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Abstract— Usage of drones has increased substantially in both 

recreation and commercial applications and is projected to 

proliferate in the near future. As this demand rises, the threat 

they pose to both privacy and safety also increases. Delivering 

contraband and unauthorized surveillance are new risks that 

accompany the growth in this technology. Prisons and other 

commercial settings where venue managers are concerned 

about public safety need cost-effective detection solutions in 

light of their increasingly strained budgets. Hence, there arises 

a need to design a drone detection system that is low cost, easy 

to maintain, and without the need for expensive real-time 

human monitoring and supervision. To this end, this paper 

presents a low-cost drone detection system, which employs a 

Convolutional Neural Network (CNN) algorithm, making use of 

acoustic features. The Mel Frequency Cepstral Co-efficients 

(MFCC) derived from audio signatures are fed as features to the 

CNN, which then predicts the presence of a drone. We compare 

field test results with an earlier Support Vector Machine (SVM) 

detection algorithm. Using the CNN yielded a decrease in the 

false positives and an increase in the correct detection rate. 
Previous tests showed that the SVM was particularly susceptible 

to false alarms for lawn equipment and helicopters, which were 

significantly improved when using the CNN. Also, in order to 

determine how well such a system compared to human 

performance and also explore including the end-user in the 

detection loop, a human performance experiment was 

conducted. With a sample of 35 participants, the human 

classification accuracy was 92.7%. These preliminary results 

clearly indicate that humans are very good at identifying 

drone’s acoustic signatures from other sounds and can augment 

the CNN’s performance. 
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1. INTRODUCTION 

With recent technological and societal advancements, there 

has been a substantial increase in number of drones operated 

in public spaces [1]. Outdoor spaces such as prisons and 

recreational venues are more susceptible to a malicious 

activity through an interloping drone [2]. Affordability of 

drones coupled with the dearth of efficient counter measures, 

make it difficult for site administrators to effectively counter 

the threat drones pose. Hence, there arises a need to design a 

drone detection system that is not only reliable, but also is 

cost effective. Keeping these constraints in mind, this paper 

proposes a low-cost drone detection system, which is 
embedded on a raspberry pi and uses acoustic footprints to 
detect the drone’s presence. We use a deep learning algorithm 
that leverages Mel Frequency Ceptral Coefficients (MFCC) 
as its features.  

Previous research [3] on this problem lists RADAR [4], 
acoustics [5], optics [6] and radio frequencies [7] as the four 
prominent techniques commonly used in a designing a drone 
detection system. However, a drone detection system built 
using RADAR is expensive and ineffective in detecting small 
drones [8]. Visibility is a hindrance while adopting optical 
sensing techniques [9]. Most of the previous works [10] were 
confined to training and testing a drone detector in a 
laboratory setup and not tested in an outdoor setting. In order 
to build a cheap and reliable system, we made use of the 
drone’s acoustics, realizing that detection range is traded off 
for cost effectiveness.  

Previously, we adopted a Support Vector Machine (SVM)-
based approach for this problem [11]. The current work will 
underline the merits of using a deep learning model by 
comparing it to the SVM-based model’s outcomes. To 
determine how humans performed in relation to the 
algorithm, 35 participants and the algorithm classified sounds 
containing drone and similar-sounding files. 
 
The remainder of this paper is organized as follows: 
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Figure 1. Time series representation of a lawnmower and a drone

 

Figure 2. MFCC spectrogram of a lawnmower and a drone

 

Section 2 gives an overview of the algorithm design. Section 
3 briefly describes the test setup. Section 4 briefly describes 
the details of a survey carried out to compare human and 
machine performance in classifying sounds and Section 5, the 
results and analysis. Section 6 provides a conclusion. 

2. BUILDING A DEEP LEARNING CLASSIFIER: 
Generating a Dataset 

Quality and size of the dataset plays a significant role to help 
develop a well-trained machine learning model [12], To this 
end, during the first phase of data collection, we used a DJI 
Inspire 2 and a 3DR Iris+ to collect drone sounds at different 
altitudes and distances from an off-the-shelf microphone. 
Additional data was collected using a DJI Phantom 4 to 
collect audio files at different radial distances.  

The dataset was further expanded by recording drones at a 
drone racing competition [13]. Drone audio files were also 
gathered at an outdoor amphitheater to expand the dataset to 
include a relevant application environment. Given this 
myriad of data sources, which are available at 
“https://sites.duke.edu/haldronedetetciondataset/”, the SVM 
algorithm was trained on 73% of the data, while the CNN 
algorithm used 100%. 
 

 
 
The rest of the dataset included the ESC-50 dataset [14], 
which is used for environmental sound classification. The 
negative dataset also included white noise, periods of silence 
and other audio clips from noisy environments, with no drone 
flying. In addition, the system was trained with sounds of 
lawnmowers, leaf blowers, helicopters and aircraft to help 
reduce the number of false positives occurring from the 
previous approach. 

Contrary to the previous SVM algorithm which had five 
categorical classifications, this CNN-based system only used 
a binary classification, ‘drone detected’ or ‘no drone’. To 
generate this classification, a recorded audio clip of ten 
seconds is sliced into five equal parts and the algorithm is run 
on each of the five audio clips. A ‘drone detected’ alert is 
generated when at least three of the five audio clips generate 
a positive outcome of the drone’s presence from the 
algorithm. The recorded clip is then superseded with a new 
ten second clip. 

Feature Extraction 

We chose to use MFCC’s as the feature set, which are widely 
used in speech recognition [15]. MFCC’s provide an image 
of how the acoustic signal looks with respect to time. The 
acoustic signal in the time domain is converted to a  
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Figure 3. CNN Architecture

periodogram using Fast Fourier Transforms (FFT). The 
periodogram, which is a Power Spectral Density (PSD) 
estimate of the signal, is then converted to a spectrogram by 
stacking them linearly together. Using the mel scale [16], a 
mel frequency spectrogram is computed (1). MFCC’s are 
derived by taking a Discrete Cosine Transform (DCT) on it 
log powers. While Figure 1 shows the time domain 
representation of a lawnmower and a drone, Figure 2 provide 
a depiction of the MFCC’s for a lawnmower and a drone. 
 
                          M(f) =  1125ln(1 +

f

700
)                           (1)            

  
Other low priority features used in the previous approach 
such as tonal centroids and chromagram were discarded to 
lower the overhead of the deep learning algorithm. 
 
Using a Convolutional Neural Network (CNN) 
 
CNN is a popular deep learning model widely used in natural 
language processing [17] and image processing [18]. A CNN 
is made up of an input layer and an output layer, with several 
hidden layers between them. The number of hidden layers is 
usually determined based on the size of the dataset. A 
mathematical operation, namely convolution, is used 
between the layers. The CNN model for the acoustic drone 
detection application used a six-convolution layer approach, 
with each stacked next to one other. The number of filters 
were progressively increased from 16 till 512. The 
architecture is shown in Figure 3.  

The activation function used is a Rectified Linear Unit 
(ReLU). Two max pooling layers were included in the design, 
as well as a dropout layer, which helps to prevent overfitting. 
In the end, the data is pooled down by using a series of fully 
connected dense layers. The final dense layer was activated 
by using a softmax function, categorical crossentropy was 

used as the loss function and Adam was used as the optimizer. 

The stray noises from the audio clip were removed by 
using an envelope function, which outlined the extremes of 
a signal. This helped in cleaning the dataset and decreased 
the number of false positives. The dataset was split into 
training and validation sets in a 4:1 ratio and trained over 
30 epochs with a batch size of 32. We obtained a validation 
accuracy of 96.1% for the CNN algorithm, compared to the 
96.86% accuracy of the previously-developed SVM 
algorithm. It should be noted that the SVM algorithm was 
not trained on a comparable negative dataset. 

3. FIELD TESTS 
While laboratory tests are important intermediate steps for 
assessing CNN performance, field tests are critical in 
determining actual performance in realistic settings. To this, 
similar to the field tests for the SVM-enabled system [11], the 
system was tested against a drone at difference distances, 
altitudes and with possible sources of false alarms.  
 
Hardware Setup 

When any sound is detected in the environment by an Apex 
220 microphone, 10s audio clips are sent to a raspberry pi 
with a 4gb RAM, which is embedded with the CNN 
algorithm. A mobile hotspot is used to relay the drone 
detection alerts from the raspberry pi to an android app [19]. 
An alarm is triggered at the user end via an android device 
and the algorithm provides a “drone detected” notification. 
The user also receives an audio clip of 10 seconds along with 
the alert.  
  
Test Conditions 

Local flight tests were conducted on a day where the 
temperature was 44 ◦F with a  wind of 3mph and  
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Figure 4. Randomized drone hovering points with confidence levels 

 
visibility of 10 miles. Two commercial aircraft flew over 
during the test procedure. In addition, two racing drones and 
a remote-controlled aircraft were also operating in the 
vicinity. However, it is assumed that there is no real effect on 
the classification because the remote-controlled aircraft and 
the race drones were at least 100m away from the detector. 

The objective of the tests was to understand how well the 
algorithm performed when the drone hovered at a certain 
altitude and at a certain horizontal distance from the detector. 
There were 42 hovering points spread 10m apart from each 
other across a grid of 60m*60m (Figure 4).  The DJI phantom 
pro V 2.0 drone was moved from one data point to another in 
a random fashion without any specific sequential ordering to 
ensure that there is no effect of the test sequence on the 
potential results. The drone held its position for 30 seconds at 
each of the 42 points. The algorithm was considered 
successful when a notification of ‘Drone detected’ appeared 
within this time period. At each of the hovering points, 
sounds were recorded and stored as a wav file to feed the 
CNN.   

Additionally, noise resilience tests at a local field were 
conducted using an electric leaf blower to observe how well 
the CNN performed when exposed to sounds similar to a 
drone’s harmonics. Also, the device was placed at the local 
amphitheater for seventeen days, running uninterrupted to see 
what might trigger false alarms. 
 

4. HUMAN CLASSIFICATION TEST 
In order to benchmark the effectiveness of the CNN 
algorithm as compared to humans, we designed a survey to 
identify how well humans could distinguish the sound of a 
drone from similar sounds. In an IRB-approved online  

 
survey, 35 participants were provided training with four 
sample audio files. Two contained the sound of a drone and  
the other two contained sounds that are similar to a drone’s 
sound like a leaf blower and a helicopter. They were 
instructed to listen to the sound files in a quiet environment 
under normal volumes. 
 
After the training, participants were sent a randomized order 
of 30 precompiled audio files containing various sounds. Half 
of these were a variety of quadrotor drone sounds, and the 
other half were sounds similar to a drone in terms of 
frequency and pattern, such as helicopters, lawn mowers, leaf 
blowers, bees or wasps, wind and planes or fixed wing UAVs. 
Participants listened to the sound clips and chose if each one 
was a drone or not a drone. If they choose ’not drone’, then 
they were asked to label the sound.  
 

5. RESULTS AND ANALYSIS 
Field Test Results 

The system’s accuracy is 91.67% for data points in the 
30m*30m region. The accuracy is 86.7% when the area of 
observation is expanded to 40*40. The accuracy comes down 
to 76.19%, when the coverage increases to 60*60. The ratio 
of the number of true positives to the total number of 
observation points is used to determine the confidence level 
at each data point.  All the data points, with their respective 
confidence levels is given in Figure 4.  

Figure 4 indicates that both the detection rate and the 
confidence level improve as the drone gets closer to the 
detector. However, an anomaly from this observation is seen 
at data point 11, located at a horizontal distance of 0m and 
altitude of 10m, where the confidence level is 20%. It is 
presumed that this occurs due to the similarity of the drone’s 
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harmonics to that of a lawn mower sound that it was trained 
on.  
 
Figure 5 compares the current algorithm’s performance to the 
previous SVM algorithm. The current algorithm has a better 
detection rate when compared to the SVM-based algorithm 
for coverage areas of 30m*30m and 60m*60m. The SVM-
based algorithm has a detection rate of 86.7% and 62% at 
30m*30m and 60m*60m respectively and is outperformed by 
the CNN algorithm by at least 5.9%.  
 
 

 
Figure 5. Comparison of CNN and SVM for UAV 

classification 
 
As mentioned earlier, the previous SVM model experienced 
a high number of false positives from lawn equipment such 
as lawn mowers and leaf blowers. This was lowered by the 
current algorithm, which used such sounds in the training 
data. When exposed to an electric leaf blower with a radial 
distance of 100m and below, there was a ‘drone present’ 
notification 12.5% of the time. The CNN was trained on gas-
powered leaf blower data, so this demonstrates a source of 
brittleness for the CNN. It was, however, very effective in 
distinguishing background noises, with no additional filters 
used for background noises. This test demonstrates that with 
a well-trained CNN and a quality dataset, the effectiveness of 
a drone detection systems increases to a considerable extent. 

For the seventeen-day field test, the detector experienced a 
total of 1226 false positives over 46650 observations 
amounting to a false positive rate of 2.62%. A significant 
amount were caused by heavy winds and gusts from 
hurricane remnants. There was very limited activity on the 
detector when there was light rain (or no rain) or no heavy 
winds and gust. While the false positive rate was low when 
compared against all observations, 1226 false positives 
would not be tolerated over a 17-day period by users. Thus, 
more work is needed to dramatically lower the absolute 
numbers of false positives. 

 

Human Classification Results 

From the survey, the participants had an accuracy of 92.67%, 
which is superior to the 80% accuracy obtained from the 
CNN algorithm on the same dataset. Figure 6 shows the 
confusion matrix, which includes the number of correct 
classifications and the number of misclassifications. We also 
obtained a precision of 91.5%, recall of 93.6% and a F1 score 
of 92.5%. Table 1 summarizes and compares the outcomes of 
machine learning and human classification, which clearly 
indicates that the humans are better suited to classify the 
sounds in this dataset. 
 
 

 
Figure 6. Confusion matrix for human classification 

 
We also performed a non-metric multidimensional scaling 
(NMDS) on the human-classified data to determine the 
similarities across multiple dimensions. Figure 7 shows how 
similar the participants responses are with respect to each 
other. This shows there is not much deviance in the surveyed 
population and that most humans can successfully and 
consistently classify a drone sound. At the same time, 
different machine learning model can end up producing 
different results. It should also be noted that most of the 
human misclassifications were due to a fixed wing drone 
aircraft, which was classified as ‘not a drone’. 
 
Table1. Comparison of Machine learning vs Human 
performance 
 

Metric CNN Human 
Classification 

Accuracy 80% 92.67% 
Precision 90.9% 91.5% 
Recall 66.7% 93.6% 
F1 score 76.9% 92.5% 
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Figure 7. NMDS plot for similarity index 
 

6. CONCLUSIONS 
This paper compares the efficacy of a CNN and an SVM-
based algorithm in detecting a drone’s presence. Although the 
CNN-enabled system performed better than the previous 
SVM technique, it was trained on more data. It also 
experienced false alarms for data it had not previously seen.  
Because a high number of false alarms could lead to 
significant distrust by human users, it is important to reduce 
this number. For the next iteration, we are exploring a sensor 
fusion approach to address this problem.    
 
Another possible intervention to reduce the number of false 
alarms due to never-before-seen data is to allow the human to 
essentially label data for CNN retraining. To this end, we are 
building a ‘user-in-the-loop’ classification mechanism, 
which enables the user to classify sounds in the environment. 
The human classification results demonstrate that humans 
can reliably identify sounds and we are exploring how a 
partnership can be developed so that humans can assist the 
CNN.  
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