @ Tp) = (pln @0/ 1) + (01, @ p' 1) = pn/ (1, @ Tpyr) +
np' (Tn @ 1) = (np" +n'p) (1 @ Ty).

(2) For simplicity, let v = v;,A = \;, and v = ;. As |A| < p, v is well-defined and satisfies (v1'1,,)p" +
ypn! + ynp’ —n'Xy = 0. Moreover, M[J]M'(v® T,y +741, @ 1) = [M @ Iy + 5y @ M')(v @ Ty +
YV ®1y)=(MRJ, ) (vely)+ (I, @M vely)+ (MRJ, ) (1, @1,) + (3, @ M) (y1, @ 1,/) =
Av@n T+ (VI )1, @0 1y + 901, @0/ Ty + 0T, @ 'l = AV R Ty + 91, @ 1) + (vE1,)p +
o' +np’ —n'AY) (1, @ 1) = ' A(v @ Ty + 91, @ 1,).

(3) The proof is analogous to that of (2).

(4) M[s|M'(z; @ 2}) = [M @ Iy + I, @ M'(z; @ 2) = (M ® Jp)(2z: ® 2) + (I, @ M')(z; ® 2) =
le-@J]n/zfj +J,z; @ M’ ; :MZZ'®O+0®M/Z3 =0.
Note that (z; ®2;)"(v@ 1) = (z{ @2 )(vel,) =2/ v® z;Tﬂn/ = 0 for any vector v, and similarly

(z; ® z;-)T(Hn ® v') = 0 for any vector v’. Thus, the null vectors z; ® z; are orthogonal to the eigenvectors

in (1)=(3). Moreover, the eigenvectors in (1)—(3) are linearly independent by Lemma 1.3, and hence, the

eigenvectors of M [J]M" in (1)—(4) are linearly independent. The statement regarding being a basis follows

from the dimension. d

Next we apply Theorem 2.8 to provide a description of the eigenvectors of the Cartesian product of two
transmission regular digraphs.

THEOREM 2.9. Let T and T” be transmission regular digraphs of orders m and n' with transmissions t
and t'. Let {vi = T,,..., vy} be a linearly independent set of eigenvectors of D(T') with v; an eigenvector
corresponding to 0; € specp(I'), and let {v} = 1,/,...,V},} be a linearly independent set of eigenvectors of
D(I) with v’; an eigenvector corresponding to 9; € specp(I). Then

1. 1, ® 1,/ is an eigenvector of D(T' OT") corresponding to the spectral radius, nt’ + n't.

2. Fori=2,....k, v;i @ 1, +v1, ® 1,,, where v; = %, is an eigenvector of D(COTY)
corresponding to the eigenvalue n'0;.

3. Forj =2,....K, 1,®V,+71,® 1, where v; =

corresponding to the eigenvalue n@é.

T
m%vini%, is an eigenvector of D(T'OTY)
4. Let {z1,...,2n-1}, respectively {z},... 2,1}, be a linearly independent set of null vectors of Iy,

respectively Jys. Then, fori=1,....,n—1, j=1,...,n" — 1, z; ® 2} is a null vector of D(I'LII")

Furthermore, the set of eigenvectors of D(I'DTY) described in (1)—(4) is linearly independent. If {vi =
T, va, ..., v} and {v] = T, vh,...,vl,} are bases of eigenvectors for D(I') and D(I"), then the set of
eigenvectors of D(T OTY) described in (1)—(4) is a basis of eigenvectors.

REMARK 2.10. If T’ and TV are symmetric digraphs (which is equivalent to considering them as undirected
graphs), then their distance matrices are symmetric. As a consequence, -y; and 7§ are always zero in Theorem
2.9, which yields the simpler expression for the eigenvectors of D(I'OT") used in [15].
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REMARK 2.11. Note that if I' and I are transmission regular digraphs of orders n and n’ with trans-
missions ¢ and t’, then the digraph I' I is nt’ + n/t-transmission regular. Thus, it is possible to obtain
results analogous to Theorem 2.9 for the distance Laplacian and distance signless Laplacian of I' JT". For
these results, see [7].

3. Lexicographic products. Motivated by the results in [15], we investigate the spectra of lexico-
graphic products of digraphs.

Recall that for graphs G and G’ of orders n and n’ the lexicographic product G © G’ is the graph with
vertex set V(GO G') = V(G) x V(G') and edge set E(GO® G') = {{(z,2"), (v,y")} | {z,y} € E(G), or z =
yand {2/,y'} € E(G")}. The next two results appeared in [8] and [15] respectively, where the authors used
the notation G[G'] for G© G’.

THEOREM 3.1. [8, p. 72] Let G and G’ be graphs of orders n and n', respectively, such that G' is
r’-reqular. Let spec 4(G) = (a1, a2, ..., ay) and spec 4(G') = (1,04, ..., al,). Then,
spec,(GOG) ={n'a; +r', i=1,...,n}U {a;-(n), j= 2,...,n’}.
THEOREM 3.2. [15] Let G and G’ be graphs of ordersn > 2 and n', respectively, such that G is connected
and G’ is v’ -regular. Let specp(G) = {01,...,0,} and spec4(G') = {r',a5,...,al,}. Then,
specp (GO G) = {00 +2n —2—71", i=1,...,n}U{—(af +2)", j=2,....n'}
To derive results on the spectra of lexicographic products of digraphs, we first investigate the spectra of
the matrix product M © M’ as defined in Section 1.1.
THEOREM 3.3. Let M € R™" and M' € R™ <" be irreducible nonnegative matrices such that M'1,, =
Pl for some p’ € R. Let spec(M) = {p(M) = A1, Aa,..., A\n} and spec(M’) = {p/, A, ..., A, }. Then
spec(M@OM')={n'X\i+p,i=1,...,n}U {A;»(n), j = 2,...,n’} )

A 0T

Proof. Choose C such that C~'MC = [0 B

] = Js where the diagonal elements of R are A, ..., A,.

/ T
- _ n 0 . _
Use Proposition 2.4 to choose ¢’ such that C'~1J,.C’ = {0 O} = diag(n’,0,...,0) and C'"'M'C’ =
p/ x'T ,
[O R’} where x’ € R" =1 and R’ is the part of Jy associated with eigenvalues M}, ..., )., all of which
)\1 T p/ X/T
differ from p’. Then (C~' @ C'""H)(M© M")(C®C") = ® diag(n’,0,...,0) +1, ® =
0 R
[ xin’ 0T 0 oT 0 oT 0 0T ] o xT |0 ofT |0 oF o oT 7
0 o 0 o 0 o 0 o o R |O O |0 O 0o O
0 oT | xon/ 0T | rion/ 0T 0 oT o of |p xT|o oF o oTf
o o o 0 o o o o o|lo R |0 O 0o o
0 o0T| o o | xn of o of [ 4o of o of | x7T o o | _
o o o 0 o o o o o|lo o |o0o FR 0o o
0 oT 0 oT 0 oT Apn’ 0T o oo of|o oF o xT
L o o o o o | L o o o o R |
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r Ain’ +p’ x'T 0 oT 0 oT 0 ot 7
0 R’ o 0 o 0 o
0 oT | xon' +p° X7 rian’ oT 0 oT
0 @] R’ 0 o 0 (0]
0 oT 0 oT | xsn’ +p X7 0 oT
0 o o 0 R 0 o
0 oT 0 oT 0 oT | ... [ xun/ +p x'T

L ) o 0 o 0 o | 0 R |

Since (C~1 @ C'"~1) (M © M')(C ® C") is an upper triangular matrix, the multiset of its diagonal elements
is spec(M @© M’). The multiset of diagonal elements is {n'\; +p’, i =1,...,n} U {)\;("), ji=2,... ,n’}. O

Even if M and M’ are diagonalizable, it need not be the case that M © M’ is diagonalizable, as the
next example shows.

EXAMPLE 3.4. Consider the matrices

12 6 12

0 128 —V/7)
M=, 3 , M'=|7 13 10
3(28 V1) 0 6 15 9

and observe that they are both irreducible nonnegative matrices, and M’'T3 = 3015. Since spec(M) =
{3(28 = V7),—4(28 — V/7)} and spec(M’) = {30,2 + /7,2 — T}, we see that both M and M’ are diago-
nalizable. However, one finds that

(58 — /7 0 0 0 0 0
0 24+V7 1 0 0 0
J B 0 0 2+V7 0 0 0
MOM = 0 0 24v7 0 0o |
0 0 0 0 2 /7 0
| 0 0 0 0 0 2-7

which means that M @© M’ is not diagonalizable.

Based on the apparent anomaly of Example 3.4, we now investigate the geometric multiplicities of the
eigenvalues of M © M'.

THEOREM 3.5. Let M € R™ " M’ € R™*" be irreducible nonnegative matrices such that M'1, =
Pl for some p’' € R. Given z € C, define 2 = =, g = gmulty,(2) and ¢’ = gmult,, (2). Then

n'

g i = & spec(M')\ {#), % € spec(M);
ng' if z€spec(M')\{p'}, Z & spec(M);
(3.3) gmulty, @ (2) = (ng' +g if z€spec(M)\{p'}, Z € spec(M), ESw(2) L 1,;
ng' if z € spec(M')\ {p'}, z € spec(M), ESn(2) L T
0 otherwise.

Proof. The eigenvalues of M © M’ take two forms: n’\+ p’ for A € spec(M) and n copies of A" for X' €
spec(M’) and X # p’. Observe that z = n'Z+p’, so z takes the first form if and only if Z € spec(M). The last
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case in (3.3) is thus immediate. The first two cases in (3.3) concern the situation in which there is no overlap
between the values of the two forms. Consider the structure of the matrix (C~! @ C'~1)(M © M')(C ® C")
as given in the proof of Theorem 3.3. Then these two cases are a consequence of Lemma 1.2 after a suitable
permutation of the rows and columns of (C~' @ C"~1)(M © M')(C @ C").

The remaining two cases happen when z € spec(M’) \ {p'} and Z € spec(M), so z = XN =n'A+ p/ for
A € spec(M), N € spec(M'), and p’ # X. Let V be a matrix of generalized eigenvectors for M’ corresponding
to Jas, and define the vector a = [a;] € R™ by

0 if Ve; L 1,
a; =
1 if Vei,Kﬂn/.

We rescale the columns of V in such a way that 12,V = n’a’. Notice that this implies Ve; = 1,/. Let
J'=J,,. We claim that ¢/ =V — %J]’V+ 1,-eT satisfies the requirements for C’ in the proof of Theorem 3.3.
Furthermore, we claim the first row of C'~*M'C" is p'el + aT Jy; —p’aT. For convenience, we define x =
J}’\;[, a—p’a. Observe that the first entry of X is zero, since X7 e; = a Jyp e; —p'aTe; = p'a’e; —p'aTe; = 0.
Therefore, T = [0 x'T] in the notation of the proof of Theorem 3.3. First, we show that C’ is invertible:

C'e; = Ve, — %J]'Vel +lpeler =1y =1y +1y =1, =Ve
and, for i = 2,...,n/,
C'e;=Ve, — %\U’Vei +1ele; =Ve;, - %ﬂn/n’aTei =Ve; —a;Vey,
so that C’e; is obtained from Ve; by adding a scalar multiple of Ve;. Hence, det(C’) = det(V') # 0.
Moreover,
C'(n'erel) =n'Verel —I'Veiel +n'1,eleiel =n'1,el —n'1,.el +n'1,eT

1
=nlyel =JV —JIV+nlyel =IV - =0V +I1,ef =JC
n

/ T

w0 } Finally,

so C'"~11,,C" = {O 0

1 /
M'C' =MV = =M'IV +M1el =V Iy 21,10V + g1,e7
n n
=V Iy —p lpal +p1,el,

1
C/(JM/ +81)A(T) = <V — ?J]/V + ﬂn/e?) (JM/ —|—81)A(T)

=VIw —%J}’V Iag Hlpel Ty +Ve x' — %\D’Velch + 1,6l e;x”
=V Iy —Tpal Iy +p 10el + 1,,%7

=M'C' +p'1pal — 18" Ty +1,,%7

=MC + 1, (p’aT —al +>2T)

= MO+ 1, (%" +x7)

=M'C".

Therefore, C'~'M'C’ = Jpp +e1%7, and the claim is true.
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Let us now focus on the entries of X = [#;]. We have already noticed that £; = 0. Furthermore, for
i=2,...,n, we have that 2; = xTe; = al Jy e; — p'ale; = Na; + d;a;_1 — p'a;, where X' = (Jprr)is, 65 =0
if Vee; is an eigenvector of M’ and §; = 1 otherwise. Suppose now that ESp;(\) L 1,,. Then, whenever
§; = 0 with X = (Jpp)ii, Ve; L 15, 50 a; = 0 and &; = 0. On the other hand, if ESy(N) £ 1,,/, we can
find some i such that A = (Jas )i, 6; = 0, and a; = 1, which means that &; = X — p’ # 0.

Take z € C and suppose that z € spec(M') \ {p'} and Z € spec(M). Define v = multy (2) and
u' = multy;(2). We can permute the rows and columns of (C~! ® C'~1)(M © M')(C ® C') in such a
way that all the appearances of z on the diagonal are grouped together in a square block B. By virtue of
Lemma 1.2, the Jordan blocks relative to the eigenvalue z only depend on B. We observe that B has order
t = nu’+u. Hence, gmulty; @) pp(2) = t —rank(B —zl;). If ESyv(z) L 1,7, from the discussion above we see
that the entries in X do not influence the rank of B — z[;, since they can be reduced to zero by subtracting
suitable rows of B — zl;. As a consequence, rank(B — zl;) = n(u’ — ¢’) + u — g and hence,

gmult ;@) ap (2) = n' +u—nu +ng —ut+g=ng +g.
If ESye(2) L Ty, on the other hand, again using the discussion above we see that rank(B — zl;) = n(u' —
g') +u. Indeed, in this case, there exists i € {2,...,n’} such that z = (Jpr )i, 6; = 0, and &; # 0. Therefore,

every row of B — zI; containing %* is linearly independent from the remaining rows of B — zl,, and, thus, it
increases the rank by 1. This yields

gmult s @) pp (2) = nu’ +u —nu' +ng' —u=mng'. 0

EXAMPLE 3.6. We now test Theorem 3.5 on the matrices M and M’ defined in Example 3.4. As
predicted by Theorem 3.3 we have that

spec(M © M') = {58 -7, 2+ ﬁ)(3)7 (2- ﬁ>(2)} .

o If z = 58 — /7 then % = $(28 — V7). This corresponds to the first case of (3.3), and hence, we
obtain gmult ;@) 5/ (58 — VT) = gmult,, (3(28 — V7)) = 1.

o If =2 — /7 then Z = £(—28 — /7). This corresponds to the second case of (3.3), and hence, we
obtain gmult; @) /(2 — VT) =n gmult,, (2 —V7) = 2.

o If 2 =2+ /7 then Z = —£(28 — /7). Moreover, we find that ESy/ (2 + v7) = span(v) with

T _ | 24-4V7 30—28v7 ; Tq. _ _13-V7
v = |:_25+7\ﬁ —2014+45v/7 1. Since v 1]3 - m 7é 0, we see that ES]\/[I(Q + \/7) 7[ 1]37

so that this corresponds to the fourth case of (3.3), and hence, we obtain gmult ;@) s (2 + VT) =
n gmult (2 +V7) = 2.

Notice that gmult; @) a (2 + V7) < mult M@ M (2+ \V/7), which implies that M © M’ is not diagonalizable
(as computed in Example 3.4).

We can apply Theorem 3.3 and Theorem 3.5 to derive results on the adjacency spectra of lexicographic
products of digraphs. The first part of the following result was proved in [10] for the case where I'' is a
regular digraph (all row and column sums of its adjacency matrix are equal), and is an extension of results
known to hold for graphs (see. e.g., [4]).

COROLLARY 3.7. Let T" and T be strongly connected digraphs of orders n and n', respectively, such that
I is v’-out-reqular. Let spec 4(I') = (a1, @2,...,ay) and spec 4(I") = (', a4, ...,al,). Then,

spec L OT) = {n'a; +7/, i = 1,...,n}U{a;(n), j:2,...7n’}.
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Given z € C, define Z = Z;—,T/, g = gmult 4 (2), and g' = gmult 41\ (2). Then

g if 2z & spec4(I")\ {r'}, z € spec4(T);
ng' if z € spec (") \{r'}, Z & speco(I');
gmult 40 @ (2) = (ng' +9g if z€specy(I')\{r'}, 2 €specy(T), ESar)(2) L To;
ng' if zespecy(I')\{r'}, Z especy(l), ESar(2) L Tnr;
0 otherwise.

REMARK 3.8. Note if I and IV are r and r’ out-regular digraphs of order n and n’, respectively, then
FOTI’ is (rn’ + r’)-out-regular. As a consequence, with the additional condition that T' is r-out-regular,
results analogous to Corollary 3.7 can be obtained for the spectra of the Laplacian and signless Laplacian
matrices of T ©TI”. For these results, see [7].

The lexicographic product I' © I is strongly connected if and only if T' is strongly connected [12], but
I need not be. If TV is not strongly connected, then dr/(2’,y') = co when there is no dipath from z’ to y'.
Due to this subtlety, in this section only we list any requirements for strong connectivity explicitly. For a
vertex z of a strongly connected digraph T', &r(x) is the length of a shortest dicycle (of length at least 2)
containing z. If I' has at least one dicycle, the minimum length of a dicycle in I' is called the girth of T',
denoted ¢(T").

PROPOSITION 3.9. [12] If T, TV are digraphs such that T is strongly connected, the distance formula for
the lezicographic product T ©T" is

, [ dr(z,y) if x#y
dp®p/((m,$),(y,y)) _{ Hfin{fp(l‘), dr,(x/,y/)} Zf T =1.

OBSERVATION 3.10. If T’ and T” are strongly connected digraphs such that diamT” < ¢(T'), then the
distance formula in Proposition 3.9 becomes

dp(l‘,y) fo#y

dF@I‘/((xvx/)a (v,9) = { dr(2',y) if z=y.

In this case, by a suitable ordering of vertices, the distance matriz D(T ©T’) can be written in the form
Dror)=opIr)eJd, +1, DI")=DI)©DIT).

The complement of a digraph T' = (V, E) is the digraph T = (V, E) where E consists of all arcs not in T".

OBSERVATION 3.11. IfT and I’ are digraphs such that T' is strongly connected and every vertez is incident
with a doubly directed arc, then &r(x) = 2 for any vertex x of T'. In this case, by a suitable ordering of vertices,
the distance matriz D ©T) can be written in the form D(I ©T') = D(I) @ J,r +1,, @ (A(T’) +2A(T))
D(T) © (A(T) + 2A(TY)) as derived in [15] for graphs.

We can apply Theorem 3.3 and Theorem 3.5 to provide results on the distance spectra of lexicographic
products of digraphs which satisfy certain hypotheses. The next result is an immediate consequence of
Observation 3.10, Theorem 3.3, and Theorem 3.5.

COROLLARY 3.12. Let T and T be strongly connected digraphs of orders n and n’, respectively, such
that TV is t'-transmission regular, and diamI” < ¢(T'). Let specp(I") = (61,02, ...,0,) and specp(I”) =
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(t',05,...,0,,). Then

specp, (T OTY) = {n'0; +t, i= 1,...,n}U{BJ’»(n), j:2,...,n’}.

Given z € C, define = 2=£, g = gmultp iy (2), and g = gmultp iy (2). Then

n’

g if =& specp(I") \ {t'}, Z € specp(T);
ng' if z € specp(I)\ {t'}, Z & specp(T);
gmultp @y (2) = (ng' +9g if z€specp(I')\ {t'}, Z € specp(T'), ESprry(2) L T
ng' if z € specp(I)\ {t'}, Z € specp(T), ESprn(z) L 1ar;
0 otherwise.

REMARK 3.13. Let I and I be strongly connected digraphs of orders n and n’, respectively, such that
I is t-transmission regular, I” is t’-transmission regular, and diamT’ < g(I'). In this case, T@®TI" is a
(tn’ + t')-transmission regular digraph. As a consequence, results analogous to Corollary 3.12, with the
additional condition that I' is ¢-transmission regular, can be obtained for the spectra of the Laplacian and
signless Laplacian matrices of I' © I'". For these results, see [7].

To establish a result about the distance matrix of a lexicographic product when every vertex of the first
factor is incident with a doubly directed arc, we make use of Observation 3.11, Theorem 3.3, Theorem 3.5,
and the next proposition.

PROPOSITION 3.14. Let T' be an r-out-reqular digraph with spec4(I') = {r,aqs,...,an} and let B =
A(T)+2A(T). Then B is an irreducible nonnegative matriz, spec(B) = {2n—2—7, —(as+2),..., —(a,+2)},
and p(B) = 2n — 2 —r. Furthermore, gmult g(—a; — 2) = gmult 4y () for o # r and gmultg(—r —2) =
gmult 4py(r) — 1.

T
Suppose v is an eigenvector of A(T") for eigenvalue aj for j =2,...,k, and define 5; = % Then

1, is an eigenvector of B for eigenvalue 2n — 2 —r, and v; + 3;1,, is an eigenvector of B for eigenvalue
—a;—2 forj=2,...,k.

Proof. Observe first that every off-diagonal entry of B = A(T") +2A(T) is nonzero, so B is an irreducible
nonnegative matrix. Furthermore, A(T) = J,, — I,, — A(T), so B = 2J,, — 2I,, — A(T). Hence,
Bl, = 2J,1, — 21,1, — A(D)1,, = (2n — 2 — 1)1,
T

Yy

and 2n — 2 — r is the spectral radius of B. Let J 4r) = [(7; R] . Apply Proposition 2.4 to choose C such

noT T

0 O

r

-1 _
that C—J,,C = [ o R

] and C~1A(I)C = {

] for some Jordan matrix R and x € R*~!. Then

c~'BC =20"1',C -2C"",C - C7tA)C

2n 0T rox? 2n—2—r —xT
3.4 = — 2|]n — = ,
(8.4) {0 O} [0 R} [ 0 —2l,_1 — R
which shows that spec(B) = {2n — 2 —r, —(az + 2),...,—(an + 2)}. Since B is irreducible, 2n —2 —r is a

simple eigenvalue of B. Applying Lemma 1.2 to (3.4), we see that

2n—2—r oT
Jg =
0 —20,-1 — R
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so that gmultg(—a; —2) = gmult 41y (), 7 =2,...,n for a; # r and gmultg(—7r — 2) = gmult 4 (r) — 1.

Observe that r — o; — 2n # 0 because |a;| < r < n, where the second inequality is due to the fact that
r is the out-degree of each vertex in I'. Hence, |r — aj —2n| > 2n — |r| — |a;| > 0 and f; is well defined. As
we have shown, 1,, is an eigenvector for 2n — 2 — r, and

B(Vj —I—B]ﬂn) = 21]3;Vjﬂn +2n,6’j1]n — 2Vj — 25]‘1]71 — Q;V; —ﬁjTﬂn
QHZV]‘
= (—aj—z)vj—l— T—i—Qn—Z—’r Bj]]n
J
= (—a; = 2)(v; + Bj1n). O

THEOREM 3.15. Let I' and I be strongly connected digraphs of orders n and n’', respectively, such that
every verter of I' is incident with a doubly directed arc, and all vertices in TV have out-degree v'. Let
specp (L) = (01,02,...,0,) and spec 4(I") = (7, a5, ..., al,). Then

specp (T OT) ={n'd;+2n' —2—7", i=1,...,n}U {—(a;- -1-2)(”)’ j= 2,-~,n’}~

n’

Given z € C, define Z = %, g = gmultpry(2), and g = gmult 40y (—2 —2). Then

g if —z—2¢spec,(I")\ {r'}, z € specp(I);
ng' if —z—2¢spec,(I")\ {r'}, z &specp();
gmultp @) (2) = (ng' +g if —2—2€specy(I")\ {r'}, Z €specp(l), ESarn(—2—2) L T
ng' if —z—2especy(I")\{r'}, Z € specp(T'), ESqr(—2—2) L T
0 otherwise.

Proof. By Observation 3.11, DT ©T’) = D) © (AT’) + 2A(T)). Let M’ = A(T') + 2A(T), so
spec(M') = {2n' —2 -7/, —(af+2),...,—(a),, +2)} by Proposition 3.14. The first part of the theorem then
follows from Theorem 3.3.

Since I" strongly connected, 7’ is a simple eigenvalue and gmulty, (= — 2) = gmult 4 () for
j =2,...,n' by Proposition 3.14. We now claim that ESy;(—a’;—2) L 1,/ exactly when ES 4rv)(a) L 1.
First, if ES () L 1y, then given v € ES 4 (a}),

M'v = 24, v — 20, v — .A(F/)V = (—Oé;- — 2)v

so that ES4r (o)) € ESy(—a —2). Since gmulty, (o —2) = gmult 4 (a}), we conclude that
ESA(F/)(ag) = ESMr(—a;- —2) and the claim follows in this case. Suppose now that ESA(F/)(a;) X 1,/ and

let W € ESarn(a}), w £ 1. Define W = w + 8,1, with 8; = =221 a5 in Proposition 3.14, so that
W € ESy(—a); —2). The claim then follows since

- 2n/
Wil = (w4 B1,) 1, =wl, +0/8; = w1, (1 + ,>

_ o /
= o 2n
A !
r’ — ol
_ T J
= W ‘“77/ 7/_ T ; 7&0
r—a 2n

because 7’ is a simple eigenvalue. The second part of the theorem is then a direct consequence of Theorem
3.5. d
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REMARK 3.16. Let I" and I be strongly connected digraphs of orders n and n’, respectively, such that T’
is t-transmission regular, every vertex of I' is incident with a doubly directed arc, and all vertices in I'V have
out-degree r’. In this case, T © T is a (tn’ + 2n’ — 2 — r’)-transmission regular digraph. As a consequence,
with the additional condition that I' is ¢-transmission regular, results analogous to Corollary 3.15 can be
obtained for the spectra of the Laplacian and signless Laplacian matrices of I' © I'. For these results, see
[7].

We next provide a description of the eigenvectors of M @© M’ from the eigenvectors of M and M’,
addressing the first two cases in Theorem 3.5.

THEOREM 3.17. Let M € R™ ™ qnd M’ € R™ " be irreducible nonnegative matrices, and suppose
that M'1,, = p'1, for some p' € R. Let {vy,...,vi} be a linearly independent set of eigenvectors with

Mv; =X v, and let {1,,/,v),..., v}, } bea lmearly independent set of eigenvectors with M'v; = N;v’, Then
(1) Fori=1,...,k, v;® 1, is an eigenvector of M @ M’ corresponding to the eigenvalue n'\; + p'.
(2) Forj=2,... .k, fori=1,...,k, define;; = pin",ﬁ when N; # n'Ai+p'. Then vi @V +7ivi®@ Ty

is an eigenvector of M © M’ for the eigenvalue \).
Furthermore, the set of eigenvectors of M @ M’ described in (1) and (2) is linearly independent.
PTOOf. FiI‘St7 (M@M/)(VZ(@H”I) = (M@J]n/—i-ﬂn@M/)(VZ@ﬂn/) = (MVJ@(J]HIﬂn/)—f—(ﬂnvl)@(M/]]n/) =
Aivi @n'T) + (vi @ p'1) = (W' A + p') (v ® 1,,/). For the second statement,
(M © M) (v; ®V + Vi @ 1)
(M@ Jp + 1, @ M) (v @ V] +7ijvi @ 1)
(Mvi) @ (3 V) + (12vi) @ (M'V5) + 75 (M Vi) @ (B V) + 75 (1nvi) @ (M T0)
Aingﬂn/(vi ® 1) + Nj(vi @ V) + 7 Ain (Vi @ Tnr) + 350" (Vi @ 1)
)\j(vi X Vj +'Yijvi X ﬂn’)

since —A}vi; + )\iv;-Tﬂn/ +vij i’ + 50" = 0.

The eigenvectors are linearly independent by Lemma 1.3 and elementary linear algebra. ]

In Corollaries 3.18, 3.19, and 3.20, Theorem 3.17 is applied to provide a description of the eigenvectors
of the adjacency and distance matrices of the lexicographic product of two digraphs. Analogous results can
be obtained for the (signless) Laplacian and for the (signless) distance Laplacian matrices with appropriate
additional hypotheses by using analogous arguments.

COROLLARY 3.18. Let T and TV be strongly connected digraphs of orders n and n’, respectively, such that
IV is r'-out-reqular. Let {vy,...,vi} be a linearly independent set of eigenvectors with A(T)v; = a;v;, and

let {1,/,V5,..., Vi, } be a linearly independent set of eigenvectors with A(I")v’; = o/v’. Then

(1) Fori=1,...,k, v;® 1, is an eigenvector of .A(F @©T) corresponding to the eigenvalue n'ay; + 1.
T

(2) Forj=2,....K, fori=1,... k, definev;; = ,+na

is an eigenvector of A(I' ©T") for the eigenvalue .

Furthermore, the set of eigenvectors of A(T ©T) described in (1) and (2) is linearly independent.

ﬂa; whena £ n oy +1'. Thenvi®v3+%jvi®ﬂn/

COROLLARY 3.19. Let T’ and I be strongly connected digraphs of orders n and n' such that T” is t'-
transmission reqular and diamT” < g(T'). Let {vy,..., vy} be a linearly independent set of eigenvectors with
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D(I)v; = 0;vi, and let {1,,v5, ..., v}, } be a linearly independent set of eigenvectors with D(I'")v}; = 9.

Then

(1) Fori=1,....k, v;® 1, is an eigenvector of D(I' ©T’) corresponding to the eigenvalue n'0; +t'.

(2) Forj=2,...,K, fori=1,...,k, define~;; = % when 9 # n'0;+t'. Then v; @V} +7;;vi® Ly
is an eigenvector of D(I' ©T") for the eigenvalue 0.

Furthermore, the set of eigenvectors of D(T ©T") described in (1) and (2) is linearly independent.

COROLLARY 3.20. Let T’ and I be strongly connected digraphs of orders n and n' such that every vertex

is incident with a doubly directed arc and all vertices in T have out-degree v'. Let {vy,...,vi} be a linearly
independent set of eigenvectors with D(I')v; = 0;v; and let {1,/,v5,..., v}, } be a linearly independent set
of eigenvectors with A(T")v; = a/v};. Then

(1) Fori=1,...,k, v;®1, isan eigenvector of D(T ©T") corresponding to the eigenvalue n’'0;+2n'—2—r".
. . 2v;-T1ln/ 78i(v;T11n/+n'ﬁj)
(2) For j = 2,...,k, fori=1,... k, define §; =

m m
=2n' + 1" = n'0;. Then v; ® v + (B + 7ij)vi ® Vs is an eigenvector of D(I' ©T") for the eigenvalue

!
a; 2.

Furthermore, the set of eigenvectors of D(T ©T") described in (1) and (2) is linearly independent.

and v;; = when o #

4. Direct products and strong products. For digraphs I’ and T, A(T'xT") = A(T') ® A(T") [10] and
ATXT) = ATOT) + A(T x IT'); the formulas for graphs are analogous. The spectrum of the adjacency
matrix of a direct product in terms of the constituents is known:

THEOREM 4.1. [10] Let I and I be digraphs of orders n and n', respectively, having spectra spec 4(I") =

{an,a0,...,a,} and spec 4(I'") = {a], ah,...,al,}. Then
spec 4 (I'xI") = {aia; vi=1,...,n, j=1,...,n'}.

THEOREM 4.2. Let I' and I" be digraphs of orders n and n', with spec4(I') = {a1,aq,...,a,} and

spec4(I') ={a},ab,...,al,}. Then
specy(TRIY) = {4+ i + o :i=1,...,n, j=1,...,n'}.
Proof. Choose C and C” such that C~'A(T")C' = J 4y and C"~'A(I")C" = J 4. Consider
(CleC HATRTNC®C) = (C e HATOT)(C@C)+(C e C" HAI xT')(C o C).

As in the proof of [14, Theorem 4.4.5], (C~! @ C'""1) AT OT")(C @ C’) is an upper triangular matrix with
diagonal entries {ai + a; i=1,...,n, j=1,..., n’} . The proof of Theorem 4.1, which utilizes a result
from Lancaster [18, p. 259-260], shows (C~1 @ C'~1)A(T x I')(C ® C') is an upper triangular matrix with

diagonal entries {o;o:i=1,...,n, j=1,...,n'}. Therefore, (C~' @ C'""1)A(PKI)(C ® C') is an upper
triangular matrix with diagonal entries {aia; taitaji=1,...,n, j=1,... ,n’}. d

Since the direct product of strongly connected digraphs is not necessarily strongly connected, the distance
matrix may be undefined. However, the strong product of strongly connected digraphs is strongly connected,
and the following distance formula is known.

PROPOSITION 4.3. [12, Proposition 10.2.1] Let T' and I” be strongly connected digraphs. Then the dis-
tance formula for the strong product T XTIV is

drgr ((x,2), (y, ")) = max{dr(z,y), dr (z',y)}.
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Given this formula for distance, the methods developed here do not seem to be applicable to determining
the spectra of distance matrices of strong products of digraphs.

5. Directed strongly regular graphs. In this section, we discuss directed strongly regular graphs
(DSRGs), a special class of digraphs all of which have diameter at most two and are regular, meaning
all vertices have in-degree and out-degree equal to some common value k; such a digraph is also called k-
reqular. A DSRG requires additional properties, and it is noteworthy that a DSRG has exactly three distinct
eigenvalues; we apply our Cartesian product formula to a DSRG to produce an infinite family of graphs with
three distinct eigenvalues.

Before defining a DSRG, we first prove a more general result about k-regular digraphs with diameter at
most two, which is analogous to a result for graphs. Note that any such digraph of order n is transmission
regular with transmission 2n — 2 — k.

PROPOSITION 5.1. Let I' be a k-regular digraph of order n and diameter at most 2 with spec4(I") =
{k,ag,...,an}. Then specp(T') = {2n — 2 — k,—(aa + 2),...,—(an + 2)}, 1, is an eigenvector of D(T)
for eigenvalue 2n — 2 — k, and if v; is an eigenvector of A(T') for a; # k, then v; is an eigenvector of
D(T') for —2 — a;. Furthermore, gmultpry(—a; — 2) = gmult 4y (i) for a; # k and gmultpry(—k —2) =
gmult 4y (k) — 1.

Proof. Because D(TI') = A(T') + 2A(T), all the statements except the geometric multiplicity of eigenvalue
—k—2 of D(T) will follow from Proposition 3.14 once we show that 17v; = 0 for a; # k. Since I is k-regular,
A, = kd,, = 3, A(T). Let 1Tv; = ¢;, so J,v; = ¢;1,,. Then

cikl, =AM, = AD)dpv; = 3, AD)v; = Jpav; = i 1,.
Since k # «;, this implies ¢; = 0. To see that gmultpry(—k — 2) = gmult 4 (k) — 1, choose an orthogonal
basis of eigenvectors for E'S 4y (k) that includes 1,,. O

Strongly regular graphs are a well studied family of graphs which are of particular interest because
they have exactly three eigenvalues. Duval [9] defined a directed strongly regular graph, here denoted by
I'(n,k,s,a,c), to be a digraph I' of order n such that

AM)? = sl, + aAT) + c(J, — 1, — AT)) and A()J, = J, AT) = kJ,,.

Such a digraph is k-regular and each vertex is incident with s doubly directed arcs. The number of directed
paths of length two from a vertex v to a vertex u is a if (v,u) is an arc in T" and ¢ if (v,u) is not an arc
in I'. Duval originally used the notation I'(n,k, u, A, t) where A = a, 4 = ¢, and ¢ = s in our notation.
We use s rather than ¢ to follow the distance matrix literature in using ¢ for transmission. Both usages
G(n,k,a,c) and G(n, k, A\, ;1) appear in the literature for strongly regular graphs, and we avoid using A since
it has been used throughout this paper as an eigenvalue. The reordering I'(n, k, t, A, u) of Duval’s original
notation I'(n, k, u, A, t) has become popular in more recent literature since it more closely follows the standard
ordering for strongly regular graphs.

Duval computed the next formula for the eigenvalues of A(T'(n, k, s, a, ¢)).

THEOREM 5.2. [9] Let ' =T'(n,k, s,a,c). The spectrum of A(T') consists of the three eigenvalues

1 1
0=k, 0= 3 (a—c—!— \/(c—a)2—|—4(s—c)), and 05 = B (a—c— \/(c—a)2+4(s—c))
with multiplicities
-1 -1
mult(6,) =1, mult(hy) = —M, and mult(fs) = %
92 — 93 02 - 93
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Duval’s theorem and Proposition 5.1 determine the D-spectrum of a direct strongly regular graph.
COROLLARY 5.3. Let I' =T'(n, k, s,a,c). The spectrum of D(T') consists of the three eigenvalues

1 1
01 =2n—2—k, 82:727§<a70+ (cfa)2+4(sfc)>, and 63:7275((1707 (cfa)2+4(sfc)>

with multiplicities mult(9;) = mult(0;) fori=1,2,3.

In [16], Jgrgensen proved that the adjacency matrix of every DSRG is diagonalizable and thus has a
basis of eigenvectors. By Proposition 5.1, this property is also true of the distance matrix of a DSRG. Note
that this property does not hold for all transmission regular digraphs of diameter at most 2: Figure 2.1 is an
example of a digraph I" that does not have a basis of eigenvectors; note that the digraph obtained from I' by
reversing every arc is not transmission regular, whereas reversing every arc in a DSRG produces a DSRG.

Cartesian products provide a method of forming digraphs on a large number of vertices with few distinct
distance eigenvalues. Applying Theorem 2.7 to transmission regular digraphs I' on n vertices and I on n’
vertices, we see that I'(JT" has nn’ vertices but at most n + n’ distinct eigenvalues. The number of distinct
eigenvalues can be much lower if the spectra of I' and IV share some common values or if they contain 0 as
an eigenvalue.

PROPOSITION 5.4. Suppose T' is a transmission regular digraph of order m with specp(T) = {t =
al,agm),()("—l—m)}. Define I'y = T'00 --- AT, the Cartesian product of £ copies of I'. Then the order of
Iy is n® and specp(T'y) = {€tn*~1, (02 ne_l)(me) ,0(”2_1_7”@}.

Proof. We prove the claim by induction. When ¢ = 2, Theorem 2.7 implies specp,(I'y) = {2nt, (02 n)(2m) ,

0(”2’1*2’”)}. Now assume specp(I'y) = {£ftn*~!, (5'2 ne’l)(m@ 70(n1’.,1,m4)}. Since I'y1y = T AT, applying
Theorem 2.7 again we get

specp(Tor1) = {n tn't + n't, (nag nl_l)(mo 7()(”Z_l_me)7 (néaz)(m) ,0(n=1=m) O(”Z_l)("_l)}
— {t(ﬁ + 1)n€’ (82 né)(m(é+1)) ’O(nprl—l—m(f-l-l))}. O

EXAMPLE 5.5. The DSRG T' = I'(8,4, 3, 1, 3) has spectrum specp (') = {10, —2() 02}, Therefore, this
digraph allows us to construct examples of arbitrarily large digraphs with only three distinct eigenvalues.
By Proposition 5.4, Ty has order 8¢ and specp(I'y) = {10£(8~1), (—2(85_1))(56) ,0(82_1_5@}.

FiGure 5.1. T'(8,4, 3,1, 3).

REMARK 5.6. Because directed strongly regular graphs are 2n — 2 — k-transmission regular, the distance
Laplacian and distance signless Laplacian spectra of directed strongly regular graphs are immediate from
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Corollary 5.3. For these results, see [7]. Because directed strongly regular graphs are out-regular, the
Laplacian and signless Laplacian eigenvalues of directed strongly regular graphs are also immediate from
Theorem 5.2.

While the eigenvalues for A(T'), L(T'), Q(T'), D(T'), DX(T), and D? (') can be non-real, this is not true
for most DSRGs. For a DSRG that is not equivalent to a graph and is not a doubly regular tournament
I'(2k +1,k,0,a,a + 1), Duval proved (¢ — a)? + 4(s — ¢) = d? for some positive integer d, which implies all
eigenvalues of A(T'), L(T), Q(T'), D(T'), DX(T'), and D9 (T") are rational. In the case of graphs, it is well
known that these spectra are real. Before we consider the only remaining case, we need the following lemma
from Klin et al.

LEMMA 5.7. [17] Let T be a regular non-empty digraph without doubly directed arcs. Then A(T) has at
least one non-real eigenvalue.

Applying the previous lemma, we obtain the next result about instances of non-real eigenvalues in a
DSRG.

COROLLARY 5.8. For the DSRG T =T'(n,k,s,a,c), the spectra of A(T), L(T"), Q(T), D(T'), DX(T), and
DY(T) contain non-real eigenvalues if and only if I' = T'(2k 4+ 1,k,0,a,a + 1),
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