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Abstract

A purely magnetic applied field may provide plasma confinement under conditions where the bulk
of the plasma is effectively free of the applied magnetic field. The applied magnetic field surrounds
the bulk of the plasma, and plasma particles that are incident on the applied magnetic field can
be reflected back into the effectively unmagnetized region of plasma. The concept belongs to a
class of magnetic plasma confinement approaches studied long ago, for which some experimental
results indicated classical (collision-based) cross-magnetic-field transport may occur. However,
multiple magnetic coils are required to be immersed within the confined plasma, and rapid plasma
loss may occur if material structures are present that pass through the plasma (e.g., to hold
the immersed coils in place). In the work reported, the concept is studied in combination with
magnetic plasma expulsion [R. E. Phillips and C. A. Ordonez, Phys. Plasmas 25, 012508 (2018)],
which would be employed to keep plasma away from material structures that pass through the
plasma. A planar model is used for the study. A classical trajectory Monte Carlo simulation
is carried out of particles that are independently incident on the applied magnetic field. With
monoenergetic incident particles, the results indicate that the applied magnetic field can reflect
all independently incident particles in certain regions of parameter space. Prospects for achieving
three-dimensional magnetic confinement of an effectively unmagnetized plasma with a Maxwellian

velocity distribution are discussed.
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I. INTRODUCTION

An artificially structured boundary for plasma confinement is defined as a system of
current carrying conductors and/or charged electrodes that produce a static electromagnetic
field along the periphery of a confined plasma.'® The bulk of the confined plasma would be
effectively free of the applied electromagnetic field, and plasma confinement would occur as a
result of particles being reflected from the applied field. An artificially structured boundary
may serve to provide confinement along the edge of a nonneutral electron or positron plasma.
An electric field is produced within an edge-confined nonneutral plasma, and a self-consistent
Poisson-Boltzmann computation predicts that purely electric (plasma space-charge based)

confinement of an ion plasma is possible.

An artificially structured boundary that produces a combined magnetic and electric ap-
plied field has been studied using a classical trajectory Monte Carlo simulation.* A spatially
periodic magnetic field was considered to be produced by a planar sequence of parallel
wires, with adjacent wires carrying currents in opposite directions. An electric field was
superimposed to provide electrostatic plugging of a sequence of magnetic cusps associated
with the magnetic field. The simulation indicated that the combined field can reflect all
independently incident particles that follow a monoenergetic isotropic velocity distribution
(i.e., arbitrarily oriented velocity vectors with the same magnitudes), in certain regions of
parameter space, provided that all particles have the same sign of charge.

Plasma confinement with an artificially structured boundary has also been studied using
a particle-in-cell simulation.? The artificially structured boundary was similar to the one
described in Ref. 4, except that a nonplanar boundary enclosed an axisymmetric volume.
The particle-in-cell simulation indicated that the enclosure may serve to confine a nonneutral

plasma, in certain regions of parameter space.

An issue with using a combined magnetic and electric applied field for confining a nonneu-
tral plasma is that the electric field produced by the plasma tends to reduce the effectiveness
of the applied electric field. The effect may limit the density of the confined plasma. In
the work reported here, an artificially structured boundary that produces a purely magnetic
applied field is studied. Two sets of magnetic coils would be used, with one set of coils
immersed within a confined plasma. It should be noted that, without the use of an applied

electric field, confinement of a neutral plasma may be possible.
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An artificially structured boundary that produces a purely magnetic applied field was
studied in Refs. 1 and 2. The artificially structured boundary was considered to consist of one
(or more) planar sequence of parallel wires, with adjacent wires in a plane carrying currents
in opposite directions. The magnetic field was spatially periodic and produced a sequence of
magnetic cusps. The magnetic field would reflect all independently incident charged particles
only for a range of grazing angles of incidence,! and an approach for using an applied electric
field for electrostatically plugging the magnetic cusps was discussed.? In contrast to the work
presented here, the studies reported in Refs. 1 and 2 did not consider plasma-immersed
components, and there was nothing to stop particles that would be incident normal to the
plane of the artificially structured boundary and centered with a magnetic cusp from passing
through the artificially structured boundary without being reflected. Similar to the work
presented here, the studies reported in Refs. 1 and 2 employed a classical trajectory Monte
Carlo simulation based on using normalized governing equations, such that the results would
be more broadly applicable. The primary advancement that is reported here, beyond what
was reported in Refs. 1 and 2, is a finding that simulated particles that are independently
incident normal to the plane of an artificially structured boundary can all be reflected by a
purely magnetic applied field in certain regions of parameter space, when plasma-immersed
components are used.

Some early research indicates that classical (collision-based) cross-magnetic-field trans-
port may occur in a class of magnetic plasma confinement approaches that employ multi-
ple plasma-immersed magnetic coils, provided the effects of material structures that pass
through the plasma are sufficiently small.”'? The magnetic plasma confinement approach
studied here is of the same class and is characterized as having dimensions for the particle
confinement volume that are large compared to the separation between adjacent plasma-
immersed magnetic coils.

An issue with using plasma-immersed coils is that rapid plasma loss may occur if material
structures are present that pass through the plasma (e.g., to hold the immersed coils in
place). An artificial phenomenon referred to as magnetic plasma expulsion may serve to
keep plasma away from material structures that connect to the plasma-immersed magnetic
coils.’®! Research on the phenomenon using a particle-in-cell simulation was reported in
Ref. 13. The possibility of fueling a magnetically confined plasma with particle sources

located inside of the plasma within a magnetic expulsion field has been studied with a
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classical trajectory Monte Carlo simulation.!®

An artificially structured boundary may serve for confining or controlling plasma. There
are many areas of scientific research that may benefit from the development of improved
plasma confinement and control methods. For example, there are research groups that rely
on plasma confinement and control methods for conducting research on antihydrogen.'6-20
With confinement of a sufficiently cold and dense nondrifting plasma that produces antihy-
drogen atoms, a relatively simple measurement to determine the direction of the gravitational
acceleration of antimatter may be possible.?! The use of multiple plasma-immersed coils was
originally studied for confining a sufficiently hot and dense hydrogen-isotope plasma, such
that fusion energy is produced. There are many types of plasma-based devices that have or
can have multipolar magnetic fields (e.g., produced by permanent magnets) along a plasma-
facing wall. Examples include the multipurpose device called the Big Red Ball,?>%3 high

4

efficiency multistage plasma thrusters for space propulsion,?* ion sources for charged parti-

26,27

5 . .
cle beams,? plasma chambers for processing materials, and other plasma confinement

and control systems for studies of plasma phenomena.?®3!

Such devices may benefit from
enhanced plasma confinement, which may be possible by incorporating plasma-immersed
magnetic coils.

An example of a purely magnetic applied field that may serve for magnetic confinement
of an effectively unmagnetized plasma is presented in Sec. II. The purely magnetic applied
field would be produced by an artificially structured boundary consisting of axisymmetric
magnetic coils. In Sec. III, a planar model of the artificially structured boundary is devel-
oped. The planar model is used in Sec. IV for finding simulated conditions under which
independently incident particles are reflected by the applied field. The simulated conditions
with magnetic plasma expulsion present are reported in Sec. V. A discussion is found in

Sec. VI, and concluding remarks are in Sec. VII.

II. AXISYMMETRIC CONFIGURATION

Figure 1 shows an example of a toroidal configuration that may serve for confining an
effectively unmagnetized plasma with a purely magnetic applied field by using axisymmetric
magnetic field coils. The plasma would be confined within an axisymmetic toroidal con-

finement volume. The configuration consists of two sets of axisymmetric magnetic coils of

4
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varying radii. A cylindrical coordinate system is defined with coordinates (r, 6, z) and with
the z axis coincident with the axis of symmetry of the configuration.

For the field shown in Fig. 1, the magnetic field of each coil is calculated as being produced
by a single-turn circular current loop formed by an infinitesimally thin wire. A closed-form
expression for the magnetic field By(r, 6, z) produced by such a current loop centered at the
coordinate origin with radius Ry is obtained from Ref. 32. The magnetic field for a set of
N loops evenly distributed on a toroidal surface with constant minor radius a and major
radius R is given by

N
27k
B(r,0,z) =>_ By |r,0,z —acos il (1)
k=1 N
with
. (2nk
R = R+ asin (T) , (2)

where Ry, is the radius of the kth circular current loop. For Fig. 1, the value N = 12 is used
for each of two sets of coils. Also, the dimensions are chosen such that a = 1 for one set of
coils and a = 1.5 for the other set of coils. The value R = 10 is used for both sets of coils.
The cross section of the confinement volume on an r-z plane is approximately circular
for the configuration in Fig. 1. Other cross sectional shapes are also possible, such as

rectangular, diamond and elliptical shapes.

III. PLANAR MODEL

A planar model is developed for the artificially structured boundary shown in Fig. 1. The
configuration consists of a number of straight parallel wires that are distributed evenly along
two planes as shown in Fig. 2. A Cartesian coordinate system is defined with coordinates
(x,y,z), with unit vectors ('23, l;:)7 and with the y axis parallel to each wire. Each wire
is approximated as infinitely long and of negligible thickness. The two planes of wires are
located at z = 0 and z = d = |d|. Each wire located at the z = 0 plane carries a current
I = |I], which flows in the 3 direction, and each wire located at the z = d plane carries a
current —I, which flows in the — 5 Two adjacent wires on the same plane are separated by
a distance S, which is the spatial period of the configuration.

The magnetic field produced by two wires, one located at coordinates (0,y,0) (i.e., coin-

5
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FIG. 1. Example of a purely magnetic applied field that would be produced by an artificially
structured boundary for confining an effectively unmagnetized plasma. The field is axisymmetric,
and the axis of symmetry (not shown) is coincident with the z axis of a cylindrical coordinate
system. A contour plot of the field magnitude on an r-z plane is shown in (a), and a close-up view
is shown in (b). The transitions between different colors occur at contours of constant magnetic
field strength. The lines with arrows in (b) indicate the local direction of the magnetic field. There
are 24 magnetic coils, with the location of each indicated by a circle with either a central dot

(indicating current flow “out of the page”) or a cross (indicating current flow “into the page”).
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FIG. 2. Planar model of an artificially structured boundary. The model consists of two sets of
parallel wires, with one set located on the z = 0 plane of a Cartesian coordinate system, and the
other set located on the z = d = |d| plane. A confined plasma would be located at z < d. Each
wire in the z = 0 plane would be immersed within the plasma and would carry a current I = |I|
in the positive 3 direction (“into the page”). Each wire in the z = d plane would not be immersed
within the plasma and would carry a current —I in the negative 3 direction. Adjacent wires in the

same plane are separated by a distance S.

cident with the y axis) and the other at coordinates (0,y, d) is given by

Bo(x,y,Z)=LOI[< o =d )z

2 [\2?+ 22 224 (2 —d)?

_<$2—T—z2_:ﬂ2+(j—d)2)’%}' (3)

Here, pg is the permeability of free space, and SI units are used.

Each plane of wires extends to £oo in the = dimension. The magnetic field is evaluated
as the superposition of the fields of all pairs of wires:
B(z,y,z) = Z By (z — kS, y,2)
k=—o00

= %Bm/@a (4)

where B,, = o1 /S, B = B4 + 5,3 + Bk, B, =0,
1

coth(2mz,) — cos(2mx,) csch(27z,)
1

~ coth [2m(z, — d,,)] — cos(2m,,) csch [27(z, — dy)]

B, =

7
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and

1
"~ cot(2mx,) — csc(2ma,) cosh(272,)
1
cot(2ma,) — esc(2my) cosh [27(z, — dy)]

B

(6)

Here, z,, = /S, 2z, = z/S, and d,, = d/S. Figures 3 and 4 show plots of the magnetic field
given by Eq. (4).

For d < S the magnetic field strength B = |B| varies significantly as a function of = at
z = d/2, midway between the two planes of current carrying wires. For d 2 S, the magnetic
field near z = d/2 is relatively uniform, approaching the value B,, in the limit d > S.

The magnetic field strength decreases precipitously over a distance of a few spatial periods
away from the artificially structured boundary. For example, for d > S, if the magnetic field
strength is ~ 1 T at z = d/2, the magnetic field strength is approximately 107'* T at
z = —58. Therefore, it is possible for a charged particle of a given kinetic energy to be
effectively free of the magnetic field if located at z < —5S and magnetized if located at
z & d/2. The dimensions of a plasma confined by an artificially structured boundary similar
to that in Fig. 2 would be large compared to the spatial period of the applied field, and the
plasma would be effectively unmagnetized, except near the edge of the plasma.

In Fig. 3b, two magnetic field lines are shown. (The other lines with arrows are not
referred to as field lines, which are continuous, because the other lines may be shown as
being discontinuous to avoid overcrowding of lines.) One magnetic field line encircles the
wire and the other magnetic field line does not. A separatrix occurs at the transition between
field lines that do and do not encircle the wire. The minimum distance of closest approach
between the separatrix and the wire depends on the value of d,, = d/S. By varying the value
of d,, it is found that, for d > 0.55, the minimum distance of closest approach between the
separatrix and the wire is between 0.10S and 0.12S. In Fig. 3b, with d,, = 1, the separatrix
approaches most closely to the wire at the normalized coordinates (x, = 0,yn, 2z, = 0.11),

where y,, = y/S.

IV. PARTICLE REFLECTION

A classical trajectory Monte Carlo simulation is used for following the trajectories of

charged particles that approach the artificially structured boundary in Fig. 2. The governing



AlP

Publishing

1.5

1.0

0.5F

z 00

-05F}

-1.0f

-1.5
-15-10-05 00 05 10 15

0.2

0.0

z -0.2

-04}

-0.6
-04 -02 0.0 0.2 04

FIG. 3. Magnetic field produced by the artificially structured boundary in Fig. 2, with spatial
dimensions normalized by the spatial period S and with d = 1. Three spatial periods are shown
in (a), and a close-up view is shown in (b). The lines with arrows indicate the local direction of
the magnetic field. The transitions between different colors occur at contours of constant magnetic
field strength B = |B|. The solid lines without arrows in (a) also occur at contours of constant
magnetic field strength. The magnetic field strength at the solid line near the bottom of (a) is
smaller than at the other two solid lines by a factor of 1073. The two solid lines with arrows in (b)
represent magnetic field lines that do and do not encircle a wire, respectively. A separatrix occurs

at the transition between field lines that do and do not encircle the wire.
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FIG. 4. Magnitude of the magnetic field produced by the artificially structured boundary in Fig. 2,
with spatial dimensions normalized by the spatial period S and with the magnetic field normalized
by By,. The magnetic field strengths at z = d/2 (a) and at z = —55 (b) are plotted, with d =4S
(solid line), d = S (short-dash line), and d = S/4 (long-dash line). Two of the lines overlap in (b).

equations solved by the simulation consist of three classical equations of motion and six initial
conditions. The equations of motion to be solved consist of the three components of Newton’s
second law with a magnetic Lorentz force, ma = qv x B. Here, m and ¢ are the mass and
charge of a particle, v = r'(t) and a = r”(t) are the particle’s velocity and acceleration,
with the particle’s position r being a function of time ¢, and B is the magnetic field through

which the particle travels. Normalized governing equations are to be used, such that the
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results are more broadly applicable. Four normalization factors are chosen to be the mass m
and charge ¢ of a particle, the spatial period S of the magnetic field, and the classical kinetic
energy of a particle, K = (1/2)mv?, which is a conserved quantity when only a magnetic
force is present. Other normalization factors that are needed are obtained using dimensional
analysis. Each normalized quantity is dimensionless and is written using the same symbol as
its unnormalized counterpart, except with a subscript n attached. The normalized quantities
used here are related to unnormalized quantities as follows: », = r/S, v, = ’UW ,
a, = amS/K, t, = t(1/8)\/K/m, and B, = BqS/V/mK. Also, m, = ¢, = K, = S, = 1.
Solving for a, v, and B, and substituting into the equations of motion gives normalized
equations of motion, a,, = v, x B,. Referring to Eq. (4), the normalized magnetic field can
be written as

Bn(xna Yns Zn) = f/g;r(Q) ﬁv (7)

where sgn(q) = ¢/|q| and rp, = 7,/ S = V2mK /(|q| By, S). Here, 1y, is a positive parameter
that would equal the Larmor radius for a particle located within a uniform magnetic field
of magnitude B,, and having kinetic energy K associated with circular motion.

The normalized equations of motion are

" (0) = 20 1 0,5, — 2 (03], ©)
b (t) = B9 )8, — 2 (60)6.), (9)

B \/irmn

and
" 0) = 20 100,08, — 05 (10)
The functional dependence, 8 = B[z, (tn), Yn(tn), 2n(ts)], is not shown in Egs. (8) to (10)
for brevity. Equations (8) to (10) are solved numerically. An indication of the numerical
inaccuracy of a solution is the change of a particle’s normalized kinetic energy, which is a
conserved quantity. Each particle’s normalized kinetic energy changed away from a value of
1 by an amount that was typically less than 0.001% for each solution reported here.
Some of the initial conditions are sampled from distribution functions, by using analytical
sampling expressions. For example, suppose that f(6p) is a distribution function, and values

of 0y are to be sampled. The relation,

0o
Rg _ Jo f9(9)d€ (11)

T fa(6)d0”

11
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is solved analytically to obtain a sampling expression, 8y = 0y(Ry), where 6; and 6, are lower
and upper limits for the possible values of 6. Hereafter, the symbol R with a subscript (e.g.,
Ry) denotes an independent random number that is equally likely to have any value between
0 and 1.

The initial normalized spatial coordinates used are

xn(0) = xg,, = R, — 0.5, (12)
yn(o) = Yon = Ry - 057 (13)
2n(0) = 2o, = —5. (14)

In the x and y dimensions, the initial coordinates are randomly sampled over distances equal
to one spatial period of the magnetic field. Such sampling in the z dimension is consistent
with considering the spatial period of the magnetic field in the x dimension to be much
smaller than the spatial variation of a source of incident particles. The value used for yq,
is unimportant in this Sec. IV, because the magnetic field has no spatial variation in the y
dimension. The magnitude of the initial coordinate in the z dimension is chosen to be large
enough for the effect of the magnetic field on a trajectory to be negligible near zo,,.

The initial normalized velocity components are written as

Vzn(0) = Vozn = Von sin Oy cos ¢y, (15)
/Uyn (0) = UOyn = Uon sin 90 sin ¢07 (16)
Uzn(o) = Vozn = Uon COS 00' (17)

Here, (von, 0o, o) are spherical coordinates in velocity space. The initial normalized speed
of each particle is vo, = v/2, because the initial kinetic energy of each particle is K, = 1 =
myvd,/2, and the normalized mass of a particle is m,, = 1.

The possible values of ¢y are limited to 0 < ¢y < 2m. The value of 6y is limited to
0 < 0y < Opax With Oy < . Particles with O, > 7/2 would initially travel in the —k
direction, which is away from the artificially structured boundary. Also, particles that would
initially travel nearly parallel to the z = 0 plane could make the computation unmanageable.
Such particles can be excluded by selecting a value for 6,,,, that is slightly less than /2.

Here in Sec. IV, the value Oy, = 0.97/2 is used, and incident particles are considered to

12
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follow a monoenergetic isotropic velocity distribution function,

f(UOm 0o, ¢0) = f05(110n - ﬁ)fo(eo)fqb(%)- (18)

Here, fj is a normalization constant, ¢ is the Dirac delta function, and the (unnormalized)
angle distribution functions are fp(fy) = sinfy, and fy(¢o) = 1. The associated sampling
expressions are
¢o = 21 Ry, (19)
and
0o = arccos [1 — Ry + Ry cos (fmax)] , (20)

where the limits of integration, §; = 0 and 6, = Oy, are used in Eq. (11) for obtaining
Eq. (20). Substitution of the sampling expressions, Egs. (19) and (20), into the expressions
for the velocity components, Egs. (15) - (17), gives

Vogn = \/2 —2[1 — Ry + Rgcos (Hmax)]2 cos (2 Ry) , (21)
Vogn = \/2 — 2[1 — Ry + Ry c0S (fax)|>sin (27 Ry) , (22)
Voum = V2 [1 — Ry + Rpcos (Omax)] - (23)

Each simulated trajectory is discontinued either when the particle reaches z, > d,, (and
is considered to be lost) or when the particle reaches z, < zy, (after being reflected by
the magnetic field). Also, if a maximum normalized time, t, n.x = 2700/ V2, is reached,
the particle is considered to become magnetically trapped. That is, if a simulated particle
travels (at normalized speed v/2) a normalized path length that reaches 2700 spatial periods,
the trajectory is discontinued, and the particle is considered to have become magnetically
trapped.

Figure 5 shows plots of 1000 trajectories that result from a simulation. The value, 7, =
0.01, was used, and all particles are reflected by the magnetic field. A positive sign of charge,
sgn(q) = 1, was used. It should be noted, however, that statistically averaged results from
the simulation do not depend on the value of sgn(q), because zo, is sampled uniformly over
one spatial period.

Figure 6 shows the conditions found for all incident particles to be reflected for various

values of d,. The simulations are the same as for Fig. 5, except that different values for

13
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FIG. 5. Results for a simulation with 7,,, = 0.01. Shown are parametric plots of trajectories
over a region with multiple spatial periods (a) and over a region with a single spatial period (b).
The close-up view of one spatial period shown in (b) has the location of a current-carrying wire
indicated by a circle with a cross. Individual trajectory lines may not be distinguishable as a result
of overlapping lines. All particles start under effectively unmagnetized conditions at z, = —5, and
all particles reach z, < —5 and are considered to be reflected by the magnetic field. Some reflected

particles enter a magnetic cusp, follow the separatrix, and exit a different magnetic cusp.

d, and r,,, are used. To determine the conditions, d,, was chosen to have values that are
multiples of 1, except one value was chosen to be 0.5, and 7,,, was chosen to have values that
are multiples of 0.1. For all particles to be reflected in a simulation, it was found that the
value of r,,, had to satisfy the approximate condition, r,,, < 0.5d,,. Based on the values of
d,, used (0.5 < d,, < 10) for Fig. 6, the condition, r,,, < 0.5d,, is expected to be applicable
for d, > 0.5. No particles became magnetically trapped (i.e., no trajectories reached the

maximum normalized time t,,,7mx).

V. MAGNETIC PLASMA EXPULSION

An electrical coil that produces a magnetic plasma expulsion field is now considered to
be added at the = 0 plane of the artificially structured boundary illustrated in Fig. 2.
The electrical coil is treated as a single-turn rectangular current loop of wire, which has
an infinitesimal thickness. The placement of the coil is illustrated in Fig. 7. Two sides

of the loop are of length 2u and are coincident with two infinite-length wires located at
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FIG. 6. The values of 7, in multiples of 0.1 for which no losses occur (at smaller r,,, values
indicated by green dots) or one or more losses occur (at larger r,,, values indicated by black dots).
The line is a plot of 7, = 0.5d,. The particles start effectively unmagnetized at z, = —5, and
each trajectory is discontinued when the particle is reflected (by reaching z, < —5) or when the
particle is considered to be lost (by reaching z, > d,). The values of d,, are multiples of 1, except

one value at d,, = 0.5.

coordinates (0,y,0) and (0,y,d). The other two sides of the loop are of length d and are
located at coordinates (0,u,0 < z < d) and (0,—u,0 < z < d). The current carried by
the rectangular current loop is considered to be cI, where ¢ is a chosen constant, and [ is
the magnitude of the current carried by one of the infinite-length wires. The direction of
the loop’s current is such that each coincident segment of the loop and infinite-length wire
have opposing currents. In the work presented here, the value ¢ = 1 is used, resulting in
an equivalent current path that is shown in Fig. 7b. The magnetic field strength diverges
along the equivalent current path, which is infinitesimally thin. For monoenergetic particles
incident from z, = —5, a particle-free volume may be expected to exist in the vicinity of
the equivalent current path. Also, by using the value ¢ = 1, the current in the magnetic
expulsion coil can serve as the current feed between two connected magnetic confinement
coils modeled here as infinite-length wires. Therefore, the three coils can be replaced by an

equivalent single coil that carries a current along the path illustrated in Fig. 7b.
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FIG. 7. Addition of a magnetic plasma expulsion coil between two infinite-length wires (a), and
the equivalent current path with ¢ = 1 (b). The magnetic plasma expulsion coil is modeled as a
rectangular current loop with current cI, where c is a chosen constant. The rectangular current
loop is located between two infinite-length wires in the = 0 plane of the artificially structured
boundary shown in Fig. 2. The wire that forms the rectangular current loop is treated as being
infinitesimally thin, and two sides of the loop are treated as being coincident with the infinite-
length wires over a distance 2u. The other two sides of the loop, each of length d, are parallel to

the z axis.

The current loop produces a magnetic plasma expulsion field that is superimposed on the
magnetic plasma confinement field given by Eq. (4). For convenience, the total magnetic
field is written as

B(5,4,) = 3B (B4 80), 29
where 3. is defined such that B,,3./2 is the magnetic field produced by the rectangular
current loop. A closed-form expression for the field of a rectangular current loop is obtained

from Ref. 32. For the current loop in Fig. 7, the components of 3, can be written as

C Zn Yn + Up
IBez = 5 . .
2m T1in (71n — Yn — un) T1in (71n - Zn)
Zn — dn Yn + Unp, Zn,

Ton (7‘2n — Yn — un) Ton (T2n — Zn + dn) T3n (T37L — Yn + un)

T3n (r3n - Z’n) Tan (r4n — Un + un) Tan (T4n — Zn + d’n) ’
Cxy 1 1

ﬁey = -

2m T1n (Tln - Zn) Ton (TZn — Zn + dn)

16
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LI ! } , (26)

77‘371 (T3n - Zn) Tan (r4n — Zn + dn)

B8,. — cxy, { 1 1
62 27T T1in (Tln — Yn — un) Ton (r2n — Yn — un)
1 1
— + , 27
T3n (T37L — Yn + un) Tan (7'471, —Yn + U7L):| ( )
where
— 2 2 2
Tin = \/Zn + (yn + Un) + :Ln7 (28)
Ton = \/(Zn - dn)2 + (yn + un)2 + x7217 (29)
Fan = 2+ (g — )’ + 22, (30)
Tan = \/(Zn - dn)2 + (yn - un)2 + 1%7 (31)
and u, = u/S.

A magnetic plasma expulsion field superimposed on the field given by Eq. (4) is shown
in Fig. 8. The spatial dimensions are normalized by the spatial period S, and the following
parameter values are used for the plot: d, =1, ¢ = 1, u,, = 0.05, and z,, = d,,/2. Magnetic
plasma expulsion is described in detail in Refs. 13 and 15. Without the magnetic plasma
expulsion field present, the magnetic field would be approximately straight and parallel to
the x axis. With the magnetic plasma expulsion field present, there are two regions in Fig. 8
that would remain free of particles if particles only followed the field line.

A classical trajectory Monte Carlo simulation is carried out in the same way as in Sec. IV,
except that the magnetic plasma expulsion field is included by making the replacement
B — B+ B, in the equations of motion, Eqgs. (8) to (10). The value, ¢ = 1, is chosen without
an optimization process.

Figure 9 shows the conditions found for all incident particles to be reflected for various
values of u,. The simulations are the same as for Fig. 6, except that 0., = 0 is used to
maximize the number of particles that enter a cusp, follow the separatrix, and encounter
the magnetic field distortion introduced by the presence of the magnetic plasma expulsion
field. Also, d,, = 1 is used, and various values of 7,,, are used. To determine the conditions
for all incident particles to be reflected, u,, was chosen to have values that are multiples of
0.01, and r,,, was chosen to have values that are multiples of 0.001. For all particles to be

reflected in a simulation, it was found that r,,, had to have values within a certain range
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02 -04 00 0.1 02

FIG. 8. Magnetic field produced by the artificially structured boundary in Fig. 2 combined with
the rectangular loop in Fig. 7, with spatial dimensions normalized by the spatial period S and with
dp =1, ¢ = 1, u, = 0.05, and z, = d,,/2. The lines with arrows indicate the local direction of
the magnetic field. The transitions between different colors occur at contours of constant magnetic
field strength. Magnetic plasma expulsion tends to occur in the vicinity of the wire associated with
the current loop, indicated by a circle with a cross or a central dot. Without the magnetic plasma
expulsion field present, the magnetic field would be approximately straight and parallel to the =

axis.

for a given value of u,. Outside of the range, at least one particle became magnetically
trapped (i.e., a trajectory would reach the maximum normalized time ¢, max). The magnetic
trapping of particles is attributed to a cross-magnetic-field drift, as discussed in the next

section.

VI. DISCUSSION

The simulations indicate that the applied magnetic field produced by the artificially
structured boundary in Fig. 2 can reflect all independently incident particles under certain
conditions. For incident particles that follow a monoenergetic isotropic velocity distribution

without the magnetic plasma expulsion field present, the condition can be written in terms
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FIG. 9. The values of r,, in multiples of 0.001 for which all 1000 particles would be reflected
(small green dots). In some cases, a particle would become magnetically trapped and not leave the
vicinity of an infinite-length wire such that |z, (¢, max)| < 0.5 occurred (medium-sized blue dots)
or a particle would become magnetically trapped and moved away from the x,, = 0 plane such that
| (tn,max)] > 0.5 occurred (large-sized black dots), and the simulation would be discontinued. The
value d,, = 1 was used, and none of the particles reached z, > d,,. The particles start effectively
unmagnetized at z, = —5, and the velocity vector of each particle is initially parallel to z axis
(with Opax = 0). A trajectory is discontinued when the particle is reflected (by reaching z, < —5)
or when the particle is considered to become magnetically trapped (i.e., the trajectory would reach
the maximum normalized time ¢, max). The values of u,, are multiples of 0.01, and the values ¢ =1

and tp, max = 2700/\/5 were used.

of unnormalized parameters as r,, < 0.5d, which should be used with d > 0.55, because
smaller values of d were not considered. For a confined plasma with a Maxwellian velocity
distribution, the condition can be satisfied by particles other than those in the tail of the

distribution by writing the condition as
i < 0.5d, (32)

where ry, = \/mkT/(¢?B2,) is the thermal Larmor radius, T is the plasma temperature and
k is Boltzmann’s constant. The thermal Larmor radius within the magnetic field midway

between the planes of wires must be much smaller than one-half of the distance between the
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planes of wires.

A charged particle that follows a curved magnetic field will drift across the magnetic
field in a direction perpendicular to the plane formed by the local field curvature. The
cross-magnetic-field drift due to field curvature can consist of two drifts that superimpose.
One drift is caused by a gradient of the magnetic field strength and the other is caused by a
centrifugal effect. A cross-magnetic-field drift due to field curvature would occur for particles
that are magnetized within the axisymmetric magnetic plasma confinement field shown in
Fig. 1. However, such a drift would be in the azimuthal direction (either into or out of the
page in Fig. 1), in the limit that magnetic field asymmetries are negligible. For the planar
model of the magnetic field shown in Fig. 3, the magnetic field has no y dependence, and a
curvature drift would be in the y direction (either into or out of the page in Fig. 3).

The magnetic plasma expulsion field considered here has a y dependence, as indicated
in Fig. 8, and a curvature drift can occur due to the presence of the magnetic plasma
expulsion field. As indicated in Fig. 9, for some simulations, a trajectory reached a maximum
normalized time without the particle being reflected (by reaching z, < zp,) and without the
particle being lost (by reaching z, > d,). Simulation results indicate that such cases only
occurred while the magnetic plasma expulsion field is present. Evidently, the cross-magnetic-
field drift that a plasma particle experiences while passes through the magnetic expulsion
region can cause magnetic trapping to occur.

Figure 10 shows an illustration of an idealized magnetic field line associated with magnetic
plasma expulsion. The line was drawn using four identical segments that are rotated and
translated, assuming that horizontal mirror-image symmetry occurs about the horizontal
center of the drawing for the magnetic field. Two of the segments would be associated with
a curvature drift step that is exactly equal in magnitude and opposite in direction as the
curvature drift step associated with the other two segments, for single-particle motion in
the guiding-center approximation. It may be possible for the net cross-magnetic-field drift
of a plasma particle that passes through the magnetic expulsion region to be negligible with
an optimized design of the magnetic plasma expulsion field, such that magnetic trapping of
particles due to a curvature drift is minimized or negligible.

When plasma particles become magnetically trapped, cross-magnetic-field transport can
be expected to occur that eventually results in the particles being lost or being released

back into the effectively unmagnetized plasma region. The rate at which particles are lost
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FIG. 10. Model magnetic field line for considering the cross-magnetic-field drift of a plasma particle

that passes through the magnetic expulsion region.

is expected to be limited by the slower of two rates, consisting of (1) the net rate at which
particles become magnetically trapped and (2) the fastest rate at which magnetically trapped
particles are lost due to cross-magnetic-field transport. The results in Fig. 9 indicate that
particles with kinetic energies outside of a certain range will become magnetically trapped
for the magnetic plasma expulsion field model that was used. Thus, incident particles that
follow a Maxwellian velocity distribution may become magnetically trapped with too high
or too low of a kinetic energy. Such a situation warrants an attempt to optimize the design
of the magnetic plasma expulsion field, such that the magnetic trapping rate due to the
curvature drift is minimized. The best case scenario is one in which classical (collision-
based) processes govern both the net rate at which particles become magnetically trapped
and the fastest rate at which magnetically trapped particles are lost due to cross-magnetic-

field transport.

The planar model considered here may be expected to apply for achieving three-
dimensional magnetic confinement of nonmagnetically trapped particles using a configu-
ration such as that shown in Fig. 1, provided that the dimensions of the particle con-
finement volume are large compared to the separation between adjacent plasma-immersed
magnetic coils. An alternative to a toroidal confinement volume, such as that illustrated
in Fig. 1, would be an axisymmetric cylindrical confinement volume. Such a confinement
configuration would have two point cusps along the axis of symmetry, with one at each
axial end, that could be connected to Penning traps with axially varying magnetic fields.
Electrostatic equilibria computed for nonneutral plasmas confined in a Penning trap with
an axially varying magnetic field indicate the possibility of providing plasma space-charge

based confinement involving such Penning traps.?33*
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VII. CONCLUSION

A planar model has been developed for an artificially structured boundary that may
provide magnetic confinement of nonmagnetically trapped plasma particles. The planar
model is applicable in the limit that the dimensions of the particle confinement volume
are large compared to the separation between adjacent plasma-immersed magnetic coils.
A closed-form expression for the magnetic field is given by Eq. (4). Based on classical
trajectory Monte Carlo simulation results, predictions have been made regarding conditions
that are suitable (but not necessarily sufficient) for particle confinement to occur, including

the effect of superimposing a magnetic plasma expulsion field.
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