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Abstract

We describe a new 4-D variational assimilation system, called CYCLOCIM,
to estimate the climatological seasonal cycle of the residual mean ocean cir-
culation. CYCLOCIM assimilates monthly mean potential temperature and
salinity data from the World Ocean Atlas, and CFC-11, CFC-12 and natural
radiocarbon measurements for the deep ocean from the Global Data Analysis
Project, Version 2. CYCLOCIM’s control parameters include: (i) a season-
ally varying 3-D field of unresolved eddy-stress divergences that appear in
the horizontal momentum equations, (ii) seasonally varying 2-D correction
fields for the surface heat and freshwater fluxes, and (iii) a constant scaling
factor for the air-sea flux of CFCs. The influence of initial conditions on a
fully spun-up ocean model vanishes. Thus, unlike other 4-D variational as-
similation systems, CYCLOCIM does not include initial conditions as control
parameters. A Bayesian procedure is used to formulate the inverse problem,
which is solved by finding the maximum of the posterior probability distribu-
tion. The optimization process used to find the maximum includes a forward
simulation to calculate the flow velocities and tracer distributions followed by
a backward (“adjoint” ) simulation to compute the gradient of the posterior.
A quasi-Newton search algorithm is used to find the set of parameters to max-
imize the posterior probability. We find that by resolving the seasonal cycle
the model is able to better fit the observations in the upper ocean compared
to a previous steady-state version of the model. The main output from CY-
CLOCIM is a set of 12 data-constrained monthly tracer transport matrices
that will provide a useful circulation model for global marine biogeochemical
cycle studies.
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1. Introduction1

An important goal of data assimilation in oceanography is to provide an2

estimate of the state of the ocean that is consistent with available obser-3

vations and known physical laws. Variational assimilation methods aim to4

achieve this goal by iteratively minimizing an objective function that mea-5

sures the difference between predictions obtained from a dynamical circula-6

tion model and available observations (Ghil and Malanotte-Rizzoli, 1991).7

While the applications for global data-assimilation products are numerous,8

the detection of climate trends is major driving motivation. Typically, the9

inputs to the objective function are the model’s initial conditions and surface10

boundary conditions for the fluxes of heat, freshwater, and momentum, but11

sometimes internal eddy-diffusivity parameters are also used (e.g. Balmaseda12

et al., 2015; Köhl, 2015; Forget et al., 2015; Osafune et al., 2015; Fukumori13

et al., 2018).14

In addition to producing a space-time interpolation of the sparse and15

irregulary sampled observations, a 4-D variational assimilation system also16

produces an estimate of the global circulation. The resulting estimate of the17

circulation can be extremely useful for computing tracer flux divergences in18

biogeochemical applications. When the focus is on recent trends and vari-19

ability that fall within the assimilation period, the estimated circulation can20

be used unambiguously (e.g Brix et al., 2015; Doi et al., 2015; Carroll et al.,21

2020). For applications involving the functioning of biogeochemical cycles22

on longer timescales, one can time-average the estimate and assume that the23

resulting average is representative of the long-term mean circulation. For24

example, Graven et al. (2012) average the state estimate for the period 1992-25

2004 from the ECCO-GODAE assimilation system (Stammer et al., 2004),26

into monthly mean tracer transport matrices, which are then used to simu-27

late the pre-industrial carbon cycle and its transient evolution for 1760-2007.28

For this they assume a climate system that is stationary to first order and29

repeatedly cycle through the same 12 tracer transport matrices. However,30

because each iteration of the assimilation procedure simulates the circula-31

tion for at most a few decades while repeatedly adjusting the initial condi-32

tions, the resulting circulation is never fully spun-up. Consequently, it is not33

clear that the circulation, especially in the deep ocean, produces stable water34
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masses when the circulation is extrapolated to time-scales longer than those35

used for the assimilation. Indeed, Graven et al. (2012) demonstrate the exis-36

tence of clear biases in the shallow-to-deep exchange of water masses in the37

data-assimilation circulation from the ECCO-GODAE model. Similarly, Liu38

et al. (2012) show that even after optimizing the initial conditions, the surface39

forcing, and eddy-diffusivities, the German ECCO synthesis (GECCO) has40

temperature errors that are several times bigger than their prior estimates.41

For biogeochemistry research that requires tracer simulations that are42

much longer than the observational record an alternative data-assimilation43

procedure has been developed (e.g. Schlitzer, 2007; DeVries and Primeau,44

2011). It aims to directly constrain a steady-state model of the ocean’s45

long-term climatological mean using a 3-D (no time-dependence) variational46

assimilation procedure. The application of inverse methods to global marine47

biogeochemical cycles has progressed rapidly in recent years because of the48

development of such a data-constrained steady model expressed in the form49

of a tracer transport matrix (e.g. Devries et al., 2012; DeVries et al., 2013;50

Holzer and Primeau, 2013; Devries and Deutsch, 2014; DeVries, 2014; Holzer51

et al., 2014; Teng et al., 2014; Frants et al., 2015; Holzer et al., 2016; Weber52

et al., 2016; DeVries et al., 2017; Pasquier and Holzer, 2016; Roshan et al.,53

2017; Pasquier and Holzer, 2017; Roshan and DeVries, 2017; Holzer et al.,54

2017; John et al., 2018; Wang et al., 2019; Martin et al., 2019a,b). The tracer55

transport matrix used in the aforementioned studies is produced by a data56

assimilation system known as the Ocean Circulation Inverse Model (OCIM)57

(DeVries and Primeau, 2011; Primeau et al., 2013; DeVries, 2014; DeVries58

and Holzer, 2019). OCIM uses a variational method to assimilate stationary59

and transient tracers into a steady-state model for the large-scale momentum60

balance of the ocean. Because of the assimilation process, the circulation61

biases found in most prognostic ocean general circulation models (OGCMs)62

are greatly reduced. As a result, biogeochemical inferences made on the63

basis of tracer flux divergences computed using OCIM can be interpreted64

more reliably than those obtained from free running OGCMs.65

The steady-state assumption used in the OCIM system makes it possible66

to obtain a fully-spun up ocean state by direct matrix inversion rather than67

by a slow time-stepping spin-up as is used in traditional OGCMs. This capa-68

bility makes it feasible to compute the O(103) iterations of the forward and69

adjoint model runs that are required by the iterative numerical optimiza-70

tion algorithm to bring the model state into agreement with the tracer-data71

constraints.72

3



An important drawback of the steady-state formulation is that it ignores73

the pronounced seasonality of ventilation processes in mid- to high-latitudes74

(e.g. Marshall and Schott, 1999; Williams et al., 1995). This neglect can75

lead to potentially important biases whose influence on biogeochemial infer-76

ences are difficult to quantify. For example, it is well known that late-winter77

mixed layer water properties are preferentially selected for export to the per-78

manent pycnocline (e.g. Stommel, 1979; Williams et al., 1995). By neglecting79

the seasonal cycle, the OCIM tracer-transport operator must necessarily be80

biased in the upper ocean if it is to reproduce the correct water-mass prop-81

erties in the permanent thermocline and abyssal waters (see for example the82

discussion in Yu and Malanotte-Rizzoli, 1996, 1998).83

Here we present an extended OCIM assimilation system, which we call84

CYCLOCIM, that produces a cyclo-stationary state estimate for the clima-85

tological seasonally varying ocean circulation. The direct matrix inversions86

via LU factorization that were used to obtain fully spun-up steady states in87

OCIM are replaced by calls to a cyclo-stationary Newton-Krylov solver (e.g.88

Li and Primeau, 2008; Bardin et al., 2014). Compared with the majority of89

existing ocean reanalysis efforts (e.g. Mazloff et al., 2010; Balmaseda et al.,90

2015; Köhl, 2015; Forget et al., 2015; Osafune et al., 2015; Fukumori et al.,91

2018), what sets our system appart is that it aims to estimate the ocean’s92

mean annual cycle rather than its inter-annual variability. CYCLOCIM is93

therefore a generalization to a periodic annual cycle of previous steady-state94

inversions (e.g. Schlitzer, 1993; Wunsch, 1996; Ganachaud and Wunsch, 2000;95

Schlitzer, 2007; DeVries and Primeau, 2011). The goal of the CYCLOCIM96

assimilation system is therefore most similar to the one in the study of Wen-97

zel et al. (2001) who developed a 4-D variational assimilation method to98

estimate a cyclo-stationary annual cycle of the ocean circulation. There99

are, however, some important methodological differences. Most importantly,100

Wenzel et al. (2001) follow Yu and Malanotte-Rizzoli (1998) by adding a101

penalty term for departures from a cyclo-stationary state to the usual cost102

function that measures the misfit between the model and the observations.103

They then use the initial conditions (i.e. the January model state) along with104

the monthly mean surface forcing as the control variables in the minimiza-105

tion problem. The data-assimilation procedure used in Wenzel et al. (2001)106

can therefore be viewed as trading off model-data misfits for a reduced tem-107

poral drift. Indeed, in a fully spun-up model with zero drift, the initial108

conditions exert no controllability on the objective function. In contrast,109

CYCLOCIM searches for the optimal state in the space of perfectly cyclo-110
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stationary model solutions that have zero temporal drift. This is achieved111

by adding time-periodic eddy-stress divergence terms to the horizontal mo-112

mentum equations and using them as control variables in the optimization113

of the residual mean circulation. In this respect CYCLOCIM follows the114

pioneering study of Ferreira et al. (2005) who added eddy-stresses to initial115

conditions and surface forcing as the control variables used to minimize so-116

lution drift and departures from climatological observations of temperature.117

In CYCLOCIM we completely eliminate the initial conditions from the list118

of adjustable parameters by directly solving for the cyclo-stationary annual119

cycle. This cyclo-stationary solution represents the projection of the ocean’s120

long-term climatological attractor onto a periodic annual cycle.121

The primary focus of this article is to document the numerical formulation122

of the model and the solution method rather than presenting a scientifically123

usable state estimate. In Section 2 we present the governing equations for124

the residual mean circulation and the computational method used to obtain125

their cyclo-stationary solution. In Section 3 we present the governing equa-126

tions and solution method for the cyclo-stationary and transient tracers that127

are used to constrain the circulation. In Section 4 we give a Bayesian for-128

mulation of the inverse problem. We then present how we use the adjoint129

method to efficiently compute the gradient of the logarithm of the posterior130

probability density function so that we can locate the maximum of the pos-131

terior probability function. In Section 5 we compare the tracers simulated132

using our most probable model to observations. We show the most probable133

meridional overturning circulation conditioned on the tracer data, along with134

the implied meridional fluxes of heat and fresh water. Finally, in Section 6135

we summarize the results and give directions for future model developments136

and applications.137
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2. Dynamical model138

The dynamical model is based on the linearized Navier-Stokes equations139

with hydrostatic and Boussinesq approximations with an implicit free surface,140

u†t − fv† +
1

a cosφ
gηλ +Du† = − 1

a cosφ

pλ
ρ0

+
δ1k

∆z1

τλ + δτλ

ρ0

+
1

ρ0

τ eλz , (a)

v†t + fu† +
1

a
gηφ +Dv† = −1

a

pφ
ρ0

+
δ1k

∆z1

τφ + δτφ

ρ0

+
1

ρ0

τ eφa , (b)

p = g

∫ 0

z

ρ(z
′
)dz

′
, (c)

1

a cosφ
[(v† cosφ)φ + u†λ] + w†z = 0, (d)

ηt +

∫ 0

zbot(λ,φ)

{
1

a cosφ
[(v† cosφ)φ] + u†λ

}
dz = 0, (e)

(1)

where (u†, v†, w†) is the residual mean velocity rather than the Eulerian mean;141

~τ = (τλ, τφ) is the wind-stress and the factor δ1k/∆z1 is used to indicate142

that the wind stress is applied as a body force in the top layer of the dis-143

cretized model; ~τ e =
(
τ eλ, τ eφ

)
is a cyclo-stationary eddy-stress vector; η is144

the seasonally-varying mean dynamic topography; p is the climatologically-145

averaged seasonally-varying baroclinic pressure computed using the hydro-146

static balance and the observed climatological density field; ρ is the climatologically-147

averaged seasonally-varying density; δ~τ = (δτλ, δτφ) is a correction to the148

prescribed wind-stress climatology (e.g. Stammer et al., 2002; Ferreira et al.,149

2005; DeVries and Primeau, 2011); f is the Coriolis parameter; g is gravity.150

λ is the longitude and φ is the latitude. The continuity equation is solved in151

a domain with the surface set at z = 0 and a spatially variable bottom topog-152

raphy, zbot(λ, φ), i.e we assume that |η| � −zbot(λ, φ). The friction operator,153

D, is here taken to be a simple Rayleigh drag, i.e. D(u†, v†) = r(u†, v†),154

r = 10−6 s−1. As previously mentioned, the averaging operator used to de-155

fine the residual mean is based on a projection of the ocean circulation on156

its cyclo-stationary mean seasonal-cycle. Consequently, any deviation from157

this perfectly periodic state is, by definition, part of the “eddy” field. This158

is different from conventional 4-D variational assimilation models where the159

large-scale low-frequency variability such as ENSO is explicitly resolved by160

the model and does not part of the “eddy” field.161
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Rewriting (1) in matrix-vector form we have162

∂t


u†

v†

w†

η

+ M


u†

v†

w†

η

 = F + F e, (2)

where163

M =


r −f 0 1

a cosφ
g∂λ

f r 0 1
a
g∂φ

1
a cosφ

∂λ
1

a cosφ
∂φ cosφ ∂z 0

∂−1
z ∂λ ∂−1

z ∂φ cosφ 0 0

 , (3)

with the linear operator ∂−1
z defined to return the indefinite vertical integral164

of its operand, i.e. ∂−1
z q ≡

∫ 0

z
qdz. The forcing term on the right hand165

side is decomposed into two periodic forcing terms, F(t + ∆T ) = F(t) and166

F e(t + ∆T ) = F e(t). The first contribution consists of the wind-stress and167

the baroclinic pressure forces,168

F(t) ≡ 1

ρ0


δ1k
∆z1

τλ − g
a cosφ

∂λ∂
−1
z ρ

δ1k
∆z1

τφ − g
a
∂φ∂

−1
z ρ

0
0

 , (4)

which can be computed directly from the observed climatological wind-stress169

obtained from the European Centre for Medium-Range Weather Forecasts170

(ECMWF) climatological fields (Trenberth et al., 1989), and the observed171

climatological density computed using the equation of state for seawater and172

the World Ocean Atlas 2013 (Boyer et al., 2013) gridded temperature and173

salinity fields. The second contribution consists of the unobserved errors in174

the wind-stress climatology and the unresolved eddy-stress forcing175

F e =
1

ρ0


δ1k
∆z1

δτλ + ∂zτ
eλ

δ1k
∆z1

δτφ + ∂zτ
eφ

0
0

 , (5)

which will be inferred via the Bayesian inversion procedure using transient176

and cyclo-stationary tracer observations. We do not attempt to separate the177

contribution of the wind-stress correction (here applied as a body force in178
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the upper-most layer of the model) and the eddy-stress divergence. Only179

their sum appears in the model and they are therefore lumped together in180

the inversion.181

2.1. Space discretization182

The dynamical state of the model is discretized using a staggered Arakawa183

B-grid finite-difference scheme (e.g. Haltiner and Williams, 1980) with a uni-184

form 4◦× 4◦ horizontal resolution and a vertical discretization with 24 layers185

whose thicknesses increase monotonically with depth (Table 1) resulting in a186

discretized dynamical state vector x = [u†, v†, w†, η] expressed as a 122 333×1187

matrix. With this discretization scheme, the operator M becomes a time-188

independent 122 333 × 122 333 sparse-matrix operator. Similarly, the right-189

hand-side forcings, F and F e become time-periodic 122 333-dimensional vec-190

tors, F and Fe. The resulting governing equation for the dynamics expressed191

in matrix-vector form is192

dx

dt
+ Mx = F(t) + Fe(t). (6)

Following DeVries (2014), we also added a discretized horizontal Laplacian193

operator with a diffusivity of 10−3 m2/s to the part of the M operator cor-194

responding to the equation for η, i.e. equation (1e). This was done to195

damp out a checkerboard computational mode associated with the B-grid196

discretization.197

36.1 37.3 40.7 46.3 54.2 64.4
76.8 91.5 108.4 127.6 149.1 172.8

198.7 227.0 257.5 290.2 325.2 362.5
402.0 443.8 487.8 534.1 582.7 633.5

Table 1: Vertical discretization used in CYCLOCIM. The thicknesses in meters increase
monotonically with increasing depth.

2.2. Time discretization and cyclo-stationary state198

Equation (6) can be further discretized in time using an Euler backward199

scheme with dt = ∆T/12, to get200

Axn = xn−1 + (Fn + Fe
n)dt,

A ≡ I + Mdt.
(7)
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with F0 = F12, Fe
0 = Fe

12, and x0 = x12. Because the forcing term on the201

right-hand-side is periodic in time the fully spun-up dynamical state will be202

cyclo-stationary and satisfy the following block-matrix system203 
−I A 0 · · · 0
0 −I A · · · 0
...

. . . . . .
...

0 0 · · · −I A
A 0 · · · 0 −I


︸ ︷︷ ︸

Ã


x12

x1

x2
...
x11

 =


F1 + Fe

1

F2 + Fe
2

...
F11 + Fe

11

F12 + Fe
12

 dt. (8)

The enormous size of the matrix, Ã, precludes the use of a direct LU factor-204

ization to solve Eq. (8). We therefore obtain a solution to Eq. (8) using an205

iterative Newton-Krylov solver that avoids the need to explicitly construct206

Ã. The convergence of the solver is greatly accelerated by the fact that207

it is possible to construct a nearly converged initial iterate using a Fourier208

representation of the continuous-time solution. Because M does not depend209

on t, a continous-time cyclo-stationary solution to Eq. (6) can be efficiently210

computed by first transforming the equation to Fourier space. To this end,211

we expand the forcing function and the solution in Eq. (6) into a truncated212

Fourier series with 6 complex sinusoidal modes213

F(t) + Fe(t) =
5∑

k=0

F̂ke
ik2πt/∆T ,

x(t) =
5∑

k=0

x̂ke
ik2πt∆T ,

(9)

which transforms the coupled system of differential equations (6) into a sys-214

tem of 733 998 complex-valued algebraic equations215 
iω0I + M 0 0

0 iω1I + M 0
...

... 0
. . . 0

0 0 iω5I + M



x̂0

x̂1
...
x̂5

 =


F̂0

F̂1
...

F̂5

 , (10)

where the subscript corresponds to each sinusoidal mode in Eq.(9) and ωk =216

k2π/∆T . Because the matrix in Eq. (10) is block-diagonal it uncouples into217
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6 independent 122 333× 122 333 systems, each of which can be solved using218

a complex sparse-matrix LU factorization. The resulting continuous-time219

solution can then be evaluated at t = 0 to construct an initial iterate220

x1 = <
{

5∑
k=0

x̂k

}
, (11)

for the Newton Krylov solver. Fully spun-up cyclo-stationary solutions can221

be obtained using this method with the equivalent of only a few years of222

simulation – typically 5 or less – without the need for a sophisticated pre-223

conditioner.224

2.3. Choice of time step225

Following Wenzel et al. (2001), we use a time step dt = ∆T/12 in accor-226

dance with the time-resolution of the WOA climatology. Because our present227

goal is to describe the solution method rather than present a scientifically228

usable state estimate, we limit our presentation to the case of 12 time-steps229

per year. However, our assimilation method should work with an arbitrary230

number of time steps per year. We are planning a follow up paper in which231

we increase the horizontal resolution to 2◦× 2◦ and explore the sensitivity of232

the state estimate to the time-step size.233

3. Tracer transport234

The primary observational constraint for the CYCLOCIM state estimate235

consist of hydrographic tracer observations. The advection-diffusion equation236

for a tracer c is given by237

∂c

∂t
+∇ · [u†(t)−K(t)∇]c = S(c, t), (12)

where K(t) is the tracer diffusivity tensor and u†(t) is the residual mean cir-238

culation. The implicit averaging operator used to define the residual mean is239

based on a projection of the ocean circulation onto its climatological mean240

seasonal cycle. Thus both u†(t) and K(t) are assumed to be periodic func-241

tions with a period of ∆T = 1 year.242

For the particular state estimates we present here, the diffusivity tensor243

is constructed using an isopycnal diffusivity of 103 m2s−1 and a vertical dif-244

fusivity of 10−5 m2s−1. (The sensitivity to this choice is explored briefly in245
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Appendix A.) The isopycnal surfaces were computed using the 2013 World246

Ocean Atlas (WOA2013) monthly-mean temperature and salinity (Boyer247

et al., 2013). In addition, the vertical diffusivity is enhanced to a value of248

1 m2s−1 in a surface mixed layer of thickness h, which is prescribed accord-249

ing to the observed monthly-mean mixed layer depth climatology (de Boyer250

Montégut et al., 2004). This large value ensures that tracer concentrations251

are uniform within the surface mixed layer.252

3.1. Space discretization253

The tracer transport equations are discretized using a staggered Arakawa254

C-grid (e.g Haltiner and Williams, 1980). For the 4◦×4◦ horizontal resolution255

with 24 vertical layers the model has a total of N = 45 515 wet grid boxes.256

A discretized tracer field can then be organized into an N ×1 column vector,257

c. The discretized version of Eq.(12) can then be expressed in matrix-vector258

form as follows,259

dc

dt
+ Γ(t)c = s(c, t), (13)

where s is an N × 1 source vector and Γ(t) is a N × N sparse matrix con-260

structed such that the matrix-vector product Γc produces the advective-261

diffusive tracer flux divergence in each of the model’s wet grid boxes. In262

the construction of Γ, the diffusive tracer fluxes are discretized using second-263

order centered differences and the advective fluxes are discretized using a264

“Quick-up” scheme, that is, “semi-upwind” (i.e. the quadractic interpolation265

is biased towards the upstream direction) in the horizontal and “QUICK”266

in the vertical (Leonard, 1979). For the grid-box interfaces separating the267

ocean from the land or atmosphere, Γ is constructed to satisfy no normal268

flux conditions.269

3.2. Potential temperature model270

For the potential temperature equation the source term s appearing in271

Eq. (13) consists of a surface heat flux, which we model by restoring the272

temperature in the model’s upper-most layer to a prescribed surface temper-273

ature field, θa(t), that is periodic in time, i.e. θa(t+ ∆T ) = θa(t). With Ns274

wet surface grid-boxes, s can be expressed in matrix-vector form as275

s =
1

τ
Λs(θa −ΛT

s c), (14)
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where τ = 30 days (but see Appendix A.2 for sensitivity experiments), Λs is276

an N×Ns sparse matrix with ones on the main diagonal and zeros elsewhere.277

The state vector, c, is organized such that its first Ns elements correspond278

to the surface values, therefore, ΛT
s c produces an Ns × 1 vector of surface279

temperatures. The superscript T is used to denote the matrix transpose280

operation. The prescribed surface temperature field is constructed using281

the WOA2013 monthly climatology (Boyer et al., 2013) to which we add a282

small periodic in time correction to account for errors in the climatology, i.e.283

θa(t) = θWOA

a (t) + δθa(t). The unobserved correction, δθa, will be estimated284

as part of the Bayesian inversion. The inclusion of the δθa term (and the285

δsa term described below) makes this method of implementing the surface286

boundary condition distinctly different than the so-called “robust-diagnostic”287

method where the temperature is restored to the uncorrected observations288

(e.g. Sarmiento and Bryan, 1982).289

3.3. Salinity model290

For the salinity equation the source term s consists of surface freshwater291

fluxes, which we model by restoring the salinity in the model’s upper-most292

layer to a seasonally varying sea surface salinity field, sa(t), that is periodic293

in time, i.e. sa(t+ ∆T ) = sa(t). The source vector for salinity is thus given294

by295

s =
1

τ
Λs(sa −ΛT

s c). (15)

where τ = 30 days is the restoring timescale. The prescribed sea surface296

salinity field is constructed using the WOA2013 (Boyer et al., 2013) monthly297

climatology to which we add a small periodic in time correction to account298

for errors in the climatology, i.e. sa(t) = sWOA
a (t) + δsa(t). The unobserved299

correction, δsa, will be estimated as part of the Bayesian inversion.300

3.4. Natural radiocarbon model301

For the natural (pre-bomb) radiocarbon model, the source function con-302

sists of the radioactive decay and air-sea gas exchange of 14CO2, which we303

model simply as304

s =
1

τ
Λs(

14cs −ΛT
s c)− λc, (16)

where λ = log(2)/(5730 years) is the 14C decay rate, 14cs is the GLODAP305

(Key et al., 2004) estimate of the surface ∆14C concentration prior to the306

atmospheric bomb tests and τ = 30 days. Because τλ� 1, we are effectively307

restoring c to 14cs in the surface layer of the model.308
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3.5. Chlorofluorocarbons model309

Chlorofluorocarbon(CFCs) are transient tracers which were released into310

the atmosphere starting in 1940. Therefore an initial concentration of zero is311

used for a transient simulation for the period from January 1940 to December312

2009 using a one-month long time step. In the transient simulation, we use313

the atmospheric history of CFC-11 and CFC-12 (USGS, 2009) interpolated314

to a time resolution of one month. To model the gas exchange flux we use315

the standard OCMIP-2 formulation (Najjar and Orr, 1998) as was done for316

OCIM (DeVries, 2014),317

s =
Λk

dz1

(catm −ΛT
s c), (17)

where dz1 = 36.1 m is the thickness of the model’s upper most layer and318

catm is the prescribed atmospheric CFC concentration. The gas-exchange319

operator Λk is an N ×Ns sparse matrix with non-zero elements on the main320

diagonal. These are given by the piston velocity, k, scaled using an adjustable321

parameter α, such that322

k = α · (u10)2 · (Sc/660)−
1
2 · (1− fice), (18)

where u10 is the monthly climatological root-mean-square wind speed at 10323

m above the sea surface, Sc is the temperature-dependent Schmidt number,324

and fice is the monthly climatological fractional ice cover. Note that the325

scalar parameter α does not change with time and is the same in all grid326

boxes.327

3.6. Time discretization328

The version of the model we present here uses a fully implicit Euler back-329

ward time-stepping scheme with a time step of one month:330

Bncn = cn−1 + sondt,

Bn ≡ I +

(
Γn −

[
∂s

∂c

]
n

)
dt,

(19)

for n = 1, 2, · · · ,M with dt = ∆T/12. In this equation the time-dependent331

tracer transport matrix, Γ(t), and the partial derivative of the tracer source332

function with respect to the tracer concentration, ∂s(c, t)/∂c, are discretized333

into 12 time-independent matrices Γn and [∂s/∂c]n respectively for n =334
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1, 2, · · · , 12, with the condition that Γn+12 = Γn and [∂s/∂c]n+12 = [∂s/∂c]n.335

The non-homogeneous part of the source function is discretized into time-336

dependent source vectors, s(0, tn) = son for n = 1, 2, · · · ,M . For the transient337

CFC tracers we use the initial condition that c = 0 and step the equations338

forward for n = 1, 2, · · · ,M = Nyr × 12, corresponding to the period from339

1940 to 2009. For salinity, potential temperature, and pre-bomb radiocarbon340

the source vectors satisfy the same periodicity condition as the transport341

operators, i.e. son+12 = son, implying that the fully spun-up solution (M →342

∞) will also be cyclo-stationary with cn+12 = cn.343

3.7. Cyclo-stationary solutions344

With a one-month time-discretization and the Euler backward scheme345

the cyclo-stationary tracers (potential temperature, salinity, and pre-bomb346

radiocarbon) satisfy the following block-matrix system347 
−I, B1, 0, · · · 0
0 −I B2 · · · 0
...

. . . . . .
...

0 0 · · · −I B11

B12 ... ... ... −I


︸ ︷︷ ︸

B̃


c12

c1

c2
...
c11

 =


s0

1

s0
2
...
s0

11

s0
12

 dt. (20)

In principle one could try to obtain the cyclo-stationary solution to Eq.(20)348

by directly inverting B̃, but this is computationally very expensive because349

of the size of B̃. This prohibitive computational cost is particularly true if350

we try to decrease the size of the time-step to better resolve the seasonal351

cycle. We therefore solve Eq.(20) using a pre-conditioned iterative Newton-352

Krylov solver without explicitly constructing the B̃ matrix or the source353

vector on the right hand side (e.g. Li and Primeau, 2008; Khatiwala, 2008;354

Bardin et al., 2014; Fu and Primeau, 2017)). In this method, we apply355

the preconditioner to the model state after time-stepping the model through356

one annual period. The preconditioner accelerates the convergence of the357

iterative Newton-Krylov solver, but otherwise does not affect the solution.358

For the preconditioner we use the same one first described in Li and Primeau359

(2008), namely360

P =

(
∆T

12

12∑
n=1

(
Γn −

[
∂s

∂c

]
n

))−1

− I. (21)
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It can be thought of as an approximation to equation (20) using one big361

Euler-backward time-step with the annually averaged tracer transport ma-362

trix. We use the nsoli.m Newton Krylov solver (Kelley, 2013) and obtain363

fully-spun up cyclo-stationary solutions with the equivalent of only a few364

years of simulation – typically less than 10 and seldom more than 50.365

4. Bayesian inversion for the adjustable model parameters366

As presently formulated the model has a suite of adjustable parameters,367

organized into an 980 737× 1 vector,368

p =
[
∂zτ

eλ ∂zτ
eφ δθa δsa α

]T
, (22)

that must be specified for the problem to be well posed. We infer the pa-369

rameter values via a Bayesian inversion procedure constrained by tracer ob-370

servations. Note that the parameters ∂zτ
eλ, and ∂zτ

eφ include the three-371

dimensional field of horizontal eddy-stress divergences as well as the correc-372

tion to the imposed surface wind-stress. The two contributions cannot be373

separated by a our inversion procedure. The parameters δθa, and δsa are374

the corrections to the surface temperature and salinity used to compute the375

fluxes of heat and freshwater at the air-sea interface. α is a scalar parameter376

that scales the prescribed piston velocity for the flux of CFCs through the377

air-sea interface.378

We assign normal probability distributions to the observed tracer concen-379

trations, with the mean of the distributions given by the model’s simulated380

concentrations. Specifically, the probability of the tracer data conditioned381

on the model parameters, is given by382

prob(cobs

i |p) ∝ exp

[
−1

2
(Hici − cobs

i )TWi(Hici − cobs

i )

]
, (23)

where the index, i = 1, 2, · · · 5, identifies the particular tracer being con-383

sidered, i.e. potential temperature, salinity, CFC-11, CFC-12, or pre-bomb384

radiocarbon. The likelihood function for potential temperature was modified385

from the Gaussian density by a factor that assigns a very low probability to386

potential temperatures that fall close to or below the freezing point of seawa-387

ter, i.e. exp
{
−ωiceφ

Tφ)
}

, where φ = tanh [exp {−(T + 2.6◦C)/0.1◦C}] and388

ωice = 104. The matrices Hi are used to select the grid-boxes and months for389

which we have tracer observations. For potential temperature and salinity390
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these matrices are identity matrices because we constrain the model using391

the gridded climatology of WOA2013, but for the other tracers we use bot-392

tle measurements from GLODAPv2. We retained only bottle radiocarbon393

measurements below 1000 m for which the measured CFC-11 was less than394

0.01 pmol/kg to prevent any interference with the bomb signal. The scaled395

precision matrices, Wi, are taken to be the sum of two symmetric matrices396

one of which is positive definite. The positive definite matrix is diagonal397

with entries given by the reciprocals of the variances σ2
i computed from all398

the observations available for a given month and grid box (for potential tem-399

perature, salinity, and pre-bomb radiocarbon) and for a particular, grid box,400

month, and year for the transient CFC-11 and CFC-12 tracers, and then401

divided by the numbers of observations. Therefore, σi varies in space and402

time. We use the WOA13 to estimate the σi of temperature and salinity and403

GLODAPv2 to estimate the σi of CFCs and radiocarbon. The other matrix404

is given by βiL
TL where L is a discretized version of the horizontal Laplacian405

operator in spherical coordinates. The Laplacian operator is only added for406

the potential temperature and the salinity terms to take into account the407

spatially correlated errors introduced by the gridding of those observations.408

The value of βi is given by one over the product of the variance of the cal-409

culated σ2
i . We further assume that conditioned on the model, all the tracer410

observations are independent. With this assumption we can construct the411

likelihood function by simply taking the product of the probability densities412

for each tracer , i.e.413

prob({cobs

i }5
i=1 |p) =

5∏
i=1

prob(cobs

i |p). (24)

For the prior probability of p we assume a normal distribution centered414

at p = 0,415

prob(p) ∝ exp

[
−1

2
pTWpp

]
, (25)

with a prior precision matrix, Wp, taken to be diagonal. For the unob-416

served errors in the wind-stress climatology, (δτ λ, δτ φ) and the unresolved417

eddy-stress forcing, (∂zτ
λ
e , ∂zτ

φ
e ), the diagonal of Wp is 1

(0.1F)2n
, where F is418

the forcing vector in Eq.(6), and n is the number of adjustable eddy-stress419

divergence parameters. This choice ensures that the large scale momentum420

balance follows the thermal wind and Ekman balances. (The square of F421

in this last expressions is applied element wise.) For the δθa and δsa, the422
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diagonal elements are given by the reciprocal of the product of the variance423

computed from all the observation for a given month and the number of grid424

boxes in the surface layer of the model. We assign no prior constraint on the425

value of α. We further constrained the prior probability density function for426

the parameters implicitly by assigning a weak prior on the dynamical state427

of the model, i.e. we assigned a normal distribution centered at zero428

prob(x|p) ∝ exp

[
−1

2
xTWxx

]
, (26)

where the precision matrix, Wx, is taken to be diagonal. The diagonal429

elements are given by the reciprocal of velocity and dynamic topography430

variances. The horizontal velocity variances start with a value of (1 m/s)2 in431

the top layer of the model and decay exponentially to (0.07 m/s)2 at a depth432

of 4000 m (see Eq. 14 in Large et al., 2001). This weak constraint is helpful433

in the early stages of the parameter optimization as it prevents the search434

algorithm from suggesting parameter values that lead to implausible dynam-435

ical states. Its impact on the ultimate solution is negligible. For the vertical436

velocity, we increased the prior precision by a factor of 50 compared to that437

used by DeVries (2014), to be consistent with that used in the latest OCIM438

version (OCIM2), as described in (DeVries and Holzer, 2019). The increased439

penalty is necessary to prevent unrealistically large vertical velocities and a440

noisy meridional overturning circulation.441

With the above choices the posterior probability density function obtained442

via Bayes’ theorem is443

prob(p|{cobs

i }5
i=1) ∝ exp [ − 1

2

5∑
i=1

(Hici − cobs

i )TWi(Hici − cobs

i )

− 1

2
ωiceφ

Tφ− 1

2
xTWxx−

1

2
pTWpp

]
.

(27)

Note that x in this probability density is an implicit function of p. The pos-444

terior probability density described by Eq. (27) lives in a 980 737 dimensional445

space. The large dimension of this space makes it impossible to compute or446

store the posterior covariance matrix of the state estimate. We therefore limit447

ourselves to summarizing the posterior probability density function in terms448

of the location of its maximum, which is equivalent to finding the minimum449
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of the negative logarithm of the posterior probability density function,450

f̂(p) ≡f(y(p),p),

=
1

2

5∑
i=1

(Hici − cobs

i )TWi(Hici − cobs

i ) +
1

2
ωiceφ

Tφ

+
1

2
xTWxx+

1

2
pTWpp,

(28)

where y(p) =
[
x c1 · · · c5

]
is the solution to the model equations,451

F (y,p) = 0, combining the cyclo-stationary dynamical state with the cyclo-452

stationary potential temperature, salinity and radiocarbon solutions with the453

transient CFC-11 and CFC-12 solutions. Note that minimizing f̂(p) reduces454

to solving a nonlinear least-squares problem.455

It is important to point out that the location of the minimum of the456

objective function will not change if we add a multiplicative factor to the457

objective function. Such a factor will, however, affect the size of the posterior458

error bars for our parameter estimates. Because this scaling factor affects459

the normalization constant for the posterior probability, introducing it also460

introduces an extra additive term to the objective function that depends461

on the scaling factor but not on p. This means that if we had introduced462

the scaling factor we would be able to estimate its size by minimizing the463

resulting objective function with respect to this factor. We did not do this464

here because we are focusing on finding the most probable state estimate.465

However it will be important to estimate this missing scaling factor in the466

future so that we can obtain consistent posterior error bars for our state467

estimate.468

We solve the above problem using a quasi-Newton method. Following469

Heinkenschloss (2008), we express the gradient of f̂(p) in terms of the partial470

gradients of f(y,p),471

∇pf̂(p) = yTp∇yf(y(p),p) +∇pf(y,p),

= −(Fy(y(p),p)−1Fp(y(p),p))T∇yf(y(p),p)) +∇pf(y(p),p),

= Fp(y(p),p)Tλ(p) +∇pf(y(p),p),

(29)

where the vector of Lagrange multipliers, λ(p), is the solution to472

[Fy(y(p),p)]T λ(p) = −∇yf(y,p). (30)
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The great computational advantage of using the last expression in Eq.473

(29) rather than the middle line in Eq. (29) is that it involves solving only one474

linear system of equations for λ(p) instead of solving a separate linear system475

for each the 980 737 components of p. Because the linear system involves the476

transposed Jacobian matrix, [Fy(y(p),p)]T , this method is known as the477

adjoint method (e.g. Schlitzer, 1993, 2007; DeVries and Primeau, 2011).478

The adjoint system (30) and λ(p) can be partitioned into components479

which can be solved separately. Specifically,480

λ(p)T =
[
λTx λTθ λTs λTc14 λTCFC-11 λTCFC-12

]
(31)

where481

BT
nλcn = λcn+1 +∇cnf(y,p), (32)

for n = M,M − 1, · · · , 1. For the cases where cn correspond to the transient482

CFC tracers, the system is solved starting with the final condition λcM+1
= 0483

and time-stepped backwards in time from M = Nyr × 12 to n = 1. For the484

cyclo-stationary tracers, the λcn are also periodic and solutions are obtained485

using the same Newton-Krylov method used to find the cyclo-stationary state486

of the tracers except that the transpose of the operators are used in reverse487

time order, and the transpose of the operator in Eq. (21) is used for the488

preconditioning. We note that in the forward model, the state at time step489

n + 1 is completely determined by the state of the model at time step n.490

Similarly, in the adjoint model, the state at time step n is completely deter-491

mined by the state at time step n + 1. Because all the solutions obtained492

using our cyclo-stationary solver are perfectly periodic it does not matter493

at which month we start the integration. We always get the same periodic494

solution for the same forcing.495

Having obtained the Lagrange multipliers corresponding to the tracer496

variables, the Lagrange multipliers corresponding to the model’s dynamical497

state can be obtained by solving for the cyclo-stationary state of498

ATλxn = λxn+1 + F†n, (33)

where the monthly forcing terms are given by499

F†n =Γxn

[
λθn + λsn + λc14,n +

Nyr∑
m=1

(λCFC-11,m,n + λCFC-12,m,n)

]
−∇xnf(y,p),

(34)
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for n = 1, 2, · · · , 12, where Γxn corresponds to the partial derivative of the500

tracer transport operator with respect to the dynamical state variable during501

month n. Cyclo-stationary solutions are obtained using the same Newton-502

Krylov solver used for the forward model except that the transpose of A is503

used in the preconditioner and the forcing terms are cycled in time reversed504

order.505

4.1. Summary of CYCLOCIM data-assimilation procedure506

The CYCLOCIM data-assimilation system solves the constrained opti-507

mization problem508

minimize
y,p

f(y,p),

such that C(y,p) = 0,
(35)

where f̂(p) = f(y(p),p) is the negative of the logarithm of the poste-509

rior probability density prob(p|data) for p (see Eq. 27 and Eq. 28), and510

C(y,p) = 0 denotes the governing equations for the dynamical and tracer511

states of the model. The solution procedure is summarized in Figure 1. The512

iterative procedure consists of repeating five main steps:513

1. Given a current estimate of p, solve the cyclo-stationary dynamical514

model to obtain x(p), i.e. the seasonally varying residual mean circu-515

lation (u†, v†, w†) and dynamic topography (η).516

2. Solve the transient tracers (cCFC-11 and cCFC-12) and the cyclo-stationary517

tracers, potential temperature, salinity and natural radiocarbon (θ, s,518

and c14) using the sparse-matrix tracer transport operators constructed519

using the current estimate of x.520

3. Evaluate the objective function for the given p, that is, the posterior521

probability density function, prob(p|data) as given in Eq.(27). (Eval-522

uating f̂(p) as given in Eq.(28) is equivalent to evaluating Eq. (27)523

because the logarithm function is a monotonically increasing function.)524

4. Compute the gradient of the objective function ∇pf̂(p) and check if525

the minimum has been reached.526

5. Use a quasi-Newton search algorithm and ∇pf̂(p) to produce an im-527

proved (more probable) estimate of p.528

The data assimilation procedure we use is equivalent to what is sometimes529

called a 4-D variational assimilation system except that the time-dependent530

part of the procedure is restricted to be periodic for the circulation and the531

non-transient tracers.532
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5. Results533

We conducted state estimates for a version of CYCLOCIM with a reso-534

lution of 8◦ × 8◦ × 22 layers and 4◦ × 4◦ × 24 layers. The optimization for a535

version of CYCLOCIM with the standard OCIM resolution of 2◦ × 2◦ × 24536

layers is underway, but the optimal solution has not yet been found. We537

stop the iteration when the cost function changes by less than 1% per 1,000538

iteration. Note that for the 8◦ × 8◦ and 4◦ × 4◦ versions of CYCLOCIM we539

prescribed a maximum number of iterations but we checked that the above540

stopping criteria was met for the solutions we present here. Our goal is to541

present the higher resolution solution in a separate paper that can focus on542

the state estimate rather than the technical aspects of the assimilation, which543

is the main focus of the present report.544

The evolution of the objective function for the 8◦ × 8◦ × 22 model for545

the 10 000 iterations is shown in Figure 2. The objective function starts at546

a value of approximately 104. After 10,000 iterations the objective function547

has decreased to a value of less than 5.4. The drop is fastest for the first548

2000 iterations and the rate of decrease slows down afterwards. While the549

rate of decrease is modest in the last 1000 iterations, f̂(p) is still decreasing550

monotonically. However the changes in the resulting state estimate are rather551

modest. For the version of CYCLOCIM with a 4◦×4◦×24 layers resolution,552

which we present in the next section, we performed approximately 4 × 103
553

iterations but we restarted the optimization along the way because we did554

not include all the tracer constraints at the beginning.555

The magnitude of the estimated eddy-stress divergence terms, which also556

includes effects due to the missing nonlinear terms and discretization errors, is557

comparable to the magnitude of the error terms from the original steady state558

OCIM model (DeVries and Primeau, 2011). The horizontally averaged mag-559

nitude of the vertical divergence of the eddy stresses is ∼ 1.2×10−6 m/s2. The560

magnitude of these parameterized forcing terms are only modestly dependent561

on the model resolution (i.e. 8◦× 8◦, 4◦× 4◦, or 2◦× 2◦). For comparison the562

explicit forcing appearing on the right hand side of the horizontal momen-563

tum equation has a typical horizontally averaged magnitude that is about564

of factor of three bigger. This suggests that the non-parameterized large-565

scale momentum balance dominates over the parameterized eddy-stresses,566

and confirms that the relative weights we have assigned to the likelihood and567

prior in our probability model provide an acceptable initial estimate. Fur-568

ther refinements might be necessary if the goal is to interpret the resulting569
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eddy-stress terms physically.570

5.1. Comparison of assimilated variables with observations571

We begin by comparing each modeled tracer with the observations that572

were used to constrain the model. In Figures 3 - 7, we perform the comparison573

on the model’s 4◦×4◦ grid. It is therefore important to keep in mind that any574

variance in the data associated with sharp gradients that cannot be resolved575

by this coarse mesh will necessarily be ignored in the comparison.576

A summary of the model fit to the data is provided in Figure 3 where we577

show the joint cumulative distribution functions for the observed and mod-578

eled tracer variables. For all tracers, more than 90% of the ocean volume579

has concentrations that cluster tightly along the 1:1 line with R2 = 0.99580

for potential temperature, and R2 ≈ 0.96 for the other tracers. The close581

agreement between the modelled and observed tracers suggests that the CY-582

CLOCIM circulation can be used to produce meaningful estimates of the583

climatological water mass formation rates and transport for the real ocean,584

which is not always possible when analyzing free-running prognostic models.585

In Figure 4 the globally averaged root mean square errors (RMSE) for the586

potential temperature, salinity and CFC-11 from CYCLOCIM are compared587

to the corresponding RMSEs for the OCIM CTRL state estimate (DeVries,588

2014). By resolving the seasonal cycle, CYCLOCIM provides a better fit589

to the observations at mid to high latitudes in the surface mixed layer and590

seasonal thermocline. For the deep ocean below 500 m, where seasonality is591

negligible, the RMSE is similar for both state estimates.592

The globally averaged RMSE of potential temperature for CYCLOCIM is593

0.29◦C, whereas for OCIM it is 0.38◦C. For the near-surface waters, 0 – 200m,594

the decrease in the RMSE is significantly larger: 0.70◦C for CYCLOCIM595

versus 1.27◦C for OCIM. Most of the improvements occur in mid-latitudes596

(Figure 5) where the mixed layer depths have a pronounced seasonal vari-597

ation. For example, the cold bias of more than 3◦C to the North of the598

Kuroshio Extension in the OCIM state estimate is substantially decreased599

in the CYCLOCIM state estimate. Similarly, the low-latitude warm bias600

in the OCIM state estimate has been eliminated in the CYCLOCIM state601

estimate. Consistent with the results of Yu and Malanotte-Rizzoli (1998),602

resolving the seasonal variations produces a significantly improved estimate603

of the climatological circulation.604

The ability of the model to capture the correct seasonal cycle is illus-605

trated in Figure 6 in which we compare the potential temperature anomalies606
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(plotted as departure from the annual average) along 36◦S for CYCLOCIM607

and the WOA2013 observations (Boyer et al., 2013). The modeled potential608

temperature shows a similar seasonal pattern as the observations. In the609

summer (DJF), the mixed layer is shallow and there is a strong temperature610

gradient near the surface. The mixed layer deepens through the fall (MAM)611

and winter (JJA), becoming thickest in late winter when the surface strat-612

ification entirely disappears. In spring (SON), as winds weaken and solar613

irradiance increases, the mixed layer shoals once again. The model season-614

ality is quite similar to that of the observations. Exceptions are along the615

western boundary currents where the warm and cold anomalies penetrate616

deeper in the observations than in the model. Such errors are not surprising617

given the coarseness of the model resolution. We anticipate that these errors618

will be reduced in the 2◦ × 2◦-CYCLOCIM and by including the dynamic619

topography constraints from satellite altimeter data.620

There are also significant improvements in the CYCLOCIM-simulated621

surface salinity fields as can be seen from Figure 7 where we plot the errors622

averaged over the top 200 m of the water column. Most prominently, large623

errors in the western part of the subpolar gyre in the North Atlantic ocean624

present in the steady OCIM state estimate are greatly reduced in the sea-625

sonally varying CYCLOCIM state estimate. A similar positive bias in the626

Southern Ocean for the steady OCIM state estimate has been completely627

eliminated in the CYCLOCIM state estimate. Improvements extend over628

most of the ocean with the exception of the Arctic basin where a uniformly629

positive salinity bias in OCIM has been replaced by errors that appear more630

random. The globally averaged RMSE for salinity in the upper 200 m of631

the water column is reduced from 0.25 g/kg for OCIM to 0.11 g/kg for CY-632

CLOCIM. For the full water column, the improvements are more modest but633

still appreciable with RMSE reduced from 0.07 g/kg for OCIM to 0.04 g/kg634

for CYCLOCIM.635

The CYCLOCIM simulation of CFC-11 also provides a better fit to the636

observed CFC-11 data. (The sensitivity of the fit to the scaling parame-637

ter for the piston velocity is discussed in Appendx A.3). The RMSE for638

surface waters between 0 and 200m is 0.07 pmol/kg for the OCIM state es-639

timate whereas for CYCLOCIM it is 0.04 pmol/kg. In Figure 8 we plot the640

decadal-mean zonal averages of CFC-11 and CFC-12 concentrations. The641

zonal averages are calculated using a volume weighted average of the CFC642

concentrations for gridboxes with at least one CFC measurement at any643

depth and longitude during the particular decade. The agreement between644
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CYCLOCIM and the observations is generally good. There are however clear645

decadal biases at high latitudes in the Southern Ocean. South of 60◦S the646

model concentrations are several standard deviations too low for the 1980-647

1989 and the 2000-2009 period while being in very good agreement for the648

1990-1999 period. In the North there are similar low biases but the exact649

latitude band with the largest biases appear to shift from decade to decade.650

Decadal variability in the ventilation of the ocean provides a plausible expla-651

nation for these errors (e.g. Waugh et al., 2013; DeVries et al., 2017).652

The CYCLOCIM fit to the pre-bomb radiocarbon is also very good. Fig-653

ure 9 compares the zonally-averaged CYCLOCIM simulated radiocarbon to654

the GLODAPv2 data (Olsen et al., 2016). The zonal averages are calcu-655

lated using a volume weighted average using only grid-boxes below 1000 m656

with CFC-11 concentrations below 0.01 pmol/kg.The good agreement be-657

tween CYCLOCIM and the GLODAPv2 radiocarbon at all latitudes and in658

all basins suggests that the deep-ocean ventilation timescales in CYCLOCIM659

are comparable to those of the real ocean.660

5.2. Meridional overturning circulation661

The climatological mean meridional overturning circulation (MOC) is de-662

fined as the stream function for the zonally integrated meridional volume663

transport with depth. Figure 10(a)-(c) shows the implied stream function664

for CYCLOCIM in the Southern Ocean, Pacific Ocean and Atlantic Ocean.665

The estimated overturning circulation appears consistent with typical results666

from inverse models (Lumpkin and Speer, 2007; DeVries and Primeau, 2011;667

DeVries and Holzer, 2019; Cessi, 2019). The maximum of the stream func-668

tion is approximately -30 Sv in the Southern Ocean (∼ 60 ◦S), 22 Sv in the669

Northern Atlantic, and -8 Sv across the equator in the deep Pacific Ocean.670

5.3. Inferred air-sea fluxes and meridional transport of heat and freshwater671

In contrast to the OCIM state estimate, we did not use the heat and672

freshwater reanalysis fluxes to constrain the CYCLOCIM state estimate. It673

is therefore interesting to examine how the inferred meridional heat and674

freshwater transports compare to other data-based estimates.675

Figure 11 shows the seasonally averaged surface heat flux. During June676

to August the ocean gains heat in the northern hemisphere and loses it in the677

southern hemisphere, while the reverse is true in the December to February678

months. The shoulder seasons (March-May and September-November) have679

24



more muted air-sea heat flux patterns with the ocean generally gaining heat680

at low latitudes and losing heat at high latitudes.681

In Figure 12(a) we show the annually-average CYCLOCIM estimate of682

the air-sea heat flux. The ocean gains heat in the East Pacific cold tongue683

region and along the eastern boundaries of the Pacific and Atlantic with684

magnitude around 150 Wm−2. Heat gained in the tropical regions is trans-685

ported poleward and is lost in higher latitudes. In Figure 12(b) we compare686

the mean meridional transport computed from the CYCLOCIM state esti-687

mate to estimates from the CORE.v2 reanalysis (Large and Yeager, 2009),688

from OCIM-CTRL (DeVries, 2014) and from a not-fully-converged estimate689

using a version of CYCLOCIM with a horizontal resolution of 2◦× 2◦ (CYL-690

COCIM2x2). Before discussing these results we hesitate to point out that691

as presently configured the model shows great sensitivity to the choice of692

restoring timescale τ used in the surface boundary condition for heat and693

freshwater (See Appendix A.2). The CYCLOCIM meridional heat trans-694

port peaks near 20◦N with a value of 2 PW and near 20◦S with a value695

of 1 PW. The meridional heat transports for CYCLOCIM2x2 and OCIM696

also peak near 20◦N but with weaker values of 1.2, 1.5 PW respectively,697

and at 15◦S with a consistent value of approximately 1 PW. In the southern698

hemisphere there is a general agreement between OCIM, CYCLOCIM and699

CYCLOCIM2x2, which in turn predict a significantly larger poleward heat700

transport than CORE.v2. The larger poleward heat transport in southern701

hemisphere is also consistent with the ECCO estimate (Forget and Ferreira,702

2019) and from the atmospheric reanalyses (Trenberth and Fasullo, 2017).703

In the northern hemisphere south of ∼ 50◦N the CORE.v2 meridional heat704

transport tends to be smaller than that of CYCLOCIM but larger than that705

of OCIM and CYCLOCIM2x2. Northward of ∼ 50◦N CYCLOCIM pre-706

dicts a significantly smaller poleward heat transport than either CORE.v2,707

OCIM, CYCLOCIM2x2. The air-sea heat fluxes in the Kuroshio and Gulf708

Stream regions for the CYCLOCIM state estimate are substantially weaker709

than those for the CORE.v2 reanalysis (not shown). The annually averaged710

heat loss to the atmosphere in the Gulf Stream region as estimated from711

CYCLOCIM is around 50 Wm−2, while in the Labrador Sea the annually712

averaged heat loss is greater than 300 Wm−2. Such a large heat loss to the713

atmosphere would suggest a large meridional heat transport to the north of714

50◦N, yet the CYCLOCIM estimate appears to be substantially weaker than715

either the CORE.v2, OCIM, or CYLCOCIM2x2 estimates. This apparent716

inconsistency can be explained by the fact that CYCLCOCIM produces an717
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unrealistic southward heat transport near 50◦N in the Pacific basin, which718

more than compensates for the unrealistically large northward heat trans-719

port in the Atlantic basin. The CYLCOCIM2x2 estimate does not appear to720

produce the unrealistic southward heat transport in the Pacific basin, which721

is encouraging, but it does point to the sensitivity of the inferred pattern of722

air-sea heat fluxes to the horizontal resolution of the model in addition to723

a strong sensitivity to the choice of restoring time-scale used in the surface724

boundary condition for temperature and salinity.725

The implied annually averaged freshwater fluxes (Figure 12(c)) shows a726

pattern that is similar to the CORE.v2 reanalysis data (not shown) (Large727

and Yeager, 2009). There is net evaporation in the subtropical gyres and net728

precipitation in the intertropical convergence zone (ITCZ) and the sub-polar729

regions. However, CYCLOCIM predicts weak precipitation minus evapora-730

tion in the ITCZ with a magnitude around 1 m/year and strong precipi-731

tation minus evaporation in the Gulf Stream region and Labrador Sea with732

magnitude more than 3 m/year. In the COREv2 reanalysis, there is 1.5733

m/year of precipitation minus evaporation in the ITCZ, and 1 m/year of734

precipitation minus evaporation in the Gulf Stream region and Labrador735

Sea. Figure 12(d) compares the meridional freshwater transport estimate736

from CYCLOCIM, CYCLOCIM2x2 to those of CORE.v2 and OCIM. The737

largest disagreement is in the northern hemisphere between the equator and738

∼ 40◦N where CYCLOCIM predicts a strong southward freshwater trans-739

port whereas both OCIM and the CORE.v2 estimates show a northward740

transport between ∼ 5◦N and 20◦N and a substantially weaker southward741

transport than CYCLOCIM between 20◦N and 40◦ N. The CYCLOCIM2x2742

estimate is generally closer to the OCIM and CORE.v2 estimates imply-743

ing again that the surface flux patterns are quite sensitive to the horizontal744

resolution of the model.745

The differences between the CORE.v2 reanalysis and the CYCLOCIM in-746

ferred meridional heat and freshwater transport suggest that in future inver-747

sions we might obtain improved state estimates by including atmospheric re-748

analysis constraints in the probability model as we did previously for OCIM.749

On the other hand CYCLOCIM2x2 produces reasonable first-order estimate750

of the meridional transports of heat and freshwater that are independent of751

atmospheric reanalyses. Without a more thorough uncertainty analysis it752

is difficult to unequivocally select one estimate over another as being more753

representative of the true climatological meridional transports. Such an un-754

certainty analysis is planned for the 2◦ × 2◦ version of CYCLOCIM.755

26



6. Summary and discussion756

We have presented the formulation of a 4-D variational assimilation sys-757

tem for estimating the climatological mean seasonal cycle of the residual-758

mean ocean circulation. The system, which we call CYCLOCIM, assimilates759

monthly mean potential temperature and salinity data from the WOA2013,760

transient CFC-11 and CFC-12 data from the GLODAPv2 database, and761

natural radiocarbon measurements for the deep ocean from the GLODAPv2762

database.763

We have demonstrated that our data-constrained model produces a plau-764

sible overturning circulation. While the meridional heat and freshwater trans-765

ports are quite sensitive to the model’s horizontal resolution, the 2◦ × 2◦766

version of CYCLOCIM produces estimates that are in rough agreement with767

existing estimates even though the objective function did not explicitly in-768

clude such constraints. By resolving the seasonal cycle we are able to produce769

a much better fit to observations in the upper ocean compared to our pre-770

vious steady-state OCIM estimates, and most of the assimilated variables771

are in agreement with the observational constraints. One exception is the772

CFC-11 and CFC-12 tracers in the Antarctic region of the Southern Ocean,773

where CYCLOCIM concenrations are too low. Decadal variability in the ven-774

tilation of the ocean provides a plausible explanation for these errors (e.g.775

Waugh et al., 2013; DeVries et al., 2017).776

The main product of our assimilation system is a set of 12 monthly data-777

constrained tracer transport operators for the climatological annual cycle of778

the ocean circulation. We anticipate that these operators will be particularly779

useful for global biogeochemical inversions for which there is a need for reli-780

able estimates of the seasonally varying climatological transport of tracers.781

We focused on the estimate produced using CYCLOCIM with a 4◦×4◦ resolu-782

tion, but we are presently completing the optimization for the 2◦×2◦ version783

of the model. For expediency we also ignored valuable constraints on the784

dynamic topography of the model provided by satellite altimeter data. We785

plan on including this constraint in future versions of CYCLOCIM. Another786

avenue for future work is to produce an ensemble of tracer transport opera-787

tors drawn from the Bayesian posterior distribution for the eddy-stresses and788

surface forcing. So far we have only determined the maximum of the pos-789

terior distribution but the development of a computationally efficient means790

of drawing samples from the posterior should be a high priority for future791

work, so that realistic error estimates can be provided.792
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In principle, CYCLOCIM could also be used to estimate the eddy-stresses793

as was done in the work of Ferreira et al. (2005). However, as presently formu-794

lated the tracer transport errors due to the coarse space and time resolution795

of the model get partially corrected via adjustments of the eddy-stress terms.796

This makes the eddy-stress terms noisy and difficult to interpret. It might797

also be necessary to replace the Rayleigh drag in the momentum equation798

with a laplacian viscosity as was done in the original OCIM (DeVries and799

Primeau, 2011) but subsequently replaced with the computationally more800

efficient from Rayleigh drag (DeVries, 2014). For our present goal of gener-801

ating high fidelity tracer transport operators our inability to separate physical802

eddy-stress from noise is not a major problem, but if the goal is to study the803

eddy-stresses it will be important to separate these two contributions to the804

eddy-stress control variables in the model.805
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first 10000 iterations (b) last 1000 iterations. Note that the contribution to the objective
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2
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Figure 10: Climatogical mean meridional overturning circulation (MOC) stream function
in three ocean basins for CYCLOCIM: (a) Atlantic Ocean (b) Pacific Ocean (c) Southern
ocean. The contour interval corresponds to 4 Sv. Positive values indicate clockwise circu-
lation, and negative values anti-clockwise circulation. The yellow line is the mean mixed
layer depth at each basin.
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Figure 12: Global distribution of the annually-averaged climatiogical (a) heat flux with
40 Wm−2 contour intervals , and (c) freshwater flux with 0.6 m/year contour intervals
inferred from the 4◦ × 4◦ CYCLOCIM. The red colors indicate a flux out of the ocean
and the blue colors indicate a flux into the ocean. Zonally averaged northward ocean (b)
heat transports in PW and (d) freshwater transport in Sverdrup (Sv). Also indicated
in panels (b) and (d) are the meridional transport estimates from CORE.v2 reproduced
from Large and Yeager (2009), the OCIM-CTRL DeVries (2014) and an estimate from a
not-fully-optimized version of the 2◦ × 2◦ × 24 layer CYCLOCIM. We show the 2◦ × 2◦

solution because it suggests that the implied meridional transport of heat and fresh water
estimated from CYCLOCIM are quite sensitive to the horizontal resolution of the model.
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Appendix A. Sensitivity experiments

Appendix A.1. Diffusivity

We have conducted three experiments similar to those presented by De-
Vries and Holzer (2019) for OCIM: one with the isopycnal diffusivity set to
2000 m2/s (highISO), one with isopycnal diffusivity set to 600 m2/s (low-
ISO), and one with high diapycnal diffusivity (highDIA) which increases from
10−5m2/s at the surface to 3−4m2/s at 5400 m. Each experiment starts with
the optimal solution from the standard CYCLOCIM configuration and then
run for 2000 iterations. Figure A.13 shows that the mean meridional over-
turning circulation in HighISO and HighDIA experiments are stronger than
CYCLOCIM (Figure 10), whereas LowISO produces a weaker overturning
circulation.

Appendix A.2. Restoring timescale

CYCLOCIM used a surface restoring timescale of τ = 30 days for com-
puting the surface fluxes of heat and freshwater (see Eq.14-16). We con-
ducted two sensitivity experiments in which we halved and doubled the sur-
face restoring time (τ = 15 days and τ = 60 days). Each sensitivity ex-
periment started with the optimal parameters estimated from the standard
CYCLOCIM configuration and was run for an additional 1500 iterations.
The inferred heat and freshwater transports are shown in Figure A.14. The
experiments show that the implied meridional transports are quite sensitivie
to the choice of τ . This sensitivity suggests that in future work we will need
to include the additional constraint on the surface fluxes of heat and freshwa-
ter from atmospheric reanalysis as we did previously for OCIM,(DeVries and
Primeau, 2011). This sensitivity might also be due to the absence of a con-
straint on the dynamic topography from altimeter data, which was included
in our previous state estimate using OCIM.

Appendix A.3. Parameter α

The optimal value of α used to scale the piston velocity in the air-sea
gas exchange was 0.14 (cm/hr)/(m/s)2 – a value that is significantly smaller
than the value of 0.251 (cm/hr)/(m/s)2 estimated by Wanninkhof (2014)
for climatological winds. We therefore calculated the contribution to the
objective function f̂ (Eq. 28) from CFC-11 and CFC-12 misfits as a function
of α. The sensitivity shown in the figure is performed holding all the other
control parameters fixed at their optimized value. Taken at face value, these
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results suggest that CYCLOCIM can provide a strong lower bound on α
but only a weak upper bound. Any firm conclusion must await a more fully
vetted state estimate, which is beyond the scope of the present article.
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Figure A.13: Climatogical mean meridional overturning circulation (MOC) stream func-
tion in three ocean basins for CYCLOCIM: Atlantic Ocean, Pacific Ocean and Southern
ocean. The three panel shows results from the experiment with high isopycnal diffusivity,
low isopycnal diffusivity and high diapycnal diffusivity. The contour interval corresponds
to 4 Sv. Positive values indicate clockwise circulation, and negative values anti-clockwise
circulation. The yellow line is the mean mixed layer depth at each basin.

53



80
°
S 60

°
S 40

°
S 20

°
S 0 20

°
N 40

°
N 60

°
N 80

°
N

Latitude

-3

-2

-1

0

1

2

n
o
rt

h
w

a
rd

 t
ra

n
s
p
o
rt

 (
S

v
)

(b) CORE.v2

CYCLOCIM

tau15

tau60

80
°
S 60

°
S 40

°
S 20

°
S 0 20

°
N 40

°
N 60

°
N 80

°
N

Latitude

-2

-1

0

1

2

3

4

5

n
o
rt

h
w

a
rd

 t
ra

n
s
p
o
rt

 (
P

W
)

(a) CORE.v2

CYCLOCIM

tau15

tau60

Figure A.14: Zonally averaged northward ocean (a) heat transports in PW and (b) fresh-
water transport in Sverdrup (Sv). The meridional transport estimates from CORE.v2
reproduced from Large and Yeager (2009), CYCLOCIM, the experiment with the restor-
ing timescale τ = 15 days and the experiment with the restoring timescale τ = 60 days.
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Figure A.15: The contribution to the objective function from CFC-11 and CFC-12 misfits
as a function of α. The sensitivity shown in the figure is performed holding all the other
control parameters fixed. The most probable value of α is 0.14. For references Wanninkhof
(2014) estimates alpha to be 0.251 in the same units.
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