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Formally verifying software correctness is a highly manual process. However, because verification proof
scripts often share structure, it is possible to learn from existing proof scripts to fully automate some formal
verification. The goal of this paper is to improve proof script synthesis and enable fully automating more
verification. Interactive theorem provers, such as the Coq proof assistant, allow programmers to write partial
proof scripts, observe the semantics of the proof state thus far, and then attempt more progress. Knowing the
proof state semantics is a significant aid. Recent research has shown that the proof state can help predict the
next step. In this paper, we present TacTok, the first technique that attempts to fully automate proof script
synthesis by modeling proof scripts using both the partial proof script written thus far and the semantics of
the proof state. Thus, TacTok more completely models the information the programmer has access to when
writing proof scripts manually. We evaluate TacTok on a benchmark of 26 software projects in Coq, consisting
of over 10 thousand theorems. We compare our approach to five tools. Two prior techniques, CoqHammer,
the state-of-the-art proof synthesis technique, and ASTactic, a proof script synthesis technique that models
proof state. And three new proof script synthesis technique we create ourselves, SeqOnly, which models only
the partial proof script and the initial theorem being proven, and WeightedRandom and WeightedGreedy,
which use metaheuristic search biased by frequencies of proof tactics in existing, successful proof scripts. We
find that TacTok outperforms WeightedRandom and WeightedGreedy, and is complementary to CoqHammer
and ASTactic: for 24 out of the 26 projects, TacTok can synthesize proof scripts for some theorems the prior
tools cannot. Together with TacTok, 11.5% more theorems can be proven automatically than by CoqHammer
alone, and 20.0% than by ASTactic alone. Compared to a combination of CoqHammer and ASTactic, TacTok
can prove an additional 3.6% more theorems, proving 115 theorems no tool could previously prove. Overall,
our experiments provide evidence that partial proof script and proof state semantics, together, provide useful
information for proof script modeling, and that metaheuristic search is a promising direction for proof script
synthesis. TacTok is open-source and we make public all our data and a replication package of our experiments.
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1 INTRODUCTION

Building high-assurance software in a cost-effective manner remains one of the greatest challenges
for system-building research. Most programming languages make it difficult to ensure even basic
properties, such as the absence of unhandled exceptions. Moreover, industrial verification tools
are either unsound by design [Bessey et al. 2010] or place severe restrictions on the programming
language to ensure that programs are verifiable [Mauborgne 2004]. Recently, there has been a
growing interest in building high-assurance software using programming languages that are
designed to support program verification from the ground up [Leino 2010; Swamy et al. 2016; The
Coq Development Team 2017; Vazou 2016]. This paper focuses on Coq, which has become a popular
language for building verified software systems (e.g., [Gu et al. 2016; Guha et al. 2013; İleri et al.
2018; Jang et al. 2012; Leroy 2009; Morrisett et al. 2012; Sergey et al. 2017; Wilcox et al. 2015]).
At its core, Coq is a dependently-typed language with a small kernel, which provides a high

assurance that Coq-verified programs are truly correct. However, program verification in Coq is not
automatic. Programmers must prove theorems themselves using a sequence of proof tactics and it is
up to the programmer to select the right sequence of these tactics. Programmers use an interactive

proof assistant (e.g., CoqIDE or Proof General) to write proof scripts, which provides immediate
feedback after each tactic. The proof assistant shows the programmer the current subgoals and
available hypotheses, and the programmer uses this information to select the next tactic to try. The
proof assistant checks that the chosen tactic is valid and then updates the subgoals and hypotheses
that are displayed to the programmer.
Unsurprisingly, writing proof scripts in Coq is a difficult exercise, which can be painstaking

and requires deep expertise, e.g., [Jacky et al. 2017; Wilcox et al. 2015]. Moreover, once a system
is verified, unless great care is taken, even a small change to the program can require a complete
reworking of the proof script [Chlipala 2013]. Researchers have developed a variety of tools
and techniques to make writing proof scripts in Coq (and other interactive theorem provers)
easier to write [Hellendoorn et al. 2018; Heras and Komendantskaya 2014; Huang et al. 2018;
Komendantskaya et al. 2012; Yang and Deng 2019]. Inspired by the success of statistical code
completion tools [Hindle et al. 2016, 2012; Vechev and Yahav 2016], Hellerdoorn et al. recently
observed that the sequence of tokens in Coq proofs is somewhat predictable [Hellendoorn et al.
2018], and this could hypothetically be used to build statistical proof script completion tools. Other
researchers have used the current proof state to build proof script synthesis tools [Huang et al.
2018; Yang and Deng 2019]. For example, ASTactic [Yang and Deng 2019], a deep learning model,
takes as input the current goal, local context, and environment, and predicts the next step of the
proof script.
In this paper, we observe that when programmers use interactive theorem provers, they use

both the feedback from the theorem proverÐ the proof stateÐ and the partial proof script already
written. We argue that models that learn from the proof state and the partial proof script, together,
can be more effective at synthesizing proof scripts. When programmers write Coq proof scripts
themselves, they critically rely on the feedback detailing the internal proof state provided by the
interactive proof assistant to choose the next proof tactic to try. In fact, writing proof scripts without
the proof assistant’s feedback is often impossible. For example, Coq has several sophisticated proof
tactics that can make partial progress that is hard to predict. (Section 2.2 shows several concrete
examples.) Moreover, even some simple tactics automatically generate new variable names that
programmers need to know for subsequent tactics, and thus they rely on the proof assistant to
learn these generated names. In a way, the programmer and the proof assistant are engaged in
a conversation. However, the existing methods of predicting the next tactic from the internal
proof state alone [Yang and Deng 2019] and predicting the next tactic from the previous tactics
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alone [Hellendoorn et al. 2018] only consider distinct sides of the conversation. In this paper, we
show that by carefully modeling and combining the partial proof script already written and the
proof assistant’s feedback, we can automatically prove different theorems than models that only
use one source of input.

We present TacTok, an open-source implementation of our approach to proof script synthesis Ð
available at https://github.com/LASER-UMASS/TacTokÐ that incorporates both proof state and
the partial proof script already written. We apply our approach to a benchmark of 122 open-source
software projects in Coq, with over 68K theorems. We demonstrate that the inclusion of both proof
state and the partial proof script in a proof synthesis model can improve its effectiveness and allow
it to synthesize different proof scripts than other tools.

We compare our approach to five approaches, two existing tools, CoqHammer and ASTactic, and
three new ones we create, SeqOnly, WeightedRandom, and WeightedGreedy. CoqHammer [Czajka
and Kaliszyk 2018] is a state-of-the-art proof synthesis technique andASTactic [Yang andDeng 2019]
is a proof script synthesis technique that models only proof state. SeqOnly is a proof script synthesis
technique that models only the partial proof script and the initial theorem, and WeightedRandom
and WeightedGreedy are proof script synthesis techniques that attempt to construct a proof script
via metaheuristic search biased by using the frequency distribution of tactics as they appear in the
training data.

All of the above techniques, except CoqHammer, are metaheuristic search techniques [Harman
2007] that search through the proof-script space using a model that biases the search toward the
likely proof script steps. TacTok’s model is built by training on a set of existing, successful proof
scripts, and models proof state and the partial proof script already written. ASTactic [Yang and
Deng 2019], an existing technique, uses a similar metaheuristic search strategy, but its model only
models the proof state. We develop three other novel metaheuristic search techniques for proof
synthesis generation: SeqOnly, whose model accounts for the partial proof state so far and the
target theorem being proven, and WeightedRandom and WeightedGreedy, whose models account
for the frequency with which proof script tactics occur in the existing successful proof scripts, with
WeightedRandom selecting randomly adhering to the observed distribution, and WeightedGreedy
always selecting the most frequently observed candidates.

Evaluated on a benchmark of 26 software projects in Coq with 10,782 theorems, we find that each
of these techniques can successfully generate proof scripts that prove theorems, which is strong
evidence for the success of metaheuristic search in proof script synthesis. TacTok can automatically
prove more theorems than ASTactic (12.9% versus 12.3%). Both techniques outperform SeqOnly,
which can only prove 10.0% of the theorems. Even without explicitly modeling the theorem being
proven, WeightedRandom proves 6.2% of the theorems and WeightedGreedy proves 9.7% of the
theorems. Importantly, TacTok is complementary to prior tools. When used together with ASTactic,
TacTok can prove 20% more theorems than ASTactic alone. CoqHammer, a very different approach,
is able to synthesize proofs for more theorems than TacTok (26.6%), but TacTok and CoqHammer
together can prove 11.5% more theorems than CoqHammer alone.

Overall, our experiments show that there is promise to using metaheuristic search and modeling
the partial proof scripts and proof state, together, for synthesizing proof scripts for formal verifica-
tion. We investigate the effect of using various kinds of information encoded in the partial proof
script on verification efficacy and produce guiding information for improving future proof script
synthesis tools.
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The main contributions of this work are:

• A novel automated proof script synthesis technique, TacTok, that, unlike prior work, models
the combination of the partial proof script already written and the proof state to automate
proof script synthesis and formal verification. TacTok is open-source.

• Three other new metaheuristic search proof script synthesis techniques, SeqOnly, Weighte-
dRandom, and WeightedGreedy.

• An application of ASTactic, a state-of-the-art proof script synthesis tool, independently
reproducing prior evaluation results [Yang and Deng 2019].

• An evaluation of the value added by using both the partial proof script and proof state over
using each one alone, and a comparison to two state-of-the-art proof synthesis tools and three
new tools, showing that TacTok proves theorems no prior tool can prove. A public release
of TacTokÐhttps://github.com/LASER-UMASS/TacTokÐ and our experimental scripts and
data [First et al. 2020].

• An exploration of the information TacTok models to improve verification efficacy.

The rest of this paper is structured as follows. Section 2 illustrates our approach on a simple
example. Section 3 details our TacTok approach, Section 4 describes the state of the art of formal
verification and the three other proof script synthesis approaches we create, and Section 5 evaluates
all these approaches. Finally, Section 6 places our work in the context of related research, and
Section 7 summarizes our contributions.

2 ILLUSTRATIVE EXAMPLE

To illustrate our approach, Section 2.1 introduces a small Coq program for adding two numbers
and proves that the function is associative, and Section 2.2 shows how TacTok would generate
such a proof script automatically. Section 2.3 introduces a more complex theorem expressed in
higher-order logic that TacTok is able to prove, whereas prior tools do not.

2.1 Using Coq to Prove Addition Is Associative

We demonstrate Coq’s use with a small, simple example. We define the natural numbers and then
prove that addition is associative.1 We define the natural numbers (nat) using a unary encoding
(Figure 1, lines 1ś3), where Z is the natural number 0, and the rest are defined using the successor
operator (S n).

Lines 5ś9 in Figure 1 define a recursive function to add two numbers (add m n). Line 10 defines
the notation m + n as a shorthand for add m n. The function itself maps the answer to m if n = 0

(line 7), and otherwise to S (add p m), where S p = n (line 8). In other words, the recursive step
returns the successor of the sum of m and the number whose successor is n.

The assoc Theorem (lines 1ś3) defines the associativity property, n + (m + p) = (n + m) + p,
for all n, m, p.

To prove this property, Coq needs help. Coq maintains an internal proof state, which includes the
goals that Coq wants to prove and a list of assumptions. When starting to prove a theorem, Coq’s
proof state is a single goal: the theorem itself (shown in Figure 2a). Coq manipulates the proof state
(with the help of proof tactics, described next) until the goal is proven and can be removed from
the proof state. These manipulations are enabled by proof tactics. Some tactics create new subgoals
(e.g., induction) and other tactics manipulate the current goal in various ways (e.g., simpl, which
simplifies complex terms in the goal, and rewrite, which transforms a term in the goal into an
equivalent term). The search space of goal manipulation is too large, and a human helps Coq by

1While Coq’s standard library already includes these definitions, this basic example is simple enough to effectively demon-
strate our approach.
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writing a sequence of proof tactics that help Coq manage the exploration. Lines 14ś21 are the
human-written sequence of tactics, one per line, that help Coq prove associativity.

To write down the appropriate sequence of tactics, the programmer needs to understand Coq’s
internal proof state. The interactive proof assistant checks that a partially-complete proof script
is valid and shows the current proof state to the programmer. This makes it possible for the
programmer to incrementally develop a proof script, instead of writing a complete proof script in a
single step. The programmer can choose a tactic, examine the output from the proof assistant, choose
the next tactic, and so on. If the programmer chooses an invalid tactic, the proof assistant displays
an error. (For example, the induction tactic signals an error if its argument is not inductively
defined.) If the programmer chooses tactics that are valid, but do not make progress, they can use
the proof assistant to backtrack to an earlier proof state and try a different approach.

We now step through the proof script of associativity and discuss both the proof tactic entered
by the programmer and the proof state displayed by the proof assistant. At the start of the proof
script, the proof state has a single goal, which is the theorem itself (Figure 2a). Since the goal is
a statement that should hold forall naturals n, m, and p, the natural next step is to assume the
existence of some arbitrary n, m, and p. The intros tactic eliminates the forall quantifier and
introduces three new variables as assumptions (line 5 in Figure 2b). Since add is inductively defined,
it is natural to perform induction on one of these variables (e.g., induction n), which leads to two
subgoals, one for the base case and the other for the inductive case (Figure 2c). Coq first focuses on
proving the base case (line 11 in Figure 2c) by labeling it subgoal 1 of 2 (line 10) and only presenting
assumptions (line 9) relevant for the base case. Note that in the base case, n is no longer in the list
of assumptions, and has been replaced with the value O in the subgoal (line 11 in Figure 2c). The
reflexivity tactic does some basic simplification and solves the base case, since both sides are
essentially identical. Therefore, the next proof state has just one goal, which is the inductive case
(Figure 2d). In this state, n has been replaced with S n, and the proof assistant shows the inductive

1 Inductive nat : Set :=

2 | O : nat

3 | S : nat -> nat.

4

5 Fixpoint add (n : nat) (m : nat) : nat :=

6 match n with

7 | O -> m

8 | S p -> S (add p m)

9 end

10 where "n + m" := (add n m) : nat_scope.

11

12 Theorem assoc : forall n m p : nat,

13 n + (m + p) = (n + m) + p.

14 Proof.

15 intros.

16 induction n.

17 reflexivity.

18 simpl.

19 rewrite -> IHn.

20 reflexivity.

21 Qed.

Fig. 1. The definition of the natural numbers (lines 1ś3), the function to add unary natural numbers (lines 5ś

10), a theorem that the function is associative (lines 12ś13), and a proof script of that theorem (lines 14ś21).
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1 1 subgoal

2 ______________________________________(1/1)

3 forall n m p : nat, n + (m + p) = n + m + p

(a) Proof state at the start of the proof script (after line 14 in Figure 1).

4 1 subgoal

5 n, m, p : nat

6 ______________________________________(1/1)

7 n + (m + p) = n + m + p

(b) Proof state after line 15 in Figure 1 (intros tactic).

8 2 subgoals

9 m, p : nat

10 ______________________________________(1/2)

11 0 + (m + p) = 0 + m + p

12 ______________________________________(2/2)

13 S n + (m + p) = S n + m + p

(c) Proof state after line 16 in Figure 1 (induction n tactic).

14 1 subgoal

15 n, m, p : nat

16 IHn : n + (m + p) = n + m + p

17 ______________________________________(1/1)

18 S n + (m + p) = S n + m + p

(d) Proof state after line 17 in Figure 1 (reflexivity tactic).

19 1 subgoal

20 n, m, p : nat

21 IHn : n + (m + p) = n + m + p

22 ______________________________________(1/1)

23 S (n + (m + p)) = S (n + m + p)

(e) Proof state after line 18 in Figure 1 (simpl tactic).

24 1 subgoal

25 n, m, p : nat

26 IHn : n + (m + p) = n + m + p

27 ______________________________________(1/1)

28 S (n + m + p) = S (n + m + p)

(f) Proof state after line 19 in Figure 1 (rewrite -> IHn tactic).

Fig. 2. The proof state after the execution of each tactic of the add function’s associativity proof script. For

example, in (a), at the start of the proof script, there is 1 subgoal, which is the theorem itself, line 3, and in (c),

after the induction n tactic, there are 2 subgoals, one for the base case (line 11) and one for the inductive

case (line 13).

assumption (IHn). However, IHn is not immediately applicable because it contains n instead of S n,
and so trying to use it will produce an error. Instead, the simpl tactic tries to simplify the goal while
keeping it readable (though many Coq users find that simpl is a complicated tactic that produces
unpredictable results [The Coq Development Team 2017]). After choosing simpl, the left-hand
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side of the goal has an expression that is identical to the left-hand side of the inductive assumption
(Figure 2e). Therefore, the rewrite tactic can replace that expression with the right-hand side of
the inductive assumption (Figure 2f), which leads to a trivial equality that reflexivity can solve.
Finally, the proof assistant prints no more subgoals and Qed completes the proof script.

2.2 Proving Associativity with TacTok

Note that the proof script (lines 15ś20 of Figure 1) is almost unintelligible without examining the
internal proof state, for several reasons:

(1) Some tactics generate new variable names (e.g., induction), which subsequent tactics (e.g.,
rewrite) use. The programmer needs to know these names to use them in the proof script.

(2) Some tactics apply heuristics that are hard to predict. In the example in Figure 1, simpl
(line 18) uses heuristics to produce readable output. Without looking at the resulting proof
state in Figure 2e, the programmer would not know what form the goal is transformed into
and whether IHn can be invoked without an error.

(3) When a proof script has multiple goals, it may not be obvious where one goal ends and
the next goal begins. In the example in Figure 1, the base case is addressed by the tactic in
line 17, while the inductive case is addressed by the tactics in lines 18ś20. However, without
examining the proof state Figure 2d, it would not be clear that reflexivity completely
solved the base case.

(4) After a few steps of the proof script, the current goal to prove has likely evolved significantly
from the original goal (the theorem). In the example in Figure 2, the programmer is trying
to prove the theorem Figure 2a line 3. After three steps in the proof script, the programmer
must now prove Figure 2d line 18 using assumptions lines 15ś16. The goal has changed
significantly and there are now assumptions that didn’t exist at the start. Knowing the new
goal and the assumption IHn are helpful to the programmer at this point in deciding the next
tactic: the programmer sees that the goal needs to be transformed using simpl to apply the
assumption. Without being able to see the current proof state in Figure 2d, the programmer
would be proving blindly.

Since the programmer needs to examine the proof state to choose the next tactic, it is a good
idea to consider whether models of next tactic prediction might also need and benefit from having
access to information in the proof state. However, since proof scripts, like programs, build upon
the commands executed thus far [Hellendoorn et al. 2018; Hindle et al. 2016, 2012], a model of next
tactic prediction may also benefit from having access to the previous tactics in the proof script.
TacTok builds a model of next-tactic prediction for Coq. The model is learnt using a corpus of

existing proof scripts. TacTok decomposes each of the existing proof scripts by stepping through
them, one tactic at a time, and computing the resulting intermediate proof states. The model
automatically learns an embedding of the proof states and the partially written proof script and
maps these to an abstract syntax tree (AST) of the next line in the proof script. Thus, the model’s
inputs are the partially written proof script and the proof state. For example, one input to the model
is the intermediate proof state in Figure 2d and the partial proof script [intros, induction n,
reflexivity] that achieved that proof state. The model’s output is an AST that TacTok decodes to
the next predicted tactic and its arguments.
Given a model trained on existing proof scripts (Section 3.2.4 presents the training process),

TacTok automatically generates the proof script of associativity (lines 14ś21). To start, TacTok
takes as input the proof state in Figure 2a and the partially written proof script, which is only
[Proof]. For the sake of illustration, suppose the model correctly predicts intros as the next tactic.
TacTok executes this partial proof script using the Coq interactive proof assistant, and checks for
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two things. First, that executing the partial proof script with the new tactic does not return an error.
And second, that the new returned proof state is different from the prior observed proof states
in this partial proof script, meaning the tactic had an affect and produced something new. Here,
TacTok will see no error and the updated proof state is that in Figure 2b. TacTok will next explore
growing the proof script further. TacTok’s next input to the model is the proof state in Figure 2b
and the partial proof script [Proof, intros]. Suppose, again, the model correctly predicts the next
tactic and argument is induction n; there is no error adding this tactic to the partial proof script
and the new proof state is that in Figure 2c.

If TacTok proceeds in this way to produce the partial proof script [Proof, intros, induction n,
reflexivity] and the proof state in Figure 2d, but as the next tactic and arguments, TacTok predicts
rewrite -> IHn. Adding this tactic results in an error. TacTok goes back to the model and asks it
for the next most likely tactic and arguments (TacTok would do the same thing if there were no
error but the proof state was a duplicate of an earlier state). Suppose the model suggests simpl,
which turns out to return no error and changes the state.

TacTok will proceed in this way, performing a depth-first search through the space of proof
scripts until, either, it reaches the proof state łno more subgoalsž (meaning the proof script is
completed successfully) and adds Qed to the proof script, or it times out and fails to complete the
proof script.

Of course, TacTok can only be successful if its model is fairly accurate in its predictions.

2.3 Proving Higher-Order Logic Theorems

The associativity theorem we just discussed is an example of a theorem expressed in first-order
logic. Theorems expressed in higher-order logic are likely to be more complex, and so their proof
scripts are more difficult to generate. One example of higher-order logic in Coq is the presence of a
nested forall. Figure 3 defines the function prod n f, which calculates 1 · f (0) · · · · · f (n− 1). The
same figure defines the sameProd theorem, which states an intuitive property: for functions f and
д, if f (m) = д(m) for allm < n, then prod n f = prod n д. TacTok is able to generate a proof script
for sameProd. CoqHammer [Czajka and Kaliszyk 2018] fails to find a proof in ten minutes, and
ASTactic [Yang and Deng 2019] cannot find a proof script either. Section 5.5 will further discuss
theorems that TacTok proves that prior tools cannot.

We next describe prior work on training language models and our improvements over the state
of the art.

1 Definition prod : forall (n : nat) (f : nat -> nat), nat.

2 intros.

3 induction n as [| n Hrecn].

4 exact 1.

5 exact (f n * Hrecn).

6 Defined.

7

8 Lemma sameProd : forall (n : nat) (f g : nat -> nat),

9 (forall m : nat, m < n -> f m = g m) ->

10 prod n f = prod n g.

Fig. 3. Lines 1ś6 defines the function prod n f , which calculates 1 · f (0) · · · · · f (n − 1). Lines 8ś10 define the

sameProd theorem, which states that if f (m) = д(m) for allm < n, then prod n f = prod n д.
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3 THE TacTok APPROACH

Section 3.1 describes language modeling methods and Section 3.2 details how TacTok builds on
language modeling approaches to generate proof scripts. Our TacTok implementation is publicly
available at https://github.com/LASER-UMASS/TacTok/.

3.1 Language Modeling

Language models estimate the probability of a particular instance in a language. For example,
a language model can estimate the likelihood that the words łI went to thež are followed by
łstorež. When applied to natural languages, these models have aided speech recognition, machine
translation, spelling correction, and other natural language processing tasks [Brill and Moore 2000;
Koehn et al. 2007; Stolcke 2002].

While language models can be created in many ways, including manually, a typical approach is
to train a language model on a large corpus of example sentences in a language. There are two main
classes of language models widely used in modern natural language processing research. The first
consists of statistical language models, often called n-gram language models. These count-based
models work on the Markov assumption that the conditional probability of a word is dependent on
a fixed number (n) of previous words in a sentence. The second class of models are based on neural
network architectures. Neural models often perform better on natural language applications than
statistical models, though are less human-readable [Mikolov et al. 2010; Sundermeyer et al. 2012].

3.1.1 Statistical Language Models. N-gram models predict the next word based on a sequence of
the previous n − 1 words [Katz 1987]. Given a vocabulary of words, during training, an n-gram
model counts the number of times in the training corpus that each word follows each possible
sequence of n − 1 words. At prediction time, given a sequence of n − 1 words, the model returns
the probability distribution of words that follow that sequence. Formally, given a sequence S of
n − 1 words, S = ⟨w1,w2, . . . ,wn−1⟩, the n-gram model estimates P(wn |w1,w2, . . . ,wn−1), the
probability distribution of words in the nth place.
The maximum likelihood estimate for this probability, PML(wn |w1,w2, . . . ,wn−1), is the num-

ber of times ⟨w1,w2, . . . ,wn⟩ appears in the training corpus, divided by the number of times
⟨w1,w2, . . . ,wn−1⟩ appears in the corpus.

PML(wn |w1,w2, . . . ,wn−1) =
count(w1,w2, . . .wn)

count(w1,w2, . . . ,wn−1)

This can be used as an estimate but because training data may not contain every possible sequence
⟨w1,w2, . . . ,wn⟩, it would end up with a lot of zero probability estimates. So rather than underesti-
mate all P(wn |w1,w2, . . . ,wn−1) as 0, linear interpolation [Stolcke 2002] uses smaller subsequences
of length 1 to n − 1 to estimate the probability:

P(wn |w1,w2, . . . ,wn−1)=

n∑

i=1

λi × PML(wn |wn−i+1, . . . ,wn−1)

where λi is a normalized weight given to the value PML(wn |wn−i+1, . . . ,wn−1). These weights
can be considered as fallback weights to fallback and look at smaller subsequences if the larger
subsequence is not present in the training corpus.

Discounting smooths the probability distribution over the vocabulary by reallocating the proba-
bility mass from the training dataset by subtracting a fixed discount d from the counts of each word
in the training dataset and then reassigning it to the fallback probability. The state-of-the-art n-gram
language model is the Modified Kneser-Ney model [Kneser and Ney 1995], which implements a
more involved discounting technique.
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As described in Section 1, recent work has applied n-gram models (as well as other models) to
Coq proof scripts to predict tokens, which can, in theory, be used to build statistical proof script
completion tools.

3.1.2 Neural Language Models. Feed-forward neural networks [Rumelhart et al. 1986] can also
model language. These models are also trained to predict the next word given a sequence of previous
words but they do this using a different architecture than that of n-gram models.

Given the previous n − 1 words ⟨w1, . . . ,wn−1⟩, these models first create real-valued vectors
⟨r1, . . . , rn−1⟩ that represent the words. This is commonly done by converting each of the words
into a one-hot vector representation and then passing them through a linear embedding layer. A
one-hot vector representation is constructed by first initializing a vector of the size of vocabulary
V of the language and then setting the element at the index corresponding to the given word
to 1. The linear embedding layer consists of |V | weightsWe and a bias term be . The model then
concatenates the real valued embeddings to form a summary vector r . The model passes r through
a predetermined number of neural network layers, together called NN . The output h = NN (r )

passes through a softmax layer to produce a probability distribution over the entire vocabulary. In
summary, the training algorithm is:

1 oi = onehot(wi )
2 ri = oi .We + be

3 r = ⊕(r1 . . . rn−1)
4 h = NN (r )
5 P = softmax (h)

Recently, recurrent neural network (RNN) architectures have been shown to perform well in
language modeling tasks [Bengio et al. 2003; Mikolov et al. 2010; Sundermeyer et al. 2012]. The
main difference between this approach from a simple feed-forward neural network is the way
the sequence of real valued vector representations, ⟨r1, . . . , rn−1⟩, are handled to obtain the final
hidden layer representation h. An RNN performs a series of steps that each process the sequence up
until an index. A simplified version of this process can be described as follows. At each index i of
the sequence, an RNN maintains a hidden state hi , which is a vector representing the summary of
the real valued vectors before index i . It then concatenates hi with ri and sends the resultant vector
through a linear neural network layer with weightsWr andWh and bias br . The output is used
as the new summary and hidden state at index i + 1, hi+1. The summary of the whole sequence
is hence the hidden state after processing all the n − 1 real valued vectors. Note that h1 is a zero
vector since there are no elements to summarize before the first element in the sequence. Following
those steps, we obtain h and then, a softmax layer converts this into the probability distribution
over the vocabulary. In summary, the RNN training algorithm is:

1 oi = onehot(wi )
2 ri = oi .We + be

3 hi+1 = RNN (ri , hi ) = ri .Wr + hi .Wh + br

4 h = RNN (rn−1, hn−1)
5 P = softmax (h)

Long short-termmemory networks (LSTMs) extend recurrent neural networks to learn long-term
dependencies by tackling a problem that arises with basic RNNs called the vanishing gradient
problem [Gers et al. 1999; Greff et al. 2017]. For long sequences, the RNN framework scales down the
gradient over each word going backwards and the value of the gradient become negligible, making
it difficult for the model to learn. To address this problem, LSTMs redesign the basic building block
of the neural network to include components called gates. At each step in the sequence, the model
makes decisions based on three gates: the input gate, the output gate, and the forget gates. These
gates control whether the model should remember or forget the summary of the sequence so far
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Fig. 4. TacTok training process. Given a set of proof scripts, TacTok breaks down each proof script into training

instances, consisting of the input to the model (proof state and the proof script thus far up to this state), and

the next step of the proof script. The TacTok model jointly learns embeddings for the proof state ASTs and

the proof script thus far, and uses these embeddings to predict the next tactic in the form of its AST. The

learning process back-propagates the difference between the predicted tactic AST and the (expected) next

step as the loss.

through a set of parameters that are learned jointly with the parameters of the RNN during training.
Note that the hidden state h is still calculated sequentially like a normal RNN, except with the
model choosing to ignore the summary vector sometimes. The exact implementation of the gates
can be found in literature and are beyond the scope of this paper.
A Bidirectional LSTM [Peters et al. 2018] runs the sequence input in two ways, backwards and

forward, allowing the output layer to see both directions of the information simultaneously. This
improves upon the LSTM by capturing more information.

Transformers [Devlin et al. 2018] are the current state-of-the-art in neural language models, but
they only perform well when there is a very large amount of data for training. Thus, LSTMs and
variants like gated recurrent neural networks (GRUs) [Chung et al. 2014] are sufficient for neural
language models that do not have millions of sequences for training. They have been shown to do
well in machine translation and sentiment analysis [Bahdanau et al. 2015; Socher et al. 2013].

While RNN language models use sequences of words to predict the next word in the sequence,
RNNs in general can be used to model other types of sequential objects for any prediction task.
In particular, we are interested in using sequential dataÐ sequences of proof script tokensÐ to
predict the next tactic, which is from a different vocabulary. An RNN allows encoding a sequence
of n real-valued vectors as one representative vector h through the following steps.

1 h1 = [0, . . . , 0]
2 hi+1 = RNN (ri , hi ) = ri .Wr + hi .Wh + br

3 h = RNN (rn, hn )

LSTMs and GRUs can hence be used to effectively model general sequences of data when there
are only thousands of training sequences, and so we use them to model the sequence of proof script
tokens.

3.2 TacTok Language Modeling

TacTok first trains a model on existing proof scripts, and then applies the model to synthesize new
proof scripts. Figure 4 details how TacTok trains a model on a set of proof scripts. Given a set of
proof scripts, each proof script is broken down into training instances. A training instance consists
of the input to the model, which is the proof state after a tactic in the proof script is executed
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Fig. 5. TacTok architecture. TacTok, in the process of completing the proof script of associativity for the

add function (recall Section 2), after the execution of simpl. TacTok’s input is the proof state (goal, local

context, and environment) and the partial proof script synthesized so far. Each term in the proof state has

an underlying AST, and the proof state encoder generates embeddings for each of these ASTs, as done in

ASTactic. The proof script is represented as a sequence, and the proof script encoder generates embeddings

from this sequence. The tactic decoder, modified from ASTactic, uses these embeddings to generate the

next predicted tactic and its arguments in the form of an AST. TacTok interfaces with the Coq Interactive

Theorem Prover to execute the higher level expression associated with this predicted tactic. Upon failure,

TacTok resamples the tactic and its arguments and tries again. Upon success, TacTok updates the proof script

and proof state to reflect the execution of the tactic. This process continues until the proof script is complete

or times out.

and the proof script up to the point of the executed tactic, and the next step of the proof script.
The proof state is made up of the current goal, local context, and environment. Each term in the
proof state has an underlying AST. The proof script is represented as a sequence of tokens. The
TacTok model jointly learns embeddings for these ASTs and sequences. The TacTok model uses
these embeddings to output a predicted next proof script step, in the form of an AST, and sends that
along with the AST form of the ground-truth next tactic to the trainer. The trainer then compares
these tactics and back-propagates the loss.
Figure 5 details how TacTok synthesizes proof scripts, using the proof script for the proof of

associativity of the add function (recall Section 2.2) as an example. The figure shows TacTok at the
point where it has already generated [intros, induction n, reflexivity, simpl] of the proof
script. TacTok takes as input the proof state and the partial proof script so far. The proof state
encoder (Section 3.2.1) takes the AST form of the proof state inputs and outputs embeddings for
each. The proof script encoder (Section 3.2.2) takes the sequence of tokens in the proof script and
outputs an embedding for this sequence. The tactic decoder (Section 3.2.3) uses these embeddings
to predict an AST, which represents a tactic and its arguments. TacTok then interfaces with the
Coq ITP to execute this tactic and its arguments and interprets the Coq ITP output as either a
failure or a success. A failure is when the Coq ITP produces an error or the execution of the tactic
produces a duplicate proof state. In this case, TacTok resamples the tactic and its arguments and
interfaces with the Coq ITP again. Otherwise, it is a success and the proof script and proof state
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Fig. 6. ASTactic architecture from [Yang and Deng 2019]. The proof state encoder (a), takes as input the

goal, local context, and environment terms in AST form and generates embeddings (feature vectors) for each

term. The tactic decoder (b) concatenates the input embeddings and generates a tactic in the form of an AST,

conditioned on these inputs.

update to include the tactic and its arguments and resulting proof state from the tactic’s execution.
This process continues until the proof script is complete or times out.

We now describe each of the TacTok components.

3.2.1 Proof State Encoder. Figure 6a details the encoder in ASTactic [Yang and Deng 2019], which
is the proof state encoder in TacTok. The inputs are the goal, local context, and environment in AST
form. It uses a TreeLSTM network [Tai et al. 2015], which allows for encoding a tree, to generate
embeddings for each proof state term.

3.2.2 Proof Script Encoder. The proof script consists of tokens that are either tactics, arguments
to tactics, or other symbols. The proof script encoder parses the sequence of these tokens in two
different modes. One mode of parsing the sequence is to include the most common Coq tactic
tokens appearing in the training proof scripts, excluding custom tactics, and obscure arguments
so that their names are not learned. When the proof script encoder parses in this way, the model
it trains is the Tac model. Another mode of parsing the sequence is to include the entire token
sequence, only excluding punctuation. When the proof script encoder parses in this way, the model
it trains is the Tok model. TacTok is comprised of both the Tac and Tok models, trained separately,
and uses either one when attempting to synthesize a proof script.
We encode the parsed sequence of previous tokens using a Bidirectional LSTM, as described

in Section 3.1.2, which generates an embedding for the sequence. Figure 7 shows the proof script
encoder in TacTok.

3.2.3 Tactic Decoder. Figure 6b shows the tactic decoder in ASTactic [Yang and Deng 2019], which
is the tactic decoder in TacTok. It is conditioned on the sequence of input embeddings. In TacTok, the
embeddings are a concatenation of the embeddings generated from both the proof state and proof
script encoders. The decoder generates a tactic in the form of a program by sequentially growing
an AST [Yin and Neubig 2017]. At a non-terminal node in the AST, it chooses a production rule
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Fig. 7. Proof Script Encoder. The proof script encoder’s input is a sequence of proof script tokens, which it

parses and then uses to generate an embedding using a Bidirectional LSTM.

from the specified context free grammar (CFG) of the tactic space. At a terminal node, it synthesizes
an argument based on semantic constraints. This process of growing the tree is controlled by a
GRU [Cho et al. 2014; Chung et al. 2014], which uses the input embeddings of the partially generated
AST to update its hidden state.

The tactic decoder has learnable embeddings for all production rules and symbols in the tactic
CFG. For example, at time t , nt is the symbol of the current node, at−1 is the production rule for
expanding the prior node, pt is the production rule for expanding the parent node concatenated
with the parent’s state, д is the concatenation of the input embeddings, and ut is the weighted sum
of the premises in the environment and local context. The decoder concatenates at−1, pt , nt , д, and
ut , and uses a GRU controller to combine them with the information from the partial tree st−1 to
update the decoder state st . Then, the decoder uses st to predict which production rule to apply.

3.2.4 Training and Search. TacTok is trained on a set of proof scripts. Each proof script in the set
is broken down into training instances. A training instance details the proof state after a tactic is
executed and the proof script up to the point of the executed tactic. TacTok is trained in same way
as the ASTactic model, except for that it also jointly trains a language model over the previous
tokens in a proof script.

For automated theorem proving, TacTok uses beam search, just like ASTactic. TacTok samples a
fixed number (beam width) of the most likely tactics across all search tree nodes at the same level,
and then uses these tactics to search for a complete proof script. TacTok backtracks when it detects
a duplicate proof state, or when the Coq compiler fails to check the new attempted proof script
step.

3.3 Design Space of Proof Script Synthesis

This section explores the design space of proof script synthesis tools that model a set of completed
proof scripts to then generate new ones. We limit our discussion to tools whose models predict a
next possible tactic and arguments, and use some form of search to synthesize proof scripts using
these predictions. The variability within this design space comes from how a model is built, and
how that model is then used to synthesize proof scripts. For example, Figure 8 shows how beam
search can use a model to bias a metaheuristic search for a proof script. Here, the model predicts
3 likely next proof script steps (the beam width is 3). The search then checks if adding the step
allows the proof script to compile and if the resulting proof state has not been previously observed
within this proof script. If these criteria are satisfied, the search keeps the candidate proof script
and iterates to continue the search further. Once the proof state contains no subgoals, the proof
script can be completed with the application of Qed. The search fails if it reaches a timeout.

Some tools, such as CoqHammer, use Automated Theorem Provers (ATP) rather than metaheuris-
tic search. These tools are outside the scope of this design space because they do not model a set of
existing proof scripts.

3.3.1 Modeling Proof Scripts. There are different ways of modeling proof scripts. For example,
a model could compute the frequency distribution of tactics as they appear in a set of existing,
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Fig. 8. The process of synthesizing a proof script using metaheuristic search, biased by a predictive model.

Given an incomplete proof script, a model can predict the next proof step. Here, to use a beam search of

width 3, the model predicts 3 likely steps. If adding the step satisfies certain criteria, here, the proof script

must compile and the resulting proof state must not have been previously observed within this proof script,

the process iterates until, either, the proof state contains no subgoals and the proof script can be completed

with the application of Qed, or the search reaches a timeout.

successful proof scripts. Or, a model could involve encoding aspects of the proof script as features
that are then used to inform a model. These proof script aspects include the goals, the proof context,
and proof script written thus far, and perhaps others. For our model, we focus on encoding the
proof script and the proof state, which, in turn, includes the goals, context, and environment.

Encoding proof script features. The proof script is a sequence of tokens in the Coq tactic
language. Traditionally, this problem calls for a language model, which can predict the next token
given sequence of token (recall Section 3.1). The two overarching classes of language models are
n-gram models (Section 3.1.1) and neural language models (Section 3.1.2). Prior work [Hellendoorn
et al. 2018] has evaluated the use of n-grams and RNNs for predicting the next token in a sequence of
tokens in Coq. N-gram models have no trainable parameters; instead they keep counts of previously
seen common sequences during training and perform a table lookup during inference to predict
the next token given a sequence of tokens. In our target tools, the sequence of tokens is used as
input along with the proof state. So we want to encode the token sequence using a trainable model
with parameters, which requires that we use some neural model to perform this encoding. Within
neural language models, transformers [Devlin et al. 2018] and RNNs are widely used [Peters et al.
2018]. Vanilla RNNs are known to have the problem of vanishing gradients because the token
sequences are processed one-by-one in a sequential fashion. To mitigate this issue, researchers
have proposed different variants of RNNs, such as LSTMs and GRUs. LSTMs and GRUs have similar
performance on many language modeling tasks, so we chose LSTMs for our experiments. More
recently, transformers have become very popular for language modeling tasks. These are massive
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parameter value

TacTok model

proof script terms embedding size 256
proof script encoder LSTM hidden size 256
number of hidden layers in LSTM 1
Tac sequence length (including start token) 3
Tok sequence length (including start token) 30
learning rate 3 × 10−5

batch-size 128
training epochs 4

Search and Synthesis

beam width 20
search depth limit 5
timeout 10 minutes

Fig. 9. Experimental hyper-parameter values.

attention-based neural models that can process the entire token sequence in one shot during
training, making them faster to train. However, they are known to be tricky to train and require
large sets of data, typically in the order of millions of lines of text that one typically sees for natural
language corpora, such as Wikipedia, to outperform LSTM-based models. We use LSTMs for our
task due to the constraint of the benchmarking dataset size and ease of modeling, leaving the
exploration of transformers to future work. TacTok encodes the proof script (see Section 3.2.2)
using a Bidirectional LSTM to capture more contextual information by processing the sequence
forward and backward. We configure the proof script encoder’s term embedding size, LSTM hidden
size, number of hidden layers in the LSTM, batch-size, sequence length (including start token), and
learning rate by performing a random grid search over these hyperparameters. Figure 9 lists the
hyperparameters we made for TacTok.

It is also possible to preprocess the raw sequence of tokens in the proof script prior to learning
a model. The tokens in the raw sequence can be categorized into tactics, their arguments, and
punctuation. This preprocessing can include every token in the proof script, or can exclude some, e.g.,
the punctuation or arguments. Preprocessing can also obscure or rename arguments. Section 3.2.2
describes our preprocessing, parsing choices.

Encoding the proof state. The proof state is a sequence of proof state terms. The proof state
terms can be expressed in a specific format, which is displayed to the programmer during interactive
proving (see Section 2), and is essentially a sequence of tokens. The proof state also has an underlying
tree-structured representation consisting of Coq terms. A neural architecture can encode the terms
in both formats. The use of the underlying tree-structure representation is preferable since some
information is lost in the conversion to the human-readable representation. ASTactic [Yang and
Deng 2019] accesses the underlying Coq terms of the proof state and uses a TreeLSTM to encode
these Coq terms to represent the proof state. TacTok inherits ASTactic’s proof state encoding design
choices.

3.3.2 Search-Based Proof Script Synthesis. To synthesize a complete proof script, the tools in our
design space employ a search-based strategy. The space of all possible proof scripts is, of course,
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infinite, but a precise model from Section 3.3.1 can help navigate this space towards the proof script
that makes proving the theorem possible.
Search is a step-by-step process. The space of proof scripts can be represented as a tree, where

the nodes are (partial) proof scripts, and a path from the root to a leaf is a potential complete
proof script. Standard search algorithms, such as depth-first search and breadth-first search, are
applicable to this space. Though breadth-first search allows for all paths to be explored in parallel,
this is a vast search space to cover, and so it is more efficient to prune the search space. Beam search
limits the width of a search, considering a fixed number of tactics across all search tree nodes at
the same level. This number of tactics being considered is called the beam width.
A proof script that does not compile or is incomplete, can be mutated it in different ways,

including insertion, deletion, and modification of tactics, to produce candidate proof scripts. These
candidates can be executed, pruned, and further modified as the algorithm searches for a working
proof script. For example, genetic algorithms can potentially be used to search for a proof script
given a set of existing candidate scripts, e.g., generated using the step-by-step search process. This
combination may be a fruitful direction for future work in search-based proof script synthesis
strategies.

ASTactic [Yang and Deng 2019] is an example of a tool that uses beam search to sample tactics,
and use these tactics to attempt to construct a complete proof script. The authors conducted
experiments on different beam widths and found 20 to be most effective. TacTok inherits this design
choice.

4 PROOF AND PROOF SCRIPT SYNTHESIS TOOLS

Our evaluation will compare TacTok to five tools, CoqHammer, ASTactic, SeqOnly, WeightedRan-
dom, and WeightedGreedy. This section describes these tools.

The most powerful, general-purpose techniques for automating verification in an ITPs, such as
the Coq ITP, are called hammers [Blanchette et al. 2016]. A hammer performs efficient automated
reasoning using facts from a preexisting library. It uses machine-learning techniques to select the
facts that are likely to be needed to prove a theorem. Then, it translates these selected facts and the
theorem from the ITP logic to a form accepted by ATPs, which are theorems provers for first-order
logic. The ATPs take the resulting translation and try to find a proof. Lastly, the hammer processes
the proof found by an ATP, and tries to reconstruct the proof of the theorem in the ITP logic.
CoqHammer [Czajka and Kaliszyk 2018] is one such hammer for Coq. As in prior evaluations of
automated verification tools that compare to CoqHammer [Yang and Deng 2019] our experiments
configure CoqHammer to use four ATPs: Z3 [de Moura and Bjùrner 2008], Vampire [Kovács and
Voronkov 2013], CVC4 [Barrett et al. 2011], and E Prover [Schulz 2013].

ASTactic is a search-based automated verification tool that uses deep learning to learn to predict
the next step of a proof script solely from the current proof state [Yang and Deng 2019]. To make a
prediction for a given, incomplete proof script, ASTactic uses the current goal, local context, and
environment, and generates tactics in the form of ASTs (just like TacTok).

Our central goal in developing TacTok is to demonstrate the effect of modeling both the proof state
and the partial proof script on proof script synthesis. Since ASTactic [Yang and Deng 2019] models
proof state alone to synthesize proof scripts, a direct comparison between TacTok and ASTactic
demonstrates the effect of adding the partial proof script to the model. A natural complement is
then a tool that models only the partial proof script, to measure the effect of adding the proof state
to the model. However, such a tool, without knowing any of the goals, including the theorem being
proven, would follow the same pattern for every theorem and would prove very few, if any, of
them. (Anecdotally, we implemented such a tool and confirmed that it proves a small number of
theorems.) Instead, we developed SeqOnly, a tool that follows the same basic structure as TacTok
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and models the partial proof script, but instead of modeling the entire proof state, it only models
the theorem being proven. SeqOnly uses the TacTok proof script encoder (recall Section 3.2.2) to
generate embeddings for the proof script sequence, but its tactic decoder (recall Section 3.2.3) is
conditioned only on the proof script sequence embedding and the initial theorem. SeqOnly has
the potential to be effective because language models (n-grams and neural networks) have been
shown to be able to predict next tokens in Coq proof scripts [Hellendoorn et al. 2018]. For example,
using an RNN to represent the sequence of tokens in a proof script allows for 56.6% accuracy in
predicting the next token.
Additionally, we build two more proof script synthesis tools, WeightedRandom and Weight-

edGreedy, that use the frequencies of tactic ASTs occurring in the training proofs to predict the
next likely proof step. WeightedRandom computes a probability distribution over the entire set
of tactic ASTs by measuring the frequency of each tactic AST in the training set of proof scripts.
It then performs a search, just as TacTok, but using only that probability distribution to make
predictions over the next tactic AST. To make the top-k predictions at each step of the search
algorithm, WeighedRandom samples k tactic ASTs from this distribution without replacement.

WeightedGreedy uses the same probability distribution as WeightedRandom, but always selects
the top-k most frequent tactic ASTs from the training set of proof scripts, as opposed to sam-
pling the distribution. Otherwise, it uses search to construct a proof script in the same way as
WeightedRandom.

5 EVALUATION

We evaluate TacTok by comparing its ability to fully automatically synthesize proof scripts to that
of two state-of-the-art synthesis tools, CoqHammer [Czajka and Kaliszyk 2018] and ASTactic [Yang
and Deng 2019], and our own three techniques, SeqOnly, WeightedRandom, and WeightedGreedy.
CoqHammer attempts to automatically prove theorems using external Automatic Theorem Prover
(ATP) systems (recall Section 4). ASTactic, like TacTok, learns from existing proof scripts but uses
only the proof state to predict the next step of the proof script. Finally, SeqOnly is a tool we
created ourselves that learns from existing proof scripts but uses only the partially written proof
script and the initial theorem to predict the next step of the proof script. WeightedRandom is a
model that constructs a probability distribution over the set of tactics in the training dataset, while
WeightedGreedy is a model of the maximum likelihood prediction based on the distribution of
tactics in the training dataset.
Our implementations, experimental scripts, and data are publicly available in our replication

package [First et al. 2020].
TacTok uses search in the proof-script space, whereas CoqHammer produces proofs in Coq’s

logic (Gallina) using a fundamentally different approach. When the Coq compiler executes a proof
script, it generates a proof. Proof scripts can be wrongÐ e.g., it is possible to write a proof script
that concludes with Proof completed, but that is not a valid proof when it is checked by the Coq
compilerÐ but proofs cannot. As such, it is reasonable to compare TacTok (and other proof script
synthesis tools) to CoqHammer in terms of the theorems they are able to prove, but as their
approaches are so fundamentally different, it should be no surprise that the tools are likely to excel
for different theorems, and be complementary. For some simpler classes of theorems, CoqHammer
and TacTok are likely to perform similarly well, whereas for others, (e.g., proofs that require
induction) CoqHammer will be at a fundamental disadvantage. CoqHammer will be perhaps more
predictable in the types of theorems it is able to prove, whereas proof script synthesis tools may
provide more surprises. Section 5.5 discusses some theorems TacTok was able to prove but other
prior tools, including CoqHammer, could not.
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Our evaluation uses the state-of-the-art CoqGym benchmark [Yang and Deng 2019] and answers
three research questions:

RQ1: Does modeling proof state and the partially written proof script, together, improve
automatic verification efficacy, as compared to modeling only the proof state or only
the partial proof script?

RQ2: Does modeling the proof state and partial proof script, together, improve automatic
verification efficacy over state-of-the-art ATP-using CoqHammer?

RQ3: Does modeling of other (non-tactic) tokens together with the proof state improve
automatic verification efficacy as compared to modeling the tactic sequences together
with proof state?

We next describe our evaluation methodology (Section 5.1), and then answer each of the research
questions (Sections 5.2ś5.4). We end with a discussion of proof scripts of complex theorems that
TacTok generates (Section 5.5).

5.1 Evaluation Methodology

This section describes the dataset and metrics our experiments use, and the tools to which we
compare TacTok’s performance.

5.1.1 Dataset. In our evaluation, we use the CoqGym benchmark [Yang and Deng 2019]. In total, we
use 68,501 theorems from 122 open-source software projects in Coq. CoqGym is the state-of-the-art
benchmark used in prior evaluations of formal verification tools [Yang and Deng 2019].

The CoqGym benchmark comes with a preselected training set of 96 projects with 57,719 human-
written proof scripts. The preselected testing set in CoqGym is comprised of 27 projects. We
were unable to reproduce prior results for ASTactic’s performance [Yang and Deng 2019] for one
project, coq-library-undecidability, due to internal Coq errors when processing the proof scripts
within that project. Accordingly, we exclude this project from our evaluation. We were able to
reproduce the results for the remaining 26 projects of 10,782 theorems, and this is the testing set our
evaluation uses. Each project in the testing set has between 2 and 2.1K theorems, summarized in
Figure 13. Following the methodology in prior evaluations [Yang and Deng 2019], our experiments
use the training set to train our models and the testing set to measure efficacy of automated
verification. When the training instances are extracted from the proof scripts, there are 189,824
training instances.

5.1.2 Metrics. Our experiments measure two key metrics, success rate and added value. The success
rate of a tool is the fraction of all theorems that tool fully automatically generate a proof script
for. Success rate is widely used in prior evaluations [Huang et al. 2018; Yang and Deng 2019]. The
added value of tool A as compared to tool B is the relative increase in the fraction of new theorems
tool A proves that tool B fails to prove, as compared to the total number of theorems tool B proves.
For example, if Tool B proves 10 theorems, and tool A only proves 5, but tool B cannot prove any
one of these 5, then tool A’s added value is 50% (5 new theorems out of 10 previously provable
theorems). In other words, together, tools A and B can prove 15 theorems, a 50% improvement over
tool B’s 10.
Because we view our approach as complementary to the prior work, our hope is that TacTok

will prove some theorems the prior approaches fail to prove (as opposed to strictly improving the
absolute success rate). The added value metric captures this measure.
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SeqOnly

180
(1.7%)

141
(1.3%)

224
(2.1%)

412
(3.8%)

84
(0.8%)

57
(0.5%)

712
(6.6%)

ASTactic

8,972 (83.2%) unproven theorems

TacTok

Fig. 10. Theorems proven by TacTok, ASTactic, and SeqOnly out of the 10,782 theorems in CoqGym’s test

dataset. Figure 13 shows the by-project breakdown of the data. TacTok has the highest success rate of the

three tools, proving 1,388 (12.9%) theorems, proving 264 theorems that ASTactic cannot (an added value of

20.0%). TacTok and ASTactic outperform SeqOnly, each with an added value of about 50%. This suggests that

proof state together with the partial proof script can achieve better automated verification than either alone.

5.2 RQ1: Does Modeling Proof State and Partial Proof Script Improve Verification
Efficacy?

TacTok uses both the partial proof script and the proof state to predict the next step in a proof
script. To understand if this combination of information improves the efficacy of automated proof
script verification, we compare TacTok to ASTactic, which uses only proof state, and SeqOnly,
which uses only the partial proof script and the initial theorem, as well as to our WeightedRandom
and WeightedGreedy approaches.

Figure 10 compares the number of theorems proven by TacTok, ASTactic, and SeqOnly. TacTok
proves 1,388 theorems, for a success rate of 1,388

10,782 = 12.9%. ASTactic, trained only on the proof

state, has a success rate of 1,322
10,782 = 12.3%, and SeqOnly has a success rate of 1,077

10,782 = 10.0%.
TacTok proves 264 theorems that ASTactic fails to prove, so its value added compared to ASTactic

is 264
1,322 = 20.0%.
TacTok proves 592 theorems that SeqOnly fails to prove, so its value added compared to SeqOnly

is 592
1,077 = 55.0%. ASTactic proves 553 theorems that SeqOnly fails to prove, so its value added is

553
1,077 = 51.3%.
SeqOnly is able to prove theorems that ASTactic and TacTok fail to prove, for an added value of

308
1,322 = 23.3% and 281

1,388 = 20.2%, respectively. This suggests that proof state and the partial proof
script are helpful for automated verification when used together and separately.

tool theorems proven TacTok value added over tool

WeightedRandom 671 (6.2%) 799 (120%)
WeightedGreedy 1,049 (9.7%) 504 (48%)

Fig. 11. Theorems proven by the WeightedRandom and WeightedGreedy, out of the 10,782 theorems in

CoqGym’s test dataset, and TacTok’s added value over these baselines. Both WeightedRandom and Weight-

edGreedy underperform TacTok, which proves 1,388 theorems (12.9%).
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115
(1.1%)

88
(0.8%)

1,696
(15.7%)

214
(2.0%)

149
(1.4%)

110
(1.0%)

910
(8.4%)

TacTok ASTactic

CoqHammer
7,500 (69.6%) unproven theorems

Fig. 12. Theorems proven by TacTok, CoqHammer, and ASTactic out of the 10,782 theorems in CoqGym’s

test dataset. Figure 13 shows the by-project breakdown of the data. CoqHammer proves more theorems than

TacTok and ASTactic, but they each prove different theorems. Together, they can prove more theorems overall.

Figure 11 shows the success rates of WeightedRandom and WeightedGreedy. WeightedRandom
proves 671 theorems, for a success rate of 671

10,782 = 6.2%. WeightedGreedy proves 1,049 theorems,

for a success rate of 1,049
10,782 = 9.7%. Both WeightedRandom and WeightedGreedy underperform

TacTok, which proves 1,388 theorems (12.9%).
TacTok proves 799 theorems that WeightedRandom fails to prove, so its added value compared to

WeightedRandom is 799
671 = 120%. WeightedRandom adds little beyond TacTok, proving 82 theorems

that TacTok fails to prove, for an added value of 82
1,388 = 5.9%.

TacTok proves 504 theorems that Greedy fails to prove, so its added value compared to Greedy
is 504

1,049 = 48%. Greedy proves 165 theorems that TacTok fails to prove, for an added value of
165
1,388 = 11.9%.

RA1: The data suggest that using proof state together with the partial proof script creates
significant added value and improves verification efficacy beyond using either kind of infor-
mation alone. TacTok proves more theorems on its own than ASTactic. Together, they prove
20.0% more than ASTactic alone, and are, therefore, complementary. Meanwhile TacTok and
ASTactic outperform SeqOnly, each with an added value of about 50%. WeightedRandom
and WeightedGreedy also underperform TacTok.

5.3 RQ2: Does TacTok Improve CoqHammer’s Verification Efficacy?

To evaluate whether TacTok improves automatic verification efficacy over other state-of-the-art
tools, we compare TacTok to CoqHammer. We also compare to the combination of CoqHammer
and ASTactic to understand if TacTok provides value beyond the combination of prior tools.
Figure 12 compares the number of theorems proven by TacTok, CoqHammer, and ASTactic.

CoqHammer has a success rate of 2,865
10,782 = 26.6%, which dominates the success rates of TacTok and

ASTactic, 12.9% and 12.3%, respectively. The success rate of CoqHammer and ASTactic together is
3,167
10,782 = 29.4%.
However, TacTok proves 115 theorems that CoqHammer and ASTactic fail to prove, so its added

value compared to the combination of CoqHammer and ASTactic is 115
3,167 = 3.6%.
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success rate: TacTok ASTactic & ASTactic CoqHammer Tac Tok total
project CoqHammer theorems

weak-up-to 18 (12.9%) 36 (25.9%) 23 (16.5%) 30 (21.6%) 12 (8.6%) 12 (8.6%) 139
buchberger 76 (10.5%) 192 (26.5%) 70 (9.7%) 166 (22.9%) 70 (9.7%) 65 (9.0%) 725
jordan-curve-theorem 22 (3.5%) 168 (26.8%) 19 (3.0%) 165 (26.3%) 16 (2.5%) 22 (3.5%) 628
dblib 45 (25.0%) 67 (37.2%) 41 (22.8%) 55 (30.6%) 41 (22.8%) 35 (19.4%) 180
disel 89 (14.0%) 194 (30.6%) 83 (13.1%) 185 (29.2%) 63 (9.9%) 72 (11.4%) 634
zchinese 5 (11.6%) 13 (30.2%) 5 (11.6%) 12 (27.9%) 4 (9.3%) 4 (9.3%) 43
zfc 33 (13.9%) 70 (29.5%) 33 (13.9%) 64 (27.0%) 28 (11.8%) 28 (11.8%) 237
dep-map 11 (25.9%) 16 (37.2%) 9 (20.9%) 14 (32.6%) 7 (16.3%) 8 (18.6%) 43
chinese 35 (26.7%) 58 (44.3%) 31 (23.7%) 56 (42.7%) 27 (20.6%) 30 (22.9%) 131
UnifySL 180 (18.6%) 367 (37.9%) 189 (19.5%) 303 (31.3%) 126 (13.0%) 153 (15.8%) 968
hoare-tut 5 (27.8%) 6 (33.3%) 1 (5.5%) 6 (33.3%) 3 (16.7%) 3 (16.7%) 18
huffman 28 (8.9%) 81 (25.8%) 25 (7.9%) 74 (23.6%) 22 (7.0%) 21 (6.7%) 314
PolTac 112 (30.9%) 308 (84.9%) 118 (32.5%) 289 (79.6%) 87 (24.0%) 110 (30.3%) 363
angles 4 (6.5%) 15 (24.2%) 4 (6.5%) 15 (24.2%) 3 (4.8%) 4 (6.5%) 62
coq-procrastination 6 (75.0%) 5 (62.5%) 5 (62.5%) 3 (37.5%) 5 (62.5%) 6 (75.0%) 8
tree-automata 111 (13.4%) 311 (37.6%) 96 (11.6%) 292 (35.3%) 83 (10.0%) 96 (11.6%) 828
coquelicot 100 (6.8%) 299 (20.4%) 95 (6.5%) 273 (18.6%) 77 (5.2%) 78 (5.3%) 1,467
fermat4 10 (7.7%) 47 (36.2%) 13 (10.0%) 47 (36.2%) 9 (6.9%) 8 (6.2%) 130
demos 53 (77.9%) 55 (80.9%) 50 (73.5%) 54 (79.4%) 49 (72.1%) 52 (76.5%) 68
coqoban 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2
goedel 67 (11.1%) 128 (21.1%) 53 (8.7%) 120 (19.8%) 57 (9.4%) 58 (9.6%) 606
verdi-raft 121 (5.7%) 351 (16.5%) 117 (5.5%) 337 (15.8%) 99 (4.7%) 97 (4.5%) 2,127
verdi 47 (8.2%) 127 (24.7%) 37 (7.2%) 122 (23.7%) 37 (7.2%) 42 (8.2%) 514
zorns-lemma 12 (8.1%) 21 (14.1%) 10 (6.7%) 18 (12.1%) 10 (6.7%) 7 (4.7%) 149
coqrel 183 (71.5%) 191 (74.6%) 184 (71.9%) 128 (50.0%) 163 (63.7%) 146 (57.0%) 256
fundamental-arithmetic 15 (10.6%) 41 (28.9%) 11 (7.8%) 37 (26.1%) 10 (7.0%) 9 (6.3%) 142

total 1,388 (12.9%) 3,167 (29.4%) 1,322 (12.3%) 2,865 (26.6%) 1,108 (10.3%) 1,166 (10.8%) 10,782

Fig. 13. Success rates, as evaluated on the CoqGym benchmark [Yang and Deng 2019], the three tools,

TacTok, ASTactic [Yang and Deng 2019], and CoqHammer [Czajka and Kaliszyk 2018], prove more theorems

together than each does on its own. For 22 of the 26 subjects, TacTok proves theorems the other two tools

cannot. Overall, together, TacTok proves 115 more theorems than the prior tools combined, a 3.6% relative

improvement. Figure 14 demonstrates this improvement for each project.

Figure 13 shows the by-project breakdown of the success rates for each tool, while Figure 14
details the by-project value added of TacTok compared to CoqHammer and ASTactic.
For 22 of the 26 projects, TacTok has added value over the combination of CoqHammer and

ASTactic. The greatest increase in the number of theorems proven in a project is 19, for UnifySL;
the average increase is 4.4.
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added value: TacTok over TacTok over TacTok over total
project ASTactic & CoqHammer ASTactic CoqHammer theorems

theorems added theorems added theorems added
proven value proven value proven value

weak-up-to 1 (0.7%) 2.7% 2 (1.4%) 8.6% 3 (2.2%) 10.0% 139
buchberger 4 (0.6%) 2.1% 10 (1.4%) 14.3% 27 (3.7%) 16.3% 725
jordan-curve-theorem 0 (0.0%) 0.0% 5 (0.8%) 26.3% 1 (0.2%) 0.6% 628
dblib 6 (3.3%) 9.0% 11 (6.1%) 26.8% 11 (6.1%) 20.0% 180
disel 3 (0.5%) 1.5% 24 (3.9%) 28.9% 9 (1.4%) 4.9% 634
zchinese 2 (4.7%) 15.4% 2 (4.7%) 40.0% 2 (4.7%) 16.7% 43
zfc 5 (2.1%) 7.1% 5 (2.1%) 15.2% 6 (2.5%) 9.4% 237
dep-map 0 (0.0%) 0.0% 2 (4.7%) 22.2% 2 (4.7%) 14.3% 43
chinese 2 (1.5%) 3.4% 9 (6.9%) 29.0% 4 (3.1%) 7.1% 131
UnifySL 19 (2.0%) 5.2% 37 (3.8%) 19.6% 56 (5.8%) 18.5% 968
hoare-tut 2 (11.1%) 33.3% 4 (22.2%) 400.0% 2 (11.1%) 33.3% 18
huffman 6 (1.9%) 7.4% 8 (2.5%) 32.0% 11 (3.5%) 14.9% 314
PolTac 1 (0.3%) 0.3% 4 (1.1%) 3.4% 19 (5.2%) 6.6% 363
angles 0 (0.0%) 0.0% 0 (0.0%) 0.0% 0 (0.0%) 0.0% 62
coq-procrastination 1 (12.5%) 20.0% 1 (12.5%) 20.0% 3 (37.5%) 100.0% 8
tree-automata 11 (1.3%) 3.5% 30 (3.6%) 31.3% 24 (2.9%) 8.2% 828
coquelicot 14 (1.0%) 4.7% 28 (1.9%) 29.5% 33 (2.2%) 12.1% 1,467
fermat4 1 (0.8%) 2.1% 2 (1.5%) 15.4% 1 (0.8%) 2.1% 130
demos 1 (1.5%) 1.8% 4 (5.9%) 8.0% 2 (2.9%) 3.7% 68
coqoban 0 (0.0%) 0.0% 0 (0.0%) 0.0% 0 (0.0%) 0.0% 2
goedel 9 (1.5%) 7.0% 16 (2.6%) 30.2% 17 (2.8%) 14.2% 606
verdi-raft 2 (0.1%) 0.6% 19 (0.9%) 16.2% 11 (0.5%) 3.3% 2,127
verdi 6 (1.2%) 4.7% 16 (3.1%) 43.2% 9 (1.8%) 7.4% 514
zorns-lemma 3 (2.0%) 14.3% 3 (2.0%) 30.0% 6 (4.0%) 33.3% 149
coqrel 13 (5.1%) 6.8% 17 (6.6%) 9.2% 64 (25.0%) 50.0% 256
fundamental-arithmetic 3 (2.1%) 7.3% 5 (3.5%) 45.5% 6 (4.2%) 16.2% 142

total 115 (1.1%) 3.6% 264 (2.4%) 20.0% 329 (3.1%) 11.5% 10,782

Fig. 14. TacTok added value, as evaluated on the CoqGym benchmark [Yang and Deng 2019]. TacTok proves

115 theorems that both ASTactic [Yang and Deng 2019] and CoqHammer [Czajka and Kaliszyk 2018] fail to

prove, so its added value over the two tools combined is 3.6%. The added value of TacTok over ASTactic is

20.0%. While CoqHammer proves more theorems than TacTok, the added value of TacTok over CoqHammer

is 11.5%.

Meanwhile, for 24 of the 26 projects, TacTok has added value over CoqHammer and ASTactic,
individually. TacTok proves 264 theorems that CoqHammer fails to prove, so its added value
compared to CoqHammer is 329

2,865 = 11.5% (and 20.0% over ASTactic, as discussed in Section 5.2).

RA2: While CoqHammer proves more theorems, TacTok can prove 11.5% additional theo-
rems CoqHammer fails to prove. Of these 329 newly proven theorems, 115 cannot be proven
by ASTactic, so TacTok adds 3.6% value beyond the two state-of-the-art tools combined.

5.4 RQ3: Do Non-Tactic Tokens Improve Verification Efficacy?

TacTok is comprised of two underlying models, Tac and Tok (recall Section 3.2.3). The two models
both encode proof state the same way, but they differ in how they encode partial proof scripts.
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Tac
(sequence of tactics)

Tok
(sequence of all tokens)

222
(2.1%)

280
(2.6%)

886
(8.2%)

9,394 (87.1%) unproven theorems

Fig. 15. Theorems proven separately by TacTok’s two ways of encoding partial proof scripts. Tac encodes a

sequence of tactics, whereas Tok encodes all tokens, in addition to the tactics. The two ways of encoding

complement each other in proving theorems.

Tac models the partially written proof scripts by just the sequence of tactics used thus far. Tok,
meanwhile, models the partially written proof scripts using all the proof tokens, including the
tactics and their arguments. This research question focuses on understanding the contributions
Tac and Tok make to TacTok.

Figure 15 compares the number of theorems proven by Tac and Tok. Tac proves 1,108 theorems,
for a success rate of 1,108

10,782 = 10.3%, while Tok has a success rate of 1,166
10,782 = 10.8%. Figure 13 shows

the by-project breakdown of the success rates for Tac and Tok.
Tac and Tok are clearly complementary. Tac outperforms Tok for 8 of the projects, while Tok

outperforms Tac for 13 of the projects. Tac is able to prove 222 theorems that Tok fails to prove, so
its value added compared to Tok is 222

1,166 = 19.0%. Tok proves 280 theorems that Tac fails to prove,

so its value added compared to Tac is 280
1,108 = 25.3%. Their complementarity is the prime reason

TacTok relies on both, improving its efficacy.

RA3: The data suggest that modeling the sequence of tactics in partial proof scripts is
complementary to modeling all tokens. Each approach helps prove around a fifth of the
theorems the other cannot. Some proof scripts appear to require the knowledge encoded in
the tactic arguments of proof scripts, whereas others are able to be generated accurately
(with the arguments) without encoding the arguments as an input to the model. Combining
the two produces the highest verification efficacy.

5.5 Does TacTok Prove More Complex Theorems That Other Tools Do Not?

To understand if TacTok is able to prove more complex theorems than prior tools, we manually
examined the theorems TacTok was able to prove that prior tools were unable to. We observed
several examples of higher-order logic that TacTok proved, but prior tools could not.
One class of examples is theorems that have nested forall quantifiers. Figure 3 shows an

example of such a theorem that TacTok is able to prove, but ASTactic and CoqHammer were not.
Higher-order logic is more difficult for a programmer to reason through, and so the use of a proof
script or proof synthesis tool is likely to be more helpful.
Another class of examples is theorems that require induction to prove. Figure 16 shows one

example such a theorem. The theorem uses the nth l n a relation, which holds when a is the nth
element of the list l . If so, the theorem states that it is also the element of a longer list that is
prefixed by l . TacTok can generate the inductive proof script of this theorem, but prior tools cannot.
CoqHammer does not try to prove theorems that require induction [Czajka and Kaliszyk 2018],
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1 Lemma Nth_app :

2 forall A (l : list A) l' a n,

3 Nth l n a ->

4 Nth (l ++ l') n a.

5

6 Proof.

7 intro. intro. intro. intro. intro. clear. intro.

8 induction H. constructor. constructor. assumption.

9 Qed.

Fig. 16. Lines 1ś4 defines the Nth_app theorem, and lines 6ś9 is the proof script that TacTok generates for

this theorem. TacTok correctly applies the induction tactic.

and so CoqHammer is automatically at a disadvantage for proving this class of theorems. TacTok’s
modeling of proof state and partial proof script, together, was able to capture sufficient context to
properly apply induction.

6 RELATED WORK

We place our research in the context of related work in the areas of interactive theorem provers,
automation for proof systems, software engineering for automated proof assistants, language
models for code, machine learning in formal verification, and metaheuristic search.

Interactive Theorem Provers (ITPs). ITPs, such as Coq, Isabelle [Nipkow et al. 2002], Mizar [Try-
bulec and Blair 1985], HOL4 [Slind and Norrish 2008], and HOL Light [Harrison 1996] are semi-
automated systems for formally proving theorems. We focus on Coq, but our approach is applicable
to other ITPs.

Automation for Proof Systems. Heuristic-based search can partially automate interactive theorem
provers [Andrews and Brown 2006; Blanchette et al. 2011; Bundy 1998; Bundy et al. 1990]. Hammers

are a class of tools that use external ATPs to automatically find proofs for ITPs [Czajka and Kaliszyk
2018]. Classical search algorithms, such as A*, can also search for proofs in HOL4 [Gauthier et al.
2017]. Our models differ from the hammer approach by proving theorems within the ITP framework
and using native tactics and by modeling existing proof scripts to attempt to write new ones.

Software Engineering for Interactive Proof Assistants. Pumpkin Patch generates proof patches
when proof scripts and specifications need to evolve [Ringer et al. 2018] by searching through a
project’s history for similar specification changes. Its approach can be expensive due to the size of
the search space. A learning-based approach, such as ours, could improve the performance of patch
search by prioritizing the search results based on model predictions. Unlike Pumpkin Patch, TacTok
does not require a nearly-working proof script, but rather generates proof scripts from scratch.
iCoq [Celik et al. 2017] finds failing proof scripts in evolving projects by only checking proof

scripts that are affected by a revision, speeding up the process. iCoq tracks fine-grained dependencies
between Coq definitions, propositions, and proof scripts, to narrow down the affected proof scripts.
TacTok does not require a failing proof script, but ideas we presented here for modeling existing
proof scripts can perhaps be used to repair proof scripts.
QuickChick [Lampropoulos et al. 2017] is a random testing tool for Coq that searches for

counterexamples to executable theorems. It helps a programmer gain confidence that a theorem is
correct, before they expend effort to formally prove the theorem.
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Language Models for Code. Research on language modeling in natural language processing litera-
ture has focused on n-gram models [Katz 1987; Kneser and Ney 1995] and neural networks [Bengio
et al. 2003; Mikolov et al. 2010; Sundermeyer et al. 2012], (recall Section 3.1). Recent work has
applied language modeling to source code for bug detection and test-case generation [Abou-Assaleh
et al. 2004; Ernst 2017; Ray et al. 2016]. Language models (n-grams) can be used to model code and
perform code completion as the programmer types [Hindle et al. 2016, 2012]. Modified n-grams
can be used as a cache to capture local dependencies in code [Tu et al. 2014]. The cache model
makes test suggestions through a combination of two n-gram models, built separately on overall
code and code that is local to the specific test case. These systems have been applied to mainstream
programming languages, such as Java and C. By contrast, our approach focuses on interactive proof
assistants and on combining models of proof state and code.

Applying languagemodels to Coq andHOL4 proof scripts showed thatn-grammodels outperform
recurrent neural networks [Hellendoorn et al. 2018], which is rarely true in natural language
applications. Unlike TacTok, this approach did not consider the proof state and did not attempt to
synthesize whole proof scripts, instead measuring the predictive power of such models on tokens.
Further, the approach encoded several kinds of low-signal tokens, including punctuation (e.g., the
periods after each tactic) and tokens that lie outside proof scripts. While the application domain
differs from TacTok’s, the underlying concept of modeling partially written proof scripts to predict
the next proof step is similar.

Machine Learning in Formal Verification. Machine learning techniques can make formal verifica-
tion easier: ML4PG helps Coq users construct proof scripts by showing them similar proof scripts of
similar theorems, using a clustering algorithm [Heras and Komendantskaya 2014; Komendantskaya
et al. 2012]. Machine learning can similarly help with premise selection, the task of selecting lemmas
that are relevant to a given theorem [Alama et al. 2014; Irving et al. 2016; Wang et al. 2017].
GamePad [Huang et al. 2018] models the proof state in Coq using recurrent neural networks.

TacTok uses a similar set of components to capture the proof state. However, unlike GamePad,
TacTok also models the user-written proof script and combines this information with the proof
state to perform proof script generation. GamePad is evaluated for a specific algebraic rewrite
problem, which only has two possible tactics with each having two integer argument [Huang et al.
2018]. By contrast, TacTok interfaces with CoqGym’s framework to perform general proof script
generation.
We evaluate our work on the CoqGym [Yang and Deng 2019] benchmark. In addition to being

the first large-scale dataset of Coq projects collected from Github, CoqGym is also a learning
environment. ASTactic, a deep-learning model that generates tactics as programs in AST form was
the first to evaluate on that dataset [Yang and Deng 2019].

Metaheuristic Search. Metaheuristic-search-based software engineering [Harman 2007] has been
used for developing test suites [Michael et al. 2001; Walcott et al. 2006], finding safety viola-
tions [Alba and Chicano 2007], refactoring [Seng et al. 2006], project management and effort
estimation [Barreto et al. 2008], and automated program repair [Afzal et al. 2020; Ke et al. 2015;
Weimer et al. 2009]. Good fitness functions are critical to the success of metaheuristic-search-based
software engineering, and low-quality fitness functions, or, at least, a low-quality final validation
function, can lead to low-quality results, such as, for example, incorrect bug patches [Motwani et al.
2020; Smith et al. 2015]. With TacTok, the interactive theorem prover provides a strong assurance
that the final produced proof script leads to a correct proof, and thus, proof script synthesis may be
particularly well suited for metaheuristic-search-based methods.
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7 CONTRIBUTIONS

This paper is the first to explore the value of combining modeling of the proof state and of the
partially written proof script to synthesize proof scripts, from scratch. We reify this modeling in
TacTok, an open-source automated proof script synthesis technique. Evaluating TacTok against
CoqHammer [Czajka and Kaliszyk 2018], ASTactic [Yang and Deng 2019], and other metaheuris-
tic search-based approaches we create, we find that TacTok is complementary to other tools: it
successfully synthesize proof scripts for theorems prior tools cannot for 24 out of the 26 projects
on which we evaluate. With TacTok, 11.5% more theorems can be proven automatically than by
CoqHammer alone, and 20.0% than by ASTactic alone. Compared to a combination of CoqHammer
and ASTactic, TacTok can prove an additional 3.6% more theorems, proving 115 theorems no tool
could previously prove.
Overall, our experiments provide evidence that partial proof script and proof state semantics,

together, provide useful information for proof script modeling. We create a concrete approach for
modeling the two types of information together, which can serve as a basis for further progress
creating automatic verification tools.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation under grants no. CCF-1453474,
no. CCF-1564162, and no. CCF-2018393. This work was performed in part using high performance
computing equipment obtained under a grant from the Collaborative R&D Fund managed by the
Massachusetts Technology Collaborative.

REFERENCES

Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan. 2004. N-gram-based detection of new malicious
code. In Proceedings of the 28th Annual International IEEE Computer Software and Applications Conference, Vol. 2. 41ś42.
https://doi.org/10.1109/CMPSAC.2004.1342667

Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and Claire Le Goues. 2020. SOSRepair: Expressive Semantic
Search for Real-World Program Repair. IEEE Transactions on Software Engineering (TSE) (2020). https://doi.org/10.1109/
TSE.2019.2944914

Jesse Alama, TomHeskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. 2014. Premise selection for mathematics by
corpus analysis and kernel methods. Journal of Automated Reasoning 52, 2 (2014), 191ś213. https://doi.org/10.1007/s10817-
013-9286-5

Enrique Alba and Francisco Chicano. 2007. Finding safety errors with ACO. In Conference on Genetic and Evolutionary

Computation (GECCO). London, England, UK, 1066ś1073. https://doi.org/10.1145/1276958.1277171
Peter B Andrews and Chad E Brown. 2006. TPS: A hybrid automatic-interactive system for developing proofs. Journal of

Applied Logic 4, 4 (2006), 367ś395. https://doi.org/10.1016/j.jal.2005.10.002
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align

and Translate. In Proceedings of the International Conference on Learning Representations (ICLR). San Diego, CA, USA.
https://arxiv.org/abs/1409.0473

Ahilton Barreto, Márcio Barros, and Cláudia Werner. 2008. Staffing a software project: A constraint satisfaction approach.
Computers and Operations Research 35, 10 (2008), 3073ś3089. https://doi.org/10.1016/j.cor.2007.01.010

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds,
and Cesare Tinelli. 2011. CVC4. In International Conference on Computer Aided Verification (CAV), Vol. 6806. Springer,
Snowbird, UT, USA, 171ś177. https://doi.org/10.1007/978-3-642-22110-1_14

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model.
Journal of machine learning research 3, Feb (2003), 1137ś1155. https://dl.acm.org/doi/10.5555/944919.944966

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak,
and Dawson Engler. 2010. A few billion lines of code later: Using static analysis to find bugs in the real world. Commun.

ACM 53, 2 (2010), 66ś75. https://doi.org/10.1145/1646353.1646374
Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. 2011. Automatic proof and disproof in Isabelle/HOL. In

International Symposium on Frontiers of Combining Systems. Springer, 12ś27. https://doi.org/10.1007/978-3-642-24364-6_2

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 231. Publication date: November 2020.

https://doi.org/10.1109/CMPSAC.2004.1342667
https://doi.org/10.1109/TSE.2019.2944914
https://doi.org/10.1109/TSE.2019.2944914
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1145/1276958.1277171
https://doi.org/10.1016/j.jal.2005.10.002
https://arxiv.org/abs/1409.0473
https://doi.org/10.1016/j.cor.2007.01.010
https://doi.org/10.1007/978-3-642-22110-1_14
https://dl.acm.org/doi/10.5555/944919.944966
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1007/978-3-642-24364-6_2


231:28 Emily First, Yuriy Brun, and Arjun Guha

Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson, and Josef Urban. 2016. Hammering towards QED.
Journal of Formalized Reasoning 9, 1 (2016), 101ś148. https://doi.org/10.6092/issn.1972-5787/4593

Eric Brill and Robert C Moore. 2000. An improved error model for noisy channel spelling correction. In Proceedings of the

38th Annual Meeting on Association for Computational Linguistics. Hong Kong, 286ś293. https://doi.org/10.3115/1075218.
1075255

Alan Bundy. 1998. A science of reasoning. In International Conference on Automated Reasoning with Analytic Tableaux and

Related Methods. Springer, 10ś17. https://doi.org/10.1007/3-540-69778-0_2
Alan Bundy, Frank Van Harmelen, Christian Horn, and Alan Smaill. 1990. The OYSTER-CLAM system. In International

Conference on Automated Deduction. Springer, 647ś648. https://doi.org/10.1007/3-540-52885-7_123
Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. ICoq: Regression proof selection for large-scale verification

projects. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). 171ś182.
https://doi.org/10.1109/ASE.2017.8115630

Adam Chlipala. 2013. Certified Programming with Dependent Types. MIT Press, Boston, MA, USA.
Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua

Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Doha, Qatar, 1724ś1734. https://doi.org/10.3115/v1/D14-1179

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for Dependent Type Theory. Journal of Automated

Reasoning 61, 1-4 (2018), 423ś453. https://doi.org/10.1007/s10817-018-9458-4
Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An efficient SMT solver. Tools and Algorithms for the Construction and

Analysis of Systems 4963 (April 2008), 337ś340. https://doi.org/10.1007/978-3-540-78800-3_24
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional

transformers for language understanding, In Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-HLT). arXiv preprint arXiv:1810.04805, 4171ś4186.
https://doi.org/10.18653/v1/N19-1423

Michael D. Ernst. 2017. Natural Language is a Programming Language: Applying Natural Language Processing to Software
Development. In 2nd Summit on Advances in Programming Languages (SNAPL 2017) (Leibniz International Proceedings in

Informatics (LIPIcs)), Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhlś
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 4:1ś4:14. https://doi.org/10.4230/LIPIcs.SNAPL.2017.4

Emily First, Yuriy Brun, and Arjun Guha. 2020. Replication package for łTacTok: Semantics-aware proof synthesisž.
https://doi.org/10.5281/zenodo.4088897

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. 2017. TacticToe: Learning to reason with HOL4 Tactics. In LPAR-21.

21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Vol. 46. 125ś143.
Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget: Continual prediction with LSTM. Neural

Computation 12, 10 (1999), 2451ś2471. https://doi.org/10.1162/089976600300015015
Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen Schmidhuber. 2017. LSTM: A search

space odyssey. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 28, 10 (2017), 2222ś2232. https:
//doi.org/10.1109/TNNLS.2016.2582924

Ronghui Gu, Zhong Shao, Hao Chen, XiongnanWu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An Ex-
tensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference on Oper-

ating Systems Design and Implementation. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine Verified Network Controllers. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). Seattle, WA, USA. https://doi.org/10.1145/2491956.2462178
Mark Harman. 2007. The Current State and Future of Search Based Software Engineering. In ACM/IEEE International

Conference on Software Engineering (ICSE). Minneapolis, MN, USA, 342ś357. https://doi.org/10.1109/FOSE.2007.29
John Harrison. 1996. HOL Light: A tutorial introduction. In International Conference on Formal Methods in Computer-Aided

Design. Palo Alto, CA, USA, 265ś269. https://doi.org/10.1007/BFb0031814
Vincent J. Hellendoorn, Premkumar T. Devanbu, and Mohammad Amin Alipour. 2018. On the naturalness of proofs. In ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE) New Ideas and Emerging Results track. Orlando, FL, USA, 724ś728. https://doi.org/10.1145/3236024.3264832
Jónathan Heras and Ekaterina Komendantskaya. 2014. Recycling proof patterns in Coq: Case studies. Mathematics in

Computer Science 8, 1 (2014), 99ś116. https://doi.org/10.1007/s11786-014-0173-1
Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. 2016. On the Naturalness of Software.

Commun. ACM 59, 5 (April 2016), 122âĂŞ131. https://doi.org/10.1145/2902362

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 231. Publication date: November 2020.

https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.3115/1075218.1075255
https://doi.org/10.3115/1075218.1075255
https://doi.org/10.1007/3-540-69778-0_2
https://doi.org/10.1007/3-540-52885-7_123
https://doi.org/10.1109/ASE.2017.8115630
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1007/s10817-018-9458-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.4230/LIPIcs.SNAPL.2017.4
https://doi.org/10.5281/zenodo.4088897
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/2491956.2462178
https://doi.org/10.1109/FOSE.2007.29
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1145/3236024.3264832
https://doi.org/10.1007/s11786-014-0173-1
https://doi.org/10.1145/2902362


TacTok: Semantics-Aware Proof Synthesis 231:29

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. 2012. On the naturalness of software. In
Proceedings of the 34th International Conference on Software Engineering (ICSE). 837ś847. https://doi.org/10.1109/ICSE.
2012.6227135

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. 2018. GamePad: A Learning Environment for Theorem
Proving. CoRR (2018). https://arxiv.org/abs/1806.00608

Atalay İleri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2018. Proving Confidentiality in a File
System Using DISKSEC. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation.
https://www.usenix.org/conference/osdi18/presentation/ileri

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, François Chollet, and Josef Urban. 2016. Deepmath-deep
sequence models for premise selection. In Advances in Neural Information Processing Systems. Barcelona, Spain, 2235ś2243.
https://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, and Emina Torlak.
2017. Automatic formal verification for EPICS. In International Conference on Accelerator and Large Experimental Physics

Control Systems (ICALEPCS). Barcelona, Spain. https://doi.org/10.18429/JACOW-ICALEPCS2017-TUDPL02
Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2012. Establishing Browser Security Guarantees Through Formal

Shim Verification. In Proceedings of the 21st USENIX Conference on Security Symposium. Bellevue, WA, USA. https:
//www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jang

Slava Katz. 1987. Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE
Transactions on Acoustics, Speech, and Signal Processing 35, 3 (1987), 400ś401. https://doi.org/10.1109/TASSP.1987.1165125

Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing Programs with Semantic Code Search. In
Proceedings of the 30th IEEE/ACM International Conference on Automated Software Engineering (ASE) (9ś13). Lincoln, NE,
USA, 295ś306. https://doi.org/10.1109/ASE.2015.60

Reinhard Kneser and Hermann Ney. 1995. Improved backing-off for m-gram language modeling. In International Conference

on Acoustics, Speech, and Signal Processing, Vol. 1. Detroit, MI, USA, 181ś184. https://doi.org/10.1109/ICASSP.1995.479394
Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,

Wade Shen, Christine Moran, Richard Zens, et al. 2007. Moses: Open source toolkit for statistical machine translation.
In Proceedings of the 45th Annual Meeting of the ACL; Interactive Poster and Demonstration Session. 177ś180. https:
//www.aclweb.org/anthology/P07-2045

Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov. 2012. Machine learning in proof general: Interfacing
interfaces. In Proceedings of 10th International Workshop on User Interfaces for Theorem Provers, Vol. 118. Bremen, Germany.
https://doi.org/10.4204/EPTCS.118.2

Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and Vampire. In International Conference on Computer

Aided Verification (CAV), Vol. 8044. Springer-Verlag, Saint Petersburg, Russia, 1ś35. https://doi.org/10.1007/978-3-642-
39799-8_1

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017. Generating Good Generators for Inductive
Relations. Proceedings of the ACM on Programming Languages 2, POPL (Dec. 2017), 45:1ś45:30. https://doi.org/10.1145/
3158133

K. Rustan M. Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International Conference on

Logic for Programming Artificial Intelligence and Reasoning (LPAR). Dakar, Senegal, 348ś370. https://doi.org/10.1007/978-
3-642-17511-4_20

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107ś115. https://doi.org/10.1145/
1538788.1538814

Laurent Mauborgne. 2004. AstrÉe: Verification of Absence of Runtime Error. In Building the Information Society. 385ś392.
https://doi.org/10.1007/978-1-4020-8157-6_30

Christoph C. Michael, Gary McGraw, and Michael A. Schatz. 2001. Generating Software Test Data by Evolution. IEEE
Transactions on Software Engineering (TSE) 27, 12 (Dec. 2001), 1085ś1110. https://doi.org/10.1109/32.988709
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