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Abstract

We describe a new 4-D variational assimilation system, called CYCLOCIM,
to estimate the climatological seasonal cycle of the residual mean ocean cir-
culation. CYCLOCIM assimilates monthly mean potential temperature and
salinity data from the World Ocean Atlas, and CFC-11, CFC-12 and natural
radiocarbon measurements for the deep ocean from the Global Data Analysis
Project, Version 2. CYCLOCIM’s control parameters include: (i) a season-
ally varying 3-D field of unresolved eddy-stress divergences that appear in
the horizontal momentum equations, (ii) seasonally varying 2-D correction
fields for the surface heat and freshwater fluxes, and (iii) a constant scaling
factor for the air-sea flux of CFCs. The influence of initial conditions on a
fully spun-up ocean model vanishes. Thus, unlike other 4-D variational as-
similation systems, CYCLOCIM does not include initial conditions as control
parameters. A Bayesian procedure is used to formulate the inverse problem,
which is solved by finding the maximum of the posterior probability distribu-
tion. The optimization process used to find the maximum includes a forward
simulation to calculate the flow velocities and tracer distributions followed by
a backward (“adjoint” ) simulation to compute the gradient of the posterior.
A quasi-Newton search algorithm is used to find the set of parameters to max-
imize the posterior probability. We find that by resolving the seasonal cycle
the model is able to better fit the observations in the upper ocean compared
to a previous steady-state version of the model. The main output from CY-
CLOCIM is a set of 12 data-constrained monthly tracer transport matrices
that will provide a useful circulation model for global marine biogeochemical
cycle studies.
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1. Introduction

An important goal of data assimilation in oceanography is to provide an
estimate of the state of the ocean that is consistent with available obser-
vations and known physical laws. Variational assimilation methods aim to
achieve this goal by iteratively minimizing an objective function that mea-
sures the difference between predictions obtained from a dynamical circula-
tion model and available observations (Ghil and Malanotte-Rizzoli, 1991).
While the applications for global data-assimilation products are numerous,
the detection of climate trends is major driving motivation. Typically, the
inputs to the objective function are the model’s initial conditions and surface
boundary conditions for the fluxes of heat, freshwater, and momentum, but
sometimes internal eddy-diffusivity parameters are also used (e.g. Balmaseda
et al., 2015; Kohl, 2015; Forget et al., 2015; Osafune et al., 2015; Fukumori
et al., 2018).

In addition to producing a space-time interpolation of the sparse and
irregulary sampled observations, a 4-D variational assimilation system also
produces an estimate of the global circulation. The resulting estimate of the
circulation can be extremely useful for computing tracer flux divergences in
biogeochemical applications. When the focus is on recent trends and vari-
ability that fall within the assimilation period, the estimated circulation can
be used unambiguously (e.g Brix et al., 2015; Doi et al., 2015; Carroll et al.,
2020). For applications involving the functioning of biogeochemical cycles
on longer timescales, one can time-average the estimate and assume that the
resulting average is representative of the long-term mean circulation. For
example, Graven et al. (2012) average the state estimate for the period 1992-
2004 from the ECCO-GODAE assimilation system (Stammer et al., 2004),
into monthly mean tracer transport matrices, which are then used to simu-
late the pre-industrial carbon cycle and its transient evolution for 1760-2007.
For this they assume a climate system that is stationary to first order and
repeatedly cycle through the same 12 tracer transport matrices. However,
because each iteration of the assimilation procedure simulates the circula-
tion for at most a few decades while repeatedly adjusting the initial condi-
tions, the resulting circulation is never fully spun-up. Consequently, it is not
clear that the circulation, especially in the deep ocean, produces stable water
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masses when the circulation is extrapolated to time-scales longer than those
used for the assimilation. Indeed, Graven et al. (2012) demonstrate the exis-
tence of clear biases in the shallow-to-deep exchange of water masses in the
data-assimilation circulation from the ECCO-GODAE model. Similarly, Liu
et al. (2012) show that even after optimizing the initial conditions, the surface
forcing, and eddy-diffusivities, the German ECCO synthesis (GECCO) has
temperature errors that are several times bigger than their prior estimates.

For biogeochemistry research that requires tracer simulations that are
much longer than the observational record an alternative data-assimilation
procedure has been developed (e.g. Schlitzer, 2007; DeVries and Primeau,
2011). It aims to directly constrain a steady-state model of the ocean’s
long-term climatological mean using a 3-D (no time-dependence) variational
assimilation procedure. The application of inverse methods to global marine
biogeochemical cycles has progressed rapidly in recent years because of the
development of such a data-constrained steady model expressed in the form
of a tracer transport matrix (e.g. Devries et al., 2012; DeVries et al., 2013;
Holzer and Primeau, 2013; Devries and Deutsch, 2014; DeVries, 2014; Holzer
et al., 2014; Teng et al., 2014; Frants et al., 2015; Holzer et al., 2016; Weber
et al., 2016; DeVries et al., 2017; Pasquier and Holzer, 2016; Roshan et al.,
2017; Pasquier and Holzer, 2017; Roshan and DeVries, 2017; Holzer et al.,
2017; John et al., 2018; Wang et al., 2019; Martin et al., 2019a,b). The tracer
transport matrix used in the aforementioned studies is produced by a data
assimilation system known as the Ocean Circulation Inverse Model (OCIM)
(DeVries and Primeau, 2011; Primeau et al., 2013; DeVries, 2014; DeVries
and Holzer, 2019). OCIM uses a variational method to assimilate stationary
and transient tracers into a steady-state model for the large-scale momentum
balance of the ocean. Because of the assimilation process, the circulation
biases found in most prognostic ocean general circulation models (OGCMs)
are greatly reduced. As a result, biogeochemical inferences made on the
basis of tracer flux divergences computed using OCIM can be interpreted
more reliably than those obtained from free running OGCMs.

The steady-state assumption used in the OCIM system makes it possible
to obtain a fully-spun up ocean state by direct matrix inversion rather than
by a slow time-stepping spin-up as is used in traditional OGCMs. This capa-
bility makes it feasible to compute the O(10%) iterations of the forward and
adjoint model runs that are required by the iterative numerical optimiza-
tion algorithm to bring the model state into agreement with the tracer-data
constraints.
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An important drawback of the steady-state formulation is that it ignores
the pronounced seasonality of ventilation processes in mid- to high-latitudes
(e.g. Marshall and Schott, 1999; Williams et al., 1995). This neglect can
lead to potentially important biases whose influence on biogeochemial infer-
ences are difficult to quantify. For example, it is well known that late-winter
mixed layer water properties are preferentially selected for export to the per-
manent pycnocline (e.g. Stommel, 1979; Williams et al., 1995). By neglecting
the seasonal cycle, the OCIM tracer-transport operator must necessarily be
biased in the upper ocean if it is to reproduce the correct water-mass prop-
erties in the permanent thermocline and abyssal waters (see for example the
discussion in  Yu and Malanotte-Rizzoli, 1996, 1998).

Here we present an extended OCIM assimilation system, which we call
CYCLOCIM, that produces a cyclo-stationary state estimate for the clima-
tological seasonally varying ocean circulation. The direct matrix inversions
via LU factorization that were used to obtain fully spun-up steady states in
OCIM are replaced by calls to a cyclo-stationary Newton-Krylov solver (e.g.
Li and Primeau, 2008; Bardin et al., 2014). Compared with the majority of
existing ocean reanalysis efforts (e.g. Mazloff et al., 2010; Balmaseda et al.,
2015; Kohl, 2015; Forget et al., 2015; Osafune et al., 2015; Fukumori et al.,
2018), what sets our system appart is that it aims to estimate the ocean’s
mean annual cycle rather than its inter-annual variability. CYCLOCIM is
therefore a generalization to a periodic annual cycle of previous steady-state
inversions (e.g. Schlitzer, 1993; Wunsch, 1996; Ganachaud and Wunsch, 2000;
Schlitzer, 2007; DeVries and Primeau, 2011). The goal of the CYCLOCIM
assimilation system is therefore most similar to the one in the study of Wen-
zel et al. (2001) who developed a 4-D variational assimilation method to
estimate a cyclo-stationary annual cycle of the ocean circulation. There
are, however, some important methodological differences. Most importantly,
Wenzel et al. (2001) follow Yu and Malanotte-Rizzoli (1998) by adding a
penalty term for departures from a cyclo-stationary state to the usual cost
function that measures the misfit between the model and the observations.
They then use the initial conditions (i.e. the January model state) along with
the monthly mean surface forcing as the control variables in the minimiza-
tion problem. The data-assimilation procedure used in Wenzel et al. (2001)
can therefore be viewed as trading off model-data misfits for a reduced tem-
poral drift. Indeed, in a fully spun-up model with zero drift, the initial
conditions exert no controllability on the objective function. In contrast,
CYCLOCIM searches for the optimal state in the space of perfectly cyclo-
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stationary model solutions that have zero temporal drift. This is achieved
by adding time-periodic eddy-stress divergence terms to the horizontal mo-
mentum equations and using them as control variables in the optimization
of the residual mean circulation. In this respect CYCLOCIM follows the
pioneering study of Ferreira et al. (2005) who added eddy-stresses to initial
conditions and surface forcing as the control variables used to minimize so-
lution drift and departures from climatological observations of temperature.
In CYCLOCIM we completely eliminate the initial conditions from the list
of adjustable parameters by directly solving for the cyclo-stationary annual
cycle. This cyclo-stationary solution represents the projection of the ocean’s
long-term climatological attractor onto a periodic annual cycle.

The primary focus of this article is to document the numerical formulation
of the model and the solution method rather than presenting a scientifically
usable state estimate. In Section 2 we present the governing equations for
the residual mean circulation and the computational method used to obtain
their cyclo-stationary solution. In Section 3 we present the governing equa-
tions and solution method for the cyclo-stationary and transient tracers that
are used to constrain the circulation. In Section 4 we give a Bayesian for-
mulation of the inverse problem. We then present how we use the adjoint
method to efficiently compute the gradient of the logarithm of the posterior
probability density function so that we can locate the maximum of the pos-
terior probability function. In Section 5 we compare the tracers simulated
using our most probable model to observations. We show the most probable
meridional overturning circulation conditioned on the tracer data, along with
the implied meridional fluxes of heat and fresh water. Finally, in Section 6
we summarize the results and give directions for future model developments
and applications.



s 2. Dynamical model

139 The dynamical model is based on the linearized Navier-Stokes equations
1o with hydrostatic and Boussinesq approximations with an implicit free surface,
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w where (uf, v, w') is the residual mean velocity rather than the Eulerian mean;
w 7 = (71, 7%) is the wind-stress and the factor dy;,/Az; is used to indicate
13 that the wind stress is applied as a body force in the top layer of the dis-
s cretized model; 7¢ = (7’6)‘, Te¢) is a cyclo-stationary eddy-stress vector; 7 is
us the seasonally-varying mean dynamic topography; p is the climatologically-
us averaged seasonally-varying baroclinic pressure computed using the hydro-
7 static balance and the observed climatological density field; p is the climatologically-
us averaged seasonally-varying density; 67 = (67%,67%) is a correction to the
1o prescribed wind-stress climatology (e.g. Stammer et al., 2002; Ferreira et al.,
150 2005; DeVries and Primeau, 2011); f is the Coriolis parameter; g is gravity.
151 A is the longitude and ¢ is the latitude. The continuity equation is solved in
12 a domain with the surface set at z = 0 and a spatially variable bottom topog-
155 raphy, Zpet(A, @), i.e we assume that || < —zpo (A, ¢). The friction operator,
s D, is here taken to be a simple Rayleigh drag, i.e. D(uf,v") = r(uf,v'),
155 1 = 107% s71. As previously mentioned, the averaging operator used to de-
156 fine the residual mean is based on a projection of the ocean circulation on
157 its cyclo-stationary mean seasonal-cycle. Consequently, any deviation from
153 this perfectly periodic state is, by definition, part of the “eddy” field. This
19 1S different from conventional 4-D variational assimilation models where the
o large-scale low-frequency variability such as ENSO is explicitly resolved by
11 the model and does not part of the “eddy” field.
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Rewriting (1) in matrix-vector form we have

UT UT
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n n
where
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_ f r 0 590
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070 07'0scos¢p 0 0

with the linear operator 9! defined to return the indefinite vertical integral
of its operand, i.e. 9;'q = fzo qdz. The forcing term on the right hand
side is decomposed into two periodic forcing terms, F(t + AT) = F(t) and
Fe(t+ AT) = Fe(t). The first contribution consists of the wind-stress and
the baroclinic pressure forces,

[ S
Ok — 4 -
Fiy=—| a7 "a%%0 | @
Po 0
0

which can be computed directly from the observed climatological wind-stress
obtained from the European Centre for Medium-Range Weather Forecasts
(ECMWF) climatological fields (Trenberth et al., 1989), and the observed
climatological density computed using the equation of state for seawater and
the World Ocean Atlas 2013 (Boyer et al., 2013) gridded temperature and
salinity fields. The second contribution consists of the unobserved errors in
the wind-stress climatology and the unresolved eddy-stress forcing

s
%#;1(57’\ + 0,7
1| R&07% 4 0.7

Po 0
0

: (5)

which will be inferred via the Bayesian inversion procedure using transient
and cyclo-stationary tracer observations. We do not attempt to separate the
contribution of the wind-stress correction (here applied as a body force in
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the upper-most layer of the model) and the eddy-stress divergence. Only
their sum appears in the model and they are therefore lumped together in
the inversion.

2.1. Space discretization

The dynamical state of the model is discretized using a staggered Arakawa
B-grid finite-difference scheme (e.g. Haltiner and Williams, 1980) with a uni-
form 4° x 4° horizontal resolution and a vertical discretization with 24 layers
whose thicknesses increase monotonically with depth (Table 1) resulting in a
discretized dynamical state vector & = [u', vT, w', 7] expressed as a 122 333 x 1
matrix. With this discretization scheme, the operator M becomes a time-
independent 122333 x 122 333 sparse-matrix operator. Similarly, the right-
hand-side forcings, F and F°¢ become time-periodic 122 333-dimensional vec-
tors, F and F¢. The resulting governing equation for the dynamics expressed
in matrix-vector form is

Cfi—f + Max = F(t) + F(¢t). (6)
Following DeVries (2014), we also added a discretized horizontal Laplacian
operator with a diffusivity of 1072 m?/s to the part of the M operator cor-
responding to the equation for 7, i.e. equation (le). This was done to
damp out a checkerboard computational mode associated with the B-grid
discretization.

36.1 373 40.7 463 542 644
76.8 915 1084 1276 149.1 1728
198.7 227.0 2575 290.2 325.2 362.5
402.0 443.8 487.8 534.1 582.7 633.5

Table 1: Vertical discretization used in CYCLOCIM. The thicknesses in meters increase
monotonically with increasing depth.

2.2. Time discretization and cyclo-stationary state

Equation (6) can be further discretized in time using an Euler backward
scheme with dt = AT'/12, to get

Az, =z, 1+ (F, + F;)dt,

7
A =T+ Mudt. 0

8
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with Fy = Fis, Fj = F{,, and o = z12. Because the forcing term on the
right-hand-side is periodic in time the fully spun-up dynamical state will be
cyclo-stationary and satisfy the following block-matrix system

[T A 0 - 0 T F, + F§
0 -I A -~ 0 T F, + F¢
: Ty | = dt. (8)
o o -~ I A : Fu +Fg
A 0 - 0 I |@y| |FutF5 |
A

The enormous size of the matrix, A, precludes the use of a direct LU factor-
ization to solve Eq. (8). We therefore obtain a solution to Eq. (8) using an
iterative Newton-Krylov solver that avoids the need to explicitly construct
A. The convergence of the solver is greatly accelerated by the fact that
it is possible to construct a nearly converged initial iterate using a Fourier
representation of the continuous-time solution. Because M does not depend
on t, a continous-time cyclo-stationary solution to Eq. (6) can be efficiently
computed by first transforming the equation to Fourier space. To this end,
we expand the forcing function and the solution in Eq. (6) into a truncated
Fourier series with 6 complex sinusoidal modes

5
F(t) + Fe (t) _ Z ]’:—Bkeikat/AT’

e (9)

w(t) _ Z ikeimm&AT,

k=0

which transforms the coupled system of differential equations (6) into a sys-
tem of 733998 complex-valued algebraic equations

iwel + M 0 0 Ty Fy
: T F
Q wnlI+M 0 L .1 7 (10)
: 0 0 K K
0 0 iW5I +M L5 F5

where the subscript corresponds to each sinusoidal mode in Eq.(9) and wy, =
k2w /AT. Because the matrix in Eq. (10) is block-diagonal it uncouples into

9
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6 independent 122 333 x 122 333 systems, each of which can be solved using
a complex sparse-matrix LU factorization. The resulting continuous-time
solution can then be evaluated at ¢t = 0 to construct an initial iterate

for the Newton Krylov solver. Fully spun-up cyclo-stationary solutions can
be obtained using this method with the equivalent of only a few years of
simulation — typically 5 or less — without the need for a sophisticated pre-
conditioner.

2.3. Choice of time step

Following Wenzel et al. (2001), we use a time step dt = AT'/12 in accor-
dance with the time-resolution of the WOA climatology. Because our present
goal is to describe the solution method rather than present a scientifically
usable state estimate, we limit our presentation to the case of 12 time-steps
per year. However, our assimilation method should work with an arbitrary
number of time steps per year. We are planning a follow up paper in which
we increase the horizontal resolution to 2° x 2° and explore the sensitivity of
the state estimate to the time-step size.

3. Tracer transport

The primary observational constraint for the CYCLOCIM state estimate
consist of hydrographic tracer observations. The advection-diffusion equation
for a tracer c is given by

Oc

o + V- [ul(t) = K(t)V]e = S(c, t), (12)

where K(t) is the tracer diffusivity tensor and w(t) is the residual mean cir-
culation. The implicit averaging operator used to define the residual mean is
based on a projection of the ocean circulation onto its climatological mean
seasonal cycle. Thus both u'(#) and K(t) are assumed to be periodic func-
tions with a period of AT =1 year.

For the particular state estimates we present here, the diffusivity tensor
is constructed using an isopycnal diffusivity of 10> m?s™! and a vertical dif-
fusivity of 107 m?s~!. (The sensitivity to this choice is explored briefly in
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Appendix A.) The isopycnal surfaces were computed using the 2013 World
Ocean Atlas (WOA2013) monthly-mean temperature and salinity (Boyer
et al., 2013). In addition, the vertical diffusivity is enhanced to a value of
1 m2s7! in a surface mixed layer of thickness h, which is prescribed accord-
ing to the observed monthly-mean mixed layer depth climatology (de Boyer
Montégut et al., 2004). This large value ensures that tracer concentrations
are uniform within the surface mixed layer.

3.1. Space discretization

The tracer transport equations are discretized using a staggered Arakawa
C-grid (e.g Haltiner and Williams, 1980). For the 4° x 4° horizontal resolution
with 24 vertical layers the model has a total of N = 45515 wet grid boxes.
A discretized tracer field can then be organized into an N x 1 column vector,
c. The discretized version of Eq.(12) can then be expressed in matrix-vector
form as follows,

de
a-I—I‘(t)c: s(c,t), (13)

where s is an N x 1 source vector and I'(t) is a N x N sparse matrix con-
structed such that the matrix-vector product I'c produces the advective-
diffusive tracer flux divergence in each of the model’s wet grid boxes. In
the construction of I, the diffusive tracer fluxes are discretized using second-
order centered differences and the advective fluxes are discretized using a
“Quick-up” scheme, that is, “semi-upwind” (i.e. the quadractic interpolation
is biased towards the upstream direction) in the horizontal and “QUICK”
in the vertical (Leonard, 1979). For the grid-box interfaces separating the
ocean from the land or atmosphere, T' is constructed to satisfy no normal
flux conditions.

3.2. Potential temperature model

For the potential temperature equation the source term s appearing in
Eq. (13) consists of a surface heat flux, which we model by restoring the
temperature in the model’s upper-most layer to a prescribed surface temper-
ature field, 0,(t), that is periodic in time, i.e. 8,(t + AT) = 6,(t). With N;
wet surface grid-boxes, s can be expressed in matrix-vector form as

1
s=-A,0,— ATc), (14)

T
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where 7 = 30 days (but see Appendix A.2 for sensitivity experiments), Ay is
an N x N, sparse matrix with ones on the main diagonal and zeros elsewhere.
The state vector, ¢, is organized such that its first N, elements correspond
to the surface values, therefore, Alc produces an N, x 1 vector of surface
temperatures. The superscript 1T is used to denote the matrix transpose
operation. The prescribed surface temperature field is constructed using
the WOA2013 monthly climatology (Boyer et al., 2013) to which we add a
small periodic in time correction to account for errors in the climatology, i.e.
0,(t) = 07°4(t) + 80,(t). The unobserved correction, 66, will be estimated
as part of the Bayesian inversion. The inclusion of the §8, term (and the
ds, term described below) makes this method of implementing the surface
boundary condition distinctly different than the so-called “robust-diagnostic”
method where the temperature is restored to the uncorrected observations
(e.g. Sarmiento and Bryan, 1982).

3.3. Salinity model

For the salinity equation the source term s consists of surface freshwater
fluxes, which we model by restoring the salinity in the model’s upper-most
layer to a seasonally varying sea surface salinity field, s,(t), that is periodic
in time, i.e. 8,(t + AT) = s,(t). The source vector for salinity is thus given

by
1
s=-A (s, — Alc). (15)
T
where 7 = 30 days is the restoring timescale. The prescribed sea surface
salinity field is constructed using the WOA2013 (Boyer et al., 2013) monthly
climatology to which we add a small periodic in time correction to account
for errors in the climatology, i.e. s,(t) = s)°*(t) + d8,(t). The unobserved

correction, ds,, will be estimated as part of the Bayesian inversion.

3.4. Natural radiocarbon model
For the natural (pre-bomb) radiocarbon model, the source function con-
sists of the radioactive decay and air-sea gas exchange of *CQO,, which we

model simply as
1

s =—-A,(Me, — Ale) — Ae, (16)
T
where A = log(2)/(5730 years) is the C decay rate, “c, is the GLODAP
(Key et al., 2004) estimate of the surface A™C concentration prior to the
atmospheric bomb tests and 7 = 30 days. Because 7A < 1, we are effectively
restoring ¢ to *c, in the surface layer of the model.
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3.5. Chlorofluorocarbons model

Chlorofluorocarbon(CFCs) are transient tracers which were released into
the atmosphere starting in 1940. Therefore an initial concentration of zero is
used for a transient simulation for the period from January 1940 to December
2009 using a one-month long time step. In the transient simulation, we use
the atmospheric history of CFC-11 and CFC-12 (USGS, 2009) interpolated
to a time resolution of one month. To model the gas exchange flux we use
the standard OCMIP-2 formulation (Najjar and Orr, 1998) as was done for
OCIM (DeVries, 2014),

_ A

Th(em — Ale) (1)

s
where dz; = 36.1 m is the thickness of the model’s upper most layer and
c™™ is the prescribed atmospheric CFC concentration. The gas-exchange
operator Ay is an N X N, sparse matrix with non-zero elements on the main
diagonal. These are given by the piston velocity, k, scaled using an adjustable
parameter «, such that

ol

k= a-(uy)®- (Sc/660)"2 - (1 — f..), (18)

where uy( is the monthly climatological root-mean-square wind speed at 10
m above the sea surface, Sc is the temperature-dependent Schmidt number,
and f.. is the monthly climatological fractional ice cover. Note that the
scalar parameter o does not change with time and is the same in all grid
boxes.

3.6. Time discretization

The version of the model we present here uses a fully implicit Euler back-
ward time-stepping scheme with a time step of one month:

B,c, =c,_1 + s, dt,

B,=I+ (I‘n - {%} n) dt, (19)

forn =1,2,--- , M with dt = AT/12. In this equation the time-dependent
tracer transport matrix, I'(¢), and the partial derivative of the tracer source
function with respect to the tracer concentration, ds(c,t)/0c, are discretized
into 12 time-independent matrices I',, and [0s/0c], respectively for n =

13
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1,2,---,12, with the condition that I, 11, = I, and [0s/0c],,,, = [0s/0c],,.
The non-homogeneous part of the source function is discretized into time-
dependent source vectors, s(0,t,) = s° forn =1,2,--- , M. For the transient
CFC tracers we use the initial condition that ¢ = 0 and step the equations
forward for n = 1,2,--- , M = Nyr x 12, corresponding to the period from
1940 to 2009. For salinity, potential temperature, and pre-bomb radiocarbon
the source vectors satisfy the same periodicity condition as the transport
operators, i.e. s2.,, = so, implying that the fully spun-up solution (M —
oo) will also be cyclo-stationary with ¢,112 = ¢,.

3.7. Cyclo-stationary solutions

With a one-month time-discretization and the Euler backward scheme
the cyclo-stationary tracers (potential temperature, salinity, and pre-bomb
radiocarbon) satisfy the following block-matrix system

[ _I7 B17 Oa e 0 C12 8(1)
0 —1I B2 ce 0 C Sg
: .. .. : Co = : dt.
0 0 - -1 By || 0, (20)
i B12 —I 1L C11 ] i 3(1]2 |
B

In principle one could try to obtain the cyclo-stationary solution to Eq.(20)
by directly inverting B, but this is computationally very expensive because
of the size of B. This prohibitive computational cost is particularly true if
we try to decrease the size of the time-step to better resolve the seasonal
cycle. We therefore solve Eq.(20) using a pre-conditioned iterative Newton-
Krylov solver without explicitly constructing the B matrix or the source
vector on the right hand side (e.g. Li and Primeau, 2008; Khatiwala, 2008;
Bardin et al., 2014; Fu and Primeau, 2017)). In this method, we apply
the preconditioner to the model state after time-stepping the model through
one annual period. The preconditioner accelerates the convergence of the
iterative Newton-Krylov solver, but otherwise does not affect the solution.
For the preconditioner we use the same one first described in Li and Primeau

(2008), namely
po (S0 (n[2]) 21

n=
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It can be thought of as an approximation to equation (20) using one big
Euler-backward time-step with the annually averaged tracer transport ma-
trix. We use the nsoli.m Newton Krylov solver (Kelley, 2013) and obtain
fully-spun up cyclo-stationary solutions with the equivalent of only a few
years of simulation — typically less than 10 and seldom more than 50.

4. Bayesian inversion for the adjustable model parameters

As presently formulated the model has a suite of adjustable parameters,
organized into an 980737 x 1 vector,

p= [ 0,7 0,7%¢ 60, s, « ]T, (22)

that must be specified for the problem to be well posed. We infer the pa-
rameter values via a Bayesian inversion procedure constrained by tracer ob-
servations. Note that the parameters 0.7, and 9.7¢® include the three-
dimensional field of horizontal eddy-stress divergences as well as the correc-
tion to the imposed surface wind-stress. The two contributions cannot be
separated by a our inversion procedure. The parameters 60,, and ds, are
the corrections to the surface temperature and salinity used to compute the
fluxes of heat and freshwater at the air-sea interface. « is a scalar parameter
that scales the prescribed piston velocity for the flux of CFCs through the
air-sea interface.

We assign normal probability distributions to the observed tracer concen-
trations, with the mean of the distributions given by the model’s simulated
concentrations. Specifically, the probability of the tracer data conditioned
on the model parameters, is given by

obs
7

1
D) X exp —§(Hici —¢”)"W;(Hic; — ¢™) |, (23)

prob(c

where the index, ¢ = 1,2,---5, identifies the particular tracer being con-
sidered, i.e. potential temperature, salinity, CFC-11, CFC-12, or pre-bomb
radiocarbon. The likelihood function for potential temperature was modified
from the Gaussian density by a factor that assigns a very low probability to
potential temperatures that fall close to or below the freezing point of seawa-
ter, i.e. exp {—wi..¢’ @)}, where ¢ = tanh [exp {—(T + 2.6°C)/0.1°C}] and
Wiee = 10%. The matrices H; are used to select the grid-boxes and months for
which we have tracer observations. For potential temperature and salinity
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these matrices are identity matrices because we constrain the model using
the gridded climatology of WOA2013, but for the other tracers we use bot-
tle measurements from GLODAPv2. We retained only bottle radiocarbon
measurements below 1000 m for which the measured CFC-11 was less than
0.01 pmol/kg to prevent any interference with the bomb signal. The scaled
precision matrices, W, are taken to be the sum of two symmetric matrices
one of which is positive definite. The positive definite matrix is diagonal
with entries given by the reciprocals of the variances o7 computed from all
the observations available for a given month and grid box (for potential tem-
perature, salinity, and pre-bomb radiocarbon) and for a particular, grid box,
month, and year for the transient CFC-11 and CFC-12 tracers, and then
divided by the numbers of observations. Therefore, o; varies in space and
time. We use the WOA13 to estimate the o; of temperature and salinity and
GLODAPv2 to estimate the o; of CFCs and radiocarbon. The other matrix
is given by 3;LTL where L is a discretized version of the horizontal Laplacian
operator in spherical coordinates. The Laplacian operator is only added for
the potential temperature and the salinity terms to take into account the
spatially correlated errors introduced by the gridding of those observations.
The value of 3; is given by one over the product of the variance of the cal-
culated o2. We further assume that conditioned on the model, all the tracer
observations are independent. With this assumption we can construct the
likelihood function by simply taking the product of the probability densities
for each tracer , i.e.

5
prob({e;"},_, [p) = | [ prob(¢;”|p). (24)
=1

For the prior probability of p we assume a normal distribution centered
at p=0,

1
prob(p) o exp [—EpTpr} , (25)

with a prior precision matrix, W, taken to be diagonal. For the unob-
served errors in the wind-stress climatology, (67*,07?) and the unresolved
eddy-stress forcing, (9,72,0,72), the diagonal of W, is m, where F is
the forcing vector in Eq.(6), and n is the number of adjustable eddy-stress
divergence parameters. This choice ensures that the large scale momentum
balance follows the thermal wind and Ekman balances. (The square of F

in this last expressions is applied element wise.) For the 60, and ds,, the
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diagonal elements are given by the reciprocal of the product of the variance
computed from all the observation for a given month and the number of grid
boxes in the surface layer of the model. We assign no prior constraint on the
value of . We further constrained the prior probability density function for
the parameters implicitly by assigning a weak prior on the dynamical state
of the model, i.e. we assigned a normal distribution centered at zero

1
prob(x|p) « exp {—?nTWxaz} : (26)

where the precision matrix, W,, is taken to be diagonal. The diagonal
elements are given by the reciprocal of velocity and dynamic topography
variances. The horizontal velocity variances start with a value of (1 m/s)? in
the top layer of the model and decay exponentially to (0.07 m/s)? at a depth
of 4000 m (see Eq. 14 in Large et al., 2001). This weak constraint is helpful
in the early stages of the parameter optimization as it prevents the search
algorithm from suggesting parameter values that lead to implausible dynam-
ical states. Its impact on the ultimate solution is negligible. For the vertical
velocity, we increased the prior precision by a factor of 50 compared to that
used by DeVries (2014), to be consistent with that used in the latest OCIM
version (OCIM2), as described in (DeVries and Holzer, 2019). The increased
penalty is necessary to prevent unrealistically large vertical velocities and a
noisy meridional overturning circulation.

With the above choices the posterior probability density function obtained
via Bayes’ theorem is

5
1
prob(p|{e;"}!_)) xcexp[ — = > (Hie; — &™) W;(Hc; — ¢}™)
P (27)
1

1
wice¢T¢ - inWJ?:U - EpTpr .

2

1
2
Note that @ in this probability density is an implicit function of p. The pos-
terior probability density described by Eq. (27) lives in a 980 737 dimensional
space. The large dimension of this space makes it impossible to compute or
store the posterior covariance matrix of the state estimate. We therefore limit
ourselves to summarizing the posterior probability density function in terms
of the location of its maximum, which is equivalent to finding the minimum
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of the negative logarithm of the posterior probability density function,

5
1
Obb T obs T
EZ (Hic; — &™) W,;(H;c; — ¢ )+§wice¢ 1) (28)
1 1
+5 "W,z + P "W, p,
where y(p) = [ T ¢ - Cs } is the solution to the model equations,

F(y,p) = 0, combining the cyclo-stationary dynamical state with the cyclo-
stationary potential temperature, salinity and radiocarbon solutions with the
transient CFC-11 and CFC-12 solutions. Note that minimizing f(p) reduces
to solving a nonlinear least-squares problem.

It is important to point out that the location of the minimum of the
objective function will not change if we add a multiplicative factor to the
objective function. Such a factor will, however, affect the size of the posterior
error bars for our parameter estimates. Because this scaling factor affects
the normalization constant for the posterior probability, introducing it also
introduces an extra additive term to the objective function that depends
on the scaling factor but not on p. This means that if we had introduced
the scaling factor we would be able to estimate its size by minimizing the
resulting objective function with respect to this factor. We did not do this
here because we are focusing on finding the most probable state estimate.
However it will be important to estimate this missing scaling factor in the
future so that we can obtain consistent posterior error bars for our state
estimate.

We solve the above problem using a quasi-Newton method. Following
Heinkenschloss (2008), we express the gradient of f(p) in terms of the partial

gradients of f(y,p),

Vof(p) =y vyf<y<p>,p>+vpf< p),
= —(Fy(y(p),p) ' Folyp),p) Vyf(y(p).p) + Vpf(y(p).p),

= Fp(y(p),p)" A(p) + Vuf(y(p),p),
(29)

where the vector of Lagrange multipliers, A(p), is the solution to

[Fy(y().p)]" A(p) = =V, f(y,p). (30)

18



473

474

475

476

477

478

479

481

482

484

485

486

487

488

489

490

491

492

493

494

495

496

497

499

The great computational advantage of using the last expression in Eq.
(29) rather than the middle line in Eq. (29) is that it involves solving only one
linear system of equations for A(p) instead of solving a separate linear system
for each the 980 737 components of p. Because the linear system involves the
transposed Jacobian matrix, [Fy(y(p),p)]”, this method is known as the
adjoint method (e.g. Schlitzer, 1993, 2007; DeVries and Primeau, 2011).

The adjoint system (30) and A(p) can be partitioned into components
which can be solved separately. Specifically,

AP =12 X Ad Ac, Acn Adecas | (31)

where
B;I;Acn = ACn-&-l + Vcnf(y7p>7 (32)
form= M,M —1,---,1. For the cases where ¢, correspond to the transient
CFC tracers, the system is solved starting with the final condition A.,,,, =0

and time-stepped backwards in time from M = Nyr X 12 to n = 1. For the
cyclo-stationary tracers, the A., are also periodic and solutions are obtained
using the same Newton-Krylov method used to find the cyclo-stationary state
of the tracers except that the transpose of the operators are used in reverse
time order, and the transpose of the operator in Eq. (21) is used for the
preconditioning. We note that in the forward model, the state at time step
n + 1 is completely determined by the state of the model at time step n.
Similarly, in the adjoint model, the state at time step n is completely deter-
mined by the state at time step n + 1. Because all the solutions obtained
using our cyclo-stationary solver are perfectly periodic it does not matter
at which month we start the integration. We always get the same periodic
solution for the same forcing.

Having obtained the Lagrange multipliers corresponding to the tracer
variables, the Lagrange multipliers corresponding to the model’s dynamical
state can be obtained by solving for the cyclo-stationary state of

AN, =X, ., +Fl, (33)

where the monthly forcing terms are given by

Ny

FL :]-_‘a:n >\9n + Asn + Acl4,n + Z (ACFC-ll,m,n + ACFC—IQ,?’VL,’I’L) (34)
m=1

— Vo, f(y; D),
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forn =1,2,---,12, where Iy, corresponds to the partial derivative of the
tracer transport operator with respect to the dynamical state variable during
month n. Cyclo-stationary solutions are obtained using the same Newton-
Krylov solver used for the forward model except that the transpose of A is
used in the preconditioner and the forcing terms are cycled in time reversed
order.

4.1. Summary of CYCLOCIM data-assimilation procedure
The CYCLOCIM data-assimilation system solves the constrained opti-
mization problem
minimize f (y, p),
vp (35)
such that C(y,p) =0,

~

where f(p) = f(y(p),p) is the negative of the logarithm of the poste-
rior probability density prob(p|data) for p (see Eq. 27 and Eq. 28), and
C(y,p) = 0 denotes the governing equations for the dynamical and tracer
states of the model. The solution procedure is summarized in Figure 1. The
iterative procedure consists of repeating five main steps:

1. Given a current estimate of p, solve the cyclo-stationary dynamical
model to obtain x(p), i.e. the seasonally varying residual mean circu-
lation (uf, v, w') and dynamic topography (7).

2. Solve the transient tracers (Ccpe.i; and €cpe.qo) and the cyclo-stationary
tracers, potential temperature, salinity and natural radiocarbon (8, s,
and ¢14) using the sparse-matrix tracer transport operators constructed
using the current estimate of x.

3. Evaluate the objective function for the given p, that is, the posterior
probability density function, prob(p|data) as given in Eq.(27). (Eval-
uating f(p) as given in Eq.(28) is equivalent to evaluating Eq. (27)
because the logarithm function is a monotonically increasing function.)

4. Compute the gradient of the objective function fo(p) and check if
the minimum has been reached. N

5. Use a quasi-Newton search algorithm and V,f(p) to produce an im-
proved (more probable) estimate of p.

The data assimilation procedure we use is equivalent to what is sometimes
called a 4-D variational assimilation system except that the time-dependent
part of the procedure is restricted to be periodic for the circulation and the
non-transient tracers.
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5. Results

We conducted state estimates for a version of CYCLOCIM with a reso-
lution of 8° x 8° x 22 layers and 4° x 4° x 24 layers. The optimization for a
version of CYCLOCIM with the standard OCIM resolution of 2° x 2° x 24
layers is underway, but the optimal solution has not yet been found. We
stop the iteration when the cost function changes by less than 1% per 1,000
iteration. Note that for the 8° x 8° and 4° x 4° versions of CYCLOCIM we
prescribed a maximum number of iterations but we checked that the above
stopping criteria was met for the solutions we present here. Our goal is to
present the higher resolution solution in a separate paper that can focus on
the state estimate rather than the technical aspects of the assimilation, which
is the main focus of the present report.

The evolution of the objective function for the 8° x 8° x 22 model for
the 10000 iterations is shown in Figure 2. The objective function starts at
a value of approximately 10%. After 10,000 iterations the objective function
has decreased to a value of less than 5.4. The drop is fastest for the first
2000 iterations and the rate of decrease slows down afterwards. While the
rate of decrease is modest in the last 1000 iterations, f(p) is still decreasing
monotonically. However the changes in the resulting state estimate are rather
modest. For the version of CYCLOCIM with a 4° x 4° x 24 layers resolution,
which we present in the next section, we performed approximately 4 x 103
iterations but we restarted the optimization along the way because we did
not include all the tracer constraints at the beginning.

The magnitude of the estimated eddy-stress divergence terms, which also
includes effects due to the missing nonlinear terms and discretization errors, is
comparable to the magnitude of the error terms from the original steady state
OCIM model (DeVries and Primeau, 2011). The horizontally averaged mag-
nitude of the vertical divergence of the eddy stresses is ~ 1.2x107% m/s?. The
magnitude of these parameterized forcing terms are only modestly dependent
on the model resolution (i.e. 8° x 8°, 4° x 4°, or 2° x 2°). For comparison the
explicit forcing appearing on the right hand side of the horizontal momen-
tum equation has a typical horizontally averaged magnitude that is about
of factor of three bigger. This suggests that the non-parameterized large-
scale momentum balance dominates over the parameterized eddy-stresses,
and confirms that the relative weights we have assigned to the likelihood and
prior in our probability model provide an acceptable initial estimate. Fur-
ther refinements might be necessary if the goal is to interpret the resulting
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eddy-stress terms physically.

5.1. Comparison of assimilated variables with observations

We begin by comparing each modeled tracer with the observations that
were used to constrain the model. In Figures 3 - 7, we perform the comparison
on the model’s 4° x 4° grid. It is therefore important to keep in mind that any
variance in the data associated with sharp gradients that cannot be resolved
by this coarse mesh will necessarily be ignored in the comparison.

A summary of the model fit to the data is provided in Figure 3 where we
show the joint cumulative distribution functions for the observed and mod-
eled tracer variables. For all tracers, more than 90% of the ocean volume
has concentrations that cluster tightly along the 1:1 line with R? = 0.99
for potential temperature, and R? ~ 0.96 for the other tracers. The close
agreement between the modelled and observed tracers suggests that the CY-
CLOCIM circulation can be used to produce meaningful estimates of the
climatological water mass formation rates and transport for the real ocean,
which is not always possible when analyzing free-running prognostic models.

In Figure 4 the globally averaged root mean square errors (RMSE) for the
potential temperature, salinity and CFC-11 from CYCLOCIM are compared
to the corresponding RMSEs for the OCIM CTRL state estimate (DeVries,
2014). By resolving the seasonal cycle, CYCLOCIM provides a better fit
to the observations at mid to high latitudes in the surface mixed layer and
seasonal thermocline. For the deep ocean below 500 m, where seasonality is
negligible, the RMSE is similar for both state estimates.

The globally averaged RMSE of potential temperature for CYCLOCIM is
0.29°C, whereas for OCIM it is 0.38°C. For the near-surface waters, 0 — 200m,
the decrease in the RMSE is significantly larger: 0.70°C for CYCLOCIM
versus 1.27°C for OCIM. Most of the improvements occur in mid-latitudes
(Figure 5) where the mixed layer depths have a pronounced seasonal vari-
ation. For example, the cold bias of more than 3°C to the North of the
Kuroshio Extension in the OCIM state estimate is substantially decreased
in the CYCLOCIM state estimate. Similarly, the low-latitude warm bias
in the OCIM state estimate has been eliminated in the CYCLOCIM state
estimate. Consistent with the results of Yu and Malanotte-Rizzoli (1998),
resolving the seasonal variations produces a significantly improved estimate
of the climatological circulation.

The ability of the model to capture the correct seasonal cycle is illus-
trated in Figure 6 in which we compare the potential temperature anomalies
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(plotted as departure from the annual average) along 36°S for CYCLOCIM
and the WOA2013 observations (Boyer et al., 2013). The modeled potential
temperature shows a similar seasonal pattern as the observations. In the
summer (DJF), the mixed layer is shallow and there is a strong temperature
gradient near the surface. The mixed layer deepens through the fall (MAM)
and winter (JJA), becoming thickest in late winter when the surface strat-
ification entirely disappears. In spring (SON), as winds weaken and solar
irradiance increases, the mixed layer shoals once again. The model season-
ality is quite similar to that of the observations. Exceptions are along the
western boundary currents where the warm and cold anomalies penetrate
deeper in the observations than in the model. Such errors are not surprising
given the coarseness of the model resolution. We anticipate that these errors
will be reduced in the 2° x 2°-CYCLOCIM and by including the dynamic
topography constraints from satellite altimeter data.

There are also significant improvements in the CYCLOCIM-simulated
surface salinity fields as can be seen from Figure 7 where we plot the errors
averaged over the top 200 m of the water column. Most prominently, large
errors in the western part of the subpolar gyre in the North Atlantic ocean
present in the steady OCIM state estimate are greatly reduced in the sea-
sonally varying CYCLOCIM state estimate. A similar positive bias in the
Southern Ocean for the steady OCIM state estimate has been completely
eliminated in the CYCLOCIM state estimate. Improvements extend over
most of the ocean with the exception of the Arctic basin where a uniformly
positive salinity bias in OCIM has been replaced by errors that appear more
random. The globally averaged RMSE for salinity in the upper 200 m of
the water column is reduced from 0.25 g/kg for OCIM to 0.11 g/kg for CY-
CLOCIM. For the full water column, the improvements are more modest but
still appreciable with RMSE reduced from 0.07 g/kg for OCIM to 0.04 g/kg
for CYCLOCIM.

The CYCLOCIM simulation of CFC-11 also provides a better fit to the
observed CFC-11 data. (The sensitivity of the fit to the scaling parame-
ter for the piston velocity is discussed in Appendx A.3). The RMSE for
surface waters between 0 and 200m is 0.07 pmol/kg for the OCIM state es-
timate whereas for CYCLOCIM it is 0.04 pmol/kg. In Figure 8 we plot the
decadal-mean zonal averages of CFC-11 and CFC-12 concentrations. The
zonal averages are calculated using a volume weighted average of the CFC
concentrations for gridboxes with at least one CFC measurement at any
depth and longitude during the particular decade. The agreement between
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CYCLOCIM and the observations is generally good. There are however clear
decadal biases at high latitudes in the Southern Ocean. South of 60°S the
model concentrations are several standard deviations too low for the 1980-
1989 and the 2000-2009 period while being in very good agreement for the
1990-1999 period. In the North there are similar low biases but the exact
latitude band with the largest biases appear to shift from decade to decade.
Decadal variability in the ventilation of the ocean provides a plausible expla-
nation for these errors (e.g. Waugh et al., 2013; DeVries et al., 2017).

The CYCLOCIM fit to the pre-bomb radiocarbon is also very good. Fig-
ure 9 compares the zonally-averaged CYCLOCIM simulated radiocarbon to
the GLODAPv2 data (Olsen et al., 2016). The zonal averages are calcu-
lated using a volume weighted average using only grid-boxes below 1000 m
with CFC-11 concentrations below 0.01 pmol/kg.The good agreement be-
tween CYCLOCIM and the GLODAPv2 radiocarbon at all latitudes and in
all basins suggests that the deep-ocean ventilation timescales in CYCLOCIM
are comparable to those of the real ocean.

5.2. Meridional overturning circulation

The climatological mean meridional overturning circulation (MOC) is de-
fined as the stream function for the zonally integrated meridional volume
transport with depth. Figure 10(a)-(c) shows the implied stream function
for CYCLOCIM in the Southern Ocean, Pacific Ocean and Atlantic Ocean.
The estimated overturning circulation appears consistent with typical results
from inverse models (Lumpkin and Speer, 2007; DeVries and Primeau, 2011;
DeVries and Holzer, 2019; Cessi, 2019). The maximum of the stream func-
tion is approximately -30 Sv in the Southern Ocean (~ 60 °S), 22 Sv in the
Northern Atlantic, and -8 Sv across the equator in the deep Pacific Ocean.

5.3. Inferred air-sea flures and meridional transport of heat and freshwater

In contrast to the OCIM state estimate, we did not use the heat and
freshwater reanalysis fluxes to constrain the CYCLOCIM state estimate. It
is therefore interesting to examine how the inferred meridional heat and
freshwater transports compare to other data-based estimates.

Figure 11 shows the seasonally averaged surface heat flux. During June
to August the ocean gains heat in the northern hemisphere and loses it in the
southern hemisphere, while the reverse is true in the December to February
months. The shoulder seasons (March-May and September-November) have
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more muted air-sea heat flux patterns with the ocean generally gaining heat
at low latitudes and losing heat at high latitudes.

In Figure 12(a) we show the annually-average CYCLOCIM estimate of
the air-sea heat flux. The ocean gains heat in the East Pacific cold tongue
region and along the eastern boundaries of the Pacific and Atlantic with
magnitude around 150 Wm™2. Heat gained in the tropical regions is trans-
ported poleward and is lost in higher latitudes. In Figure 12(b) we compare
the mean meridional transport computed from the CYCLOCIM state esti-
mate to estimates from the CORE.v2 reanalysis (Large and Yeager, 2009),
from OCIM-CTRL (DeVries, 2014) and from a not-fully-converged estimate
using a version of CYCLOCIM with a horizontal resolution of 2° x 2° (CYL-
COCIM2x2). Before discussing these results we hesitate to point out that
as presently configured the model shows great sensitivity to the choice of
restoring timescale 7 used in the surface boundary condition for heat and
freshwater (See Appendix A.2). The CYCLOCIM meridional heat trans-
port peaks near 20°N with a value of 2 PW and near 20°S with a value
of 1 PW. The meridional heat transports for CYCLOCIM2x2 and OCIM
also peak near 20°N but with weaker values of 1.2, 1.5 PW respectively,
and at 15°S with a consistent value of approximately 1 PW. In the southern
hemisphere there is a general agreement between OCIM, CYCLOCIM and
CYCLOCIM2x2, which in turn predict a significantly larger poleward heat
transport than CORE.v2. The larger poleward heat transport in southern
hemisphere is also consistent with the ECCO estimate (Forget and Ferreira,
2019) and from the atmospheric reanalyses (Trenberth and Fasullo, 2017).
In the northern hemisphere south of ~ 50°N the CORE.v2 meridional heat
transport tends to be smaller than that of CYCLOCIM but larger than that
of OCIM and CYCLOCIM2x2. Northward of ~ 50°N CYCLOCIM pre-
dicts a significantly smaller poleward heat transport than either CORE.v2,
OCIM, CYCLOCIM2x2. The air-sea heat fluxes in the Kuroshio and Gulf
Stream regions for the CYCLOCIM state estimate are substantially weaker
than those for the CORE.v2 reanalysis (not shown). The annually averaged
heat loss to the atmosphere in the Gulf Stream region as estimated from
CYCLOCIM is around 50 Wm™2, while in the Labrador Sea the annually
averaged heat loss is greater than 300 Wm~2. Such a large heat loss to the
atmosphere would suggest a large meridional heat transport to the north of
50°N, yet the CYCLOCIM estimate appears to be substantially weaker than
either the CORE.v2, OCIM, or CYLCOCIM2x2 estimates. This apparent
inconsistency can be explained by the fact that CYCLCOCIM produces an
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unrealistic southward heat transport near 50°N in the Pacific basin, which
more than compensates for the unrealistically large northward heat trans-
port in the Atlantic basin. The CYLCOCIM2x2 estimate does not appear to
produce the unrealistic southward heat transport in the Pacific basin, which
is encouraging, but it does point to the sensitivity of the inferred pattern of
air-sea heat fluxes to the horizontal resolution of the model in addition to
a strong sensitivity to the choice of restoring time-scale used in the surface
boundary condition for temperature and salinity:.

The implied annually averaged freshwater fluxes (Figure 12(c)) shows a
pattern that is similar to the CORE.v2 reanalysis data (not shown) (Large
and Yeager, 2009). There is net evaporation in the subtropical gyres and net
precipitation in the intertropical convergence zone (ITCZ) and the sub-polar
regions. However, CYCLOCIM predicts weak precipitation minus evapora-
tion in the ITCZ with a magnitude around 1 m/year and strong precipi-
tation minus evaporation in the Gulf Stream region and Labrador Sea with
magnitude more than 3 m/year. In the COREv2 reanalysis, there is 1.5
m/year of precipitation minus evaporation in the ITCZ, and 1 m/year of
precipitation minus evaporation in the Gulf Stream region and Labrador
Sea. Figure 12(d) compares the meridional freshwater transport estimate
from CYCLOCIM, CYCLOCIM2x2 to those of CORE.v2 and OCIM. The
largest disagreement is in the northern hemisphere between the equator and
~ 40°N where CYCLOCIM predicts a strong southward freshwater trans-
port whereas both OCIM and the CORE.v2 estimates show a northward
transport between ~ 5°N and 20°N and a substantially weaker southward
transport than CYCLOCIM between 20°N and 40° N. The CYCLOCIM2x2
estimate is generally closer to the OCIM and CORE.v2 estimates imply-
ing again that the surface flux patterns are quite sensitive to the horizontal
resolution of the model.

The differences between the CORE.v2 reanalysis and the CYCLOCIM in-
ferred meridional heat and freshwater transport suggest that in future inver-
sions we might obtain improved state estimates by including atmospheric re-
analysis constraints in the probability model as we did previously for OCIM.
On the other hand CYCLOCIM2x2 produces reasonable first-order estimate
of the meridional transports of heat and freshwater that are independent of
atmospheric reanalyses. Without a more thorough uncertainty analysis it
is difficult to unequivocally select one estimate over another as being more
representative of the true climatological meridional transports. Such an un-
certainty analysis is planned for the 2° x 2° version of CYCLOCIM.
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6. Summary and discussion

We have presented the formulation of a 4-D variational assimilation sys-
tem for estimating the climatological mean seasonal cycle of the residual-
mean ocean circulation. The system, which we call CYCLOCIM, assimilates
monthly mean potential temperature and salinity data from the WOA2013,
transient CFC-11 and CFC-12 data from the GLODAPv2 database, and
natural radiocarbon measurements for the deep ocean from the GLODAPv2
database.

We have demonstrated that our data-constrained model produces a plau-
sible overturning circulation. While the meridional heat and freshwater trans-
ports are quite sensitive to the model’s horizontal resolution, the 2° x 2°
version of CYCLOCIM produces estimates that are in rough agreement with
existing estimates even though the objective function did not explicitly in-
clude such constraints. By resolving the seasonal cycle we are able to produce
a much better fit to observations in the upper ocean compared to our pre-
vious steady-state OCIM estimates, and most of the assimilated variables
are in agreement with the observational constraints. One exception is the
CFC-11 and CFC-12 tracers in the Antarctic region of the Southern Ocean,
where CYCLOCIM concenrations are too low. Decadal variability in the ven-
tilation of the ocean provides a plausible explanation for these errors (e.g.
Waugh et al., 2013; DeVries et al., 2017).

The main product of our assimilation system is a set of 12 monthly data-
constrained tracer transport operators for the climatological annual cycle of
the ocean circulation. We anticipate that these operators will be particularly
useful for global biogeochemical inversions for which there is a need for reli-
able estimates of the seasonally varying climatological transport of tracers.
We focused on the estimate produced using CY CLOCIM with a 4°x4° resolu-
tion, but we are presently completing the optimization for the 2°x2° version
of the model. For expediency we also ignored valuable constraints on the
dynamic topography of the model provided by satellite altimeter data. We
plan on including this constraint in future versions of CYCLOCIM. Another
avenue for future work is to produce an ensemble of tracer transport opera-
tors drawn from the Bayesian posterior distribution for the eddy-stresses and
surface forcing. So far we have only determined the maximum of the pos-
terior distribution but the development of a computationally efficient means
of drawing samples from the posterior should be a high priority for future
work, so that realistic error estimates can be provided.
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In principle, CYCLOCIM could also be used to estimate the eddy-stresses
as was done in the work of Ferreira et al. (2005). However, as presently formu-
lated the tracer transport errors due to the coarse space and time resolution
of the model get partially corrected via adjustments of the eddy-stress terms.
This makes the eddy-stress terms noisy and difficult to interpret. It might
also be necessary to replace the Rayleigh drag in the momentum equation
with a laplacian viscosity as was done in the original OCIM (DeVries and
Primeau, 2011) but subsequently replaced with the computationally more
efficient from Rayleigh drag (DeVries, 2014). For our present goal of gener-
ating high fidelity tracer transport operators our inability to separate physical
eddy-stress from noise is not a major problem, but if the goal is to study the
eddy-stresses it will be important to separate these two contributions to the
eddy-stress control variables in the model.
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Figure 1: The workflow of the cyclo-stationary ocean circulation inverse model (CY-
CLOCIM).
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Figure 2: The evolution of the objective function for the 8° x 8° x 24 model run in (a)
first 10000 iterations (b) last 1000 iterations. Note that the contribution to the objective
function from each tracer corresponds roughly to %X,Q /n; for i = 1,---5, where x? is the
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Figure 3: Joint distribution function for the gridbox-volume-weighted observed and mod-
eled tracer concentrations: (a) potential temperature (b) salinity (¢) CFC-11 (d) CFC-12
(e) A'™C, which are expressed in terms of the percentages of the cumulative distribu-
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tion method described in Botev et al. (2010) and modified to produce a volume weighted
distribution (Primeau et al., 2013).
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Figure 4: Horizontally-averaged root mean square error (RMSE) of (a) annual-mean poten-
tial temperature, (b) annual-mean salinity, and (¢) CFC-11, computed from CYCLOCIM
and OCIM. The subplot in (a) and (c) is the seasonal RMSE of potential temperature and
salinity from CYCLOCIM in the upper ocean (0 - 500m).
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Figure 8: The zonal mean CFCs concentrations for CY CLOCIM compared to GLODAPv2
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sphere in CYCLOCIM compared to the GLODAPv2 observations. Only grid boxes with
radiocarbon observations and no detectable CFCs are included in the basin averages. (a)
global ocean, (b) Atlantic ocean and (c) Indo-Pacific ocean.

47



80S 70S 60S 50°S  40°S
Latitude

C onmsmm—

-38 -30 22 14 6 0 6 14 22 30 38

Figure 10: Climatogical mean meridional overturning circulation (MOC) stream function
in three ocean basins for CYCLOCIM: (a) Atlantic Ocean (b) Pacific Ocean (c¢) Southern
ocean. The contour interval corresponds to 4 Sv. Positive values indicate clockwise circu-
lation, and negative values anti-clockwise circulation. The yellow line is the mean mixed
layer depth at each basin.
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Figure 12: Global distribution of the annually-averaged climatiogical (a) heat flux with
40 Wm~2 contour intervals , and (c) freshwater flux with 0.6 m/year contour intervals
inferred from the 4° x 4° CYCLOCIM. The red colors indicate a flux out of the ocean
and the blue colors indicate a flux into the ocean. Zonally averaged northward ocean (b)
heat transports in PW and (d) freshwater transport in Sverdrup (Sv). Also indicated
in panels (b) and (d) are the meridional transport estimates from CORE.v2 reproduced
from Large and Yeager (2009), the OCIM-CTRL DeVries (2014) and an estimate from a
not-fully-optimized version of the 2° x 2° x 24 layer CYCLOCIM. We show the 2° x 2°
solution because it suggests that the implied meridional transport of heat and fresh water
estimated from CYCLOCIM are quite sensitive to the horizontal resolution of the model.
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Appendix A. Sensitivity experiments

Appendiz A.1. Diffusivity

We have conducted three experiments similar to those presented by De-
Vries and Holzer (2019) for OCIM: one with the isopycnal diffusivity set to
2000 m?/s (highISO), one with isopycnal diffusivity set to 600 m?/s (low-
ISO), and one with high diapycnal diffusivity (highDIA) which increases from
10~°m? /s at the surface to 37*m?/s at 5400 m. Each experiment starts with
the optimal solution from the standard CYCLOCIM configuration and then
run for 2000 iterations. Figure A.13 shows that the mean meridional over-
turning circulation in HighISO and HighDIA experiments are stronger than
CYCLOCIM (Figure 10), whereas LowISO produces a weaker overturning
circulation.

Appendiz A.2. Restoring timescale

CYCLOCIM used a surface restoring timescale of 7 = 30 days for com-
puting the surface fluxes of heat and freshwater (see Eq.14-16). We con-
ducted two sensitivity experiments in which we halved and doubled the sur-
face restoring time (7 = 15 days and 7 = 60 days). Each sensitivity ex-
periment started with the optimal parameters estimated from the standard
CYCLOCIM configuration and was run for an additional 1500 iterations.
The inferred heat and freshwater transports are shown in Figure A.14. The
experiments show that the implied meridional transports are quite sensitivie
to the choice of 7. This sensitivity suggests that in future work we will need
to include the additional constraint on the surface fluxes of heat and freshwa-
ter from atmospheric reanalysis as we did previously for OCIM,(DeVries and
Primeau, 2011). This sensitivity might also be due to the absence of a con-
straint on the dynamic topography from altimeter data, which was included
in our previous state estimate using OCIM.

Appendiz A.3. Parameter «

The optimal value of o used to scale the piston velocity in the air-sea
gas exchange was 0.14 (cm/hr)/(m/s)? — a value that is significantly smaller
than the value of 0.251 (cm/hr)/(m/s)? estimated by Wanninkhof (2014)
for climatological winds. We therefore calculated the contribution to the
objective function f (Eq. 28) from CFC-11 and CFC-12 misfits as a function
of a. The sensitivity shown in the figure is performed holding all the other
control parameters fixed at their optimized value. Taken at face value, these
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results suggest that CYCLOCIM can provide a strong lower bound on «
but only a weak upper bound. Any firm conclusion must await a more fully
vetted state estimate, which is beyond the scope of the present article.
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Figure A.13: Climatogical mean meridional overturning circulation (MOC) stream func-
tion in three ocean basins for CYCLOCIM: Atlantic Ocean, Pacific Ocean and Southern
ocean. The three panel shows results from the experiment with high isopycnal diffusivity,
low isopycnal diffusivity and high diapycnal diffusivity. The contour interval corresponds
to 4 Sv. Positive values indicate clockwise circulation, and negative values anti-clockwise
circulation. The yellow line is the mean mixed layer depth at each basin.
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Figure A.14: Zonally averaged northward ocean (a) heat transports in PW and (b) fresh-
water transport in Sverdrup (Sv). The meridional transport estimates from CORE.v2
reproduced from Large and Yeager (2009), CYCLOCIM, the experiment with the restor-
ing timescale 7 = 15 days and the experiment with the restoring timescale 7 = 60 days.
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Figure A.15: The contribution to the objective function from CFC-11 and CFC-12 misfits
as a function of a. The sensitivity shown in the figure is performed holding all the other
control parameters fixed. The most probable value of v is 0.14. For references Wanninkhof
(2014) estimates alpha to be 0.251 in the same units.
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