

CYCLOCIM: A 4-D variational assimilation system for the climatological mean seasonal cycle of the ocean circulation

Qian Huang¹, François Primeau¹, Tim Devries^b

^a*Department of Earth System Science, University of California, Irvine, CA, United States*

^b*Department of Geography, University of California, Santa Barbara, CA, United States*

Abstract

We describe a new 4-D variational assimilation system, called CYCLOCIM, to estimate the climatological seasonal cycle of the residual mean ocean circulation. CYCLOCIM assimilates monthly mean potential temperature and salinity data from the World Ocean Atlas, and CFC-11, CFC-12 and natural radiocarbon measurements for the deep ocean from the Global Data Analysis Project, Version 2. CYCLOCIM's control parameters include: (i) a seasonally varying 3-D field of unresolved eddy-stress divergences that appear in the horizontal momentum equations, (ii) seasonally varying 2-D correction fields for the surface heat and freshwater fluxes, and (iii) a constant scaling factor for the air-sea flux of CFCs. The influence of initial conditions on a fully spun-up ocean model vanishes. Thus, unlike other 4-D variational assimilation systems, CYCLOCIM does not include initial conditions as control parameters. A Bayesian procedure is used to formulate the inverse problem, which is solved by finding the maximum of the posterior probability distribution. The optimization process used to find the maximum includes a forward simulation to calculate the flow velocities and tracer distributions followed by a backward ("adjoint") simulation to compute the gradient of the posterior. A quasi-Newton search algorithm is used to find the set of parameters to maximize the posterior probability. We find that by resolving the seasonal cycle the model is able to better fit the observations in the upper ocean compared to a previous steady-state version of the model. The main output from CYCLOCIM is a set of 12 data-constrained monthly tracer transport matrices that will provide a useful circulation model for global marine biogeochemical cycle studies.

Keywords:

1. Introduction

An important goal of data assimilation in oceanography is to provide an estimate of the state of the ocean that is consistent with available observations and known physical laws. Variational assimilation methods aim to achieve this goal by iteratively minimizing an objective function that measures the difference between predictions obtained from a dynamical circulation model and available observations (Ghil and Malanotte-Rizzoli, 1991). While the applications for global data-assimilation products are numerous, the detection of climate trends is major driving motivation. Typically, the inputs to the objective function are the model's initial conditions and surface boundary conditions for the fluxes of heat, freshwater, and momentum, but sometimes internal eddy-diffusivity parameters are also used (e.g. Balmaseda et al., 2015; Köhl, 2015; Forget et al., 2015; Osafune et al., 2015; Fukumori et al., 2018).

In addition to producing a space-time interpolation of the sparse and irregularly sampled observations, a 4-D variational assimilation system also produces an estimate of the global circulation. The resulting estimate of the circulation can be extremely useful for computing tracer flux divergences in biogeochemical applications. When the focus is on recent trends and variability that fall within the assimilation period, the estimated circulation can be used unambiguously (e.g Brix et al., 2015; Doi et al., 2015; Carroll et al., 2020). For applications involving the functioning of biogeochemical cycles on longer timescales, one can time-average the estimate and assume that the resulting average is representative of the long-term mean circulation. For example, Graven et al. (2012) average the state estimate for the period 1992-2004 from the ECCO-GODAE assimilation system (Stammer et al., 2004), into monthly mean tracer transport matrices, which are then used to simulate the pre-industrial carbon cycle and its transient evolution for 1760-2007. For this they assume a climate system that is stationary to first order and repeatedly cycle through the same 12 tracer transport matrices. However, because each iteration of the assimilation procedure simulates the circulation for at most a few decades while repeatedly adjusting the initial conditions, the resulting circulation is never fully spun-up. Consequently, it is not clear that the circulation, especially in the deep ocean, produces stable water

35 masses when the circulation is extrapolated to time-scales longer than those
36 used for the assimilation. Indeed, Graven et al. (2012) demonstrate the exis-
37 tence of clear biases in the shallow-to-deep exchange of water masses in the
38 data-assimilation circulation from the ECCO-GODAE model. Similarly, Liu
39 et al. (2012) show that even after optimizing the initial conditions, the surface
40 forcing, and eddy-diffusivities, the German ECCO synthesis (GECCO) has
41 temperature errors that are several times bigger than their prior estimates.

42 For biogeochemistry research that requires tracer simulations that are
43 much longer than the observational record an alternative data-assimilation
44 procedure has been developed (e.g. Schlitzer, 2007; DeVries and Primeau,
45 2011). It aims to directly constrain a steady-state model of the ocean's
46 long-term climatological mean using a 3-D (no time-dependence) variational
47 assimilation procedure. The application of inverse methods to global marine
48 biogeochemical cycles has progressed rapidly in recent years because of the
49 development of such a data-constrained steady model expressed in the form
50 of a tracer transport matrix (e.g. DeVries et al., 2012; DeVries et al., 2013;
51 Holzer and Primeau, 2013; DeVries and Deutsch, 2014; DeVries, 2014; Holzer
52 et al., 2014; Teng et al., 2014; Frants et al., 2015; Holzer et al., 2016; Weber
53 et al., 2016; DeVries et al., 2017; Pasquier and Holzer, 2016; Roshan et al.,
54 2017; Pasquier and Holzer, 2017; Roshan and DeVries, 2017; Holzer et al.,
55 2017; John et al., 2018; Wang et al., 2019; Martin et al., 2019a,b). The tracer
56 transport matrix used in the aforementioned studies is produced by a data
57 assimilation system known as the Ocean Circulation Inverse Model (OCIM)
58 (DeVries and Primeau, 2011; Primeau et al., 2013; DeVries, 2014; DeVries
59 and Holzer, 2019). OCIM uses a variational method to assimilate stationary
60 and transient tracers into a steady-state model for the large-scale momentum
61 balance of the ocean. Because of the assimilation process, the circulation
62 biases found in most prognostic ocean general circulation models (OGCMs)
63 are greatly reduced. As a result, biogeochemical inferences made on the
64 basis of tracer flux divergences computed using OCIM can be interpreted
65 more reliably than those obtained from free running OGCMs.

66 The steady-state assumption used in the OCIM system makes it possible
67 to obtain a fully-spun up ocean state by direct matrix inversion rather than
68 by a slow time-stepping spin-up as is used in traditional OGCMs. This capa-
69 bility makes it feasible to compute the $\mathcal{O}(10^3)$ iterations of the forward and
70 adjoint model runs that are required by the iterative numerical optimiza-
71 tion algorithm to bring the model state into agreement with the tracer-data
72 constraints.

73 An important drawback of the steady-state formulation is that it ignores
74 the pronounced seasonality of ventilation processes in mid- to high-latitudes
75 (e.g. Marshall and Schott, 1999; Williams et al., 1995). This neglect can
76 lead to potentially important biases whose influence on biogeochemical infer-
77 ences are difficult to quantify. For example, it is well known that late-winter
78 mixed layer water properties are preferentially selected for export to the per-
79 manent pycnocline (e.g. Stommel, 1979; Williams et al., 1995). By neglecting
80 the seasonal cycle, the OCIM tracer-transport operator must necessarily be
81 biased in the upper ocean if it is to reproduce the correct water-mass prop-
82 erties in the permanent thermocline and abyssal waters (see for example the
83 discussion in Yu and Malanotte-Rizzoli, 1996, 1998).

84 Here we present an extended OCIM assimilation system, which we call
85 CYCLOCIM, that produces a cyclo-stationary state estimate for the clima-
86 tological seasonally varying ocean circulation. The direct matrix inversions
87 via LU factorization that were used to obtain fully spun-up steady states in
88 OCIM are replaced by calls to a cyclo-stationary Newton-Krylov solver (e.g.
89 Li and Primeau, 2008; Bardin et al., 2014). Compared with the majority of
90 existing ocean reanalysis efforts (e.g. Mazloff et al., 2010; Balmaseda et al.,
91 2015; Köhl, 2015; Forget et al., 2015; Osafune et al., 2015; Fukumori et al.,
92 2018), what sets our system appart is that it aims to estimate the ocean's
93 mean annual cycle rather than its inter-annual variability. CYCLOCIM is
94 therefore a generalization to a periodic annual cycle of previous steady-state
95 inversions (e.g. Schlitzer, 1993; Wunsch, 1996; Ganachaud and Wunsch, 2000;
96 Schlitzer, 2007; DeVries and Primeau, 2011). The goal of the CYCLOCIM
97 assimilation system is therefore most similar to the one in the study of Wenzel
98 et al. (2001) who developed a 4-D variational assimilation method to
99 estimate a cyclo-stationary annual cycle of the ocean circulation. There
100 are, however, some important methodological differences. Most importantly,
101 Wenzel et al. (2001) follow Yu and Malanotte-Rizzoli (1998) by adding a
102 penalty term for departures from a cyclo-stationary state to the usual cost
103 function that measures the misfit between the model and the observations.
104 They then use the initial conditions (i.e. the January model state) along with
105 the monthly mean surface forcing as the control variables in the minimiza-
106 tion problem. The data-assimilation procedure used in Wenzel et al. (2001)
107 can therefore be viewed as trading off model-data misfits for a reduced tem-
108 poral drift. Indeed, in a fully spun-up model with zero drift, the initial
109 conditions exert no controllability on the objective function. In contrast,
110 CYCLOCIM searches for the optimal state in the space of perfectly cyclo-

stationary model solutions that have zero temporal drift. This is achieved by adding time-periodic eddy-stress divergence terms to the horizontal momentum equations and using them as control variables in the optimization of the residual mean circulation. In this respect CYCLOCIM follows the pioneering study of Ferreira et al. (2005) who added eddy-stresses to initial conditions and surface forcing as the control variables used to minimize solution drift and departures from climatological observations of temperature. In CYCLOCIM we completely eliminate the initial conditions from the list of adjustable parameters by directly solving for the cyclo-stationary annual cycle. This cyclo-stationary solution represents the projection of the ocean's long-term climatological attractor onto a periodic annual cycle.

The primary focus of this article is to document the numerical formulation of the model and the solution method rather than presenting a scientifically usable state estimate. In Section 2 we present the governing equations for the residual mean circulation and the computational method used to obtain their cyclo-stationary solution. In Section 3 we present the governing equations and solution method for the cyclo-stationary and transient tracers that are used to constrain the circulation. In Section 4 we give a Bayesian formulation of the inverse problem. We then present how we use the adjoint method to efficiently compute the gradient of the logarithm of the posterior probability density function so that we can locate the maximum of the posterior probability function. In Section 5 we compare the tracers simulated using our most probable model to observations. We show the most probable meridional overturning circulation conditioned on the tracer data, along with the implied meridional fluxes of heat and fresh water. Finally, in Section 6 we summarize the results and give directions for future model developments and applications.

138 **2. Dynamical model**

139 The dynamical model is based on the linearized Navier-Stokes equations
 140 with hydrostatic and Boussinesq approximations with an implicit free surface,

$$\begin{aligned}
 u_t^\dagger - fv^\dagger + \frac{1}{a \cos \phi} g \eta_\lambda + \mathcal{D} u^\dagger &= -\frac{1}{a \cos \phi} \frac{p_\lambda}{\rho_0} + \frac{\delta_{1k}}{\Delta z_1} \frac{\tau^\lambda + \delta \tau^\lambda}{\rho_0} + \frac{1}{\rho_0} \tau_z^{e\lambda}, \quad (a) \\
 v_t^\dagger + fu^\dagger + \frac{1}{a} g \eta_\phi + \mathcal{D} v^\dagger &= -\frac{1}{a} \frac{p_\phi}{\rho_0} + \frac{\delta_{1k}}{\Delta z_1} \frac{\tau^\phi + \delta \tau^\phi}{\rho_0} + \frac{1}{\rho_0} \tau_a^{e\phi}, \quad (b) \\
 p &= g \int_z^0 \rho(z') dz', \quad (c) \\
 \frac{1}{a \cos \phi} [(v^\dagger \cos \phi)_\phi + u_\lambda^\dagger] + w_z^\dagger &= 0, \quad (d) \\
 \eta_t + \int_{z_{bot}(\lambda, \phi)}^0 \left\{ \frac{1}{a \cos \phi} [(v^\dagger \cos \phi)_\phi] + u_\lambda^\dagger \right\} dz &= 0, \quad (e) \\
 \end{aligned} \tag{1}$$

141 where $(u^\dagger, v^\dagger, w^\dagger)$ is the residual mean velocity rather than the Eulerian mean;
 142 $\vec{\tau} = (\tau^\lambda, \tau^\phi)$ is the wind-stress and the factor $\delta_{1k}/\Delta z_1$ is used to indicate
 143 that the wind stress is applied as a body force in the top layer of the dis-
 144 cretized model; $\vec{\tau}^e = (\tau^{e\lambda}, \tau^{e\phi})$ is a cyclo-stationary eddy-stress vector; η is
 145 the seasonally-varying mean dynamic topography; p is the climatologically-
 146 averaged seasonally-varying baroclinic pressure computed using the hydro-
 147 static balance and the observed climatological density field; ρ is the climatologically-
 148 averaged seasonally-varying density; $\delta \vec{\tau} = (\delta \tau^\lambda, \delta \tau^\phi)$ is a correction to the
 149 prescribed wind-stress climatology (e.g. Stammer et al., 2002; Ferreira et al.,
 150 2005; DeVries and Primeau, 2011); f is the Coriolis parameter; g is gravity.
 151 λ is the longitude and ϕ is the latitude. The continuity equation is solved in
 152 a domain with the surface set at $z = 0$ and a spatially variable bottom topog-
 153 raphy, $z_{bot}(\lambda, \phi)$, i.e we assume that $|\eta| \ll -z_{bot}(\lambda, \phi)$. The friction operator,
 154 \mathcal{D} , is here taken to be a simple Rayleigh drag, i.e. $\mathcal{D}(u^\dagger, v^\dagger) = r(u^\dagger, v^\dagger)$,
 155 $r = 10^{-6} \text{ s}^{-1}$. As previously mentioned, the averaging operator used to de-
 156 fine the residual mean is based on a projection of the ocean circulation on
 157 its cyclo-stationary mean seasonal-cycle. Consequently, any deviation from
 158 this perfectly periodic state is, by definition, part of the “eddy” field. This
 159 is different from conventional 4-D variational assimilation models where the
 160 large-scale low-frequency variability such as ENSO is explicitly resolved by
 161 the model and does not part of the “eddy” field.

¹⁶² Rewriting (1) in matrix-vector form we have

$$\partial_t \begin{bmatrix} u^\dagger \\ v^\dagger \\ w^\dagger \\ \eta \end{bmatrix} + \mathcal{M} \begin{bmatrix} u^\dagger \\ v^\dagger \\ w^\dagger \\ \eta \end{bmatrix} = \mathcal{F} + \mathcal{F}^e, \quad (2)$$

¹⁶³ where

$$\mathcal{M} = \begin{bmatrix} r & -f & 0 & \frac{1}{a \cos \phi} g \partial_\lambda \\ f & r & 0 & \frac{1}{a} g \partial_\phi \\ \frac{1}{a \cos \phi} \partial_\lambda & \frac{1}{a \cos \phi} \partial_\phi \cos \phi & \partial_z & 0 \\ \partial_z^{-1} \partial_\lambda & \partial_z^{-1} \partial_\phi \cos \phi & 0 & 0 \end{bmatrix}, \quad (3)$$

¹⁶⁴ with the linear operator ∂_z^{-1} defined to return the indefinite vertical integral
¹⁶⁵ of its operand, i.e. $\partial_z^{-1} q \equiv \int_z^0 q dz$. The forcing term on the right hand
¹⁶⁶ side is decomposed into two periodic forcing terms, $\mathcal{F}(t + \Delta T) = \mathcal{F}(t)$ and
¹⁶⁷ $\mathcal{F}^e(t + \Delta T) = \mathcal{F}^e(t)$. The first contribution consists of the wind-stress and
¹⁶⁸ the baroclinic pressure forces,

$$\mathcal{F}(t) \equiv \frac{1}{\rho_0} \begin{bmatrix} \frac{\delta_{1k}}{\Delta z_1} \tau^\lambda - \frac{g}{a \cos \phi} \partial_\lambda \partial_z^{-1} \rho \\ \frac{\delta_{1k}}{\Delta z_1} \tau^\phi - \frac{g}{a} \partial_\phi \partial_z^{-1} \rho \\ 0 \\ 0 \end{bmatrix}, \quad (4)$$

¹⁶⁹ which can be computed directly from the observed climatological wind-stress
¹⁷⁰ obtained from the European Centre for Medium-Range Weather Forecasts
¹⁷¹ (ECMWF) climatological fields (Trenberth et al., 1989), and the observed
¹⁷² climatological density computed using the equation of state for seawater and
¹⁷³ the World Ocean Atlas 2013 (Boyer et al., 2013) gridded temperature and
¹⁷⁴ salinity fields. The second contribution consists of the unobserved errors in
¹⁷⁵ the wind-stress climatology and the unresolved eddy-stress forcing

$$\mathcal{F}^e = \frac{1}{\rho_0} \begin{bmatrix} \frac{\delta_{1k}}{\Delta z_1} \delta \tau^\lambda + \partial_z \tau^{e\lambda} \\ \frac{\delta_{1k}}{\Delta z_1} \delta \tau^\phi + \partial_z \tau^{e\phi} \\ 0 \\ 0 \end{bmatrix}, \quad (5)$$

¹⁷⁶ which will be inferred via the Bayesian inversion procedure using transient
¹⁷⁷ and cyclo-stationary tracer observations. We do not attempt to separate the
¹⁷⁸ contribution of the wind-stress correction (here applied as a body force in

179 the upper-most layer of the model) and the eddy-stress divergence. Only
 180 their sum appears in the model and they are therefore lumped together in
 181 the inversion.

182 *2.1. Space discretization*

183 The dynamical state of the model is discretized using a staggered Arakawa
 184 B-grid finite-difference scheme (e.g. Haltiner and Williams, 1980) with a uni-
 185 form $4^\circ \times 4^\circ$ horizontal resolution and a vertical discretization with 24 layers
 186 whose thicknesses increase monotonically with depth (Table 1) resulting in a
 187 discretized dynamical state vector $\mathbf{x} = [u^\dagger, v^\dagger, w^\dagger, \eta]$ expressed as a $122\,333 \times 1$
 188 matrix. With this discretization scheme, the operator \mathbf{M} becomes a time-
 189 independent $122\,333 \times 122\,333$ sparse-matrix operator. Similarly, the right-
 190 hand-side forcings, \mathbf{F} and \mathbf{F}^e become time-periodic 122 333-dimensional vec-
 191 tors, \mathbf{F} and \mathbf{F}^e . The resulting governing equation for the dynamics expressed
 192 in matrix-vector form is

$$\frac{d\mathbf{x}}{dt} + \mathbf{M}\mathbf{x} = \mathbf{F}(t) + \mathbf{F}^e(t). \quad (6)$$

193 Following DeVries (2014), we also added a discretized horizontal Laplacian
 194 operator with a diffusivity of 10^{-3} m²/s to the part of the \mathbf{M} operator cor-
 195 responding to the equation for η , i.e. equation (1e). This was done to
 196 damp out a checkerboard computational mode associated with the B-grid
 197 discretization.

36.1	37.3	40.7	46.3	54.2	64.4
76.8	91.5	108.4	127.6	149.1	172.8
198.7	227.0	257.5	290.2	325.2	362.5
402.0	443.8	487.8	534.1	582.7	633.5

Table 1: Vertical discretization used in CYCLOCIM. The thicknesses in meters increase monotonically with increasing depth.

198 *2.2. Time discretization and cyclo-stationary state*

199 Equation (6) can be further discretized in time using an Euler backward
 200 scheme with $dt = \Delta T/12$, to get

$$\begin{aligned} \mathbf{A}\mathbf{x}_n &= \mathbf{x}_{n-1} + (\mathbf{F}_n + \mathbf{F}_n^e)dt, \\ \mathbf{A} &\equiv \mathbf{I} + \mathbf{M}dt. \end{aligned} \quad (7)$$

201 with $\mathbf{F}_0 = \mathbf{F}_{12}$, $\mathbf{F}_0^e = \mathbf{F}_{12}^e$, and $\mathbf{x}_0 = \mathbf{x}_{12}$. Because the forcing term on the
 202 right-hand-side is periodic in time the fully spun-up dynamical state will be
 203 cyclo-stationary and satisfy the following block-matrix system

$$\underbrace{\begin{bmatrix} -\mathbf{I} & \mathbf{A} & 0 & \cdots & 0 \\ 0 & -\mathbf{I} & \mathbf{A} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -\mathbf{I} & \mathbf{A} \\ \mathbf{A} & 0 & \cdots & 0 & -\mathbf{I} \end{bmatrix}}_{\tilde{\mathbf{A}}} \begin{bmatrix} \mathbf{x}_{12} \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_{11} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_1 + \mathbf{F}_1^e \\ \mathbf{F}_2 + \mathbf{F}_2^e \\ \vdots \\ \mathbf{F}_{11} + \mathbf{F}_{11}^e \\ \mathbf{F}_{12} + \mathbf{F}_{12}^e \end{bmatrix} dt. \quad (8)$$

204 The enormous size of the matrix, $\tilde{\mathbf{A}}$, precludes the use of a direct LU factor-
 205 ization to solve Eq. (8). We therefore obtain a solution to Eq. (8) using an
 206 iterative Newton-Krylov solver that avoids the need to explicitly construct
 207 $\tilde{\mathbf{A}}$. The convergence of the solver is greatly accelerated by the fact that
 208 it is possible to construct a nearly converged initial iterate using a Fourier
 209 representation of the continuous-time solution. Because \mathbf{M} does not depend
 210 on t , a continuous-time cyclo-stationary solution to Eq. (6) can be efficiently
 211 computed by first transforming the equation to Fourier space. To this end,
 212 we expand the forcing function and the solution in Eq. (6) into a truncated
 213 Fourier series with 6 complex sinusoidal modes

$$\mathbf{F}(t) + \mathbf{F}^e(t) = \sum_{k=0}^5 \hat{\mathbf{F}}_k e^{ik2\pi t/\Delta T}, \quad (9)$$

$$\mathbf{x}(t) = \sum_{k=0}^5 \hat{\mathbf{x}}_k e^{ik2\pi t\Delta T},$$

214 which transforms the coupled system of differential equations (6) into a sys-
 215 tem of 733 998 complex-valued algebraic equations

$$\begin{bmatrix} i\omega_0 \mathbf{I} + \mathbf{M} & 0 & 0 & \vdots \\ 0 & i\omega_1 \mathbf{I} + \mathbf{M} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & 0 & i\omega_5 \mathbf{I} + \mathbf{M} & \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_0 \\ \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_5 \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{F}}_0 \\ \hat{\mathbf{F}}_1 \\ \vdots \\ \hat{\mathbf{F}}_5 \end{bmatrix}, \quad (10)$$

216 where the subscript corresponds to each sinusoidal mode in Eq.(9) and $\omega_k =$
 217 $k2\pi/\Delta T$. Because the matrix in Eq. (10) is block-diagonal it uncouples into

218 6 independent $122\,333 \times 122\,333$ systems, each of which can be solved using
 219 a complex sparse-matrix LU factorization. The resulting continuous-time
 220 solution can then be evaluated at $t = 0$ to construct an initial iterate

$$\mathbf{x}_1 = \Re \left\{ \sum_{k=0}^5 \widehat{\mathbf{x}}_k \right\}, \quad (11)$$

221 for the Newton Krylov solver. Fully spun-up cyclo-stationary solutions can
 222 be obtained using this method with the equivalent of only a few years of
 223 simulation – typically 5 or less – without the need for a sophisticated pre-
 224 conditioner.

225 *2.3. Choice of time step*

226 Following Wenzel et al. (2001), we use a time step $dt = \Delta T/12$ in accord-
 227 ance with the time-resolution of the WOA climatology. Because our present
 228 goal is to describe the solution method rather than present a scientifically
 229 usable state estimate, we limit our presentation to the case of 12 time-steps
 230 per year. However, our assimilation method should work with an arbitrary
 231 number of time steps per year. We are planning a follow up paper in which
 232 we increase the horizontal resolution to $2^\circ \times 2^\circ$ and explore the sensitivity of
 233 the state estimate to the time-step size.

234 **3. Tracer transport**

235 The primary observational constraint for the CYCLOCIM state estimate
 236 consist of hydrographic tracer observations. The advection-diffusion equation
 237 for a tracer c is given by

$$\frac{\partial c}{\partial t} + \nabla \cdot [\mathbf{u}^\dagger(t) - \mathbf{K}(t)\nabla]c = \mathcal{S}(c, t), \quad (12)$$

238 where $\mathbf{K}(t)$ is the tracer diffusivity tensor and $\mathbf{u}^\dagger(t)$ is the residual mean cir-
 239 culation. The implicit averaging operator used to define the residual mean is
 240 based on a projection of the ocean circulation onto its climatological mean
 241 seasonal cycle. Thus both $\mathbf{u}^\dagger(t)$ and $\mathbf{K}(t)$ are assumed to be periodic func-
 242 tions with a period of $\Delta T = 1$ year.

243 For the particular state estimates we present here, the diffusivity tensor
 244 is constructed using an isopycnal diffusivity of $10^3 \text{ m}^2\text{s}^{-1}$ and a vertical dif-
 245 fusivity of $10^{-5} \text{ m}^2\text{s}^{-1}$. (The sensitivity to this choice is explored briefly in

246 Appendix A.) The isopycnal surfaces were computed using the 2013 World
 247 Ocean Atlas (WOA2013) monthly-mean temperature and salinity (Boyer
 248 et al., 2013). In addition, the vertical diffusivity is enhanced to a value of
 249 $1 \text{ m}^2\text{s}^{-1}$ in a surface mixed layer of thickness h , which is prescribed accord-
 250 ing to the observed monthly-mean mixed layer depth climatology (de Boyer
 251 Montégut et al., 2004). This large value ensures that tracer concentrations
 252 are uniform within the surface mixed layer.

253 *3.1. Space discretization*

254 The tracer transport equations are discretized using a staggered Arakawa
 255 C-grid (e.g Haltiner and Williams, 1980). For the $4^\circ \times 4^\circ$ horizontal resolution
 256 with 24 vertical layers the model has a total of $N = 45\,515$ wet grid boxes.
 257 A discretized tracer field can then be organized into an $N \times 1$ column vector,
 258 \mathbf{c} . The discretized version of Eq.(12) can then be expressed in matrix-vector
 259 form as follows,

$$\frac{d\mathbf{c}}{dt} + \boldsymbol{\Gamma}(t)\mathbf{c} = \mathbf{s}(\mathbf{c}, t), \quad (13)$$

260 where \mathbf{s} is an $N \times 1$ source vector and $\boldsymbol{\Gamma}(t)$ is a $N \times N$ sparse matrix con-
 261 structed such that the matrix-vector product $\boldsymbol{\Gamma}\mathbf{c}$ produces the advective-
 262 diffusive tracer flux divergence in each of the model's wet grid boxes. In
 263 the construction of $\boldsymbol{\Gamma}$, the diffusive tracer fluxes are discretized using second-
 264 order centered differences and the advective fluxes are discretized using a
 265 “Quick-up” scheme, that is, “semi-upwind” (i.e. the quadratic interpolation
 266 is biased towards the upstream direction) in the horizontal and “QUICK”
 267 in the vertical (Leonard, 1979). For the grid-box interfaces separating the
 268 ocean from the land or atmosphere, $\boldsymbol{\Gamma}$ is constructed to satisfy no normal
 269 flux conditions.

270 *3.2. Potential temperature model*

271 For the potential temperature equation the source term \mathbf{s} appearing in
 272 Eq. (13) consists of a surface heat flux, which we model by restoring the
 273 temperature in the model's upper-most layer to a prescribed surface temper-
 274 ature field, $\boldsymbol{\theta}_a(t)$, that is periodic in time, i.e. $\boldsymbol{\theta}_a(t + \Delta T) = \boldsymbol{\theta}_a(t)$. With N_s
 275 wet surface grid-boxes, \mathbf{s} can be expressed in matrix-vector form as

$$\mathbf{s} = \frac{1}{\tau} \boldsymbol{\Lambda}_s (\boldsymbol{\theta}_a - \boldsymbol{\Lambda}_s^T \mathbf{c}), \quad (14)$$

276 where $\tau = 30$ days (but see Appendix A.2 for sensitivity experiments), Λ_s is
 277 an $N \times N_s$ sparse matrix with ones on the main diagonal and zeros elsewhere.
 278 The state vector, \mathbf{c} , is organized such that its first N_s elements correspond
 279 to the surface values, therefore, $\Lambda_s^T \mathbf{c}$ produces an $N_s \times 1$ vector of surface
 280 temperatures. The superscript T is used to denote the matrix transpose
 281 operation. The prescribed surface temperature field is constructed using
 282 the WOA2013 monthly climatology (Boyer et al., 2013) to which we add a
 283 small periodic in time correction to account for errors in the climatology, i.e.
 284 $\boldsymbol{\theta}_a(t) = \boldsymbol{\theta}_a^{\text{WOA}}(t) + \delta\boldsymbol{\theta}_a(t)$. The unobserved correction, $\delta\boldsymbol{\theta}_a$, will be estimated
 285 as part of the Bayesian inversion. The inclusion of the $\delta\boldsymbol{\theta}_a$ term (and the
 286 $\delta\mathbf{s}_a$ term described below) makes this method of implementing the surface
 287 boundary condition distinctly different than the so-called “robust-diagnostic”
 288 method where the temperature is restored to the uncorrected observations
 289 (e.g. Sarmiento and Bryan, 1982).

290 *3.3. Salinity model*

291 For the salinity equation the source term \mathbf{s} consists of surface freshwater
 292 fluxes, which we model by restoring the salinity in the model’s upper-most
 293 layer to a seasonally varying sea surface salinity field, $\mathbf{s}_a(t)$, that is periodic
 294 in time, i.e. $\mathbf{s}_a(t + \Delta T) = \mathbf{s}_a(t)$. The source vector for salinity is thus given
 295 by

$$\mathbf{s} = \frac{1}{\tau} \Lambda_s (\mathbf{s}_a - \Lambda_s^T \mathbf{c}). \quad (15)$$

296 where $\tau = 30$ days is the restoring timescale. The prescribed sea surface
 297 salinity field is constructed using the WOA2013 (Boyer et al., 2013) monthly
 298 climatology to which we add a small periodic in time correction to account
 299 for errors in the climatology, i.e. $\mathbf{s}_a(t) = \mathbf{s}_a^{\text{WOA}}(t) + \delta\mathbf{s}_a(t)$. The unobserved
 300 correction, $\delta\mathbf{s}_a$, will be estimated as part of the Bayesian inversion.

301 *3.4. Natural radiocarbon model*

302 For the natural (pre-bomb) radiocarbon model, the source function con-
 303 sists of the radioactive decay and air-sea gas exchange of $^{14}\text{CO}_2$, which we
 304 model simply as

$$\mathbf{s} = \frac{1}{\tau} \Lambda_s ({}^{14}\mathbf{c}_s - \Lambda_s^T \mathbf{c}) - \lambda \mathbf{c}, \quad (16)$$

305 where $\lambda = \log(2)/(5730 \text{ years})$ is the ^{14}C decay rate, ${}^{14}\mathbf{c}_s$ is the GLODAP
 306 (Key et al., 2004) estimate of the surface $\Delta^{14}\text{C}$ concentration prior to the
 307 atmospheric bomb tests and $\tau = 30$ days. Because $\tau\lambda \ll 1$, we are effectively
 308 restoring \mathbf{c} to ${}^{14}\mathbf{c}_s$ in the surface layer of the model.

309 *3.5. Chlorofluorocarbons model*

310 Chlorofluorocarbon(CFCs) are transient tracers which were released into
 311 the atmosphere starting in 1940. Therefore an initial concentration of zero is
 312 used for a transient simulation for the period from January 1940 to December
 313 2009 using a one-month long time step. In the transient simulation, we use
 314 the atmospheric history of CFC-11 and CFC-12 (USGS, 2009) interpolated
 315 to a time resolution of one month. To model the gas exchange flux we use
 316 the standard OCMIP-2 formulation (Najjar and Orr, 1998) as was done for
 317 OCIM (DeVries, 2014),

$$\mathbf{s} = \frac{\Lambda_k}{dz_1} (\mathbf{c}^{atm} - \Lambda_s^T \mathbf{c}), \quad (17)$$

318 where $dz_1 = 36.1$ m is the thickness of the model's upper most layer and
 319 \mathbf{c}^{atm} is the prescribed atmospheric CFC concentration. The gas-exchange
 320 operator Λ_k is an $N \times N_s$ sparse matrix with non-zero elements on the main
 321 diagonal. These are given by the piston velocity, k , scaled using an adjustable
 322 parameter α , such that

$$k = \alpha \cdot (u_{10})^2 \cdot (Sc/660)^{-\frac{1}{2}} \cdot (1 - f_{ice}), \quad (18)$$

323 where u_{10} is the monthly climatological root-mean-square wind speed at 10
 324 m above the sea surface, Sc is the temperature-dependent Schmidt number,
 325 and f_{ice} is the monthly climatological fractional ice cover. Note that the
 326 scalar parameter α does not change with time and is the same in all grid
 327 boxes.

328 *3.6. Time discretization*

329 The version of the model we present here uses a fully implicit Euler back-
 330 ward time-stepping scheme with a time step of one month:

$$\begin{aligned} \mathbf{B}_n \mathbf{c}_n &= \mathbf{c}_{n-1} + \mathbf{s}_n^o dt, \\ \mathbf{B}_n &\equiv \mathbf{I} + \left(\mathbf{\Gamma}_n - \left[\frac{\partial \mathbf{s}}{\partial \mathbf{c}} \right]_n \right) dt, \end{aligned} \quad (19)$$

331 for $n = 1, 2, \dots, M$ with $dt = \Delta T/12$. In this equation the time-dependent
 332 tracer transport matrix, $\mathbf{\Gamma}(t)$, and the partial derivative of the tracer source
 333 function with respect to the tracer concentration, $\partial \mathbf{s}(\mathbf{c}, t)/\partial \mathbf{c}$, are discretized
 334 into 12 time-independent matrices $\mathbf{\Gamma}_n$ and $[\partial \mathbf{s}/\partial \mathbf{c}]_n$ respectively for $n =$

335 1, 2, ⋯, 12, with the condition that $\boldsymbol{\Gamma}_{n+12} = \boldsymbol{\Gamma}_n$ and $[\partial \mathbf{s} / \partial \mathbf{c}]_{n+12} = [\partial \mathbf{s} / \partial \mathbf{c}]_n$.
 336 The non-homogeneous part of the source function is discretized into time-
 337 dependent source vectors, $\mathbf{s}(0, t_n) = \mathbf{s}_n^o$ for $n = 1, 2, \dots, M$. For the transient
 338 CFC tracers we use the initial condition that $\mathbf{c} = 0$ and step the equations
 339 forward for $n = 1, 2, \dots, M = N_{\text{yr}} \times 12$, corresponding to the period from
 340 1940 to 2009. For salinity, potential temperature, and pre-bomb radiocarbon
 341 the source vectors satisfy the same periodicity condition as the transport
 342 operators, i.e. $\mathbf{s}_{n+12}^o = \mathbf{s}_n^o$, implying that the fully spun-up solution ($M \rightarrow$
 343 ∞) will also be cyclo-stationary with $\mathbf{c}_{n+12} = \mathbf{c}_n$.

344 *3.7. Cyclo-stationary solutions*

345 With a one-month time-discretization and the Euler backward scheme
 346 the cyclo-stationary tracers (potential temperature, salinity, and pre-bomb
 347 radiocarbon) satisfy the following block-matrix system

$$\underbrace{\begin{bmatrix} -\mathbf{I}, & \mathbf{B}_1, & 0, & \cdots & 0 \\ 0 & -\mathbf{I} & \mathbf{B}_2 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -\mathbf{I} & \mathbf{B}_{11} \\ \mathbf{B}_{12} & \cdots & \cdots & \cdots & -\mathbf{I} \end{bmatrix}}_{\tilde{\mathbf{B}}} \begin{bmatrix} \mathbf{c}_{12} \\ \mathbf{c}_1 \\ \mathbf{c}_2 \\ \vdots \\ \mathbf{c}_{11} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_1^0 \\ \mathbf{s}_2^0 \\ \vdots \\ \mathbf{s}_{11}^0 \\ \mathbf{s}_{12}^0 \end{bmatrix} dt. \quad (20)$$

348 In principle one could try to obtain the cyclo-stationary solution to Eq.(20)
 349 by directly inverting $\tilde{\mathbf{B}}$, but this is computationally very expensive because
 350 of the size of $\tilde{\mathbf{B}}$. This prohibitive computational cost is particularly true if
 351 we try to decrease the size of the time-step to better resolve the seasonal
 352 cycle. We therefore solve Eq.(20) using a pre-conditioned iterative Newton-
 353 Krylov solver without explicitly constructing the $\tilde{\mathbf{B}}$ matrix or the source
 354 vector on the right hand side (e.g. Li and Primeau, 2008; Khatiwala, 2008;
 355 Bardin et al., 2014; Fu and Primeau, 2017)). In this method, we apply
 356 the preconditioner to the model state after time-stepping the model through
 357 one annual period. The preconditioner accelerates the convergence of the
 358 iterative Newton-Krylov solver, but otherwise does not affect the solution.
 359 For the preconditioner we use the same one first described in Li and Primeau
 360 (2008), namely

$$\mathbf{P} = \left(\frac{\Delta T}{12} \sum_{n=1}^{12} \left(\boldsymbol{\Gamma}_n - \left[\frac{\partial \mathbf{s}}{\partial \mathbf{c}} \right]_n \right) \right)^{-1} - \mathbf{I}. \quad (21)$$

361 It can be thought of as an approximation to equation (20) using one big
 362 Euler-backward time-step with the annually averaged tracer transport ma-
 363 trix. We use the `nsoli.m` Newton Krylov solver (Kelley, 2013) and obtain
 364 fully-spun up cyclo-stationary solutions with the equivalent of only a few
 365 years of simulation – typically less than 10 and seldom more than 50.

366 **4. Bayesian inversion for the adjustable model parameters**

367 As presently formulated the model has a suite of adjustable parameters,
 368 organized into an $980\,737 \times 1$ vector,

$$\mathbf{p} = [\partial_z \tau^{e\lambda} \quad \partial_z \tau^{e\phi} \quad \delta\boldsymbol{\theta}_a \quad \delta\mathbf{s}_a \quad \alpha]^T, \quad (22)$$

369 that must be specified for the problem to be well posed. We infer the pa-
 370 rameter values via a Bayesian inversion procedure constrained by tracer ob-
 371 servations. Note that the parameters $\partial_z \tau^{e\lambda}$, and $\partial_z \tau^{e\phi}$ include the three-
 372 dimensional field of horizontal eddy-stress divergences as well as the correc-
 373 tion to the imposed surface wind-stress. The two contributions cannot be
 374 separated by our inversion procedure. The parameters $\delta\boldsymbol{\theta}_a$, and $\delta\mathbf{s}_a$ are
 375 the corrections to the surface temperature and salinity used to compute the
 376 fluxes of heat and freshwater at the air-sea interface. α is a scalar parameter
 377 that scales the prescribed piston velocity for the flux of CFCs through the
 378 air-sea interface.

379 We assign normal probability distributions to the observed tracer concen-
 380 trations, with the mean of the distributions given by the model’s simulated
 381 concentrations. Specifically, the probability of the tracer data conditioned
 382 on the model parameters, is given by

$$\text{prob}(\mathbf{c}_i^{\text{obs}} | \mathbf{p}) \propto \exp \left[-\frac{1}{2} (\mathbf{H}_i \mathbf{c}_i - \mathbf{c}_i^{\text{obs}})^T \mathbf{W}_i (\mathbf{H}_i \mathbf{c}_i - \mathbf{c}_i^{\text{obs}}) \right], \quad (23)$$

383 where the index, $i = 1, 2, \dots, 5$, identifies the particular tracer being con-
 384 sidered, i.e. potential temperature, salinity, CFC-11, CFC-12, or pre-bomb
 385 radiocarbon. The likelihood function for potential temperature was modified
 386 from the Gaussian density by a factor that assigns a very low probability to
 387 potential temperatures that fall close to or below the freezing point of seawa-
 388 ter, i.e. $\exp \{-\omega_{\text{ice}} \boldsymbol{\phi}^T \boldsymbol{\phi}\}$, where $\boldsymbol{\phi} = \tanh [\exp \{-(T + 2.6^\circ\text{C})/0.1^\circ\text{C}\}]$ and
 389 $\omega_{\text{ice}} = 10^4$. The matrices \mathbf{H}_i are used to select the grid-boxes and months for
 390 which we have tracer observations. For potential temperature and salinity

391 these matrices are identity matrices because we constrain the model using
 392 the gridded climatology of WOA2013, but for the other tracers we use bot-
 393 tle measurements from GLODAPv2. We retained only bottle radiocarbon
 394 measurements below 1000 m for which the measured CFC-11 was less than
 395 0.01 pmol/kg to prevent any interference with the bomb signal. The scaled
 396 precision matrices, \mathbf{W}_i , are taken to be the sum of two symmetric matrices
 397 one of which is positive definite. The positive definite matrix is diagonal
 398 with entries given by the reciprocals of the variances σ_i^2 computed from all
 399 the observations available for a given month and grid box (for potential tem-
 400 perature, salinity, and pre-bomb radiocarbon) and for a particular, grid box,
 401 month, and year for the transient CFC-11 and CFC-12 tracers, and then
 402 divided by the numbers of observations. Therefore, σ_i varies in space and
 403 time. We use the WOA13 to estimate the σ_i of temperature and salinity and
 404 GLODAPv2 to estimate the σ_i of CFCs and radiocarbon. The other matrix
 405 is given by $\beta_i \mathbf{L}^T \mathbf{L}$ where \mathbf{L} is a discretized version of the horizontal Laplacian
 406 operator in spherical coordinates. The Laplacian operator is only added for
 407 the potential temperature and the salinity terms to take into account the
 408 spatially correlated errors introduced by the gridding of those observations.
 409 The value of β_i is given by one over the product of the variance of the cal-
 410 culated σ_i^2 . We further assume that conditioned on the model, all the tracer
 411 observations are independent. With this assumption we can construct the
 412 likelihood function by simply taking the product of the probability densities
 413 for each tracer , i.e.

$$\text{prob}(\{\mathbf{c}_i^{\text{obs}}\}_{i=1}^5 | \mathbf{p}) = \prod_{i=1}^5 \text{prob}(\mathbf{c}_i^{\text{obs}} | \mathbf{p}). \quad (24)$$

414 For the prior probability of \mathbf{p} we assume a normal distribution centered
 415 at $\mathbf{p} = 0$,

$$\text{prob}(\mathbf{p}) \propto \exp \left[-\frac{1}{2} \mathbf{p}^T \mathbf{W}_p \mathbf{p} \right], \quad (25)$$

416 with a prior precision matrix, \mathbf{W}_p , taken to be diagonal. For the unob-
 417 served errors in the wind-stress climatology, $(\delta\boldsymbol{\tau}^\lambda, \delta\boldsymbol{\tau}^\phi)$ and the unresolved
 418 eddy-stress forcing, $(\partial_z \boldsymbol{\tau}_e^\lambda, \partial_z \boldsymbol{\tau}_e^\phi)$, the diagonal of \mathbf{W}_p is $\frac{1}{(0.1\mathbf{F})^2 n}$, where \mathbf{F} is
 419 the forcing vector in Eq.(6), and n is the number of adjustable eddy-stress
 420 divergence parameters. This choice ensures that the large scale momentum
 421 balance follows the thermal wind and Ekman balances. (The square of \mathbf{F}
 422 in this last expressions is applied element wise.) For the $\delta\boldsymbol{\theta}_a$ and $\delta\boldsymbol{s}_a$, the

423 diagonal elements are given by the reciprocal of the product of the variance
 424 computed from all the observation for a given month and the number of grid
 425 boxes in the surface layer of the model. We assign no prior constraint on the
 426 value of α . We further constrained the prior probability density function for
 427 the parameters implicitly by assigning a weak prior on the dynamical state
 428 of the model, i.e. we assigned a normal distribution centered at zero

$$\text{prob}(\mathbf{x}|\mathbf{p}) \propto \exp \left[-\frac{1}{2} \mathbf{x}^T \mathbf{W}_x \mathbf{x} \right], \quad (26)$$

429 where the precision matrix, \mathbf{W}_x , is taken to be diagonal. The diagonal
 430 elements are given by the reciprocal of velocity and dynamic topography
 431 variances. The horizontal velocity variances start with a value of $(1 \text{ m/s})^2$ in
 432 the top layer of the model and decay exponentially to $(0.07 \text{ m/s})^2$ at a depth
 433 of 4000 m (see Eq. 14 in Large et al., 2001). This weak constraint is helpful
 434 in the early stages of the parameter optimization as it prevents the search
 435 algorithm from suggesting parameter values that lead to implausible dynamical
 436 states. Its impact on the ultimate solution is negligible. For the vertical
 437 velocity, we increased the prior precision by a factor of 50 compared to that
 438 used by DeVries (2014), to be consistent with that used in the latest OCIM
 439 version (OCIM2), as described in (DeVries and Holzer, 2019). The increased
 440 penalty is necessary to prevent unrealistically large vertical velocities and a
 441 noisy meridional overturning circulation.

442 With the above choices the posterior probability density function obtained
 443 via Bayes' theorem is

$$\text{prob}(\mathbf{p}|\{\mathbf{c}_i^{\text{obs}}\}_{i=1}^5) \propto \exp \left[-\frac{1}{2} \sum_{i=1}^5 (\mathbf{H}_i \mathbf{c}_i - \mathbf{c}_i^{\text{obs}})^T \mathbf{W}_i (\mathbf{H}_i \mathbf{c}_i - \mathbf{c}_i^{\text{obs}}) \right. \\ \left. - \frac{1}{2} \omega_{\text{ice}} \boldsymbol{\phi}^T \boldsymbol{\phi} - \frac{1}{2} \mathbf{x}^T \mathbf{W}_x \mathbf{x} - \frac{1}{2} \mathbf{p}^T \mathbf{W}_p \mathbf{p} \right]. \quad (27)$$

444 Note that \mathbf{x} in this probability density is an implicit function of \mathbf{p} . The posterior
 445 probability density described by Eq. (27) lives in a 980 737 dimensional
 446 space. The large dimension of this space makes it impossible to compute or
 447 store the posterior covariance matrix of the state estimate. We therefore limit
 448 ourselves to summarizing the posterior probability density function in terms
 449 of the location of its maximum, which is equivalent to finding the minimum

450 of the negative logarithm of the posterior probability density function,

$$\begin{aligned}
\hat{f}(\mathbf{p}) &\equiv f(\mathbf{y}(\mathbf{p}), \mathbf{p}), \\
&= \frac{1}{2} \sum_{i=1}^5 (\mathbf{H}_i \mathbf{c}_i - \mathbf{c}_i^{\text{obs}})^T \mathbf{W}_i (\mathbf{H}_i \mathbf{c}_i - \mathbf{c}_i^{\text{obs}}) + \frac{1}{2} \omega_{\text{ice}} \boldsymbol{\phi}^T \boldsymbol{\phi} \\
&\quad + \frac{1}{2} \mathbf{x}^T \mathbf{W}_x \mathbf{x} + \frac{1}{2} \mathbf{p}^T \mathbf{W}_p \mathbf{p},
\end{aligned} \tag{28}$$

451 where $\mathbf{y}(\mathbf{p}) = [\mathbf{x} \ \mathbf{c}_1 \ \cdots \ \mathbf{c}_5]$ is the solution to the model equations,
452 $F(\mathbf{y}, \mathbf{p}) = 0$, combining the cyclo-stationary dynamical state with the cyclo-
453 stationary potential temperature, salinity and radiocarbon solutions with the
454 transient CFC-11 and CFC-12 solutions. Note that minimizing $\hat{f}(\mathbf{p})$ reduces
455 to solving a nonlinear least-squares problem.

456 It is important to point out that the location of the minimum of the
457 objective function will not change if we add a multiplicative factor to the
458 objective function. Such a factor will, however, affect the size of the posterior
459 error bars for our parameter estimates. Because this scaling factor affects
460 the normalization constant for the posterior probability, introducing it also
461 introduces an extra additive term to the objective function that depends
462 on the scaling factor but not on \mathbf{p} . This means that if we had introduced
463 the scaling factor we would be able to estimate its size by minimizing the
464 resulting objective function with respect to this factor. We did not do this
465 here because we are focusing on finding the most probable state estimate.
466 However it will be important to estimate this missing scaling factor in the
467 future so that we can obtain consistent posterior error bars for our state
468 estimate.

469 We solve the above problem using a quasi-Newton method. Following
470 Heinkenschloss (2008), we express the gradient of $\hat{f}(\mathbf{p})$ in terms of the partial
471 gradients of $f(\mathbf{y}, \mathbf{p})$,

$$\begin{aligned}
\nabla_{\mathbf{p}} \hat{f}(\mathbf{p}) &= \mathbf{y}_p^T \nabla_{\mathbf{y}} f(\mathbf{y}(\mathbf{p}), \mathbf{p}) + \nabla_{\mathbf{p}} f(\mathbf{y}, \mathbf{p}), \\
&= -(F_{\mathbf{y}}(\mathbf{y}(\mathbf{p}), \mathbf{p})^{-1} F_{\mathbf{p}}(\mathbf{y}(\mathbf{p}), \mathbf{p}))^T \nabla_{\mathbf{y}} f(\mathbf{y}(\mathbf{p}), \mathbf{p}) + \nabla_{\mathbf{p}} f(\mathbf{y}(\mathbf{p}), \mathbf{p}), \\
&= F_{\mathbf{p}}(\mathbf{y}(\mathbf{p}), \mathbf{p})^T \boldsymbol{\lambda}(\mathbf{p}) + \nabla_{\mathbf{p}} f(\mathbf{y}(\mathbf{p}), \mathbf{p}),
\end{aligned} \tag{29}$$

472 where the vector of Lagrange multipliers, $\boldsymbol{\lambda}(\mathbf{p})$, is the solution to

$$[F_{\mathbf{y}}(\mathbf{y}(\mathbf{p}), \mathbf{p})]^T \boldsymbol{\lambda}(\mathbf{p}) = -\nabla_{\mathbf{y}} f(\mathbf{y}, \mathbf{p}). \tag{30}$$

473 The great computational advantage of using the last expression in Eq.
 474 (29) rather than the middle line in Eq. (29) is that it involves solving only one
 475 linear system of equations for $\boldsymbol{\lambda}(\mathbf{p})$ instead of solving a separate linear system
 476 for each the 980 737 components of \mathbf{p} . Because the linear system involves the
 477 transposed Jacobian matrix, $[F_{\mathbf{y}}(\mathbf{y}(\mathbf{p}), \mathbf{p})]^T$, this method is known as the
 478 adjoint method (e.g. Schlitzer, 1993, 2007; DeVries and Primeau, 2011).

479 The adjoint system (30) and $\boldsymbol{\lambda}(\mathbf{p})$ can be partitioned into components
 480 which can be solved separately. Specifically,

$$\boldsymbol{\lambda}(\mathbf{p})^T = [\boldsymbol{\lambda}_{\mathbf{x}}^T \quad \boldsymbol{\lambda}_{\boldsymbol{\theta}}^T \quad \boldsymbol{\lambda}_{\mathbf{s}}^T \quad \boldsymbol{\lambda}_{\mathbf{c}_{14}}^T \quad \boldsymbol{\lambda}_{\text{CFC-11}}^T \quad \boldsymbol{\lambda}_{\text{CFC-12}}^T] \quad (31)$$

481 where

$$\mathbf{B}_n^T \boldsymbol{\lambda}_{\mathbf{c}_n} = \boldsymbol{\lambda}_{\mathbf{c}_{n+1}} + \nabla_{\mathbf{c}_n} f(\mathbf{y}, \mathbf{p}), \quad (32)$$

482 for $n = M, M-1, \dots, 1$. For the cases where \mathbf{c}_n correspond to the transient
 483 CFC tracers, the system is solved starting with the final condition $\boldsymbol{\lambda}_{\mathbf{c}_{M+1}} = 0$
 484 and time-stepped backwards in time from $M = N_{\text{yr}} \times 12$ to $n = 1$. For the
 485 cyclo-stationary tracers, the $\boldsymbol{\lambda}_{\mathbf{c}_n}$ are also periodic and solutions are obtained
 486 using the same Newton-Krylov method used to find the cyclo-stationary state
 487 of the tracers except that the transpose of the operators are used in reverse
 488 time order, and the transpose of the operator in Eq. (21) is used for the
 489 preconditioning. We note that in the forward model, the state at time step
 490 $n+1$ is completely determined by the state of the model at time step n .
 491 Similarly, in the adjoint model, the state at time step n is completely deter-
 492 mined by the state at time step $n+1$. Because all the solutions obtained
 493 using our cyclo-stationary solver are perfectly periodic it does not matter
 494 at which month we start the integration. We always get the same periodic
 495 solution for the same forcing.

496 Having obtained the Lagrange multipliers corresponding to the tracer
 497 variables, the Lagrange multipliers corresponding to the model's dynamical
 498 state can be obtained by solving for the cyclo-stationary state of

$$\mathbf{A}^T \boldsymbol{\lambda}_{\mathbf{x}_n} = \boldsymbol{\lambda}_{\mathbf{x}_{n+1}} + \mathbf{F}_n^\dagger, \quad (33)$$

499 where the monthly forcing terms are given by

$$\begin{aligned} \mathbf{F}_n^\dagger = & \boldsymbol{\Gamma}_{\mathbf{x}_n} \left[\boldsymbol{\lambda}_{\boldsymbol{\theta}_n} + \boldsymbol{\lambda}_{\mathbf{s}_n} + \boldsymbol{\lambda}_{\mathbf{c}_{14,n}} + \sum_{m=1}^{N_{\text{yr}}} (\boldsymbol{\lambda}_{\text{CFC-11},m,n} + \boldsymbol{\lambda}_{\text{CFC-12},m,n}) \right] \\ & - \nabla_{\mathbf{x}_n} f(\mathbf{y}, \mathbf{p}), \end{aligned} \quad (34)$$

500 for $n = 1, 2, \dots, 12$, where $\Gamma_{\mathbf{x}_n}$ corresponds to the partial derivative of the
 501 tracer transport operator with respect to the dynamical state variable during
 502 month n . Cyclo-stationary solutions are obtained using the same Newton-
 503 Krylov solver used for the forward model except that the transpose of \mathbf{A} is
 504 used in the preconditioner and the forcing terms are cycled in time reversed
 505 order.

506 *4.1. Summary of CYCLOCIM data-assimilation procedure*

507 The CYCLOCIM data-assimilation system solves the constrained opti-
 508 mization problem

$$\begin{aligned} & \underset{\mathbf{y}, \mathbf{p}}{\text{minimize}} f(\mathbf{y}, \mathbf{p}), \\ & \text{such that } C(\mathbf{y}, \mathbf{p}) = 0, \end{aligned} \quad (35)$$

509 where $\hat{f}(\mathbf{p}) = f(\mathbf{y}(\mathbf{p}), \mathbf{p})$ is the negative of the logarithm of the poste-
 510 rior probability density $\text{prob}(\mathbf{p}|\text{data})$ for \mathbf{p} (see Eq. 27 and Eq. 28), and
 511 $C(\mathbf{y}, \mathbf{p}) = 0$ denotes the governing equations for the dynamical and tracer
 512 states of the model. The solution procedure is summarized in Figure 1. The
 513 iterative procedure consists of repeating five main steps:

- 514 1. Given a current estimate of \mathbf{p} , solve the cyclo-stationary dynamical
 515 model to obtain $\mathbf{x}(\mathbf{p})$, i.e. the seasonally varying residual mean circu-
 516 lation $(u^\dagger, v^\dagger, w^\dagger)$ and dynamic topography (η) .
- 517 2. Solve the transient tracers ($\mathbf{c}_{\text{CFC-11}}$ and $\mathbf{c}_{\text{CFC-12}}$) and the cyclo-stationary
 518 tracers, potential temperature, salinity and natural radiocarbon ($\boldsymbol{\theta}$, \mathbf{s} ,
 519 and \mathbf{c}_{14}) using the sparse-matrix tracer transport operators constructed
 520 using the current estimate of \mathbf{x} .
- 521 3. Evaluate the objective function for the given \mathbf{p} , that is, the posterior
 522 probability density function, $\text{prob}(\mathbf{p}|\text{data})$ as given in Eq.(27). (Eval-
 523 uating $\hat{f}(\mathbf{p})$ as given in Eq.(28) is equivalent to evaluating Eq. (27)
 524 because the logarithm function is a monotonically increasing function.)
- 525 4. Compute the gradient of the objective function $\nabla_{\mathbf{p}} \hat{f}(\mathbf{p})$ and check if
 526 the minimum has been reached.
- 527 5. Use a quasi-Newton search algorithm and $\nabla_{\mathbf{p}} \hat{f}(\mathbf{p})$ to produce an im-
 528 proved (more probable) estimate of \mathbf{p} .

529 The data assimilation procedure we use is equivalent to what is sometimes
 530 called a 4-D variational assimilation system except that the time-dependent
 531 part of the procedure is restricted to be periodic for the circulation and the
 532 non-transient tracers.

533 **5. Results**

534 We conducted state estimates for a version of CYCLOCIM with a reso-
535 lution of $8^\circ \times 8^\circ \times 22$ layers and $4^\circ \times 4^\circ \times 24$ layers. The optimization for a
536 version of CYCLOCIM with the standard OCIM resolution of $2^\circ \times 2^\circ \times 24$
537 layers is underway, but the optimal solution has not yet been found. We
538 stop the iteration when the cost function changes by less than 1% per 1,000
539 iteration. Note that for the $8^\circ \times 8^\circ$ and $4^\circ \times 4^\circ$ versions of CYCLOCIM we
540 prescribed a maximum number of iterations but we checked that the above
541 stopping criteria was met for the solutions we present here. Our goal is to
542 present the higher resolution solution in a separate paper that can focus on
543 the state estimate rather than the technical aspects of the assimilation, which
544 is the main focus of the present report.

545 The evolution of the objective function for the $8^\circ \times 8^\circ \times 22$ model for
546 the 10 000 iterations is shown in Figure 2. The objective function starts at
547 a value of approximately 10^4 . After 10,000 iterations the objective function
548 has decreased to a value of less than 5.4. The drop is fastest for the first
549 2000 iterations and the rate of decrease slows down afterwards. While the
550 rate of decrease is modest in the last 1000 iterations, $\hat{f}(\mathbf{p})$ is still decreasing
551 monotonically. However the changes in the resulting state estimate are rather
552 modest. For the version of CYCLOCIM with a $4^\circ \times 4^\circ \times 24$ layers resolution,
553 which we present in the next section, we performed approximately 4×10^3
554 iterations but we restarted the optimization along the way because we did
555 not include all the tracer constraints at the beginning.

556 The magnitude of the estimated eddy-stress divergence terms, which also
557 includes effects due to the missing nonlinear terms and discretization errors, is
558 comparable to the magnitude of the error terms from the original steady state
559 OCIM model (DeVries and Primeau, 2011). The horizontally averaged mag-
560 nitude of the vertical divergence of the eddy stresses is $\sim 1.2 \times 10^{-6}$ m/s². The
561 magnitude of these parameterized forcing terms are only modestly dependent
562 on the model resolution (i.e. $8^\circ \times 8^\circ$, $4^\circ \times 4^\circ$, or $2^\circ \times 2^\circ$). For comparison the
563 explicit forcing appearing on the right hand side of the horizontal momen-
564 tum equation has a typical horizontally averaged magnitude that is about
565 of factor of three bigger. This suggests that the non-parameterized large-
566 scale momentum balance dominates over the parameterized eddy-stresses,
567 and confirms that the relative weights we have assigned to the likelihood and
568 prior in our probability model provide an acceptable initial estimate. Fur-
569 ther refinements might be necessary if the goal is to interpret the resulting

570 eddy-stress terms physically.

571 *5.1. Comparison of assimilated variables with observations*

572 We begin by comparing each modeled tracer with the observations that
573 were used to constrain the model. In Figures 3 - 7, we perform the comparison
574 on the model's $4^\circ \times 4^\circ$ grid. It is therefore important to keep in mind that any
575 variance in the data associated with sharp gradients that cannot be resolved
576 by this coarse mesh will necessarily be ignored in the comparison.

577 A summary of the model fit to the data is provided in Figure 3 where we
578 show the joint cumulative distribution functions for the observed and mod-
579 eled tracer variables. For all tracers, more than 90% of the ocean volume
580 has concentrations that cluster tightly along the 1:1 line with $R^2 = 0.99$
581 for potential temperature, and $R^2 \approx 0.96$ for the other tracers. The close
582 agreement between the modelled and observed tracers suggests that the CY-
583 CLOCIM circulation can be used to produce meaningful estimates of the
584 climatological water mass formation rates and transport for the real ocean,
585 which is not always possible when analyzing free-running prognostic models.

586 In Figure 4 the globally averaged root mean square errors (RMSE) for the
587 potential temperature, salinity and CFC-11 from CYCLOCIM are compared
588 to the corresponding RMSEs for the OCIM CTRL state estimate (DeVries,
589 2014). By resolving the seasonal cycle, CYCLOCIM provides a better fit
590 to the observations at mid to high latitudes in the surface mixed layer and
591 seasonal thermocline. For the deep ocean below 500 m, where seasonality is
592 negligible, the RMSE is similar for both state estimates.

593 The globally averaged RMSE of potential temperature for CYCLOCIM is
594 0.29°C , whereas for OCIM it is 0.38°C . For the near-surface waters, 0 – 200m,
595 the decrease in the RMSE is significantly larger: 0.70°C for CYCLOCIM
596 versus 1.27°C for OCIM. Most of the improvements occur in mid-latitudes
597 (Figure 5) where the mixed layer depths have a pronounced seasonal vari-
598 ation. For example, the cold bias of more than 3°C to the North of the
599 Kuroshio Extension in the OCIM state estimate is substantially decreased
600 in the CYCLOCIM state estimate. Similarly, the low-latitude warm bias
601 in the OCIM state estimate has been eliminated in the CYCLOCIM state
602 estimate. Consistent with the results of Yu and Malanotte-Rizzoli (1998),
603 resolving the seasonal variations produces a significantly improved estimate
604 of the climatological circulation.

605 The ability of the model to capture the correct seasonal cycle is illus-
606 trated in Figure 6 in which we compare the potential temperature anomalies

607 (plotted as departure from the annual average) along 36°S for CYCLOCIM
608 and the WOA2013 observations (Boyer et al., 2013). The modeled potential
609 temperature shows a similar seasonal pattern as the observations. In the
610 summer (DJF), the mixed layer is shallow and there is a strong temperature
611 gradient near the surface. The mixed layer deepens through the fall (MAM)
612 and winter (JJA), becoming thickest in late winter when the surface strat-
613 ification entirely disappears. In spring (SON), as winds weaken and solar
614 irradiance increases, the mixed layer shoals once again. The model season-
615 ality is quite similar to that of the observations. Exceptions are along the
616 western boundary currents where the warm and cold anomalies penetrate
617 deeper in the observations than in the model. Such errors are not surprising
618 given the coarseness of the model resolution. We anticipate that these errors
619 will be reduced in the $2^\circ \times 2^\circ$ -CYCLOCIM and by including the dynamic
620 topography constraints from satellite altimeter data.

621 There are also significant improvements in the CYCLOCIM-simulated
622 surface salinity fields as can be seen from Figure 7 where we plot the errors
623 averaged over the top 200 m of the water column. Most prominently, large
624 errors in the western part of the subpolar gyre in the North Atlantic ocean
625 present in the steady OCIM state estimate are greatly reduced in the sea-
626 sonally varying CYCLOCIM state estimate. A similar positive bias in the
627 Southern Ocean for the steady OCIM state estimate has been completely
628 eliminated in the CYCLOCIM state estimate. Improvements extend over
629 most of the ocean with the exception of the Arctic basin where a uniformly
630 positive salinity bias in OCIM has been replaced by errors that appear more
631 random. The globally averaged RMSE for salinity in the upper 200 m of
632 the water column is reduced from 0.25 g/kg for OCIM to 0.11 g/kg for CY-
633 CLOCIM. For the full water column, the improvements are more modest but
634 still appreciable with RMSE reduced from 0.07 g/kg for OCIM to 0.04 g/kg
635 for CYCLOCIM.

636 The CYCLOCIM simulation of CFC-11 also provides a better fit to the
637 observed CFC-11 data. (The sensitivity of the fit to the scaling parame-
638 ter for the piston velocity is discussed in Appendix A.3). The RMSE for
639 surface waters between 0 and 200m is 0.07 pmol/kg for the OCIM state es-
640 timate whereas for CYCLOCIM it is 0.04 pmol/kg. In Figure 8 we plot the
641 decadadal-mean zonal averages of CFC-11 and CFC-12 concentrations. The
642 zonal averages are calculated using a volume weighted average of the CFC
643 concentrations for gridboxes with at least one CFC measurement at any
644 depth and longitude during the particular decade. The agreement between

645 CYCLOCIM and the observations is generally good. There are however clear
646 decadal biases at high latitudes in the Southern Ocean. South of 60°S the
647 model concentrations are several standard deviations too low for the 1980-
648 1989 and the 2000-2009 period while being in very good agreement for the
649 1990-1999 period. In the North there are similar low biases but the exact
650 latitude band with the largest biases appear to shift from decade to decade.
651 Decadal variability in the ventilation of the ocean provides a plausible expla-
652 nation for these errors (e.g. Waugh et al., 2013; DeVries et al., 2017).

653 The CYCLOCIM fit to the pre-bomb radiocarbon is also very good. Fig-
654 ure 9 compares the zonally-averaged CYCLOCIM simulated radiocarbon to
655 the GLODAPv2 data (Olsen et al., 2016). The zonal averages are calcu-
656 lated using a volume weighted average using only grid-boxes below 1000 m
657 with CFC-11 concentrations below 0.01 pmol/kg. The good agreement be-
658 tween CYCLOCIM and the GLODAPv2 radiocarbon at all latitudes and in
659 all basins suggests that the deep-ocean ventilation timescales in CYCLOCIM
660 are comparable to those of the real ocean.

661 *5.2. Meridional overturning circulation*

662 The climatological mean meridional overturning circulation (MOC) is de-
663 fined as the stream function for the zonally integrated meridional volume
664 transport with depth. Figure 10(a)-(c) shows the implied stream function
665 for CYCLOCIM in the Southern Ocean, Pacific Ocean and Atlantic Ocean.
666 The estimated overturning circulation appears consistent with typical results
667 from inverse models (Lumpkin and Speer, 2007; DeVries and Primeau, 2011;
668 DeVries and Holzer, 2019; Cessi, 2019). The maximum of the stream func-
669 tion is approximately -30 Sv in the Southern Ocean ($\sim 60^{\circ}$ S), 22 Sv in the
670 Northern Atlantic, and -8 Sv across the equator in the deep Pacific Ocean.

671 *5.3. Inferred air-sea fluxes and meridional transport of heat and freshwater*

672 In contrast to the OCIM state estimate, we did not use the heat and
673 freshwater reanalysis fluxes to constrain the CYCLOCIM state estimate. It
674 is therefore interesting to examine how the inferred meridional heat and
675 freshwater transports compare to other data-based estimates.

676 Figure 11 shows the seasonally averaged surface heat flux. During June
677 to August the ocean gains heat in the northern hemisphere and loses it in the
678 southern hemisphere, while the reverse is true in the December to February
679 months. The shoulder seasons (March-May and September-November) have

680 more muted air-sea heat flux patterns with the ocean generally gaining heat
681 at low latitudes and losing heat at high latitudes.

682 In Figure 12(a) we show the annually-average CYCLOCIM estimate of
683 the air-sea heat flux. The ocean gains heat in the East Pacific cold tongue
684 region and along the eastern boundaries of the Pacific and Atlantic with
685 magnitude around 150 Wm^{-2} . Heat gained in the tropical regions is trans-
686 ported poleward and is lost in higher latitudes. In Figure 12(b) we compare
687 the mean meridional transport computed from the CYCLOCIM state esti-
688 mate to estimates from the CORE.v2 reanalysis (Large and Yeager, 2009),
689 from OCIM-CTRL (DeVries, 2014) and from a not-fully-converged estimate
690 using a version of CYCLOCIM with a horizontal resolution of $2^\circ \times 2^\circ$ (CYL-
691 COCIM2x2). Before discussing these results we hesitate to point out that
692 as presently configured the model shows great sensitivity to the choice of
693 restoring timescale τ used in the surface boundary condition for heat and
694 freshwater (See Appendix A.2). The CYCLOCIM meridional heat trans-
695 port peaks near 20°N with a value of 2 PW and near 20°S with a value
696 of 1 PW. The meridional heat transports for CYCLOCIM2x2 and OCIM
697 also peak near 20°N but with weaker values of 1.2, 1.5 PW respectively,
698 and at 15°S with a consistent value of approximately 1 PW. In the southern
699 hemisphere there is a general agreement between OCIM, CYCLOCIM and
700 CYCLOCIM2x2, which in turn predict a significantly larger poleward heat
701 transport than CORE.v2. The larger poleward heat transport in southern
702 hemisphere is also consistent with the ECCO estimate (Forget and Ferreira,
703 2019) and from the atmospheric reanalyses (Trenberth and Fasullo, 2017).
704 In the northern hemisphere south of $\sim 50^\circ\text{N}$ the CORE.v2 meridional heat
705 transport tends to be smaller than that of CYCLOCIM but larger than that
706 of OCIM and CYCLOCIM2x2. Northward of $\sim 50^\circ\text{N}$ CYCLOCIM pre-
707 dicted a significantly smaller poleward heat transport than either CORE.v2,
708 OCIM, CYCLOCIM2x2. The air-sea heat fluxes in the Kuroshio and Gulf
709 Stream regions for the CYCLOCIM state estimate are substantially weaker
710 than those for the CORE.v2 reanalysis (not shown). The annually averaged
711 heat loss to the atmosphere in the Gulf Stream region as estimated from
712 CYCLOCIM is around 50 Wm^{-2} , while in the Labrador Sea the annually
713 averaged heat loss is greater than 300 Wm^{-2} . Such a large heat loss to the
714 atmosphere would suggest a large meridional heat transport to the north of
715 50°N , yet the CYCLOCIM estimate appears to be substantially weaker than
716 either the CORE.v2, OCIM, or CYLCOCIM2x2 estimates. This apparent
717 inconsistency can be explained by the fact that CYCLCOCIM produces an

718 unrealistic southward heat transport near 50°N in the Pacific basin, which
719 more than compensates for the unrealistically large northward heat trans-
720 port in the Atlantic basin. The CYLCOCIM2x2 estimate does not appear to
721 produce the unrealistic southward heat transport in the Pacific basin, which
722 is encouraging, but it does point to the sensitivity of the inferred pattern of
723 air-sea heat fluxes to the horizontal resolution of the model in addition to
724 a strong sensitivity to the choice of restoring time-scale used in the surface
725 boundary condition for temperature and salinity.

726 The implied annually averaged freshwater fluxes (Figure 12(c)) shows a
727 pattern that is similar to the CORE.v2 reanalysis data (not shown) (Large
728 and Yeager, 2009). There is net evaporation in the subtropical gyres and net
729 precipitation in the intertropical convergence zone (ITCZ) and the sub-polar
730 regions. However, CYCLOCIM predicts weak precipitation minus evapora-
731 tion in the ITCZ with a magnitude around 1 m/year and strong precipi-
732 tation minus evaporation in the Gulf Stream region and Labrador Sea with
733 magnitude more than 3 m/year. In the COREv2 reanalysis, there is 1.5
734 m/year of precipitation minus evaporation in the ITCZ, and 1 m/year of
735 precipitation minus evaporation in the Gulf Stream region and Labrador
736 Sea. Figure 12(d) compares the meridional freshwater transport estimate
737 from CYCLOCIM, CYCLOCIM2x2 to those of CORE.v2 and OCIM. The
738 largest disagreement is in the northern hemisphere between the equator and
739 ~ 40°N where CYCLOCIM predicts a strong southward freshwater trans-
740 port whereas both OCIM and the CORE.v2 estimates show a northward
741 transport between ~ 5°N and 20°N and a substantially weaker southward
742 transport than CYCLOCIM between 20°N and 40° N. The CYCLOCIM2x2
743 estimate is generally closer to the OCIM and CORE.v2 estimates implying
744 again that the surface flux patterns are quite sensitive to the horizontal
745 resolution of the model.

746 The differences between the CORE.v2 reanalysis and the CYCLOCIM in-
747 ferred meridional heat and freshwater transport suggest that in future inver-
748 sions we might obtain improved state estimates by including atmospheric re-
749 analysis constraints in the probability model as we did previously for OCIM.
750 On the other hand CYCLOCIM2x2 produces reasonable first-order estimate
751 of the meridional transports of heat and freshwater that are independent of
752 atmospheric reanalyses. Without a more thorough uncertainty analysis it
753 is difficult to unequivocally select one estimate over another as being more
754 representative of the true climatological meridional transports. Such an un-
755 certainty analysis is planned for the $2^\circ \times 2^\circ$ version of CYCLOCIM.

756 **6. Summary and discussion**

757 We have presented the formulation of a 4-D variational assimilation sys-
758 tem for estimating the climatological mean seasonal cycle of the residual-
759 mean ocean circulation. The system, which we call CYCLOCIM, assimilates
760 monthly mean potential temperature and salinity data from the WOA2013,
761 transient CFC-11 and CFC-12 data from the GLODAPv2 database, and
762 natural radiocarbon measurements for the deep ocean from the GLODAPv2
763 database.

764 We have demonstrated that our data-constrained model produces a plau-
765 sible overturning circulation. While the meridional heat and freshwater trans-
766 ports are quite sensitive to the model's horizontal resolution, the $2^\circ \times 2^\circ$
767 version of CYCLOCIM produces estimates that are in rough agreement with
768 existing estimates even though the objective function did not explicitly in-
769 clude such constraints. By resolving the seasonal cycle we are able to produce
770 a much better fit to observations in the upper ocean compared to our pre-
771 vious steady-state OCIM estimates, and most of the assimilated variables
772 are in agreement with the observational constraints. One exception is the
773 CFC-11 and CFC-12 tracers in the Antarctic region of the Southern Ocean,
774 where CYCLOCIM concentrations are too low. Decadal variability in the ven-
775 tilation of the ocean provides a plausible explanation for these errors (e.g.
776 Waugh et al., 2013; DeVries et al., 2017).

777 The main product of our assimilation system is a set of 12 monthly data-
778 constrained tracer transport operators for the climatological annual cycle of
779 the ocean circulation. We anticipate that these operators will be particularly
780 useful for global biogeochemical inversions for which there is a need for reli-
781 able estimates of the seasonally varying climatological transport of tracers.
782 We focused on the estimate produced using CYCLOCIM with a $4^\circ \times 4^\circ$ resolu-
783 tion, but we are presently completing the optimization for the $2^\circ \times 2^\circ$ version
784 of the model. For expediency we also ignored valuable constraints on the
785 dynamic topography of the model provided by satellite altimeter data. We
786 plan on including this constraint in future versions of CYCLOCIM. Another
787 avenue for future work is to produce an ensemble of tracer transport opera-
788 tors drawn from the Bayesian posterior distribution for the eddy-stresses and
789 surface forcing. So far we have only determined the maximum of the pos-
790 terior distribution but the development of a computationally efficient means
791 of drawing samples from the posterior should be a high priority for future
792 work, so that realistic error estimates can be provided.

793 In principle, CYCLOCIM could also be used to estimate the eddy-stresses
794 as was done in the work of Ferreira et al. (2005). However, as presently formu-
795 lated the tracer transport errors due to the coarse space and time resolution
796 of the model get partially corrected via adjustments of the eddy-stress terms.
797 This makes the eddy-stress terms noisy and difficult to interpret. It might
798 also be necessary to replace the Rayleigh drag in the momentum equation
799 with a laplacian viscosity as was done in the original OCIM (DeVries and
800 Primeau, 2011) but subsequently replaced with the computationally more
801 efficient from Rayleigh drag (DeVries, 2014). For our present goal of gener-
802 ating high fidelity tracer transport operators our inability to separate physical
803 eddy-stress from noise is not a major problem, but if the goal is to study the
804 eddy-stresses it will be important to separate these two contributions to the
805 eddy-stress control variables in the model.

7. Acknowledgments

QH and FP acknowledge support from National Science Foundation Grant 1658380. TD acknowledges support from NSF award OCE-1658392.

References

Balmaseda, M.A., Hernandez, F., Storto, A., Palmer, M.D., Alves, O., Shi, L., Smith, G.C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y.S., Chepurin, G.A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A., Lee, T., Martin, M.J., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, K.A., Tang, Y.M., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J.F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer-Becker, K., Gaillard, F., 2015. The Ocean Reanalyses Intercomparison Project (ORA-IP). *Journal of Operational Oceanography* 8, s80–s97. URL: <https://doi.org/10.1080/1755876X.2015.1022329>, doi:10.1080/1755876X.2015.1022329.

Bardin, A., Primeau, F., Lindsay, K., 2014. An offline implicit solver for simulating prebomb radiocarbon. *Ocean Modelling* 73, 45–58. URL: <http://dx.doi.org/10.1016/j.ocemod.2013.09.008>, doi:10.1016/j.ocemod.2013.09.008.

Botev, Z.I., Grotowski, J.F., Kroese, D.P., 2010. Kernel density estimation via diffusion. *Ann. Statist.* 38, 2916–2957. URL: <https://doi.org/10.1214/10-AOS799>, doi:10.1214/10-AOS799.

Boyer, T.P., Antonov, J.I., Baranova, O.K., Garcia, H.E., Johnson, D.R., Mishonov, A.V., O'Brien, T.D., Seidov 1948-, D., Smolyar, I.I., Zweng, M.M., Paver, C.R., Locarnini, R.A., Reagan, J.R., Forgy, C.C., Grodsky, A., Levitus, S., 2013. World ocean database 2013. URL: <https://repository.library.noaa.gov/view/noaa/1291>, doi:<http://doi.org/10.7289/V5NZ85MT>.

Brix, H., Menemenlis, D., Hill, C., Dutkiewicz, S., Jahn, O., Wang, D., Bowman, K., Zhang, H., 2015. Using green's functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model. *Ocean Modelling* 95, 1 – 14. URL: <http://www.sciencedirect.com/science/article/pii/S1463500315001171>, doi:<https://doi.org/10.1016/j.ocemod.2015.07.008>.

Carroll, D., Menemenlis, D., Adkins, J.F., Bowman, K.W., Brix, H., Dutkiewicz, S., Fenty, I., Gierach, M.M., Hill, C., Jahn, O., Landschützer,

P., Lauderdale, J.M., Liu, J., Manizza, M., Naviaux, J.D., Rödenbeck, C., Schimel, D.S., Van der Stocken, T., Zhang, H., 2020. The ecco-darwin data-assimilative global ocean biogeochemistry model: Estimates of seasonal to multi-decadal surface ocean pco₂ and air-sea co₂ flux. *Journal of Advances in Modeling Earth Systems* n/a, e2019MS001888. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001888>, doi:10.1029/2019MS001888, arXiv:<https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001888> 2019MS001888.

Cessi, P., 2019. The global overturning circulation. *Annual Reviews*, Palo Alto. volume 11 of *Annual Review of Marine Science*. pp. 249–270. doi:10.1146/annurev-marine-010318-095241.

de Boyer Montégut, C., Madec, G., Fischer, A.S., Lazar, A., Iudicone, D., 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. *Journal of Geophysical Research: Oceans* 109. URL: <https://doi.org/10.1029/2004JC002378>, doi:10.1029/2004JC002378.

DeVries, T., 2014. The oceanic anthropogenic CO₂ sink: Storage, air-sea fluxes, and transports over the industrial era. *Global Biogeochemical Cycles* 28, 631–647. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013GB004739>, doi:10.1002/2013GB004739.

Devries, T., Deutsch, C., 2014. Large-scale variations in the stoichiometry of marine organic matter respiration. *Nature Geoscience* 7, 890–894. doi:10.1038/ngeo2300.

DeVries, T., Deutsch, C., Rafter, P.A., Primeau, F., 2013. Marine denitrification rates determined from a global 3-D inverse model. *Biogeosciences* 10, 2481–2496. doi:10.5194/bg-10-2481-2013.

DeVries, T., Holzer, M., 2019. Radiocarbon and Helium Isotope Constraints on Deep Ocean Ventilation and Mantle-³He Sources. *Journal of Geophysical Research: Oceans* 124, 3036–3057. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JC014716>, doi:10.1029/2018JC014716.

DeVries, T., Holzer, M., Primeau, F., 2017. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. *Nature* 542, 215–218. URL: <http://dx.doi.org/10.1038/nature21068>, doi:10.1038/nature21068.

DeVries, T., Primeau, F., 2011. Dynamically and Observationally Constrained Estimates of Water-Mass Distributions and Ages in the Global Ocean. *Journal of Physical Oceanography* 41, 2381–2401. URL: <http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-10-05011.1>, doi:10.1175/JPO-D-10-05011.1.

Devries, T., Primeau, F., Deutsch, C., 2012. The sequestration efficiency of the biological pump. *Geophysical Research Letters* 39, 1–5. doi:10.1029/2012GL051963.

Doi, T., Osafune, S., Sugiura, N., Kouketsu, S., Murata, A., Masuda, S., Toyoda, T., 2015. Multidecadal change in the dissolved inorganic carbon in a long-term ocean state estimation. *Journal of Advances in Modeling Earth Systems* 7, 1885–1900. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015MS000462>, doi:10.1002/2015MS000462, arXiv:<https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015MS000462>.

Ferreira, D., Marshall, J., Heimbach, P., 2005. Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint. *Journal of Physical Oceanography* 35, 1891–1910. URL: <https://doi.org/10.1175/JPO2785.1>, doi:10.1175/JPO2785.1.

Forget, G., Campin, J.M., Heimbach, P., Hill, C.N., Ponte, R.M., Wunsch, C., 2015. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. *Geoscientific Model Development* 8, 3071–3104. doi:10.5194/gmd-8-3071-2015.

Forget, G., Ferreira, D., 2019. Global ocean heat transport dominated by heat export from the tropical pacific. *Nature Geoscience* 12.

Frants, M., Holzer, M., DeVries, T., Matear, R., 2015. Constraints on the global marine iron cycle from a simple inverse model. *Journal of Geophysical Research: Biogeosciences* 121, 28–51. URL:

<https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JG003111>, doi:10.1002/2015JG003111.

Fu, W., Primeau, F., 2017. Application of a fast Newton–Krylov solver for equilibrium simulations of phosphorus and oxygen. *Ocean Modelling* 119, 35–44. URL: <https://doi.org/10.1016/j.ocemod.2017.09.005>, doi:10.1016/j.ocemod.2017.09.005.

Fukumori, I., Heimbach, P., Ponte, R.M., Wunsch, C., 2018. A Dynamically Consistent, Multivariable Ocean Climatology. *Bulletin of the American Meteorological Society* 99, 2107–2128. URL: <https://doi.org/10.1175/BAMS-D-17-0213.1>, doi:10.1175/BAMS-D-17-0213.1, arXiv:<https://journals.ametsoc.org/bams/article-pdf/99/10/2107/3748788/>

Ganachaud, A., Wunsch, C., 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. *Nature* 408, 453–457. URL: <https://doi.org/10.1038/35044048>, doi:10.1038/35044048.

Ghil, M., Malanotte-Rizzoli, P., 1991. Data assimilation in meteorology and oceanography. *Advances in geophysics* 33, 141–266. doi:10.1016/S0065-2687(08)60442-2.

Graven, H.D., Gruber, N., Key, R., Khatiwala, S., Giraud, X., 2012. Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO_2 uptake. *Journal of Geophysical Research: Oceans* 117. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JC008074>, doi:10.1029/2012JC008074, arXiv:<https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012JC008074>

Haltiner, G.J., Williams, R.T., 1980. *Numerical Prediction and Dynamical Meteorology* Second Edition. John Wiley & Sons.

Heinkenschloss, M., 2008. Numerical solution of implicitly constrained optimization problems. CAAM Technical Report .

Holzer, M., DeVries, T., Bianchi, D., Newton, R., Schlosser, P., Winckler, G., 2017. Objective estimates of mantle ^3He in the ocean and implications for constraining the deep ocean

circulation. *Earth and Planetary Science Letters* 458, 305–314. URL: <http://dx.doi.org/10.1016/j.epsl.2016.10.054>, doi:10.1016/j.epsl.2016.10.054.

Holzer, M., Frants, M., Pasquier, B., 2016. The age of iron and iron source attribution in the ocean. *Global Biogeochemical Cycles* 30, 1454–1474. doi:10.1002/2016GB005418.

Holzer, M., Primeau, F.W., 2013. Global teleconnections in the oceanic phosphorus cycle: Patterns, paths, and timescales. *Journal of Geophysical Research: Oceans* 118, 1775–1796. doi:10.1002/jgrc.20072.

Holzer, M., Primeau, F.W., DeVries, T., Matear, R., 2014. The Southern Ocean silicon trap: Data-constrained estimates of regenerated silicic acid, trapping efficiencies, and global transport paths. *Journal of Geophysical Research: Oceans* 119, 313–331. doi:10.1002/2013JC009356.

John, S.G., Helgoe, J., Townsend, E., Weber, T., DeVries, T., Tagliabue, A., Moore, K., Lam, P., Marsay, C.M., Till, C., 2018. Biogeochemical cycling of Fe and Fe stable isotopes in the Eastern Tropical South Pacific. *Marine Chemistry* 201, 66–76. URL: <http://dx.doi.org/10.1016/j.marchem.2017.06.003>, doi:10.1016/j.marchem.2017.06.003.

Kelley, C.T., 2013. Solving nonlinear equations with Newton's method. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Key, R.M., Kozyr, A., Sabine, C.L., Lee, K., Wanninkhof, R., Bullister, J.L., Feely, R.A., Millero, F.J., Mordy, C., Peng, T.H., 2004. A global ocean carbon climatology: Results from global data analysis project (glodap). *Global Biogeochemical Cycles* 18. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004GB002247>, doi:10.1029/2004GB002247.

Khatiwala, S., 2008. Fast spin up of Ocean biogeochemical models using matrix-free Newton-Krylov. *Ocean Modelling* 23, 121–129. doi:10.1016/j.ocemod.2008.05.002.

Köhl, A., 2015. Evaluation of the gecco2 ocean synthesis: transports of volume, heat and freshwater in the atlantic. *Quarterly*

Journal of the Royal Meteorological Society 141, 166–181. URL: <https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2347>, doi:10.1002/qj.2347, arXiv:<https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2347>

Large, W.G., Danabasoglu, G., McWilliams, J.C., Gent, P.R., Bryan, F.O., 2001. Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity. *Journal of Physical Oceanography* 31, 518–536. URL: [https://doi.org/10.1175/1520-0485\(2001\)031<0518:ECOAGO>2.0.CO;2](https://doi.org/10.1175/1520-0485(2001)031<0518:ECOAGO>2.0.CO;2), doi:10.1175/1520-0485(2001)031<0518:ECOAGO>2.0.CO;2, arXiv:[https://journals.ametsoc.org/jpo/article-pdf/31/2/518/4446943/1520-0485\(2001\)031<0518:ECOAGO>2.0.CO;2.pdf](https://journals.ametsoc.org/jpo/article-pdf/31/2/518/4446943/1520-0485(2001)031<0518:ECOAGO>2.0.CO;2.pdf)

Large, W.G., Yeager, S.G., 2009. The global climatology of an interannually varying air-sea flux data set. *Climate Dynamics* 33, 341–364. URL: <https://doi.org/10.1007/s00382-008-0441-3>, doi:10.1007/s00382-008-0441-3.

Leonard, B.P., 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. *Computer Methods in Applied Mechanics and Engineering* 19, 59–98. URL: <http://www.sciencedirect.com/science/article/pii/0045782579900343>, doi:[https://doi.org/10.1016/0045-7825\(79\)90034-3](https://doi.org/10.1016/0045-7825(79)90034-3).

Li, X., Primeau, F.W., 2008. A fast Newton-Krylov solver for seasonally varying global ocean biogeochemistry models. *Ocean Modelling* 23, 13–20. doi:10.1016/j.ocemod.2008.03.001.

Liu, C., Köhl, A., Stammer, D., 2012. Adjoint-Based Estimation of Eddy-Induced Tracer Mixing Parameters in the Global Ocean. *Journal of Physical Oceanography* 42, 1186–1206. URL: <https://doi.org/10.1175/JPO-D-11-0162.1>, doi:10.1175/JPO-D-11-0162.1.

Lumpkin, R., Speer, K., 2007. Global Ocean Meridional Overturning. *Journal of Physical Oceanography* 37, 2550–2562. doi:10.1175/JPO3130.1.

Marshall, J., Schott, F., 1999. Open-ocean convection: Observations, theory, and models. *Reviews of Geophysics* 37, 1–64. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98RG02739>, doi:10.1029/98RG02739.

Martin, T.S., Primeau, F., Casciotti, K.L., 2019a. Assessing marine nitrogen cycle rates and process sensitivities with a global 3-d inverse model. *Global Biogeochemical Cycles* 33, 1026–1047. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GB006088>, doi:10.1029/2018GB006088, arXiv:<https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GB006088>

Martin, T.S., Primeau, F., Casciotti, K.L., 2019b. Assessing marine nitrogen cycle rates and process sensitivities with a global 3D inverse model. *Global Biogeochem. Cycles* accepted August 4, n.a.

Mazloff, M.R., Heimbach, P., Wunsch, C., 2010. An Eddy-Permitting Southern Ocean State Estimate. *Journal of Physical Oceanography* 40, 880–899. URL: <https://doi.org/10.1175/2009JPO4236.1>, doi:10.1175/2009JPO4236.1, arXiv:<https://journals.ametsoc.org/jpo/article-pdf/40/5/880/2500333>

Najjar, R.G., Orr, J., 1998. Design of ocmip-2 simulations of chlorofluorocarbons , the solubility pump and common biogeochemistry. URL: <http://www.cgd.ucar.edu/oce/OCMIP/design.pdf>.

Olsen, A., Key, R.M., van Heuven, S., Lauvset, S.K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F.F., Suzuki, T., 2016. The global ocean data analysis project version 2 (glodapv2) – an internally consistent data product for the world ocean. *Earth System Science Data* 8, 297–323. URL: <https://www.earth-syst-sci-data.net/8/297/2016/>, doi:10.5194/essd-8-297-2016.

Osafune, S., Masuda, S., Sugiura, N., Doi, T., 2015. Evaluation of the applicability of the estimated state of the global ocean for climate research (estoc) data set. *Geophysical Research Letters* 42, 4903–4911. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL064538>, doi:10.1002/2015GL064538, arXiv:<https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015GL064538>

Pasquier, B., Holzer, M., 2016. The plumbing of the global biological pump: Efficiency control through leaks, pathways, and time scales. *Journal of Geophysical Research: Oceans* 121, 6367–6388. doi:10.1002/2016JC011821.

Pasquier, B., Holzer, M., 2017. Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles. *Biogeosciences* 14, 4125–4159. doi:10.5194/bg-14-4125-2017.

Primeau, F.W., Holzer, M., DeVries, T., 2013. Southern Ocean nutrient trapping and the efficiency of the biological pump. *Journal of Geophysical Research: Oceans* 118, 2547–2564. doi:10.1002/jgrc.20181.

Roshan, S., DeVries, T., 2017. Efficient dissolved organic carbon production and export in the oligotrophic ocean. *Nature Communications* 8, 2036. URL: <http://www.nature.com/articles/s41467-017-02227-3>, doi:10.1038/s41467-017-02227-3.

Roshan, S., Wu, J., DeVries, T., 2017. Controls on the Cadmium-Phosphate Relationship in the Tropical South Pacific. *Global Biogeochemical Cycles* 31, 1516–1527. doi:10.1002/2016GB005556.

Sarmiento, J.L., Bryan, K., 1982. An ocean transport model for the North Atlantic. *Journal of Geophysical Research: Oceans* 87, 394–408. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC087iC01p00394>, doi:10.1029/JC087iC01p00394.

Schlitzer, R., 1993. Determining the mean, large-scale circulation of the Atlantic with the adjoint method. *Journal of Physical Oceanography* 23, 1935–1952.

Schlitzer, R., 2007. Assimilation of Radiocarbon and Chlorofluorocarbon Data to Constrain Deep and Bottom Water Transports in the World Ocean. *Journal of Physical Oceanography* 37, 259–276. URL: <http://journals.ametsoc.org/doi/abs/10.1175/JPO3011.1>, doi:10.1175/JPO3011.1.

Stammer, D., Ueyoshi, K., Köhl, A., Large, W.G., Josey, S.A., Wunsch, C., 2004. Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. *Journal of Geophysical Research: Oceans* 109. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JC002082>, doi:10.1029/2003JC002082.

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., Marshall, J., 2002. Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. *Journal of Geophysical Research: Oceans* 107, 1–27. URL:

<https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JC000888>, doi:10.1029/2001JC000888.

Stommel, H., 1979. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. *Proceedings of the National Academy of Sciences* 76, 3051 LP – 3055. URL: <http://www.pnas.org/content/76/7/3051.abstract>, doi:10.1073/pnas.76.7.3051.

Teng, Y.C., Primeau, F.W., Moore, J.K., Lomas, M.W., Martiny, A.C., 2014. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. *Nature Geoscience* 7, 895–898. doi:10.1038/ngeo2303.

Trenberth, K.E., Fasullo, J.T., 2017. Atlantic meridional heat transports computed from balancing earth's energy locally. *Geophysical Research Letters* 44, 1919–1927. URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL072475>, doi:10.1002/2016GL072475, arXiv:<https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL072475>

Trenberth, K.E., Large, W.G., J.G., O., 1989. A global ocean wind stress climatology based on ECMWF analyses.

USGS, 2009. Atmospheric mixing ratios of cfc-11, cfc-12, cfc-113, sf6. URL: http://water.usgs.gov/lab/software/air_curve/index.html.

Wang, W.L., Moore, J.K., Martiny, A.C., Primeau, F.W., 2019. Convergent estimates of marine nitrogen fixation. *Nature* 566, 205–211. URL: <https://doi.org/10.1038/s41586-019-0911-2>, doi:10.1038/s41586-019-0911-2.

Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited. *Limnology and Oceanography: Methods* 12, 351–362. URL: <https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lom.2014.12.351>, doi:10.4319/lom.2014.12.351, arXiv:<https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lom.2014.12.351>

Waugh, D.W., Primeau, F., Devries, T., Holzer, M., 2013. Recent changes in the ventilation of the southern oceans. *Science (New York, N.Y.)* 339, 568–70. doi:10.1126/science.1225411.

Weber, T., Cram, J.A., Leung, S.W., DeVries, T., Deutsch, C., 2016. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. *Proceedings of the National Academy of Sciences* 113, 8606–8611. URL: <http://www.pnas.org/lookup/doi/10.1073/pnas.1604414113>, doi:10.1073/pnas.1604414113, arXiv:arXiv:1408.1149.

Wenzel, M., Schröter, J., Olbers, D., 2001. The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation. *Progress in Oceanography* 48, 73–119. URL: <http://www.sciencedirect.com/science/article/pii/S0079661100000483>, doi:[https://doi.org/10.1016/S0079-6611\(00\)00048-3](https://doi.org/10.1016/S0079-6611(00)00048-3).

Williams, R.G., Marshall, J.C., Spall, M.A., 1995. Does Stommel's Mixed Layer "Demon" Work? *Journal of Physical Oceanography* 25, 3089–3102. doi:10.1175/1520-0485(1995)025<3089:DSMLW>2.0.CO;2.

Wunsch, C., 1996. The Ocean Circulation Inverse Problem. Cambridge University Press. doi:10.1017/CBO9780511629570.

Yu, L., Malanotte-Rizzoli, P., 1996. Analysis of the north atlantic climatologies using a combined ogcm/adjoint approach. *Journal of Marine Research* 54, 867–913. URL: <https://www.ingentaconnect.com/content/jmr/jmr/1996/00000054/00000005/art00003>, doi:doi:10.1357/0022240963213592.

Yu, L., Malanotte-Rizzoli, P., 1998. Inverse Modeling of Seasonal Variations in the North Atlantic Ocean. *Journal of Physical Oceanography* 28, 902–922. URL: [https://doi.org/10.1175/1520-0485\(1998\)028<0902:IMOSVI>2.0.CO;2](https://doi.org/10.1175/1520-0485(1998)028<0902:IMOSVI>2.0.CO;2), doi:10.1175/1520-0485(1998)028<0902:IMOSVI>2.0.CO;2, arXiv:[https://journals.ametsoc.org/jpo/article-pdf/28/5/902/4433096/1520-0485\(1998\)028<0902:IMOSVI>2.0.CO;2.pdf](https://journals.ametsoc.org/jpo/article-pdf/28/5/902/4433096/1520-0485(1998)028<0902:IMOSVI>2.0.CO;2.pdf)



Figure 1: The workflow of the cyclo-stationary ocean circulation inverse model (CY-CLOCIM).

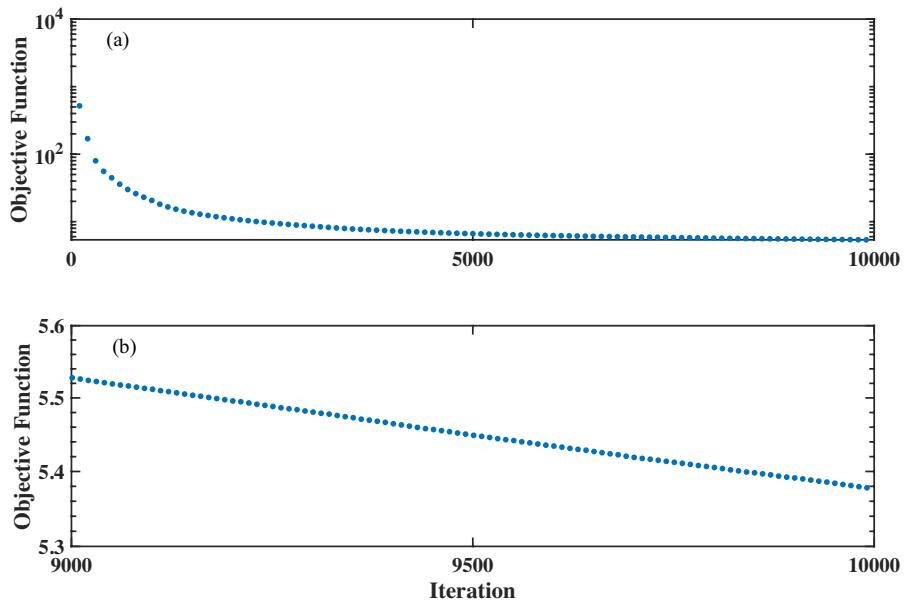


Figure 2: The evolution of the objective function for the $8^\circ \times 8^\circ \times 24$ model run in (a) first 10000 iterations (b) last 1000 iterations. Note that the contribution to the objective function from each tracer corresponds roughly to $\frac{1}{2}\chi_i^2/n_i$ for $i = 1, \dots, 5$, where χ_i^2 is the Chi-squared statistic for the i -th tracer and n_i is the number of observations of the i -th tracer. At the end of the optimization the value of the objective function, which includes both the log likelihood and log prior is ~ 5.4 which is close to the expected contribution of 2.5 from the likelihood alone based on the rule of thumb that each χ_i^2 term should be roughly equal to n_i .



Figure 3: Joint distribution function for the gridbox-volume-weighted observed and modeled tracer concentrations: (a) potential temperature (b) salinity (c) CFC-11 (d) CFC-12 (e) $\Delta^{14}\text{C}$, which are expressed in terms of the percentages of the cumulative distribution function. The Nth percentage is defined such that N% of the joint distribution lies inside N% contour. The joint distribution was estimated using the kernel density estimation method described in Botev et al. (2010) and modified to produce a volume weighted distribution (Primeau et al., 2013).

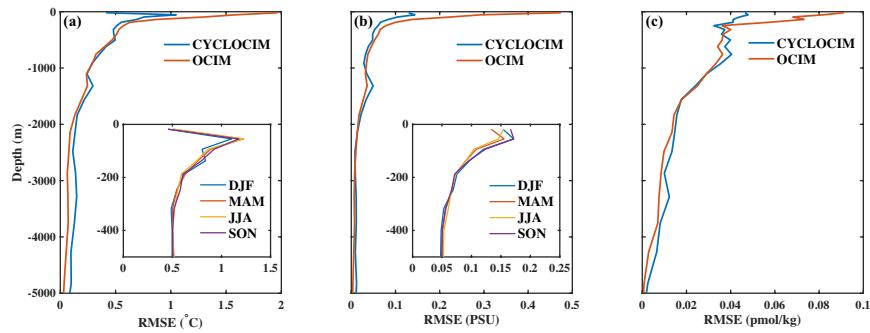


Figure 4: Horizontally-averaged root mean square error (RMSE) of (a) annual-mean potential temperature, (b) annual-mean salinity, and (c) CFC-11, computed from CYCLOCIM and OCIM. The subplot in (a) and (c) is the seasonal RMSE of potential temperature and salinity from CYCLOCIM in the upper ocean (0 - 500m).

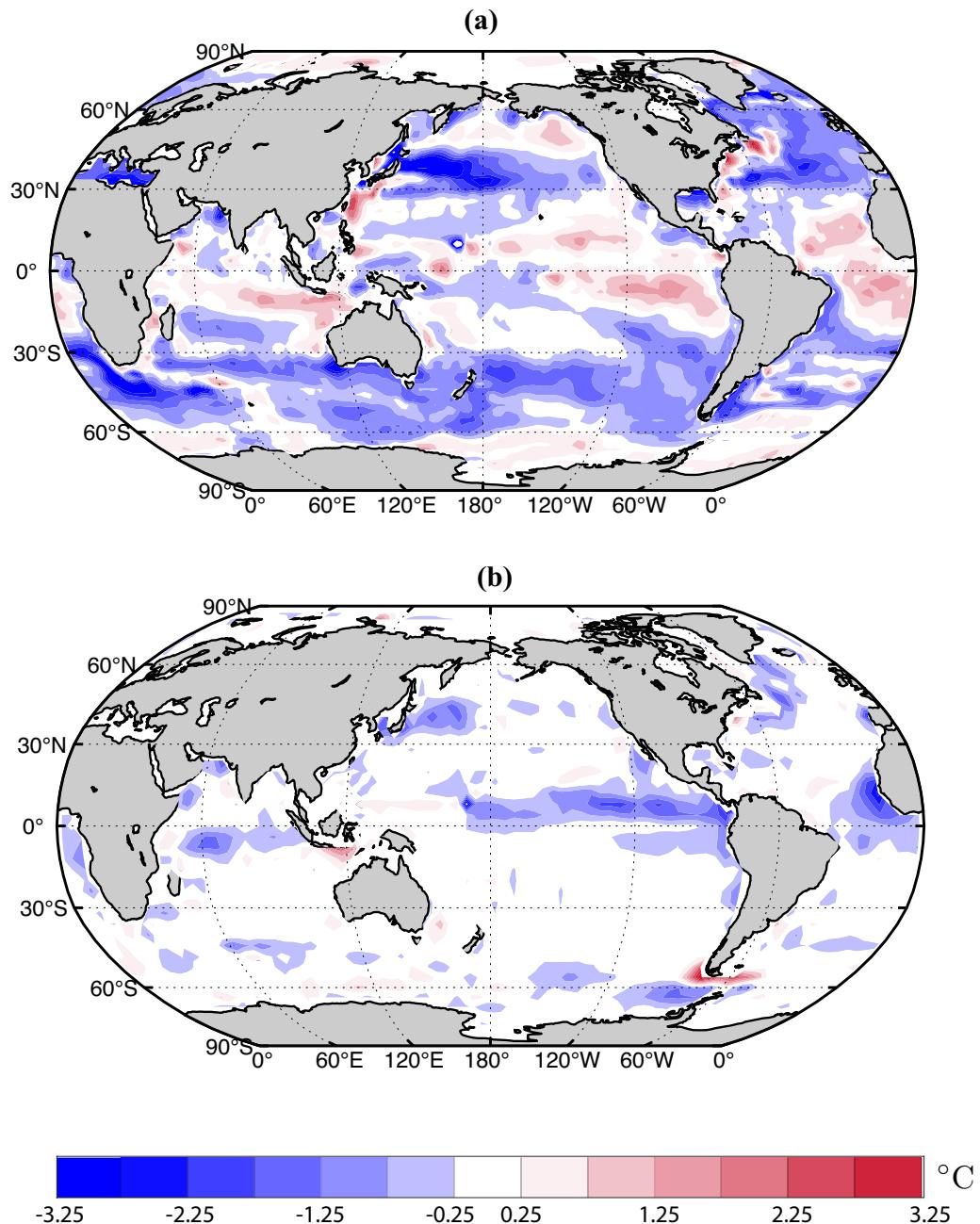


Figure 5: Difference between modeled and observed temperature in the upper 200m from OCIM (a) and CYCLOCIM (b) colored at 0.5 °C interval.

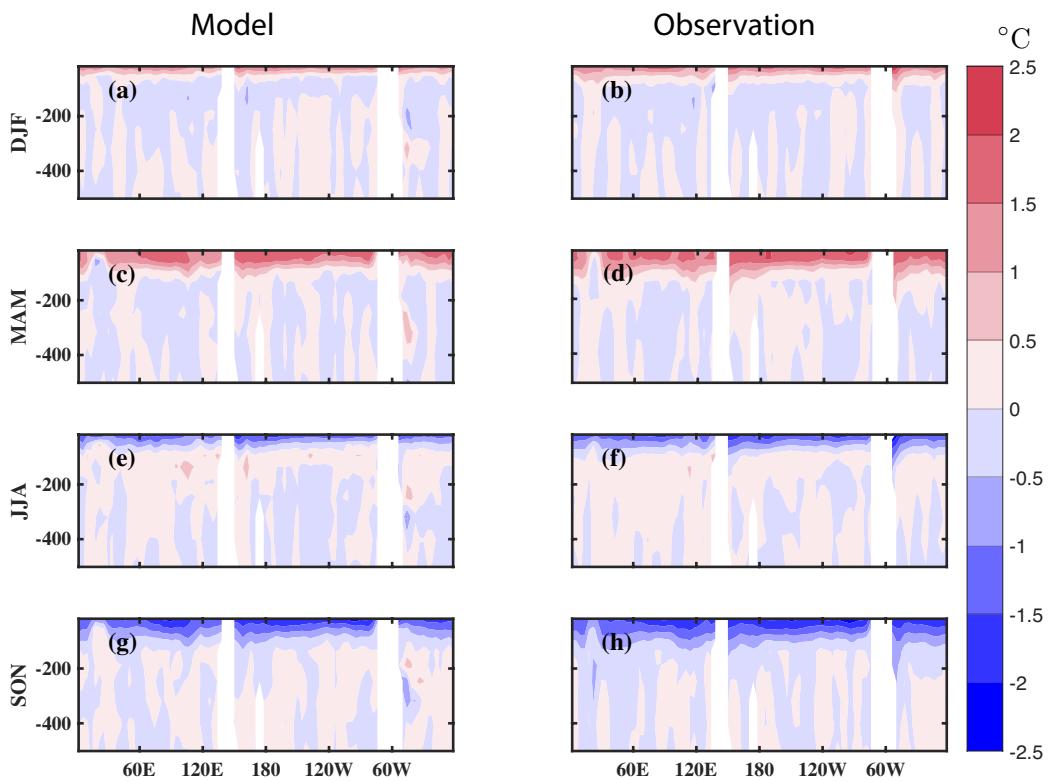


Figure 6: The longitude-depth section of the modeled potential temperature anomaly in comparison with the annual mean along 36°S in CYCLOCIM run from (a) December to February (DJF), (c) March to May (MAM), (e) June to August (JJA) and (g) September to November(SON), and the longitude-depth section of the observed potential temperature anomaly in comparison with the annual mean (b) December to February (DJF), (d) March to May (MAM), (f) June to August (JJA)and (h) September to November(SON).

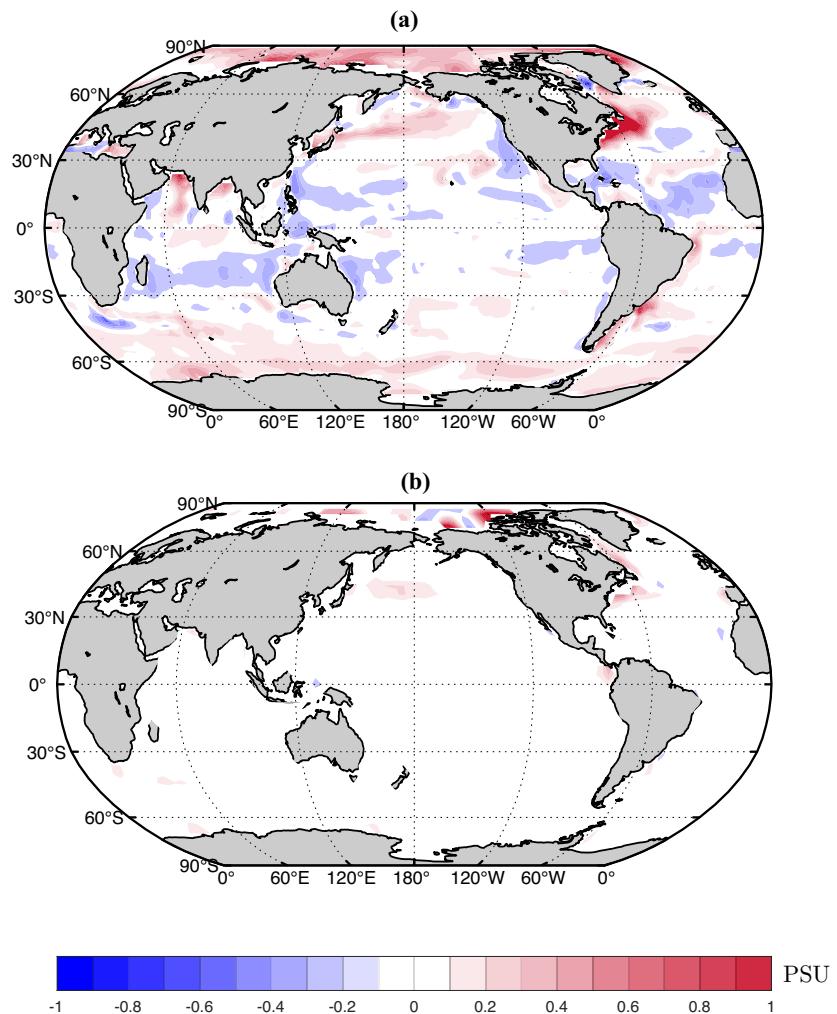


Figure 7: Difference between modeled and observed salinity in the upper 200m from OCIM (a) and CYCLOCIM (b), colored at 0.5 PSU interval.

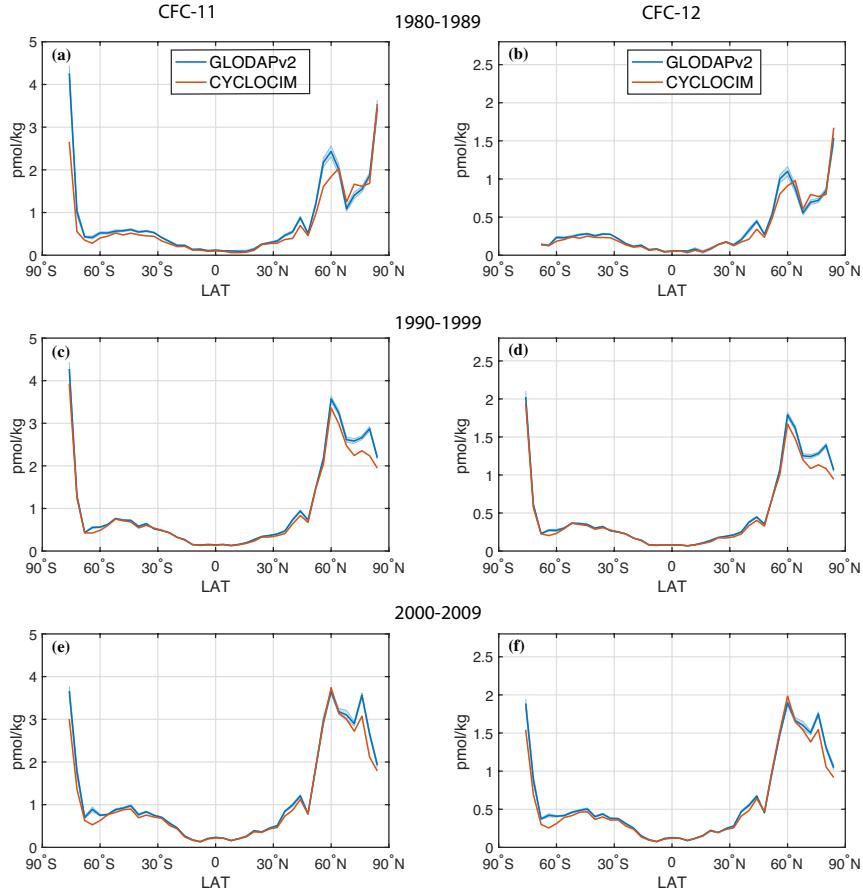


Figure 8: The zonal mean CFCs concentrations for CYCLOCIM compared to GLODAPv2 observations in three decades, panels (a and b) 1980-1989, (c and d) 1990-1999, (e and f) 2000-2009. The 3 panels on the left (a,c, and e) show CFC-11 and the three panels on the right (b,d, and f) show CFC-12. Only model grid boxes with observations in any given decade are used to construct the means. The corresponding number of observations in each decades is: 5991, 19042, 13313 for CFC-11 and 5320, 17962, 13742 for CFC-12. The blue shadow is one standard deviation of data in each latitude.

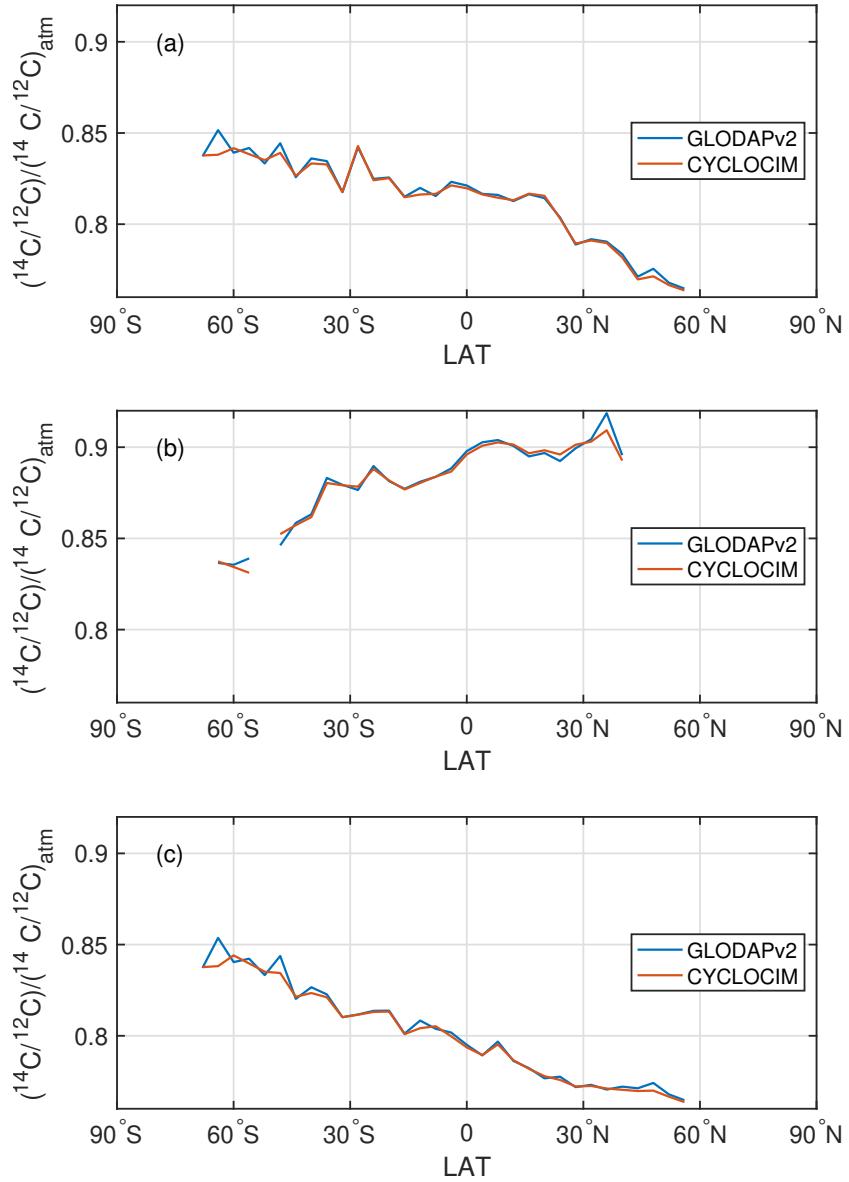


Figure 9: The zonal mean radiocarbon concentration relative to the pre-industrial atmosphere in CYCLOCIM compared to the GLODAPv2 observations. Only grid boxes with radiocarbon observations and no detectable CFCs are included in the basin averages. (a) global ocean, (b) Atlantic ocean and (c) Indo-Pacific ocean.

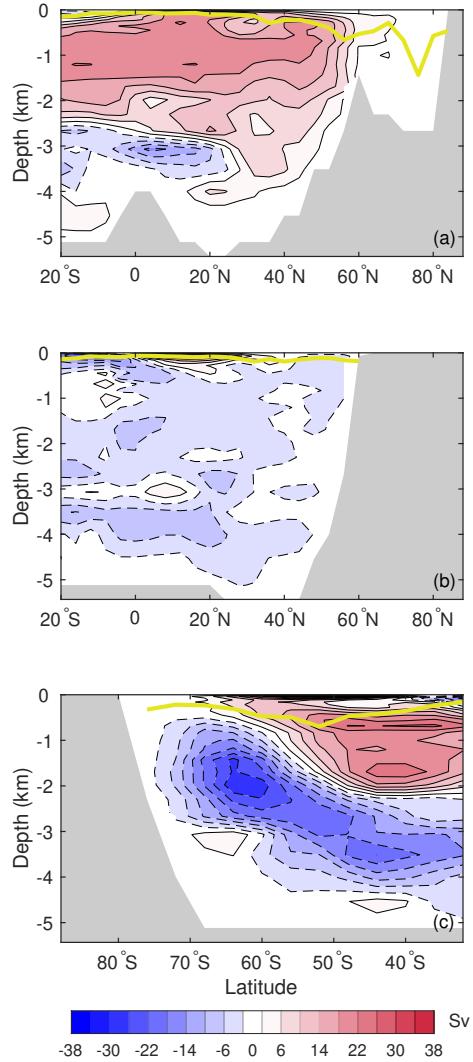


Figure 10: Climatological mean meridional overturning circulation (MOC) stream function in three ocean basins for CYCLOCIM: (a) Atlantic Ocean (b) Pacific Ocean (c) Southern ocean. The contour interval corresponds to 4 Sv. Positive values indicate clockwise circulation, and negative values anti-clockwise circulation. The yellow line is the mean mixed layer depth at each basin.

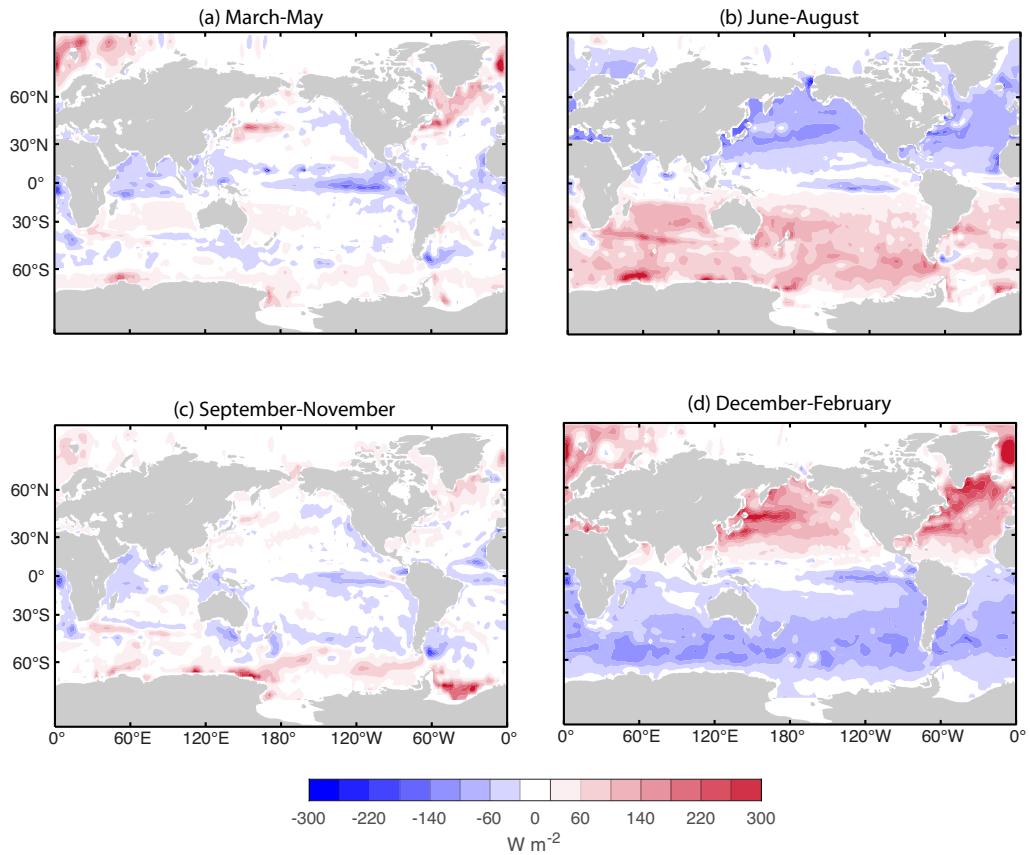


Figure 11: CYCLOCIM inferred global distribution of the seasonally-averaged climatological heat flux with 40 W m^{-2} contour intervals in (a) spring (March-May) (b) summer (June-August) (c) Autumn (September-November) and (d) winter (December-February).

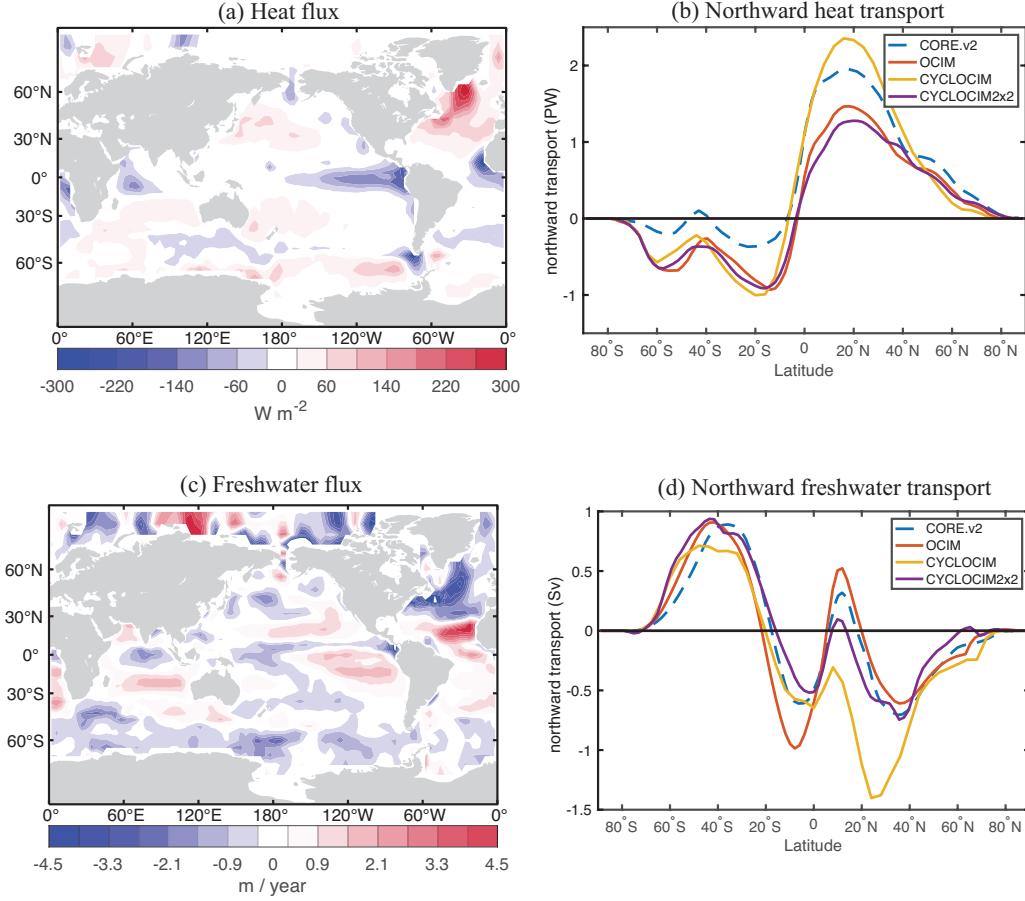


Figure 12: Global distribution of the annually-averaged climatological (a) heat flux with 40 W m^{-2} contour intervals, and (c) freshwater flux with 0.6 m/year contour intervals inferred from the $4^\circ \times 4^\circ$ CYCLOCIM. The red colors indicate a flux out of the ocean and the blue colors indicate a flux into the ocean. Zonally averaged northward ocean (b) heat transports in PW and (d) freshwater transport in Sverdrup (Sv). Also indicated in panels (b) and (d) are the meridional transport estimates from CORE.v2 reproduced from Large and Yeager (2009), the OCIM-CTRL DeVries (2014) and an estimate from a not-fully-optimized version of the $2^\circ \times 2^\circ \times 24$ layer CYCLOCIM. We show the $2^\circ \times 2^\circ$ solution because it suggests that the implied meridional transport of heat and fresh water estimated from CYCLOCIM are quite sensitive to the horizontal resolution of the model.

Appendix A. Sensitivity experiments

Appendix A.1. Diffusivity

We have conducted three experiments similar to those presented by DeVries and Holzer (2019) for OCIM: one with the isopycnal diffusivity set to $2000 \text{ m}^2/\text{s}$ (highISO), one with isopycnal diffusivity set to $600 \text{ m}^2/\text{s}$ (lowISO), and one with high diapycnal diffusivity (highDIA) which increases from $10^{-5} \text{ m}^2/\text{s}$ at the surface to $3^{-4} \text{ m}^2/\text{s}$ at 5400 m. Each experiment starts with the optimal solution from the standard CYCLOCIM configuration and then run for 2000 iterations. Figure A.13 shows that the mean meridional overturning circulation in HighISO and HighDIA experiments are stronger than CYCLOCIM (Figure 10), whereas LowISO produces a weaker overturning circulation.

Appendix A.2. Restoring timescale

CYCLOCIM used a surface restoring timescale of $\tau = 30$ days for computing the surface fluxes of heat and freshwater (see Eq.14-16). We conducted two sensitivity experiments in which we halved and doubled the surface restoring time ($\tau = 15$ days and $\tau = 60$ days). Each sensitivity experiment started with the optimal parameters estimated from the standard CYCLOCIM configuration and was run for an additional 1500 iterations. The inferred heat and freshwater transports are shown in Figure A.14. The experiments show that the implied meridional transports are quite sensitive to the choice of τ . This sensitivity suggests that in future work we will need to include the additional constraint on the surface fluxes of heat and freshwater from atmospheric reanalysis as we did previously for OCIM, (DeVries and Primeau, 2011). This sensitivity might also be due to the absence of a constraint on the dynamic topography from altimeter data, which was included in our previous state estimate using OCIM.

Appendix A.3. Parameter α

The optimal value of α used to scale the piston velocity in the air-sea gas exchange was $0.14 \text{ (cm/hr)/(m/s)}^2$ – a value that is significantly smaller than the value of $0.251 \text{ (cm/hr)/(m/s)}^2$ estimated by Wanninkhof (2014) for climatological winds. We therefore calculated the contribution to the objective function \hat{f} (Eq. 28) from CFC-11 and CFC-12 misfits as a function of α . The sensitivity shown in the figure is performed holding all the other control parameters fixed at their optimized value. Taken at face value, these

results suggest that CYCLOCIM can provide a strong lower bound on α but only a weak upper bound. Any firm conclusion must await a more fully vetted state estimate, which is beyond the scope of the present article.

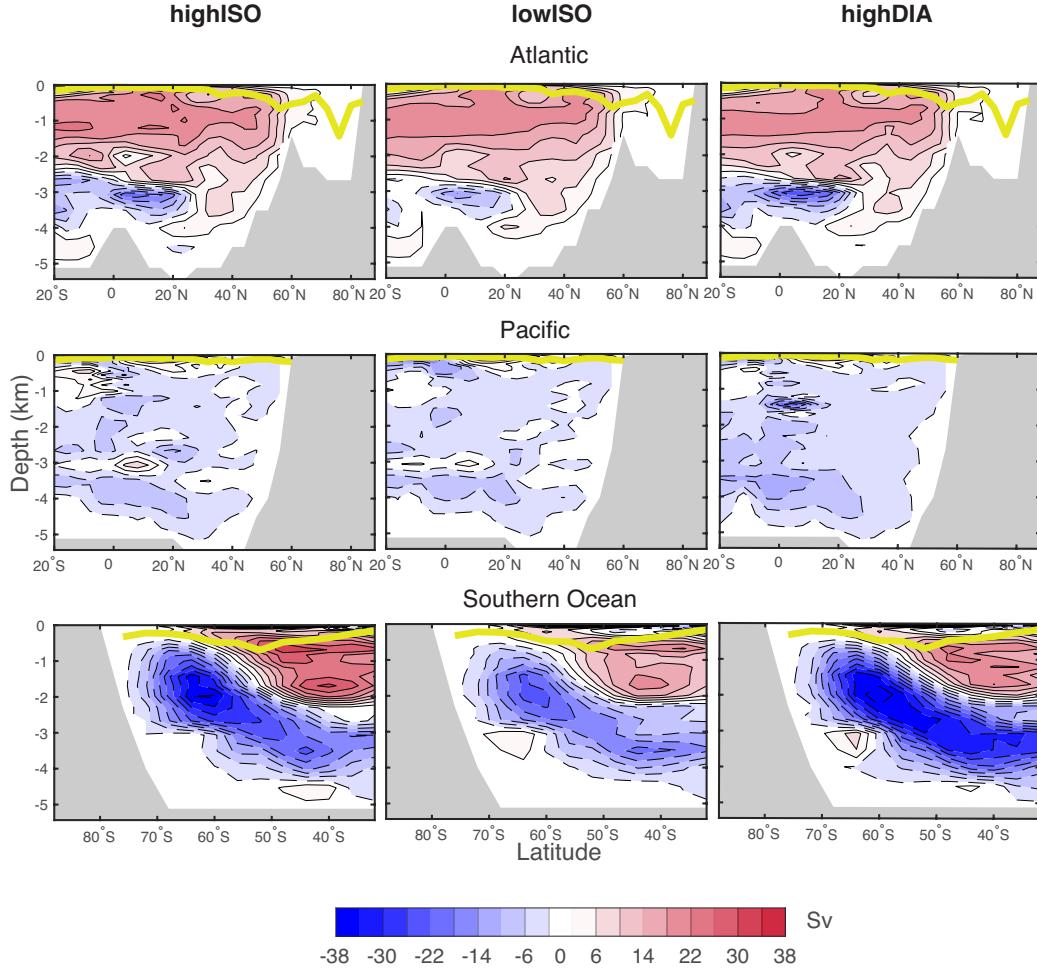


Figure A.13: Climatological mean meridional overturning circulation (MOC) stream function in three ocean basins for CYCLOCIM: Atlantic Ocean, Pacific Ocean and Southern ocean. The three panel shows results from the experiment with high isopycnal diffusivity, low isopycnal diffusivity and high diapycnal diffusivity. The contour interval corresponds to 4 Sv. Positive values indicate clockwise circulation, and negative values anti-clockwise circulation. The yellow line is the mean mixed layer depth at each basin.

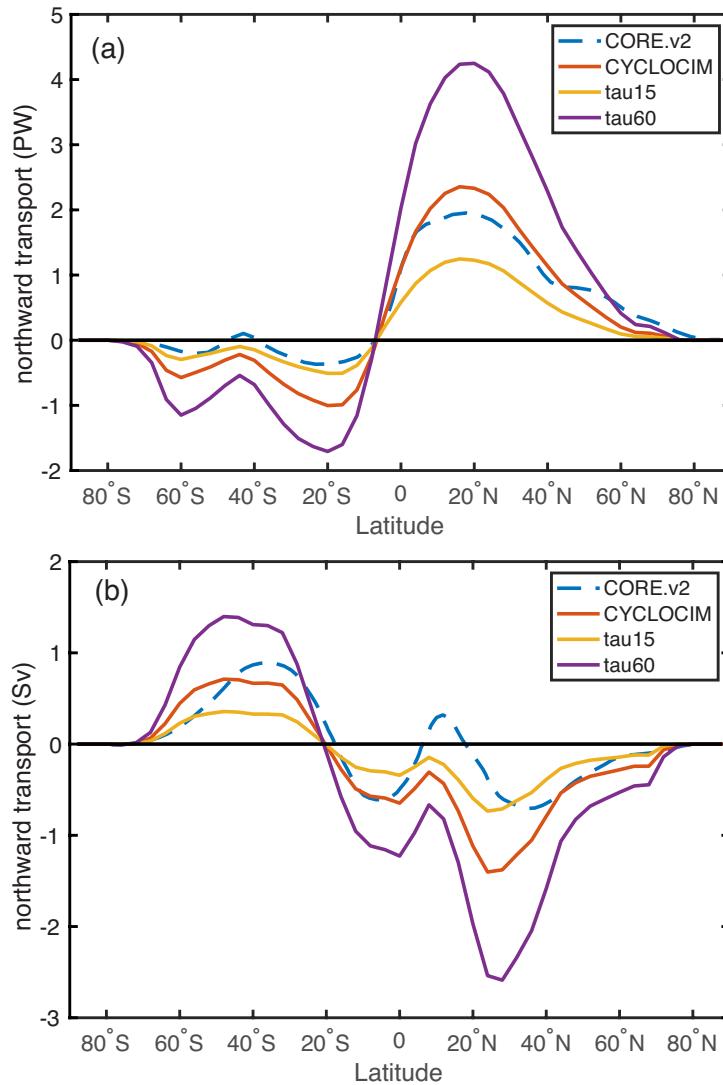


Figure A.14: Zonally averaged northward ocean (a) heat transports in PW and (b) freshwater transport in Sverdrup (Sv). The meridional transport estimates from CORE.v2 reproduced from Large and Yeager (2009), CYCLOCIM, the experiment with the restoring timescale $\tau = 15$ days and the experiment with the restoring timescale $\tau = 60$ days.

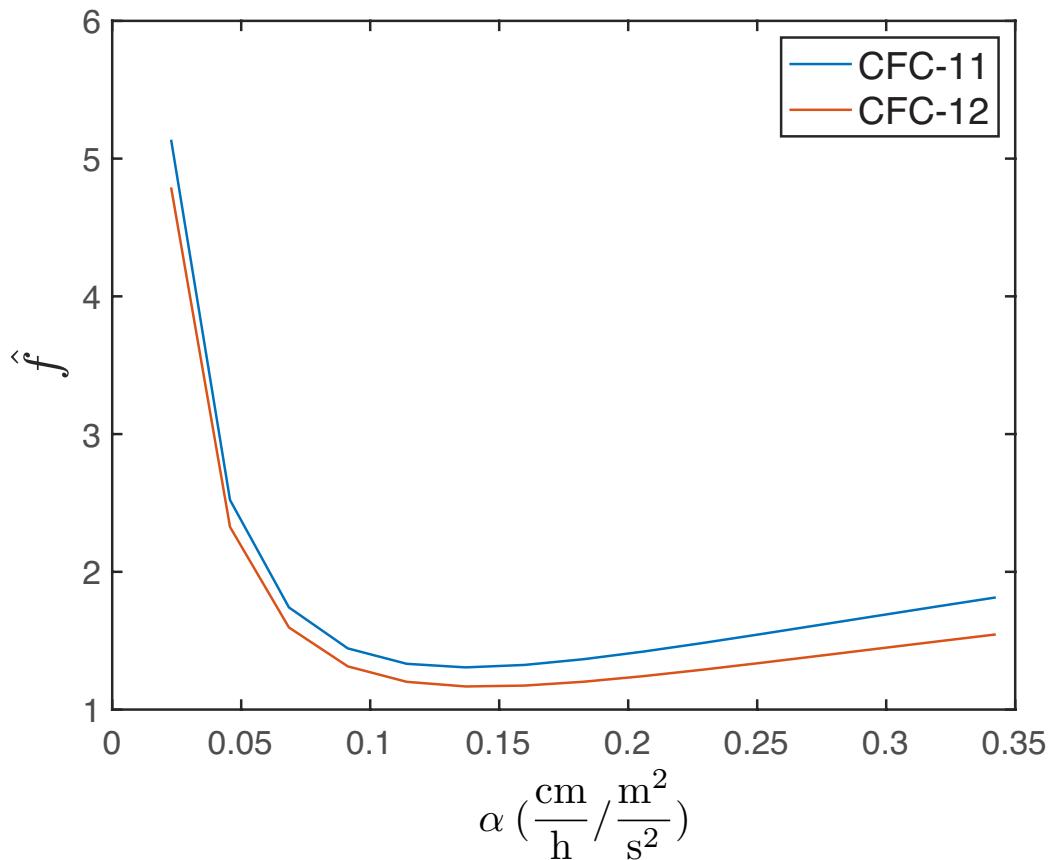


Figure A.15: The contribution to the objective function from CFC-11 and CFC-12 misfits as a function of α . The sensitivity shown in the figure is performed holding all the other control parameters fixed. The most probable value of α is 0.14. For references Wanninkhof (2014) estimates alpha to be 0.251 in the same units.