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Abstract

The assay for transposase-accessible chromatin followed by sequencing (ATAC-seq) is an
inexpensive protocol for measuring open chromatin regions. ATAC-seq is also relatively
simple and requires fewer cells than many other high-throughput sequencing protocols.
Therefore, it is tractable in numerous settings where other high throughput assays are chal-
lenging to impossible. Hence it is important to understand the limits of what can be inferred
from ATAC-seq data. In this work, we leverage ATAC-seq to predict the presence of
nascent transcription. Nascent transcription assays are the current gold standard for identi-
fying regions of active transcription, including markers for functional transcription factor (TF)
binding. We combine mapped short reads from ATAC-seq with the underlying peak
sequence, to determine regions of active transcription genome-wide. We show that a hybrid
signal/sequence representation classified using recurrent neural networks (RNNs) can iden-
tify these regions across different cell types.

Introduction

Transcription is a critical first step in transmitting the information in the DNA into usable
material. Transcription occurs at specific times and locations controlling both cell type and
cellular response to almost all perturbations. A large fraction of the genome (50-70%) is tran-
scribed in a cell [1], but only a small fraction of this transcription can be readily detected by
steady state assays such as RNA-seq and microarrays. Transcribed units, regardless of they are
stable or not, offer critical information about cellular state [2, 3]. Nascent transcription assays
[4, 5], by virtue of directly measuring transcription, can detect immediate changes (times as
short as 10 minutes) in response to perturbations [6]. Consequently, nascent transcription is a
rich source of information on both regulation and cell state.

However, nascent transcription experiments such as global run-on sequencing (GRO-seq)
and precision run-on sequencing (PRO-seq) are quite laborious, expensive, and require a large
number of cells. In contrast, the assay for transposase-accessible chromatin, followed by high-
throughput sequencing (ATAC-seq) has rapidly gained popularity since its inception, due to
its ease of execution, small cell count requirements, and short time expenditure. Yet, ATAC-
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seq measures chromatin accessibility, not RNA polymerase activity. Most sites of RNA poly-
merase activity co-occur with open chromatin regions (OCRs) detectable by ATAC-seq [6-8].
Unfortunately, only a fraction of open chromatin regions harbor RNA polymerase activity [9].
Reasoning that the presence of RNA polymerase may itself alter chromatin state in some subtle
fashion, we wondered whether signal exists within ATAC-seq, which could be utilized to dis-
criminate peaks that overlap RNA polymerase activity from other open chromatin regions
unrelated to active transcription.

Machine learning is a natural tool to classify data derived from genomics assays, particularly
ATAC-seq. A wide range of machine learning applications for ATAC-seq datasets have been
developed, from classifying types of chronic lymphocytic leukemia cells [10], to TF motif dis-
covery [11], discriminating among brain cell types [12], and identifying gene enhancer regions
using ATAC-seq peaks [13]. Given regions of polymerase initiation are dense with transcrip-
tion factor binding motifs and have a characteristics sequence bias [6], we reasoned that any
predictor would benefit from leveraging sequence information. Likewise, RNA polymerase
may induce particular signatures within ATAC-seq peaks. Therefore, we approach the prob-
lem of classifying ATAC-seq peaks as a signal processing task, where we employ both sequence
and ATAC signal features in our data representation scheme. In this work, we utilize this
hybrid encoding to examine the ability of ATAC-seq data to identify sites of overlapping
nascent transcription.

Materials and methods
Datasets

We utilized a collection of quality-assessed samples, or short-read runs (SRRs) originating
from different human cell lines and labs. We obtained SRRs from lung adenocarcinoma
(A549), myeloid B-cells (GM12878), human embryonic stem cells (H1), colon carcinoma
(HCT116), leukemia lymphoblasts (K562), prostate carcinoma (LNCaP), invasive ductal carci-
noma (MCF?7), and childhood acute monocytic leukemia cells derived from peripheral blood
(THP1). All SRRs were retrieved from the Gene Expression Omnibus (GEO [14]), and are
listed with accession and quality evaluation details on S1 Table. for ATAC-seq, and S2 Table.
for GRO-seq/PRO-seq. For each SRR evaluated, we used a minimum depth cutoff of 12 mil-
lion reads post-trimming and mapping, greater than 10% genomic base-pair coverage for
ATAC-seq samples, and a minimum of a predicted 5 million unique reads per 50 million
sequenced for nascent samples (determined using preseq [15]). Samples were further evaluated
using other metrics including read duplication, read distributions, and GC content using both
the RSeQC [16] and FastQC tools.

Data processing

Both ATAC-seq SRRs and nascent transcription (GRO/PRO-seq) SRRs were processed using
Nextflow-based [17] pipelines [18, 19]. A full pipeline report of the run, workflow diagram,
and quality control report generated by MultiQC (v. 1.7) [20], including trimming (BBDuk,
BBMap Suite), mapping (HISAT2), read distribution (RseQC), coverage (pileup, BBMap
Suite), G/C content (Picard Tools [21]), and complexity metrics (preseq), are included in the
S1 File. Additional QC metrics for ATAC-seq SRRs were assessed using ATACseqQC [22] and
its output is also included in S2 File. SRRs were de-duplicated using Picard Tools prior to peak
call-ing. Peak calls were generated using MACS2 narrowPeak using the g-value default

(< 0.05). Blacklisted regions (those having artificially high signal and read mapping, obtained
from http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/) were
removed using BEDTools intersect [23]. Training files (required for FStitch [7]) used in
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nascent data processing for each cell type and output from application of both FStitch and Tfit
[24] (using default pipeline settings), are included in the S3 File. Some SRRs were discarded
due to low complexity using the aforementioned criteria which strongly affects both FStitch
and Tfit in modeling regions of active transcription (see MultiQC reports in S1 File). Genome
browser track figures were generated using DeepTools [25] pyGenomeTracks.

All SRRs and sequences were analyzed with respect to the GRCh38 human reference
genome. The ATAC-seq peaks for all SRRs from the same cell type (generally replicates) were
combined into a single cell-type-specific data file, which was subsequently used for training
and testing. These peaks were combined by taking the union of all peak regions across SRRs
from the same cell type (directly overlapping in genomic coordinates), and averaging the num-
ber of mapped ATAC-seq reads (previously normalized by millions mapped) at each nucleo-
tide. Individual peaks within these files are referred to as OCRs.

Similarly, the coverage files from Nascent-Flow (in bedGraph format) were combined into
a single per-cell-type data file. We leveraged the combined output of two tools to detect
nascent transciption, FStitch [7] and Tfit [24]. FStitch identifies all transcribed regions within
a nascent transcription experiment, but cannot necessarily distinguish individual transcripts
in densely transcribed regions. Tfit identifies individual transcripts based on the expected
behavior of RNA polymerase II. If either of the tools detected a region of active transcription
(EStitch) or bidirectional transcription indicative of functional transcription factor binding
(Tfit) in a region that overlapped with an OCR, the OCR was labeled as “positive”. Otherwise
the OCR is labeled “negative”. This resulted in approximately 29% of all OCRs labeled as
positive. It’s worth pointing out that, while nascent transcription is commonly seen at tran-
scription start sites (TSSs) for active genes, most transcription (estimated at 72% [24]) actually
occurs at other loci throughout the genome, for example due to binding of regulatory proteins
(S1 Fig).

Data encoding

We developed a hybrid encoding of sequence and signal that summarizes each OCR into a
1kbp dense vector encoding (Fig 1a). The window size of 1kbp was chosen to account for most
OCR sizes, and include flanking regions in the analysis. Signal is captured at nucleotide resolu-
tion by the number of mapped ATAC-seq reads, normalized by millions mapped. Sequence-
derived features are encoded using the Hill et. al. approach, which maps an input sequence of
nucleotides to a sequence of vectors using an embedding layer [26]. This embedding layer con-
sists of a dense vector representation of each nucleotide, trained on the sequences correspond-
ing to every peak in an ATAC-seq SRR. The 2-dimensional input feature matrix is the result of
stacking the normalized number of mapped ATAC-seq reads (the OCR’s “signal”) with the
vector embedding of each nucleotide (Fig 1a), both in the same 1kbp peak evaluation window.
This hybrid encoding representation could alternatively be considered as a way to weight each
nucleotide by its level of accessibility.

The choice of a hybrid encoding scheme for each OCR fixed window resulted from a previ-
ous study [27], where we evaluated the performance of many different data encoding schemes
and machine learning classifiers. OCRs were evaluated using only the signal at each nucleotide,
only the underlying sequence, or a combination of both. The hybrid signal/sequence represen-
tation, in combination with a recurrent neural network model, yielded the best performance
in detecting both underlying RNA polymerase activity and histone marks associated with tran-
scriptional activity at each OCR tested. This manuscript focuses only on the underlying RNA
polymerase activity for each region of accessible chromatin.
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Fig 1. Hybrid encoding and RNN model architecture. (a) A vector embedding was trained for each nucleotide (top left, also including other base symbols
following the IUPAC convention). For our signal/sequence hybrid model, we generated a 50-dimension training vector for each peak by combining nucleotide
information (a vector embedding based on neighboring nucleotides) and the normalized number of ATAC-seq reads mapped for that nucleotide (by millions
mapped). In this example, we show how a small portion of an OCR detected with ATAC-seq (top right, green) with the sequence ACTTCCT would be represented
in two dimensions (bottom, one nucleotide per column), with the first row reflecting the normalized read coverage for each of those nucleotides and the rest of
each column consisting of the nucleotide’s dense vector representation. (b) Nucleotides in the 1kbp evaluation window are extracted from the reference genome
(bottom blue layer) were passed to an embedding layer (orange) to generate a dense vector representation from each. The peak signal level associated to each
nucleotide (middle blue layer; i.e., the number of mapped ATAC-seq reads normalized by millions mapped) is then combined with the nucleotide embedding
vector (purple layer, vector representation shown in panel a). Each vector is passed to a gated recurrent unit in each direction (green layer) to capture the long- and
short-term relations between nucleotides, and the outputs from the last forward and reverse gates are concatenated to be used or the final prediction.

https://doi.org/10.1371/journal.pone.0232332.9001

Classifiers

We developed a recurrent neural network (RNN) model to classify ATAC-seq peaks repre-
sented by our hybrid encoding, utilizing the Keras framework. Given the sequential nature of
our data, an RNN presented the most suitable choice. Since both the ATAC-seq signal or the
underlying nucleotide sequence may be read in either direction (sense or anti-sense), we
implemented this classifier with bidirectional gated recurrent units (GRUs). We combined our
sequence embedding and signal into a single vector representation (Fig 1a) that is utilized as
input to the GRUs (Fig 1b). A learning rate of 0.0001, a dropout date of 0.1, an embedding
layer size of 50 and a hidden layer size of 100 were selected after hyperparameter optimization,
from a grid of embedding dimensions [15, 50, 100], dropout rates [0.1, 0.2, 0.3], learning rates
[0.001, 0.0005, 0.0001] and hidden sizes [100, 200, 350, 500]. All instances of the RNN models
were executed with the aid of a GPU for increased computational performance. Specifically,
the Tesla K80 GPU on Elastic Cloud Computing from Amazon Web Services.

In a previous study [27] we evaluated a variety of classifiers and encodings for our RNN
and found that the RNN outperformed all other methods at predicting histone marks associ-
ated with OCRSs that are related to active transcription. For completeness, we briefly summa-
rize the earlier study. We examined a variety of simpler machine learning classifiers such as
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random forests, support vector machines, and ADABoost, as well as traditional signal process-
ing approaches to detect signatures in ATAC-seq signal in each 1kbp evaluation window. In
addition we considered an RNN model with only signal-derived features, only sequence-
derived features, and a combination of both. Different encodings of both the signal (autoenco-
der, first-level wavelet decomposition) and sequence (wavelet decomposition of electron-ion
interaction potential) were considered. Overall, the hybrid encoding of both sequence and sig-
nal to the RNN model performed the best.

Model evaluation

We sought out a binary classification for every OCR in the test set, where a positive label
(value of 1) represented nascent transcription at said OCR, and a negative label (value of 0)
denoted no nascent transcription. We used the area under the curve (AUC) from receiver
operating characteristics (ROC) curves to compare the performance of this binary classifica-
tion task, as well as weighted F1-scores to evaluate the balance of predictive precision and
recall.

Each test was performed using a “leave-one-out” training (LOOT) strategy in a very conser-
vative performance evaluation fashion, in order to remove cell type-specific characteristics
from training, as well as ensuring that the genomic coordinates tested do not exist within the
training set. This is important because, for example, 3,833 OCRs are common (that is, they
overlap in coordinates) to all data sets. We used only OCRs from specific chromosomes during
training (chrl thru chr11) and OCRs from the remaining chromosomes for the test set (chr12
through chr22, chrX and chrY), from each specific cell type (see S2 Fig for an example). Since
chromosomes are numbered from largest to smallest, this split provided a reasonable number
of training and test OCRs for each cell type-specific classification run.

We segregated a portion of our data for validation purposes only, to be used while training
the RNN. This consisted of all OCRs from the HCT116 datasets in chromosomes chr1 thru
chr11. These OCRs were therefore excluded from any training or test set, and prevented fur-
ther bias during the model training step. The remaining OCRs from HCT116 cells were
discarded.

We sought to determine if we could classify ATAC-seq peaks based on their co-occurrence
with transcription, as measured in cell type matched nascent transcription assays. To this end,
we identified high quality datasets within public repositories where both ATAC-seq and
nascent transcription data (either GRO-seq or PRO-seq) were available for the same cell type
and condition (in every case, these were labeled as “untreated” or “DMSO” in the SRR meta-
data). Under this criteria of matching assays and conditions, we obtained 9 sets (each a distinct
cell type) of matched data. The depth of the obtained datasets varied, between 11.1 and 192.9
million reads for ATAC-seq SRRs, and between 14.8 and 213.4 million for nascent transcrip-
tion SRRs. Across the 9 distinct cell types, nearly half a million open chromatin regions were
identified. All OCRs were labeled as transcribed (positive) or negative, based on the output
from the Tfit and FStitch tools on the same region (as described in data processing).

We first asked whether there was a relationship between accessibility, as measured in
ATAC-seq, and nascent transcription. While there is a very loose positive correlation (r* =
0.084) between read coverage in both ATAC-seq (accessibility) and nascent transcription (Fig
2), but the correspondence was far from diagnostic. Therefore, we turned to machine learning
as a means of classifying open chromatin regions as to whether they harbor transcription.

We developed our RNN approach using a hybrid data representation that captures both
sequence and signal features within ATAC-seq data. We reasoned that sequence features are
likely to be critical to transcription initiation, as transcription factors recognize primary
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Relation between nascent transcription coverage and ATAC-seq coverage
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Fig 2. Accessibility vs. transcription. Each point in this scatter plot is an ATAC-seq peak, where we compare the mean number of mapped
ATAC-seq reads in its 1kbp evaluation window (y-axis) to the mean number of mapped nascent transcription reads on that same window
(x-axis). There is essentially no correlation (r* = 0.084) between the two, making this average peak metric not sufficient to predict active

transcription.

https://doi.org/10.1371/journal.pone.0232332.9002

sequence and regulatory regions (enhancers and promoters) have a known positional sequence
bias [6]. However, ATAC-seq signal (read depth) is also informative as there is a weak correla-
tion between accessibility and transcription (Fig 2, S3 Fig for specific cell types) and the pres-
ence of RNA polymerase II may leave distinct signatures within the accessibility profiles.

We first sought to determine a baseline performance for this classification task. To this end,
we used a naive approach that looked at the distribution of mean ATAC-seq coverage per
OCRs labeled as “positive” (overlapping bidirectional nascent transcription) or “negative”. We
used a kernel density estimator with Gaussian kernels to define an empirical distribution of
mapped ATAC-seq reads for each case, and based on an odds ratio we predicted whether an
OCR overlapped transcription. This baseline classifier displayed a performance barely better
than random calls, with an F1-score of 0.550 and an ROC AUC of 0.554 (54 Fig) using a ran-
dom 10% of all OCRs for testing.

Our RNN model using the hybrid signal/sequence encoding greatly surpassed the baseline
performance. The test OCRs from each cell type (chr12-chrY, as described earlier) were evalu-
ated separately. The results of this LOOT strategy are shown in Figs 3 and 4. K562 cells gener-
ally presented much lower performance, which could be related to the quality and complexity
of the dataset (see S1 File). The SRR quality was above our cutoffs, but still the lowest com-
pared to the other datasets. The number of OCRs that could be detected was also significantly
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training time (green) for LOOT-based performance evaluation. OCRs from each cell type tested are displayed using the same marker (see key).
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lower than SRRs from other cell types. Overall, however, the performance of the classifier with
AUC values between 0.548 (K562, an outlier) and 0.847, and a median of 0.792, indicates that
the classifier is recognizing general features of transcribed OCRs rather than specific features
of the cell type/experiment or genomic region.
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Next we sought to understand the error characteristics of the classifier. To this end, we
examined the ATAC-seq data profiles in the correctly classified and incorrectly classified
peaks. The distribution of the mean number of ATAC-seq reads for each OCR is similar for
true positives and negatives (Fig 5, top in green). Yet our classifier showed a tendency to mis-
classify higher read depths as positive, exemplified by the slight shift in the false positive curve
relative to the true positives. An examination of “meta-peak” signals (that is, the aggregated
signal of all peaks involved in that subset) in each error class shows that negative-labeled OCRs
have a generally narrower peak shape within the ATAC-seq data (Fig 6, green axis figures on
the top row) compared to positive-labeled OCRs. Overall, OCRs overlapping nascent tran-
scription appear to be significantly wider than those which don’t, which suggests a signature in
the peak’s shape that is indicative of active transcription. The classifier clearly struggles with
intermediate width cases, leading to errors (Fig 6, in blue). This would suggest that the local
context, beyond each nucleotide point-wise information, is informative and may explain why
the bidirectional GRU architecture was helpful to identify these regions.

Because the general signal of the ATAC classifications well mimicked the training input
(Fig 5), we next examined the distribution of mean nascent transcription across these same
regions (Figs 7 and 8). As expected, positive-labeled OCR regions have generally higher levels
of transcription than their negative-labeled counterparts (Fig 7, top in green). Importantly, not
all negative-labeled regions have zero read coverage, as some noise is inherent in any sequenc-
ing protocol. Likewise, some positive-labeled regions do have very low read coverage because
they may correspond to regulatory regions like enhancers, which typically are lowly
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at OCRs for the entire training set (top row, green axis) and each classification metric: true positives (mid left), true negatives (mid right), false positives
bottom left) and false negatives (bottom right). Note the difference in scales among plots, to emphasize the characteristic shape in each scenario.

https://doi.org/10.1371/journal.pone.0232332.9006
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>

panels correspond to very low levels of nascent transcription rather than no transcription, which are generally associated to regulatory regions.

https://doi.org/10.1371/journal.pone.0232332.g007
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Signal is color coded by strand (blue is positive strand; red negative strand). Notice the differences in scale among plots, with TPs and FNs
sharing the same scale, but distinct from TN and FP.

https://doi.org/10.1371/journal.pone.0232332.9008
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Fig 9. Commonly observed OCRs dominate performance. Proportion of OCRs common to every cell type
(overlapping in genomic coordinates) categorized in the different performance metrics.

https://doi.org/10.1371/journal.pone.0232332.9009

transcribed. The classifier’s errors appear to be regions with low levels of transcription. An
examination of the corresponding “meta-gene” signal for each category (Fig 8) further sup-
ports this conclusion. Intriguingly, the negative-labeled training data shows a slight, but
noticeable bidirectional signal similar to the positive-labeled truth dataset. Given our reliance
on two different nascent analysis tools (FStitch and Tfit), which each have their own bias and
accuracy at different regions of the genome, it is possible that some of the OCRs characterized
as false negatives may indeed be regions of active transcription. The meta-gene curve for false
negatives reinforces this hypothesis, as there is a considerable level of bidirectional transcrip-
tion at these regions. This suggests that the performance of our classifier is arguably a lower-
bound, which could be improved with the availability of a “gold standard” transcription
dataset.

We next wanted to determine which classes of OCRs were driving performance. First we
examined the common peaks (e.g. those present across all cell lines, at overlapping genomic
coordinates). While common peaks are a minority (8,424/471,799 overall, and 1,377/155,242
across all test sets), we observed that these peaks are correctly classified in general (Fig 9). S6,
S7 and S8 Figs provide classification statistics for OCRs unique to each cell type, shared among
only two cell types, and among only three cell types, respectively. Next we examined OCRs
based on their overlap with TSS (or ot). Intriguingly, we find that TSS are generally harder to
classify (Fig 10, S5 Fig). This is perhaps unsurprising since transcription start sites represent
only a small fraction of the overall transcribed regions [24]. Interestingly, only approximately
19% of the common OCRs overlap TSSs (Table 1). Given that common OCRs are generally
easier to predict, this may also contribute to the lower performance of TSSs. Finally, there
may be some previously undetected bias in our labeling tools that could impact the TSS
performance.

Discussion

The goal of our study was to detect whether specific ATAC-seq peaks denoting OCRs over-
lapped nascent transcription, using a machine learning model and a hybrid signal/sequence
representation of each OCR. Using matched ATAC-seq and nascent transcription data for the
same cell type and conditions, we ensured diversity of tissue types, experimental sources, and
data quality in general for our training, validation, and test sets. Overall, the performance of
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Fig 10. TSS regions are generally harder to classify than non-TSS ones (regulatory sites). ROC curves for OCRs overlapping TSSs (green) and non-TSS OCRs
(red), for each test set. The orange curves correspond to all OCRs for that test set.

https://doi.org/10.1371/journal.pone.0232332.9010

our hybrid RNN model is solid, with the classifier reaching a maximum AUC score of 0.847
and maximum F1-score of 0.792.

Generally, the quality of both data types (nascent and ATAC) likely influences the overall

performance of our classifier. While the datasets utilized here were selected, in part, based on
the fact that they pass certain quality standards, it is interesting to note that the lowest per-

forming cell line (K562) was arguably the poorest quality ATAC-seq dataset. This cell line had
the fewest detected OCRs, and appeared by visual inspection of lower complexity. While we
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Table 1. OCR-related statistics per cell type.

Cell Type Number of OCRs OCRs on transcription OCRs on TSSs
A549 53,131 11,906 12,809
GM12878 46,722 17,323 10,949
H1 69,101 37,467 14,609
HCT116 33,279 15,863 7,986
HeLa 46,815 10,141 11,172
K562 4,968 3,749 2,966
LNCaP 25,420 8,627 7,354
MCF7 138,717 18,350 13,860
THP1 58,614 11,463 10,522

https://doi.org/10.1371/journal.pone.0232332.t001

discarded datasets based on an arbitrary depth cutoff of 10 million reads, issues of SRR com-
plexity are not well captured by simple depth cutoffs.

Our initial hypothesis was that the presence of RNA polymerase II may leave characteristic
signatures within ATAC-seq data. However, generally negatives were easier to classify than
positives, indicating regions without transcription may follow a more consistent pattern across
cell types. Likely several things contribute to the lower performance in positives. First, while
we leveraged state of the art nascent analysis tools for our labeling, our error analysis suggests
that, even in the high quality datasets utilized here, some lowly transcribed regions may have
been missed. Enhancer RNAs are generally lowly transcribed and therefore are inherently
challenging to detect even in the best of circumstances. Second, our classifier seeks to identify
a singular ATAC pattern for RNA polymerase II presence. Yet nascent transcription assays
survey all sites of transcription regardless of which polymerase is involved. Cells have three
major forms of RNA polymerase (I, II, and III) and RNA polymerase II is a large multi-protein
complex that exists in many forms, e.g. distinct component sets. If each RNA polymerase com-
plex leaves a distinct signature in ATAC, the result would be a mixture of signals and ulti-
mately a reduced performance of our model on the positives, as observed.

A number of extensions are possible that could improve the performance of the classifier.
First, we could account for differences between datasets in quality and/or depth by weighting
the training inputs based on confidence in the nascent transcription data. Second, we may be
able to improve performance by including more signal information into the classifier, as the
distinct shapes observed in the meta plots suggests more information on local shape could be
informative. Third, our classifier could be extended to utilize annotation or additional input
data in order to produce multi-labels (example: TSS versus non-TSS as well as transcribed or
not). Even without these extensions, the machine learning features from our hybrid represen-
tation of signal and sequence depicted in Fig 1a will likely be applicable to other experimental
assays and classification tasks, such as inferring underlying histone modifications. Here we
demonstrate that this RNN hybrid model classifier adequately predicts the presence of nascent
transcription signal.

Conclusion

Because of its relative simplicity and utility across a broad range of cell types and cell counts, it
is advantageous to maximize the information obtained from ATAC-seq. Here we demon-
strated that a recurrent neural network model using a combination of ATAC-seq signal and
underlying sequence can accurately classify open chromatin regions as transcribed or not.
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Software availability

The code that implements this model is publicly available at https://github.com/Dowell-Lab/
OCR _transcription_detection.

Supporting information

S1 Table. Public sources for ATAC-seq datasets.
(PDF)

S2 Table. Public sources for nascent transcription datasets.
(PDF)

S1 Fig. Examples of OCRs overlapping TSSs and at other non-TSS regions. Screenshots
illustrating examples of (a) an OCR denoted by ATAC-seq peaks that overlap a TSS, and (b)
one that is not over a TSS and is likely related to regulatory regions.

(PDF)

S2 Fig. Example test scenario of our leave-one-out-training (LOOT) configuration. This
example that tests on OCRs from HeLa cells illustrates which chromosomes did we take OCRs
from, for training (green), validation (blue) and testing (purple). In every scenario, OCRs from
HCT116 cells from chromosomes chrl thru chr11 were used for validation (the rest for this
cell type were discarded), and we only trained on OCRs from those same chromosomes from
all other cell types, testing only on OCRs from chromosomes chr12 thru chrY. This ensures
the test set is truly novel every time, and prevents introducing any protocol or cell type-specific
bias during training, as well as training on regions that could overlap in coordinates with those
OCRs tested.

(PDF)

$3 Fig. Chromatin accessibility vs transcription coverage per cell type. Relation between the
mean number of ATAC-seq reads versus the mean number of nascent transcription reads for
the same OCR, for each of the nine cell types evaluated in this study.

(PDF)

S4 Fig. Baseline performance. To determine the baseline performance of the classifier, we
predicted whether an OCR had underlying transcription based on the likelihood that the
mean number of ATAC-seq reads belonged to the distribution of training positives or nega-
tives.

(PDF)

S5 Fig. Classifier performance across the different test sets. Precision/recall curves for
OCRs overlapping TSSs (orange) and non-TSS OCRs (green). The blue curves correspond to
all OCRs for that test set.

(PDF)

S$6 Fig. Classification outcomes for unique OCRs per cell type. Proportion of OCRs unique
to every cell type (not overlapping in genomic coordinates with OCRs from any other cell
type) categorized in the different performance metrics.

(PDF)

S7 Fig. Classification outcomes for OCRs shared by only two cell types. Proportion of
OCRs shared by just two cell types (overlapping in genomic coordinates) categorized in the
different performance metrics.

(PDF)
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S8 Fig. Classification outcomes for OCRs shared by only three cell types. Proportion of
OCRs shared by just three cell types (overlapping in genomic coordinates) categorized in the
different performance metrics.
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