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Abstract

A purely magnetic applied field may provide plasma confinement under conditions where the bulk

of the plasma is effectively free of the applied magnetic field. The applied magnetic field surrounds

the bulk of the plasma, and plasma particles that are incident on the applied magnetic field can

be reflected back into the effectively unmagnetized region of plasma. The concept belongs to a

class of magnetic plasma confinement approaches studied long ago, for which some experimental

results indicated classical (collision-based) cross-magnetic-field transport may occur. However,

multiple magnetic coils are required to be immersed within the confined plasma, and rapid plasma

loss may occur if material structures are present that pass through the plasma (e.g., to hold

the immersed coils in place). In the work reported, the concept is studied in combination with

magnetic plasma expulsion [R. E. Phillips and C. A. Ordonez, Phys. Plasmas 25, 012508 (2018)],

which would be employed to keep plasma away from material structures that pass through the

plasma. A planar model is used for the study. A classical trajectory Monte Carlo simulation

is carried out of particles that are independently incident on the applied magnetic field. With

monoenergetic incident particles, the results indicate that the applied magnetic field can reflect

all independently incident particles in certain regions of parameter space. Prospects for achieving

three-dimensional magnetic confinement of an effectively unmagnetized plasma with a Maxwellian

velocity distribution are discussed.

a Author to whom correspondence should be addressed. Electronic mail: cao@unt.edu.
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I. INTRODUCTION

An artificially structured boundary for plasma confinement is defined as a system of

current carrying conductors and/or charged electrodes that produce a static electromagnetic

field along the periphery of a confined plasma.1–5 The bulk of the confined plasma would be

effectively free of the applied electromagnetic field, and plasma confinement would occur as a

result of particles being reflected from the applied field. An artificially structured boundary

may serve to provide confinement along the edge of a nonneutral electron or positron plasma.

An electric field is produced within an edge-confined nonneutral plasma, and a self-consistent

Poisson-Boltzmann computation predicts that purely electric (plasma space-charge based)

confinement of an ion plasma is possible.6

An artificially structured boundary that produces a combined magnetic and electric ap-

plied field has been studied using a classical trajectory Monte Carlo simulation.4 A spatially

periodic magnetic field was considered to be produced by a planar sequence of parallel

wires, with adjacent wires carrying currents in opposite directions. An electric field was

superimposed to provide electrostatic plugging of a sequence of magnetic cusps associated

with the magnetic field. The simulation indicated that the combined field can reflect all

independently incident particles that follow a monoenergetic isotropic velocity distribution

(i.e., arbitrarily oriented velocity vectors with the same magnitudes), in certain regions of

parameter space, provided that all particles have the same sign of charge.

Plasma confinement with an artificially structured boundary has also been studied using

a particle-in-cell simulation.3 The artificially structured boundary was similar to the one

described in Ref. 4, except that a nonplanar boundary enclosed an axisymmetric volume.

The particle-in-cell simulation indicated that the enclosure may serve to confine a nonneutral

plasma, in certain regions of parameter space.

An issue with using a combined magnetic and electric applied field for confining a nonneu-

tral plasma is that the electric field produced by the plasma tends to reduce the effectiveness

of the applied electric field. The effect may limit the density of the confined plasma. In

the work reported here, an artificially structured boundary that produces a purely magnetic

applied field is studied. Two sets of magnetic coils would be used, with one set of coils

immersed within a confined plasma. It should be noted that, without the use of an applied

electric field, confinement of a neutral plasma may be possible.
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An artificially structured boundary that produces a purely magnetic applied field was

studied in Refs. 1 and 2. The artificially structured boundary was considered to consist of one

(or more) planar sequence of parallel wires, with adjacent wires in a plane carrying currents

in opposite directions. The magnetic field was spatially periodic and produced a sequence of

magnetic cusps. The magnetic field would reflect all independently incident charged particles

only for a range of grazing angles of incidence,1 and an approach for using an applied electric

field for electrostatically plugging the magnetic cusps was discussed.2 In contrast to the work

presented here, the studies reported in Refs. 1 and 2 did not consider plasma-immersed

components, and there was nothing to stop particles that would be incident normal to the

plane of the artificially structured boundary and centered with a magnetic cusp from passing

through the artificially structured boundary without being reflected. Similar to the work

presented here, the studies reported in Refs. 1 and 2 employed a classical trajectory Monte

Carlo simulation based on using normalized governing equations, such that the results would

be more broadly applicable. The primary advancement that is reported here, beyond what

was reported in Refs. 1 and 2, is a finding that simulated particles that are independently

incident normal to the plane of an artificially structured boundary can all be reflected by a

purely magnetic applied field in certain regions of parameter space, when plasma-immersed

components are used.

Some early research indicates that classical (collision-based) cross-magnetic-field trans-

port may occur in a class of magnetic plasma confinement approaches that employ multi-

ple plasma-immersed magnetic coils, provided the effects of material structures that pass

through the plasma are sufficiently small.7–12 The magnetic plasma confinement approach

studied here is of the same class and is characterized as having dimensions for the particle

confinement volume that are large compared to the separation between adjacent plasma-

immersed magnetic coils.

An issue with using plasma-immersed coils is that rapid plasma loss may occur if material

structures are present that pass through the plasma (e.g., to hold the immersed coils in

place). An artificial phenomenon referred to as magnetic plasma expulsion may serve to

keep plasma away from material structures that connect to the plasma-immersed magnetic

coils.13,14 Research on the phenomenon using a particle-in-cell simulation was reported in

Ref. 13. The possibility of fueling a magnetically confined plasma with particle sources

located inside of the plasma within a magnetic expulsion field has been studied with a
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classical trajectory Monte Carlo simulation.15

An artificially structured boundary may serve for confining or controlling plasma. There

are many areas of scientific research that may benefit from the development of improved

plasma confinement and control methods. For example, there are research groups that rely

on plasma confinement and control methods for conducting research on antihydrogen.16–20

With confinement of a sufficiently cold and dense nondrifting plasma that produces antihy-

drogen atoms, a relatively simple measurement to determine the direction of the gravitational

acceleration of antimatter may be possible.21 The use of multiple plasma-immersed coils was

originally studied for confining a sufficiently hot and dense hydrogen-isotope plasma, such

that fusion energy is produced. There are many types of plasma-based devices that have or

can have multipolar magnetic fields (e.g., produced by permanent magnets) along a plasma-

facing wall. Examples include the multipurpose device called the Big Red Ball,22,23 high

efficiency multistage plasma thrusters for space propulsion,24 ion sources for charged parti-

cle beams,25 plasma chambers for processing materials,26,27 and other plasma confinement

and control systems for studies of plasma phenomena.28–31 Such devices may benefit from

enhanced plasma confinement, which may be possible by incorporating plasma-immersed

magnetic coils.

An example of a purely magnetic applied field that may serve for magnetic confinement

of an effectively unmagnetized plasma is presented in Sec. II. The purely magnetic applied

field would be produced by an artificially structured boundary consisting of axisymmetric

magnetic coils. In Sec. III, a planar model of the artificially structured boundary is devel-

oped. The planar model is used in Sec. IV for finding simulated conditions under which

independently incident particles are reflected by the applied field. The simulated conditions

with magnetic plasma expulsion present are reported in Sec. V. A discussion is found in

Sec. VI, and concluding remarks are in Sec. VII.

II. AXISYMMETRIC CONFIGURATION

Figure 1 shows an example of a toroidal configuration that may serve for confining an

effectively unmagnetized plasma with a purely magnetic applied field by using axisymmetric

magnetic field coils. The plasma would be confined within an axisymmetic toroidal con-

finement volume. The configuration consists of two sets of axisymmetric magnetic coils of
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varying radii. A cylindrical coordinate system is defined with coordinates (r, θ, z) and with

the z axis coincident with the axis of symmetry of the configuration.

For the field shown in Fig. 1, the magnetic field of each coil is calculated as being produced

by a single-turn circular current loop formed by an infinitesimally thin wire. A closed-form

expression for the magnetic field Bl(r, θ, z) produced by such a current loop centered at the

coordinate origin with radius Rk is obtained from Ref. 32. The magnetic field for a set of

N loops evenly distributed on a toroidal surface with constant minor radius a and major

radius R is given by

B(r, θ, z) =
N
∑

k=1

Bl

[

r, θ, z − a cos

(

2πk

N

)]

(1)

with

Rk = R + a sin

(

2πk

N

)

, (2)

where Rk is the radius of the kth circular current loop. For Fig. 1, the value N = 12 is used

for each of two sets of coils. Also, the dimensions are chosen such that a = 1 for one set of

coils and a = 1.5 for the other set of coils. The value R = 10 is used for both sets of coils.

The cross section of the confinement volume on an r-z plane is approximately circular

for the configuration in Fig. 1. Other cross sectional shapes are also possible, such as

rectangular, diamond and elliptical shapes.

III. PLANAR MODEL

A planar model is developed for the artificially structured boundary shown in Fig. 1. The

configuration consists of a number of straight parallel wires that are distributed evenly along

two planes as shown in Fig. 2. A Cartesian coordinate system is defined with coordinates

(x, y, z), with unit vectors (̂i, ĵ, k̂), and with the y axis parallel to each wire. Each wire

is approximated as infinitely long and of negligible thickness. The two planes of wires are

located at z = 0 and z = d = |d|. Each wire located at the z = 0 plane carries a current

I = |I|, which flows in the ĵ direction, and each wire located at the z = d plane carries a

current −I, which flows in the −ĵ. Two adjacent wires on the same plane are separated by

a distance S, which is the spatial period of the configuration.

The magnetic field produced by two wires, one located at coordinates (0, y, 0) (i.e., coin-
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FIG. 1. Example of a purely magnetic applied field that would be produced by an artificially

structured boundary for confining an effectively unmagnetized plasma. The field is axisymmetric,

and the axis of symmetry (not shown) is coincident with the z axis of a cylindrical coordinate

system. A contour plot of the field magnitude on an r-z plane is shown in (a), and a close-up view

is shown in (b). The transitions between different colors occur at contours of constant magnetic

field strength. The lines with arrows in (b) indicate the local direction of the magnetic field. There

are 24 magnetic coils, with the location of each indicated by a circle with either a central dot

(indicating current flow “out of the page”) or a cross (indicating current flow “into the page”).

6

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
0
2
1
5



-I -I -I -I -I -I -I -I -I

I I I I I I I I I xx

zz

| |
SS

dd

—

—

FIG. 2. Planar model of an artificially structured boundary. The model consists of two sets of

parallel wires, with one set located on the z = 0 plane of a Cartesian coordinate system, and the

other set located on the z = d = |d| plane. A confined plasma would be located at z < d. Each

wire in the z = 0 plane would be immersed within the plasma and would carry a current I = |I|

in the positive ĵ direction (“into the page”). Each wire in the z = d plane would not be immersed

within the plasma and would carry a current −I in the negative ĵ direction. Adjacent wires in the

same plane are separated by a distance S.

cident with the y axis) and the other at coordinates (0, y, d) is given by

B0(x, y, z) =
µ0I

2π

[(

z

x2 + z2
− z − d

x2 + (z − d)2

)

î

−
(

x

x2 + z2
− x

x2 + (z − d)2

)

k̂

]

. (3)

Here, µ0 is the permeability of free space, and SI units are used.

Each plane of wires extends to ±∞ in the x dimension. The magnetic field is evaluated

as the superposition of the fields of all pairs of wires:

B(x, y, z) =
∞
∑

k=−∞

B0 (x− kS, y, z)

=
1

2
Bmβ, (4)

where Bm = µ0I/S, β = βxî+ βyĵ + βzk̂, βy = 0,

βx =
1

coth(2πzn)− cos(2πxn) csch(2πzn)

− 1

coth [2π(zn − dn)]− cos(2πxn) csch [2π(zn − dn)]
, (5)
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and

βz =
1

cot(2πxn)− csc(2πxn) cosh(2πzn)

− 1

cot(2πxn)− csc(2πxn) cosh [2π(zn − dn)]
. (6)

Here, xn = x/S, zn = z/S, and dn = d/S. Figures 3 and 4 show plots of the magnetic field

given by Eq. (4).

For d ≪ S the magnetic field strength B = |B| varies significantly as a function of x at

z = d/2, midway between the two planes of current carrying wires. For d >∼ S, the magnetic

field near z = d/2 is relatively uniform, approaching the value Bm in the limit d ≫ S.

The magnetic field strength decreases precipitously over a distance of a few spatial periods

away from the artificially structured boundary. For example, for d ≥ S, if the magnetic field

strength is ∼ 1 T at z = d/2, the magnetic field strength is approximately 10−14 T at

z = −5S. Therefore, it is possible for a charged particle of a given kinetic energy to be

effectively free of the magnetic field if located at z <∼ −5S and magnetized if located at

z ≈ d/2. The dimensions of a plasma confined by an artificially structured boundary similar

to that in Fig. 2 would be large compared to the spatial period of the applied field, and the

plasma would be effectively unmagnetized, except near the edge of the plasma.

In Fig. 3b, two magnetic field lines are shown. (The other lines with arrows are not

referred to as field lines, which are continuous, because the other lines may be shown as

being discontinuous to avoid overcrowding of lines.) One magnetic field line encircles the

wire and the other magnetic field line does not. A separatrix occurs at the transition between

field lines that do and do not encircle the wire. The minimum distance of closest approach

between the separatrix and the wire depends on the value of dn = d/S. By varying the value

of dn, it is found that, for d ≥ 0.5S, the minimum distance of closest approach between the

separatrix and the wire is between 0.10S and 0.12S. In Fig. 3b, with dn = 1, the separatrix

approaches most closely to the wire at the normalized coordinates (xn = 0, yn, zn = 0.11),

where yn = y/S.

IV. PARTICLE REFLECTION

A classical trajectory Monte Carlo simulation is used for following the trajectories of

charged particles that approach the artificially structured boundary in Fig. 2. The governing

8

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
0
2
1
5
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FIG. 3. Magnetic field produced by the artificially structured boundary in Fig. 2, with spatial

dimensions normalized by the spatial period S and with d = 1. Three spatial periods are shown

in (a), and a close-up view is shown in (b). The lines with arrows indicate the local direction of

the magnetic field. The transitions between different colors occur at contours of constant magnetic

field strength B = |B|. The solid lines without arrows in (a) also occur at contours of constant

magnetic field strength. The magnetic field strength at the solid line near the bottom of (a) is

smaller than at the other two solid lines by a factor of 10−3. The two solid lines with arrows in (b)

represent magnetic field lines that do and do not encircle a wire, respectively. A separatrix occurs

at the transition between field lines that do and do not encircle the wire.
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results are more broadly applicable. Four normalization factors are chosen to be the mass m

and charge q of a particle, the spatial period S of the magnetic field, and the classical kinetic

energy of a particle, K = (1/2)mv2, which is a conserved quantity when only a magnetic

force is present. Other normalization factors that are needed are obtained using dimensional

analysis. Each normalized quantity is dimensionless and is written using the same symbol as

its unnormalized counterpart, except with a subscript n attached. The normalized quantities

used here are related to unnormalized quantities as follows: rn = r/S, vn = v
√

m/K,

an = amS/K, tn = t(1/S)
√

K/m, and Bn = BqS/
√
mK. Also, mn = qn = Kn = Sn = 1.

Solving for a, v, and B, and substituting into the equations of motion gives normalized

equations of motion, an = vn ×Bn. Referring to Eq. (4), the normalized magnetic field can

be written as

Bn(xn, yn, zn) =
sgn(q)√
2rmn

β, (7)

where sgn(q) = q/|q| and rmn = rm/S =
√
2mK/(|q|BmS). Here, rm is a positive parameter

that would equal the Larmor radius for a particle located within a uniform magnetic field

of magnitude Bm and having kinetic energy K associated with circular motion.

The normalized equations of motion are

xn
′′(tn) =

sgn(q)√
2rmn

[yn
′(tn)βz − zn

′(tn)βy] , (8)

yn
′′(tn) =

sgn(q)√
2rmn

[zn
′(tn)βx − xn

′(tn)βz] , (9)

and

zn
′′(tn) =

sgn(q)√
2rmn

[xn
′(tn)βy − yn

′(tn)βx] . (10)

The functional dependence, β = β [xn(tn), yn(tn), zn(tn)], is not shown in Eqs. (8) to (10)

for brevity. Equations (8) to (10) are solved numerically. An indication of the numerical

inaccuracy of a solution is the change of a particle’s normalized kinetic energy, which is a

conserved quantity. Each particle’s normalized kinetic energy changed away from a value of

1 by an amount that was typically less than 0.001% for each solution reported here.

Some of the initial conditions are sampled from distribution functions, by using analytical

sampling expressions. For example, suppose that f(θ0) is a distribution function, and values

of θ0 are to be sampled. The relation,

Rθ =

∫ θ0
θl

fθ(θ)dθ
∫ θu
θl

fθ(θ)dθ
, (11)

11

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
0
2
1
5



is solved analytically to obtain a sampling expression, θ0 = θ0(Rθ), where θl and θu are lower

and upper limits for the possible values of θ0. Hereafter, the symbol R with a subscript (e.g.,

Rθ) denotes an independent random number that is equally likely to have any value between

0 and 1.

The initial normalized spatial coordinates used are

xn(0) = x0n = Rx − 0.5, (12)

yn(0) = y0n = Ry − 0.5, (13)

zn(0) = z0n = −5. (14)

In the x and y dimensions, the initial coordinates are randomly sampled over distances equal

to one spatial period of the magnetic field. Such sampling in the x dimension is consistent

with considering the spatial period of the magnetic field in the x dimension to be much

smaller than the spatial variation of a source of incident particles. The value used for y0n

is unimportant in this Sec. IV, because the magnetic field has no spatial variation in the y

dimension. The magnitude of the initial coordinate in the z dimension is chosen to be large

enough for the effect of the magnetic field on a trajectory to be negligible near z0n.

The initial normalized velocity components are written as

vxn(0) = v0xn = v0n sin θ0 cosφ0, (15)

vyn(0) = v0yn = v0n sin θ0 sinφ0, (16)

vzn(0) = v0zn = v0n cos θ0. (17)

Here, (v0n, θ0, φ0) are spherical coordinates in velocity space. The initial normalized speed

of each particle is v0n =
√
2, because the initial kinetic energy of each particle is Kn = 1 =

mnv
2
0n/2, and the normalized mass of a particle is mn = 1.

The possible values of φ0 are limited to 0 ≤ φ0 < 2π. The value of θ0 is limited to

0 ≤ θ0 < θmax with θmax < π. Particles with θmax > π/2 would initially travel in the −k̂

direction, which is away from the artificially structured boundary. Also, particles that would

initially travel nearly parallel to the z = 0 plane could make the computation unmanageable.

Such particles can be excluded by selecting a value for θmax that is slightly less than π/2.

Here in Sec. IV, the value θmax = 0.9π/2 is used, and incident particles are considered to

12
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follow a monoenergetic isotropic velocity distribution function,

f(v0n, θ0, φ0) = f0δ(v0n −
√
2)fθ(θ0)fφ(φ0). (18)

Here, f0 is a normalization constant, δ is the Dirac delta function, and the (unnormalized)

angle distribution functions are fθ(θ0) = sin θ0, and fφ(φ0) = 1. The associated sampling

expressions are

φ0 = 2πRφ, (19)

and

θ0 = arccos [1−Rθ +Rθ cos (θmax)] , (20)

where the limits of integration, θl = 0 and θu = θmax, are used in Eq. (11) for obtaining

Eq. (20). Substitution of the sampling expressions, Eqs. (19) and (20), into the expressions

for the velocity components, Eqs. (15) - (17), gives

v0xn =
√

2− 2 [1−Rθ +Rθ cos (θmax)]
2 cos (2πRφ) , (21)

v0yn =
√

2− 2 [1−Rθ +Rθ cos (θmax)]
2 sin (2πRφ) , (22)

v0zn =
√
2 [1−Rθ +Rθ cos (θmax)] . (23)

Each simulated trajectory is discontinued either when the particle reaches zn > dn (and

is considered to be lost) or when the particle reaches zn < z0n (after being reflected by

the magnetic field). Also, if a maximum normalized time, tn,max = 2700/
√
2, is reached,

the particle is considered to become magnetically trapped. That is, if a simulated particle

travels (at normalized speed
√
2) a normalized path length that reaches 2700 spatial periods,

the trajectory is discontinued, and the particle is considered to have become magnetically

trapped.

Figure 5 shows plots of 1000 trajectories that result from a simulation. The value, rmn =

0.01, was used, and all particles are reflected by the magnetic field. A positive sign of charge,

sgn(q) = 1, was used. It should be noted, however, that statistically averaged results from

the simulation do not depend on the value of sgn(q), because x0n is sampled uniformly over

one spatial period.

Figure 6 shows the conditions found for all incident particles to be reflected for various

values of dn. The simulations are the same as for Fig. 5, except that different values for

13
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FIG. 5. Results for a simulation with rmn = 0.01. Shown are parametric plots of trajectories

over a region with multiple spatial periods (a) and over a region with a single spatial period (b).

The close-up view of one spatial period shown in (b) has the location of a current-carrying wire

indicated by a circle with a cross. Individual trajectory lines may not be distinguishable as a result

of overlapping lines. All particles start under effectively unmagnetized conditions at zn = −5, and

all particles reach zn < −5 and are considered to be reflected by the magnetic field. Some reflected

particles enter a magnetic cusp, follow the separatrix, and exit a different magnetic cusp.

dn and rmn are used. To determine the conditions, dn was chosen to have values that are

multiples of 1, except one value was chosen to be 0.5, and rmn was chosen to have values that

are multiples of 0.1. For all particles to be reflected in a simulation, it was found that the

value of rmn had to satisfy the approximate condition, rmn < 0.5dn. Based on the values of

dn used (0.5 ≤ dn ≤ 10) for Fig. 6, the condition, rmn < 0.5dn, is expected to be applicable

for dn ≥ 0.5. No particles became magnetically trapped (i.e., no trajectories reached the

maximum normalized time tn,max).

V. MAGNETIC PLASMA EXPULSION

An electrical coil that produces a magnetic plasma expulsion field is now considered to

be added at the x = 0 plane of the artificially structured boundary illustrated in Fig. 2.

The electrical coil is treated as a single-turn rectangular current loop of wire, which has

an infinitesimal thickness. The placement of the coil is illustrated in Fig. 7. Two sides

of the loop are of length 2u and are coincident with two infinite-length wires located at

14
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0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

dn

rmn

FIG. 6. The values of rmn in multiples of 0.1 for which no losses occur (at smaller rmn values

indicated by green dots) or one or more losses occur (at larger rmn values indicated by black dots).

The line is a plot of rmn = 0.5dn. The particles start effectively unmagnetized at zn = −5, and

each trajectory is discontinued when the particle is reflected (by reaching zn < −5) or when the

particle is considered to be lost (by reaching zn > dn). The values of dn are multiples of 1, except

one value at dn = 0.5.

coordinates (0, y, 0) and (0, y, d). The other two sides of the loop are of length d and are

located at coordinates (0, u, 0 ≤ z ≤ d) and (0,−u, 0 ≤ z ≤ d). The current carried by

the rectangular current loop is considered to be cI, where c is a chosen constant, and I is

the magnitude of the current carried by one of the infinite-length wires. The direction of

the loop’s current is such that each coincident segment of the loop and infinite-length wire

have opposing currents. In the work presented here, the value c = 1 is used, resulting in

an equivalent current path that is shown in Fig. 7b. The magnetic field strength diverges

along the equivalent current path, which is infinitesimally thin. For monoenergetic particles

incident from zn = −5, a particle-free volume may be expected to exist in the vicinity of

the equivalent current path. Also, by using the value c = 1, the current in the magnetic

expulsion coil can serve as the current feed between two connected magnetic confinement

coils modeled here as infinite-length wires. Therefore, the three coils can be replaced by an

equivalent single coil that carries a current along the path illustrated in Fig. 7b.
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z (a)z (a)

yy

II -I-I

cIcI

cIcI

2u2u
||

||

dd ————

z (b)z (b)

yy

II

II

2u2u
||

||

dd ————

FIG. 7. Addition of a magnetic plasma expulsion coil between two infinite-length wires (a), and

the equivalent current path with c = 1 (b). The magnetic plasma expulsion coil is modeled as a

rectangular current loop with current cI, where c is a chosen constant. The rectangular current

loop is located between two infinite-length wires in the x = 0 plane of the artificially structured

boundary shown in Fig. 2. The wire that forms the rectangular current loop is treated as being

infinitesimally thin, and two sides of the loop are treated as being coincident with the infinite-

length wires over a distance 2u. The other two sides of the loop, each of length d, are parallel to

the z axis.

The current loop produces a magnetic plasma expulsion field that is superimposed on the

magnetic plasma confinement field given by Eq. (4). For convenience, the total magnetic

field is written as

B(x, y, z) =
1

2
Bm (β + βe) , (24)

where βe is defined such that Bmβe/2 is the magnetic field produced by the rectangular

current loop. A closed-form expression for the field of a rectangular current loop is obtained

from Ref. 32. For the current loop in Fig. 7, the components of βe can be written as

βex = − c

2π

[

zn
r1n (r1n − yn − un)

+
yn + un

r1n (r1n − zn)

− zn − dn
r2n (r2n − yn − un)

− yn + un

r2n (r2n − zn + dn)
− zn

r3n (r3n − yn + un)

− yn − un

r3n (r3n − zn)
+

zn − dn
r4n (r4n − yn + un)

+
yn − un

r4n (r4n − zn + dn)

]

, (25)

βey =
cxn

2π

[

1

r1n (r1n − zn)
− 1

r2n (r2n − zn + dn)
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− 1

r3n (r3n − zn)
+

1

r4n (r4n − zn + dn)

]

, (26)

βez =
cxn

2π

[

1

r1n (r1n − yn − un)
− 1

r2n (r2n − yn − un)

− 1

r3n (r3n − yn + un)
+

1

r4n (r4n − yn + un)

]

, (27)

where

r1n =
√

z2n + (yn + un)
2 + x2

n, (28)

r2n =
√

(zn − dn)
2 + (yn + un)

2 + x2
n, (29)

r3n =
√

z2n + (yn − un)
2 + x2

n, (30)

r4n =
√

(zn − dn)
2 + (yn − un)

2 + x2
n, (31)

and un = u/S.

A magnetic plasma expulsion field superimposed on the field given by Eq. (4) is shown

in Fig. 8. The spatial dimensions are normalized by the spatial period S, and the following

parameter values are used for the plot: dn = 1, c = 1, un = 0.05, and zn = dn/2. Magnetic

plasma expulsion is described in detail in Refs. 13 and 15. Without the magnetic plasma

expulsion field present, the magnetic field would be approximately straight and parallel to

the x axis. With the magnetic plasma expulsion field present, there are two regions in Fig. 8

that would remain free of particles if particles only followed the field line.

A classical trajectory Monte Carlo simulation is carried out in the same way as in Sec. IV,

except that the magnetic plasma expulsion field is included by making the replacement

β → β+βe in the equations of motion, Eqs. (8) to (10). The value, c = 1, is chosen without

an optimization process.

Figure 9 shows the conditions found for all incident particles to be reflected for various

values of un. The simulations are the same as for Fig. 6, except that θmax = 0 is used to

maximize the number of particles that enter a cusp, follow the separatrix, and encounter

the magnetic field distortion introduced by the presence of the magnetic plasma expulsion

field. Also, dn = 1 is used, and various values of rmn are used. To determine the conditions

for all incident particles to be reflected, un was chosen to have values that are multiples of

0.01, and rmn was chosen to have values that are multiples of 0.001. For all particles to be

reflected in a simulation, it was found that rmn had to have values within a certain range
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-0.2 -0.1 0.0 0.1 0.2
-0.2

-0.1

0.0

0.1

0.2

x

y

FIG. 8. Magnetic field produced by the artificially structured boundary in Fig. 2 combined with

the rectangular loop in Fig. 7, with spatial dimensions normalized by the spatial period S and with

dn = 1, c = 1, un = 0.05, and zn = dn/2. The lines with arrows indicate the local direction of

the magnetic field. The transitions between different colors occur at contours of constant magnetic

field strength. Magnetic plasma expulsion tends to occur in the vicinity of the wire associated with

the current loop, indicated by a circle with a cross or a central dot. Without the magnetic plasma

expulsion field present, the magnetic field would be approximately straight and parallel to the x

axis.

for a given value of un. Outside of the range, at least one particle became magnetically

trapped (i.e., a trajectory would reach the maximum normalized time tn,max). The magnetic

trapping of particles is attributed to a cross-magnetic-field drift, as discussed in the next

section.

VI. DISCUSSION

The simulations indicate that the applied magnetic field produced by the artificially

structured boundary in Fig. 2 can reflect all independently incident particles under certain

conditions. For incident particles that follow a monoenergetic isotropic velocity distribution

without the magnetic plasma expulsion field present, the condition can be written in terms
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0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.000

0.005

0.010

0.015

un

rmn

FIG. 9. The values of rmn in multiples of 0.001 for which all 1000 particles would be reflected

(small green dots). In some cases, a particle would become magnetically trapped and not leave the

vicinity of an infinite-length wire such that |xn(tn,max)| < 0.5 occurred (medium-sized blue dots)

or a particle would become magnetically trapped and moved away from the xn = 0 plane such that

|xn(tn,max)| ≥ 0.5 occurred (large-sized black dots), and the simulation would be discontinued. The

value dn = 1 was used, and none of the particles reached zn > dn. The particles start effectively

unmagnetized at zn = −5, and the velocity vector of each particle is initially parallel to z axis

(with θmax = 0). A trajectory is discontinued when the particle is reflected (by reaching zn < −5)

or when the particle is considered to become magnetically trapped (i.e., the trajectory would reach

the maximum normalized time tn,max). The values of un are multiples of 0.01, and the values c = 1

and tn,max = 2700/
√
2 were used.

of unnormalized parameters as rm < 0.5d, which should be used with d ≥ 0.5S, because

smaller values of d were not considered. For a confined plasma with a Maxwellian velocity

distribution, the condition can be satisfied by particles other than those in the tail of the

distribution by writing the condition as

rth ≪ 0.5d, (32)

where rth =
√

mkT/(q2B2
m) is the thermal Larmor radius, T is the plasma temperature and

k is Boltzmann’s constant. The thermal Larmor radius within the magnetic field midway

between the planes of wires must be much smaller than one-half of the distance between the
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planes of wires.

A charged particle that follows a curved magnetic field will drift across the magnetic

field in a direction perpendicular to the plane formed by the local field curvature. The

cross-magnetic-field drift due to field curvature can consist of two drifts that superimpose.

One drift is caused by a gradient of the magnetic field strength and the other is caused by a

centrifugal effect. A cross-magnetic-field drift due to field curvature would occur for particles

that are magnetized within the axisymmetric magnetic plasma confinement field shown in

Fig. 1. However, such a drift would be in the azimuthal direction (either into or out of the

page in Fig. 1), in the limit that magnetic field asymmetries are negligible. For the planar

model of the magnetic field shown in Fig. 3, the magnetic field has no y dependence, and a

curvature drift would be in the y direction (either into or out of the page in Fig. 3).

The magnetic plasma expulsion field considered here has a y dependence, as indicated

in Fig. 8, and a curvature drift can occur due to the presence of the magnetic plasma

expulsion field. As indicated in Fig. 9, for some simulations, a trajectory reached a maximum

normalized time without the particle being reflected (by reaching zn < z0n) and without the

particle being lost (by reaching zn > dn). Simulation results indicate that such cases only

occurred while the magnetic plasma expulsion field is present. Evidently, the cross-magnetic-

field drift that a plasma particle experiences while passes through the magnetic expulsion

region can cause magnetic trapping to occur.

Figure 10 shows an illustration of an idealized magnetic field line associated with magnetic

plasma expulsion. The line was drawn using four identical segments that are rotated and

translated, assuming that horizontal mirror-image symmetry occurs about the horizontal

center of the drawing for the magnetic field. Two of the segments would be associated with

a curvature drift step that is exactly equal in magnitude and opposite in direction as the

curvature drift step associated with the other two segments, for single-particle motion in

the guiding-center approximation. It may be possible for the net cross-magnetic-field drift

of a plasma particle that passes through the magnetic expulsion region to be negligible with

an optimized design of the magnetic plasma expulsion field, such that magnetic trapping of

particles due to a curvature drift is minimized or negligible.

When plasma particles become magnetically trapped, cross-magnetic-field transport can

be expected to occur that eventually results in the particles being lost or being released

back into the effectively unmagnetized plasma region. The rate at which particles are lost
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VII. CONCLUSION

A planar model has been developed for an artificially structured boundary that may

provide magnetic confinement of nonmagnetically trapped plasma particles. The planar

model is applicable in the limit that the dimensions of the particle confinement volume

are large compared to the separation between adjacent plasma-immersed magnetic coils.

A closed-form expression for the magnetic field is given by Eq. (4). Based on classical

trajectory Monte Carlo simulation results, predictions have been made regarding conditions

that are suitable (but not necessarily sufficient) for particle confinement to occur, including

the effect of superimposing a magnetic plasma expulsion field.
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A. Müllers, and J. Walz, Phys. Rev. Lett. 108, 113002 (2012).

18 N. Kuroda, S. Ulmer, D. J. Murtagh, S. Van Gorp, Y. Nagata, M. Diermaier, S. Federmann,

M. Leali, C. Malbrunot, V. Mascagna, O. Massiczek, K. Michishio, T. Mizutani, A. Mohri,

H. Nagahama, M. Ohtsuka, B. Radics, S. Sakurai, C. Sauerzopf, K. Suzuki, M. Tajima, H. A.

Torii, L. Venturelli, B. Wünschek, J. Zmeskal, N. Zurlo, H. Higaki, Y. Kanai, E. Lodi Rizzini,

Y. Nagashima, Y. Matsuda, E. Widmann, and Y. Yamazaki, Nat. Commun. 5, 3089 (2014).

19 A. Kellerbauer, M. Amoretti, A. S. Belov, G. Bonomi, I. Boscolo, R. S. Brusa, M. Buchner,

V. M. Byakov, L. Cabaret, C. Canali, C. Carraro, F. Castelli, S. Cialdi, M. de Combarieu,

D. Comparat, G. Consolati, N. Djourelov, M. Doser, G. Drobychev, A. Dupasquier, G. Ferrari,

P. Forget, L. Formaro, A. Gervasini, M. G. Giammarchi, S. N. Gninenko, G. Gribakin, S. D.

Hogan, M. Jacquey, V. Lagomarsino, G. Manuzio, S. Mariazzi, V. A. Matveev, J. O. Meier,

F. Merkt, P. Nedelec, M. K. Oberthaler, P. Pari, M. Prevedelli, F. Quasso, A. Rotondi, D. Sillou,

S. V. Stepanov, H. H. Stroke, G. Testera, G. M. Tino, G. Trenec, A. Vairo, J. Vigue, H. Walters,

U. Warring, S. Zavatarelli, and D. S. Zvezhinskij, Nucl. Instrum. Methods Phys. Res., Sect. B

23

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
0
2
1
5



266, 351 (2008).

20 P. Indelicato, G. Chardin, P. Grandemange, D. Lunney, V. Manea, A. Badertscher, P. Crivelli,

A. Curioni, A. Marchionni, B. Rossi, A. Rubbia, V. Nesvizhevsky, D. Brook-Roberge, P. Comini,

P. Debu, P. Dupre, L. Liszkay, B. Mansoulie, P. Perez, J. M. Rey, B. Reymond, N. Ruiz,

Y. Sacquin, B. Vallage, F. Biraben, P. Clade, A. Douillet, G. Dufour, S. Guellati, L. Hilico,

A. Lambrecht, R. Guerout, J. P. Karr, F. Nez, S. Reynaud, C. I. Szabo, V. Q. Tran, J. Trapateau,

A. Mohri, Y. Yamazaki, M. Charlton, S. Eriksson, N. Madsen, D.P. van der Werf, N. Kuroda,

H. Torii, Y. Nagashima, F. Schmidt-Kaler, J. Walz, S. Wolf, P. A. Hervieux, G. Manfredi,

A. Voronin, P. Froelich, S. Wronka, and M. Staszczak, Hyperfine Interact. 228, 141 (2014).

21 S. S. Patel, S. R. Sun, and C. A. Ordonez, AIP Conf. Proc. 2160, 070003 (2019).

22 K. Flanagan, J. Milhone, J. Egedal, D. Endrizzi, J. Olson, E. E. Peterson, R. Sassella, and C.

B. Forest, Phys. Rev. Lett. 125, 135001 (2020).

23 E. E. Peterson, D. A. Endrizzi, M. Beidler, K. J. Bunkers, M. Clark, J. Egedal, K. Flanagan,

K. J. McCollam, J. Milhone, J. Olson, C. R. Sovinec, R. Waleffe, J. Wallace, and C. B. Forest,

Nature Phys. 15, 1095 (2019).

24 K. Holste, P. Dietz, S. Scharmann, K. Keil, T. Henning, D. Zschatzsch, M. Reitemeyer, B.

Nauschutt, F. Kiefer, F. Kunze, J. Zorn, C. Heiliger, N. Joshi, U. Probst, R. Thuringer, C.

Volkmar, D. Packan, S. Peterschmitt, K. -T. Brinkmann, H.-G. Zaunick, M. H. Thoma, M.

Kretschmer, H. J. Leiter, S. Schippers, K. Hannemann, and P. J. Klar, Rev. Sci. Instrum. 91,

061101 (2020).

25 S. K. Maurya and S. Bhattacharjee, Plasma Res. Express 2, 033001(2020).

26 J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and N. C. Tran, J. Appl. Phys. 62,

4591 (1987).

27 P. Machima, M. M. M. Bilek, O. R. Monteiro, and I. G. Brown, Rev. Sci. Instrum. 71, 3373

(2000).

28 R. Limpaecher and K. R. MacKenzie, Rev. Sci. Instrum. 44, 726 (1973).

29 A. D. Patel, M. Sharma, N. Ramasubramanian, R. Ganesh, and P. K. Chattopadhyay, Rev. Sci.

Instrum. 89, 043510 (2018).

30 S. Knappmiller and S. Robertson, Phys. Plasmas 18, 100702 (2011).

31 M. Martinez-Sanchez and E. Ahedo, Phys. Plasmas 18, 033509 (2011).

24

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
0
2
1
5



3
2
S
.
H
am

p
ton

,
R
.
A
.
L
an

e,
R
.
M
.
H
ed

lof,
R
.
E
.
P
h
illip

s,
an

d
C
.
A
.
O
rd
on

ez,
A
IP

A
d
v.

1
0
,
065320

(2020).

3
3
R
.
A
.
L
an

e
an

d
C
.
A
.
O
rd
on

ez,
P
h
ys.

P
la
sm

a
s
2
6
,
052511

(2019).

3
4
R
.
A
.
L
an

e
an

d
C
.
A
.
O
rd
on

ez,
J
.
P
h
ys.

B
4
9
,
074008

(2016).

25

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



-
2

-
1

0
1

2

8 9

1
0

1
1

1
2

z

r
(a
)

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



 

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

1
0
.8

1
1
.0

1
1
.2

1
1
.4

1
1
.6

z

r
(b
)

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



-
I

-
I

-
I

-
I

-
I

-
I

-
I

-
I

-
I

I
I

I
I

I
I

I
I

I
xx

zz

|
|

SS
dd

— —

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



-
1
.5

-
1
.0

-
0
.5

0
.0

0
.5

1
.0

1
.5

-
1
.5

-
1
.0

-
0
.5

0
.0

0
.5

1
.0

1
.5

x

z
(a
)

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



-
0
.4

-
0
.2

0
.0

0
.2

0
.4

-
0
.6

-
0
.4

-
0
.2

0
.0

0
.2

x

z
(b
)

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

x

B
(a
)

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215





-
3

-
2

-
1

0
1

2
3

-
5

-
4

-
3

-
2

-
1 0 1

x
n

z
n

(a
)

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



-
0
.4

-
0
.2

0
.0

0
.2

0
.4

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

x
n

z
n

(b
)

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



0
1

2
3

4
5

6
0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

d
n

r
m
n

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



z
(a
)

z
(a
)

yy

II
-
I

-
I

c
I
c
I

c
I
c
I

2
u

2
u ||||

dd
——

——

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



z
(b
)

z
(b
)

yy

IIII

2
u

2
u ||||

dd
——

——

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



-
0
.2

-
0
.1

0
.0

0
.1

0
.2

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

x

y

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215



0
.0
0
0
.0
2
0
.0
4
0
.0
6
0
.0
8
0
.1
0
0
.1
2

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

u
n

r
m
n

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0030215




