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Abstract— Objective: Sweat secretions lead to variations
in skin conductance (SC) signal. The relatively fast varia-
tion of SC, called the phasic component, reflects sympa-
thetic nervous system activity. The slow variation related to
thermoregulation and general arousal is known as the tonic
component. It is challenging to decompose the SC signal
into its constituents to decipher the encoded neural infor-
mation related to emotional arousal. Methods: We model
the phasic component using a second-order differential
equation representing the diffusion and evaporation pro-
cesses of sweating. We include a sparse impulsive neural
signal that stimulates the sweat glands for sweat produc-
tion. We model the tonic component with several cubic
B-spline functions. We formulate an optimization problem
with physiological priors on system parameters, a sparsity
prior on the neural stimuli, and a smoothness prior on the
tonic component. Finally, we employ a generalized-cross-
validation-based coordinate descent approach to balance
among the smoothness of the tonic component, the spar-
sity of the neural stimuli, and the residual. Results: We
illustrate that we can successfully recover the unknowns
separating both tonic and phasic components from both
experimental and simulated data (with R > 0.95). Further,
we successfully demonstrate our ability to automatically
identify the sparsity level for the neural stimuli and the

smoothness level for the tonic component. Conclusion:

Our generalized-cross-validation-based novel method for
SC signal decomposition successfully addresses previous
challenges and retrieves a physiologically plausible solu-
tion. Significance: Accurate decomposition of SC could
potentially improve cognitive stress tracking in patients
with mental disorders.

Index Terms— Biomedical signal processing, deconvolu-
tion, optimization, sparse recovery, state-space methods,
system identification
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LTHOUGH the skin’s electrical activity was first ob-

served in the 1880s, the term ‘“‘electrodermal activity”
(EDA) was first introduced in 1966 as a common phrase for
electrical phenomena in the skin [1], [2]. Since its discovery,
EDA has been very popular in psychophysiology research as
variations in the skin’s electrical conductivity correlate with
the sympathetic nervous system (SNS) activation. SNS is a
part of our body’s autonomic nervous system (ANS), which
is primarily responsible for the fight-or-flight response mech-
anism. EDA can be exosomatically recorded by measuring
skin conductance (SC). Some authors use the term “galvanic
skin response” (GSR) to refer to the SC. In response to
emotional stress, ANS stimulates sweat glands depending on
the psychological and physiological demands. Consequently,
salty secretions from sweat glands increase the SC. SC mea-
surements can be analyzed to investigate the corresponding
ANS activation, which contains a great deal of information
about human emotional arousal [3].

SC is considered as a composition of two components
[2], [4]-[7]. The relatively slow varying component, called
the tonic component, is generally related to the thermoreg-
ulation of the body, ambient temperature, humidity, and the
general arousal of a person [2], [8]. Wickramasuriya et al.
[9] showed that the tonic component can be incorporated
in an arousal state estimation scheme assuming it contains
the general arousal information of a person. Some authors
have measured it as SC level (SCL) [2]. On the contrary,
the comparatively fast varying component is a reflection of
neural stimulation from the SNS. The fast varying component
is called the phasic component which is comprised of discrete
SC responses (SCRs). Discrete SCRs can be related to various
SNS activation events. In summary, SC can be represented as
the sum of two convolution operations: (1) between a sparse
neural stimuli from SNS and a fast physiological smoothing
kernel and (2) between some arbitrary unknown activation
function and a slow physiological smoothing kernel. There is
a growing interest in identifying such systems as well as the
underlying neural stimuli representation SNS activation for a
better understanding of physiological phenomena [10], [11].

Appropriate EDA analysis along with SNS activation iden-
tification technique has applications in a wide range of fields
such as mental disorders, pain, cognitive stress tracking,
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wakefulness, etc. As different physiological signals, including
SC, contain information about someone’s emotional arousal,
they have potential applications in the field of mental health.
For example, preventing deaths from mental disorders with
regular tracking could be one potential application as Walker
et al. [12] reported that a large portion of the deaths worldwide
is attributable to mental health-related disorders. A meta-
analysis shows that mental disorders are a major risk factor
for suicide [13]. Suicide is one of the leading causes of
death in the United States in the year 2017, and it has
increased by 3.7% from the previous year [14]. Suicide
related costs for the United States were $93.5 billion in 2013
alone [15]. Shepard et al. [15] emphasized the community
based immediate psychiatric services, including telepsychiatric
support for reducing suicide-related costs. Regular tracking of
problematic patterns of emotional regulation could potentially
help prevent psychiatric disorders [16]. Electroencephalogram,
electrocardiogram, respiration, functional near-infrared spec-
troscopy [17], and EDA, could be investigated to identify
abnormal patterns of emotional regulation [18]. Day to day
tracking and analysis of emotional regulation requires reliable
wearable implementations for suicide-prone patients.

In a different context, studies have also shown that abnormal
SC recordings can be attributed to diabetic neuropathy and
other diabetic diseases [19]-[21]. Diabetic neuropathy refers
to the small nerve damages caused by prolonged exposure to
high levels of blood glucose concentration [22]. Small nerves
in the legs, feet, and hands are more prone to neuropathy [22].
The small nerve fibers also include the sudomotor nerves that
are primarily responsible for delivering the SNS activation to
the sweat glands for sweat secretion. Abnormal SC variation
or asymmetry of SC recordings from different skin regions
might be an indication of diabetic neuropathy. According to
clinical diagnostics, the development of early stages of sweat
formation disorders is related to various forms of illnesses,
including hypohidrosis or anhidrosis, which accompany dis-
eases like diabetes mellitus [23]. Systematic analysis of SC
recording to identify these asymmetries can be crucial for the
early prevention of such illness.

In the early days, most of the SC studies in psychophysiol-
ogy were performed with only basic statistics. In the last two
decades, researchers have come up with systematic analysis
tools with a goal of understanding SNS activation patterns
[24]. Several popular methods have been widely used for
decomposing SC recording into its constituents. Benedek et
al. [5], [6] proposed two methods within a toolbox named
LedalLab to decompose SC signal into several discrete SCRs.
However, their methods lead to non-sparse solutions for neural
stimuli which may over-fit to the noise. Bach et al. [25] have
proposed the dynamic causal modeling (DCM) approach for
inferring the neural stimuli. They have considered a linear
time-invariant system for modeling SCRs. They optimize the
model parameters for a large dataset. They later also proposed
a matching pursuit (MP) approach for alternative and faster
implementation [26]. However, as a pre-processing step, they
perform band-pass filtering (between 0.015 and 5 Hz) to
remove the tonic component [27]. As both phasic and tonic
components are SC measures, they are non-negative and both

should have a spectral overlap in the low-frequency region.
Therefore, simple band-pass filtering introduces physiologi-
cally impossible negative values in the filtered signal and
hence can distort the actual underlying components. Greco et
al. [7] proposed a decomposition algorithm based on quadratic
programming named cvxEDA where they have considered
two different dictionaries for modeling tonic and phasic com-
ponents. They considered the sparsity condition in neural
stimuli. Nonetheless, the manual selection of the SCR shape
parameters as well as the hyperparameters for imposing the
sparsity prior on SNS activity and smoothness prior on the
tonic component makes it challenging to find an appropriate
solution. Hernando-Gallego et al. [28] proposed a fast and
sparse decomposition algorithm named sparsEDA, however, it
seems to provide an overly sparse solution leading to missing
significant SCRs. Studies in [29]-[32] proposed coordinate
descent deconvolution approaches to account for the individual
differences in the SCR shape parameters, but these do not
solve for the tonic component.

In the present study, we propose an algorithm to recover the
SNS neural stimuli, the underlying SCR shape parameters, and
the tonic component from observed SC sampled data. Inspired
by the works in [7], [29], [33]-[38], we use a second-order
differential equation model based on diffusion and evaporation
process of sweat to relate SC to the internal unobserved
neural stimuli and model the tonic component with a set
of cubic basis-spline (B-spline) functions. We formulate an
optimization problem based on the proposed model including:
1) Gaussian prior on SCR shape parameters, 2) sparsity prior
on neural stimuli (/;-norm penalization), and 3) smoothness
prior on the tonic component (energy penalization, i.e. [o-norm
penalization on the cubic B-spline coefficients). We propose
a block coordinate descent approach to recover the unknowns
by incorporating sparse recovery for the neural stimuli and
the interior-point method for the SCR shape parameters and
the tonic component estimation. Moreover, we implement
generalized-cross-validation (GCV) to obtain regularization
parameters for both the [;-norm and [ly-norm penalization
terms, respectively for the neural stimuli and cubic B-spline
coefficients. Finally, we analyze both experimental and sim-
ulated SC datasets to show the performance of our proposed
approach.

[I. METHOD
A. Dataset Description

In this study, we analyse the SCRs to loud sounds [39],
auditory oddballs [40], pain by electric shocks [41], white
noise bursts [42], visual detection tasks [43]. The experiments
were designed to investigate and model event-related SCRs
[44]. The number of participants, gender, and age information
is provided in Table I. Dataset 1 contains three-channel SC
data (SC measurement from the thenar/hypothenar of the non-
dominant hand, the middle phalanx of the dominant second
and third finger, and the medial plantar surface of the non-
dominant foot) of each of the 26 participants. The rest of
the datasets collect data only from the thenar/hypothenar of
the non-dominant hand. Therefore, we use the SC recordings
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Fig. 1.

Model Block Diagram. A single neural stimuli signal «(t) generated by the SNS is responsible for the SCR in a particular skin region of

the body. The block diagram shows the neural stimuli «(t) convolving with sweat glands in a particular region of the skin having a phasic response
function h+(t) to generate phasic component. The tonic component is represented as a convolution between a signal representing the weights in
different time instances for the g(t) and a function v (t) denoting the smooth variation. v (t) represents the measurement error.

TABLE |

SUMMARY OF DATASETS USED IN THE STUDY
Dataset | Experiment Number of A
No. Type Participants ge (years)
1 Loud Sound Stimulation 26 (13 M, 13 F) 24.4+/-4.9
2 Auditory Oddball Task 2009M, 11 F) 21.8+/-3.3
3 Pain by Electric Shocks 19 9M, 10 F) 21.84/-3.3
4 White Noise Stimulation | 22 (11 M, 11 F) 24.7+/-4.5
5 Visual Detection Task 22 (11 M, 11 F) 24.7+/-4.5

Here "M’ corresponds to male and ‘F corresponds to female.

from the thenar/hypothenar of the non-dominant hand for all
the datasets in this study. The experimental details are given
in [44]. The total number of participants is 110 based on the
experimental details in [44]. However, data for one participant
is missing in Dataset 3 in the online repository. Therefore,
we performed our analysis on the rest of the 109 available
participants. The reported information in Table I is based on
the downloaded datasets.

B. Model Formulation

As previously mentioned, the SC signal can be thought of
as the summation of two different components, i.e. the tonic
component and the phasic component. We consider a third
component in the formulation representing the measurement
noise. The SC signal can be represented combining these three
components as follows:

y(t) = yp(t) + ys(t) + v(1), (1)

where y(t), yp(t), ys(t), and v(¢) represent the SC signal,
phasic component, tonic component, and noise, respectively.
1) Phasic Component: The phasic component can be
thought of as the smoothed version of the neural activity from
the SNS. The smoothing is performed by the physiological
system composed of a collection of sweat glands, epidermis,
and other related skin components. We model the physio-
logical system responsible for smoothing operation using the
first-order kinetics of diffusion of sweat from the sweat ducts
to the strata cornea and the subsequent first-order kinetics of
evaporation from the strata cornea [2], [4], [6]. We combine
both diffusion and evaporation kinetics to form the following
second-order differential equation, and we relate it to the

neural stimuli «(¢) generated by SNS:

dyy (1) dyy (1)

TerW + (TT + Td) dt + yp(t) = u(t)v (2)

where 7, and 74 represent the rise and decay times for each
SCR, respectively. We assume that 7. and 7,4 stay constant
during the experiment, however, they can be different from
person to person. Let SCR shape parameter vector 7 =
[7. 7a4]". Similar to [29]-[31], [33]-[35], we define an
abstract definition of w(¢) as the summation of N weighted
and shifted impulse functions, i.e. u(t) = ZZ]\SI wid(t —A),
where u; represents the amplitude of the neural stimulus from
SNS at time A;. In this study, we define A; = iT,,, where T},
is the sampling interval of u(t) in discrete model described in
II-B.3. We define N to represent the number of samples in the
discrete form of u(t), and we write it as a function of the SC
signal duration Ty (N = %); u; is zero if there is no neural
impulse and is a positive value if there exists an impulse at
time instance 77,. Since the number of impulses in the neural
stimuli is very small compared to the number of samples in
the recorded SC signal, we can represent the neural stimuli as
a sparse vector in discrete domain for our analysis similar to
[30].

We solve the differential equation in (2) assuming the sweat
duct is empty at time ¢ = 0, similar to [2], [29]-[31]. Hence,
the solution to the differential equation becomes,

Yp(t) = yp(0)e™ 70 + ho(t) % u(t), 3)

where h(t) refers to the system impulse response represent-
ing an SCR shape and can be represented as a scaled version
of the Bateman function. Here, the operator ‘x’ represents the
convolution operation. h.(t) can be written as follows,

1 _t _t .
Tr — T . >
hT(t){”_”(e CTE R0

0 ;  otherwise

2) Tonic Component: We utilize a summation of several
shifted and weighted cubic B-spline functions to model the
tonic component as in [45] and represent it with the following
convolution operation,

ys(t) = ¢(t) * Q(t)’ 5

where ¢(t) is the cubic B-spline function and ¢(t) =
Zf;ol g;6(t — (j —1)As) is an alternate representation of the
cubic B-spline functions coefficients denoting the scaling and
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shifting operations. Here, P is the number of different shifted
and scaled cubic B-spline waves used. A is the knot size
of the cubic B-spline function, which is an indicator of the
smoothness of the tonic component. In this study, we select
A = 6 seconds, the same as the maximum value of the decay
time that we allow. We choose this value assuming a small
increase in the tonic component during an SCR [2].

3) Discrete Model: If SC is periodically sampled with a
period of T}, for M measurements, we can write the discrete
observation equation as follows:

yr = yp(KTy) + ys(KTy) + v, (6)

where £ € {1,2,--- , M} and vy represents the discrete
measurement errors. We model v, as a zero mean Gaussian
random variable. As we are interested in estimating the model
unknowns, we write the discrete model for y;, as follows based
on (3) and (5):

Yk = agYp, + bru+ crq +vg, (7N
—_———— =~
phasic tonic
KTy
where a, = e 7@, by = [k (KT,) h (KT, —
T
T.) h+(T,) 0--- O] , € = [w(kTy +
N— k'Ty
T’(lr T
As) ¥(KTy) (KT, —As) Y(kT,—(P=1)A)] su=
[ur  ug uyn]' represents a sparse vector containing

all the input neural stimuli amplitudes over the entire signal
durationandq = [q; ¢2 --- qu]' represents all the coef-
ficients of the cubic B-spline basis functions and y,,, = y,,(0).
Lety =[y1 2 ym) ' A =[a1 as an)’,
BT = [bl b2 b]u]—r, C= [Cl Co CM]T, and
v =[n un vm]T. As yp, is unknown, we also
consider it as an unknown parameter. Therefore, we define
a new parameter vector § = [ 7T Ypo |, which we plan to
estimate. We assume, T, = LT, where L is an integer. Please
see supplementary information for details on v (¢) generation.
Now the sampled data vector y is related to the sparse vector u
representing the neural stimuli through the following equation:

y = ATypo +Bru+ Cq +v. 3
—_— =
phasic tonic
6 T T
51 20"_ fr 20'r
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Fig. 2. Histograms of the Estimated SCR Shape Parameters in
[32]: Red and green bar plots correspond to the histogram plots of the
estimated rise time 7, and decay time 74 in [32], respectively. Red and
green curve correspond to the corresponding fitted normal distribution
probability distribution function. Red and green vertical line correspond
to the locations of the means u, and pgq of the corresponding dis-
tributions, respectively. o, and o4 denote the stand deviations of the
respective distributions.

4) Priors on SCR Shape Parameters: Different SCR shape
parameters have been explored for deconvolution in several
studies [6], [7]. Previously, prior knowledge on the SCR
shapes helped the development of fixed-parameter based ap-
proaches [6], [7]. However, the use of fixed SCR shape pa-
rameters makes it very difficult to obtain accurate estimation.
On the contrary, the manual selection of the SCR shape
parameters can be very cumbersome and time-consuming.
Recent advancements of the sparse system identification based
approaches iterate between sparse neural stimuli estimation
and SCR shape parameters estimation step in a coordinate
descent manner [29]-[32]. In our previous study in [1], we
incorporate tonic component separation along with the esti-
mation of the SCR shape parameters. The approach showed
promising results in separating the tonic component along
with finding a solution for the neural stimuli and SCR shape
parameters. However, this might not hold in a worst-case
scenario. In some cases, the minimum might not be achieved
inside the physiologically feasible set when the problem has
many degrees of freedom, and it might be achieved on the
boundaries. Moreover, additional flexibility of estimation SCR
shape parameters in the optimization formulation may lead to
over-fitting [46]. To avoid such scenarios, we include physio-
logical priors while solving the optimization problem similar
to [47]. We assume that the individual SCR shape parameters
are Gaussian distributed with some mean and variance. Figure
2 shows the distribution of the estimated parameters in our
previous work [32]. Later, we use this information as a prior
in the optimization formulation.

C. Estimation

1) Optimization Problem Formulation: We use the same ap-
proach as in our previous work [32] for pre-processing step
which is provided in the supplementary materials. After pre-
processing, we obtain y with 2 Hz sampling frequency (i.e.
T, = 0.5 seconds). We would like to recover u with 4 Hz
sampling frequency (i.e. 7, = 0.25 seconds). In order to
estimate u, 6, and q, using discrete representation in (8), we
formulate the following optimization problem while assuming
the sparsity constraint on u and constraining tonic component
as always less than or equal to the SC signal (i. e., Cq < y):

minimize .J(6,u,q) = 31y — Aryp, — Bru— Cql[3 + \illqlf3

subject to T < T ) < Ypo < Y1,
u = Oa““HO <<N5Cq-\<Y7

where 7™ and 7™" are the upper and lower bound of
the SCR shape parameters. Here, we include the l5-norm
penalization term with regularization parameter A\; to avoid
over-fitting while solving for the tonic component coefficients
q. The above optimization formulation is a sparse recovery
problem as ||ullp < M < N, where M is the number of
samples in y. We encourage the sparsity for u with /,-norm
(0 < p < 2) regularization as a relaxation to the [p-norm. We
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re-write the optimization problem as follows:

1
J(0,u,q) = gHy —Aryp, — Bru— Cq”g

minimize
+Adllallz + Aellull; )
subject to 7™ T < T, 0 < ypy < w1,
u=0, Cgxy,

where Ao is a regularization parameter which determines
the sparsity level for u. We can solve the inverse problem
of finding a non-negative u in (9) with a specific sparsity
level using the iterative least squares (IRLS) approach Focal
Underdetermined System Solver (FOCUSS+) algorithm [48].
Finally, inspired by the work in [47], we also consider the
priors on SCR shape parameters based on the estimations in
[32]. We assume that among different individual the rise times
7, and decay times 74 are Gaussian distributed with means p,.
and ug with corresponding standard deviations o, and oy,
respectively. The optimization formulation with the priors on
the SCR shape parameters becomes as follows:
1
minimize J(0,u,q) = =|ly — A, yp, — B-u— Cql[3
0,u,q 2
+ llalf3 + Aol ul2
A3 9 M 9
+ TcEHTT — prll2 + @Hﬂl — pallz (10)
subject to 7N < 7 < 7T 0 < Ypo < y1,u =0, Cq <y,

where A3 and A4 are the regularization parameters. In this
work, we use Ag = Ay = 1 x 107!, We select u, = 0.650571,
pa = 2.77325, o, = 0.212443 and o4 = 0.521739 based on
the results in [32].

2) Generalized Cross-Validation for A\1 and X\, We used the
following GCV function to have a valid definition for tall
matrix C for estimating A\; [49],

MH(I _Hx\1)’gs”%
(Trace(I — Hy,))?
0< )\ <1x107%,

(1)

minimize G1 (A1) =
A1
subject to

where gy, = (y — A;yp, — B-u) and H), is the influence
matrix. For this case, Hy, = C(C'C+ A I)C".

FOCUSS+ allows us to obtain a solution for u such that the
number of non-zero elements is predefined. We use FOCUSS+
for the initialization step. Once a reasonable initialization has
been obtained, in each iteration of the IRLS algorithm, we use
GCV for estimating an appropriate regularization parameter
Ao similar to [29], [30], [34], [35]. This combination of GCV
and FOCUSS+ algorithm is known as GCV-FOCUSS+ [50].
Zdunek et al. [50] used the following optimization formulation
with singular value decomposition (SVD) for GCV:

M 2
{M s Vi (a;f‘/\f,\Z)
2
M A
[Zi—l () }

0< )X <1x107*

min}i\mize Ga(A2) =
2

subject to

where v = RTyT =

T .
[ QP v | withy, =y—
A;yp, — Cq, and B, Pg

= REQ" with P, = diag(Ju;[>7?)

and X = diag{o;}; R and Q are unitary matrices and o;’s are
1

the singular values of B, PZ. The details of GCV-FOCUSS+
is given in supplementary information.

We use a coordinate descent algorithm similar to our previ-
ous work in [1] to solve the optimization problem in (10). The
detailed algorithm is provided in the supplementary materials.
We run the algorithm for several random initializations of
0 and take the result that minimizes the least square error
between the observed and reconstructed signal.

[1l. RESULTS

We have applied our approach and decompose the SC mea-
surements recorded from 109 participants from five datasets
provided in Table I and separate the tonic components y(¢)
and phasic components y,,(¢). During each decomposition, we
have recovered the underlying neural stimuli u(t), rise time
(7,), decay time (74), and the initial condition of the phasic
component y,,. We have considered the signal segment from
200 seconds to 400 seconds for our analysis for Dataset 1, 2,
4, and 5. For Dataset 3, we have considered the signal segment
from 100 seconds to 300 seconds for our analysis as the
experimental duration for some of the participants is shorter
than 400 seconds. Figure 3 shows example results for one
female participant and one male participant. Figure 3 shows
that we are successfully able to detect the SNS activation
after each auditory stimulation. The rest of the results from
experimental data are provided in supplementary materials.
The estimated rise time (7,.), decay time, number of pulses
(|[al|o), multiple correlation coefficient (R?), regularization
parameters (A; and \s), deconvolution run-times are provided
in the supplementary material for all 26 participants from
Dataset 1.

Figure 5 shows the histogram of the estimated SCR shape
parameters from 109 participants. Means of the histograms are
estimated to be u,- = 0.7274 and pg = 2.8629 seconds for rise
times and decay times, respectively. Corresponding standard
deviations are o, = 0.1146 and o4 = 0.1491 seconds, respec-
tively. The R? values are greater than 0.95 for all participants.
The high values of R? SC data suggest that our proposed
algorithm can successfully decompose the SC recording in
its constituent components and separate the tonic and phasic
components. The corresponding quantile-quantile plots for the
model residuals are also given in the supplementary materials.
The quantile-quantile plots approximately follow a straight
line denoting the Gaussian structure in the residuals. Slight
deviations from the straight line also suggest that there is a
scope of improvement in the system model.

To perform an efficacy analysis of how our algorithm
performs in distinguishing between event-related and non-
event-related SCRs in Dataset 1, we have derived receiver
operating characteristics (ROC) curves [51]. We label all the
SCRs that have been detected within 5 seconds after auditory
stimuli as the event-related SCRs (positive class). The rest of
the detected SCRs are labeled as the non-event-related SCRs
(negative class). We consider the amplitudes of the SCRs as
the classification scores within the subjects for obtaining the
ROC curves [51], [52]. The results show that the ROC curves
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Fig. 3. Estimated Decomposition of the Experimental SC Signals for One Female Participant and One Male Participant: In each of the

panels, i) the top sub-panel shows the experimental SC signal (blue stars), the reconstructed SC signal (red curve), the estimated tonic component
(green curve), and the timings of the auditory stimulations (gray vertical lines); ii) the bottom sub-panel shows the estimated phasic component
(blue curve), estimated neural stimuli timings and amplitudes (black vertical lines) due to SNS activation and the timings of the auditory stimuli (gray
vertical lines). The number before the hyphen in the participant ID represents the dataset ID based on Table |
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Fig. 5. Histograms of Estimated SCR Shape Parameters using Our
Approach: Red and green bar plots correspond to the histogram plots
of the estimated rise time 7. and decay time 14, respectively. Red and
green vertical line correspond to the locations of the means p and pg
of the corresponding histograms, respectively. o and o4 denote the
corresponding standard deviations, respectively.
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104
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Fig. 6. Estimation Accuracy of SCR Shape Parameters in Different
Noise Levels: Red and green solid lines denotes the mean percentage
error for rise times and decay times from simulated data with different
noise levels. The dashed lines corresponds to the 95% confidence
interval. The data is simulated using the obtained results from the exper-
imental data in Dataset 1. As noise is added to the phasic component
prior to addition of tonic component, the SNR is given with respect to the
phasic component.

SNR

Fig. 7. Average Amplitude Error of Estimated Neural Stimuli in Dif-
ferent Noise Levels: The blue solid line denotes the average amplitude
error of the neural stimuli from estimated data with different noise levels.
We have defined the average amplitude error as |||a||1 — [[u]|1]/||u]]o,
where @ and u represent the estimated and the ground truth neural
stimuli, respectively. The data is simulated using the obtained results
from the all experimental data in Dataset 1. As noise is added to the
phasic component prior to addition of tonic component, the SNR is given
with respect to the phasic component.

have the area under the curve (AUC) ranging from 0.5611 to 1
with a median of 0.8636 and a mean of 0.9130. Moreover, we
normalized the estimated u for each participant and combine
them to obtain an overall ROC curve. The corresponding
overall AUC is 0.864 for Dataset 1. All the ROC curves are
provided in supplementary materials.

We simulate data with noise to investigate the efficacy of
our approach. We use the results obtained from Dataset 1
to simulate data for 26 participants. In this case, we have
ground truths to compare with the estimated unknowns. Our
deconvolution approach successfully estimates neural stimuli
along with the SCR shape parameters, i.e. the physiological
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R? values for the reconstructed SC data with different noise levels. Th
data is simulated using the obtained results from the all experimente
data in Dataset 1. As noise is added to the phasic component prior ti
addition of tonic component, the SNR is given with respect to the phasi
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system parameters. Figure 4 shows example deconvolutior
from simulated data for one female and one male participant
with 25 dB SNR with respect to phasic component. Th
minimum R? for the simulated data with 25 dB noise leve
is 0.9872. Figures, estimated system parameters (7, and 74,
estimated number of pulses (|[uflo), estimation errors, an
the multiple correlation coefficients (R?) for the results for
all the simulated data with 25 dB SNR are provided in the
supplementary materials.

We also simulate data with different noise levels to see how
our approach performs in terms of estimating the unknowns
and reconstructed signal. We have used the results obtained
from the experimental recordings for all 26 participants to
generate 26 signals for each level of noise. We have performed
deconvolution to estimate the SCR shape parameters. After-
wards, we have calculated the percentage error for each of the
participants. Figure 6 and 7 show how the average estimation
error increase as the noise level is increased. Similarly, Figure
8 shows how the reconstruction error decreases and Figure 9
shows how the R? value decreases with the increase in the
noise level.

To compare our method with the other existing approaches,
we have used synthetic simulated data. We have used the
neural stimuli, the SCR shape parameters, and the cubic-
spline coefficients obtained from the deconvolution of the
experimental recordings of male subject six to simulate the
data. We have added Gaussian random noise with 25 dB SNR
with respect to the phasic component. We have simulated the
data with two different sampling frequencies. We simulated
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Fig. 10.  Performance Comparison of Proposed Approach with

Existing Approaches for Simulated Data: Each panel shows the
decomposition performance based on simulated SC signal with 25 dB
noise. The panels from top to bottom show the results obtained using
CDA - Ledalab [5], DDA - Ledalab [6], DCM - PsPM [25], MP - PsPM
[26], cvxEDA with three different configurations [7], sparsEDA [28], and
our proposed approach, respectively. In each panel, blue stars represent
the simulated data, pink vertical lines represent the ground truth neural
stimuli, black vertical lines represent the recovered neural stimuli, the
green curve represents the tonic component, the black dotted curve
represents the ground truth for the tonic component, and the red curve
represents the reconstructed signal. The estimated neural stimuli for all
the panels except for the last one are normalized from zero to one to
avoid any amplitude scaling originating from different methods and to
have a fair comparison.

data with 2 Hz sampling frequency for performing deconvo-
lution with our approach. For other methods, we chose a 4
Hz sampling frequency. We specifically do this to show that
even with lower sampling frequency, our algorithm performs
reasonably well and able to obtain u with 4Hz resolution while
performing in a compressed sensing regime (M < N). Figure
10 shows the decomposition of tonic, phasic component, and
recovered neural stimuli using CDA - LedalLab [5], DDA -
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LedaLab [6], DCM - PsPM [25], MP - PsPM [26], cvxEDA
with three different configurations [7], sparsEDA [28], and
our proposed approach. We have used default settings for
the parameters for all the approaches except for cvxEDA
and sparsEDA. For cvxEDA, we have used the knot size for
cubic B-spline functions to be the same as our approach for
a fair comparison. Further, we have considered three different
configurations for 7, and 74 including optimized parameters
from our approach for cvxEDA.We perform the comparison
with different physiological parameters only with cvxEDA
because it considers similar system modeling and optimization
formulation as ours. Therefore, this comparison will be fair
if carried out against cvxEDA. The results show there are
differences in the solution for different selected parameters.
In the case of sparsEDA, we have selected the minimum
separation between two neural impulses and the threshold for
the neural impulse amplitudes to be zero to have the most less
sparse solution. DCM - PsPM and MP - PsPM perform linear
band-pass filtering for removing the tonic component followed
by a DC shift to avoid all the negative value in the phasic.
We have performed the adjustments to the obtained results
accordingly so that the visual comparison is fair. Qualitatively,
the results show that our algorithm is performing well in
terms of capturing the neural stimuli related to the SCRs and
discarding small spikes which are comparable to noise spikes.
DCM - PsPM and MP - PsPM detects large pulses where there
are no pulses mainly because the signal is distorted in the pre-
processing step. As observed in Figure 10, other approaches
except sparsEDA are providing less sparse solutions compared
to the ground truth. Some of the pulses detected by these
algorithms are capturing noise. In this case, our proposed
approach is performing well in balancing between the sparsity
level and discarding noise. On the other hand, sparsEDA is
providing an overly sparse solution leading to missing some
of the obvious neural impulses captured by all the other
algorithms.

In order to perform further comparison between the decon-
volution results from different algorithms, we have added noise
noise to the raw experimental data. The noise level is selected
in a way that the signal SNR is 25 dB for corresponding phasic
component estimated during deconvolution. We performed
deconvolution on six participants as example. The results are
shown in supplementary materials.

IV. DISCUSSIONS

Decomposition of SC signals into its constituents along with
the estimation of the neural stimuli, the rise and decay times of
the SCRs is challenging. The challenges includes identification
of the sparsity level for the neural stimuli as well as the
smoothness of the tonic component. An inaccurate estimation
for the smoothness of the tonic component can make the
estimation of rise times and decay times inaccurate. As least
square formulation has many degrees of freedom, optimization
without appropriate physiological constraints may lead to a
problem that is not identifiable. The problem becomes much
more challenging in the case of under-determined systems, i.e.
when the M < N. Presence of the smallest amount of noise

can lead the system response to a physiologically infeasible
solution. We incorporate necessary physiologically plausible
constraints to make the optimization problem tractable. Firstly,
we consider the sparsity constraint on the neural stimuli.
In our previous works in [1], [30]-[32], we constrained the
SCR shape parameters within physiologically feasible bounds
(™" = [0.10 1.5]" and 7™ = [1.5 6]T). In addition to
that, we impose Gaussian priors on 7, and 7,4. Further, we have
chosen the regularization parameters A3 and A4 such that the
solution for 7, and 74 do not converge to the boundary. To
achieve that, we have first started with a very small value of
Az and A4 such 1 x 107 and ran deconvolution on random
selected twelve participants from Dataset 1. However, for some
of the participants, the solution for 7, and 74 converges to
the boundary. Therefore, we gradually increase A3 and Ay
by a factor of 10 until all the stagnation to boundary is
avoided. Afterward, we fix the A3 and )4 for the rest of
the 97 participants from all the five datasets. Figure 5 show
that none of the estimated parameters are near the boundary
constraint. We also impose constraints on the smoothness
of the cubic B-spline basis function by including Il5-norm
penalization. Finally, we incorporate the GCV technique [49]
to have appropriate estimates of A\; and A, to achieve a balance
between capturing the data and residual error.

As we previously mentioned in [30], although the opti-
mization problem in (10) is convex in terms of u and q
[1], [7], it is non-convex for 7. During the iterations of
coordinate descent, the solution may stagnate at local minima.
The stagnation of solution at a local minima leads to an
inaccurate separation of tonic and phasic components, some
part of the tonic component might be captured in the phasic
component. Therefore, we initialize the optimization problem
with several random initializations for SCR shape parameters
7. Among all the deconvolution results using these random
initializations, we choose the one that minimizes the least
square error. The larger number of random initializations
means a greater probability of obtaining global minima, i.e.
there is a trade-off between the probability of obtaining the
optimal solution and the number of random initializations. In
this study, we have considered eight random initializations for
the system parameters and we ran in the eight CPU cores in
parallel. This way we reduce the probability of convergence
to a local minimum. Although it is still possible to converge
a sub-optimal solution, we have empirically demonstrated on
experimental data collected from 109 participants shown that
our algorithm is performing well in terms of modeling the SCR
shapes and reducing the number of the unwanted pulse due to
incorrect shape parameters. Moreover, based on the simulated
study, Figure 6 shows that our approach can reliably estimate
the SCR shape parameters with only eight initializations for
moderate noise levels.

In this study, we obtain u with a higher resolution than
the recorded signal. For instance, in our study, the sparse
vector u has a length of 800 with 4 Hz sampling frequency
while the sampled signal has 400 samples with 2 Hz sampling
frequency. We are specifically interested in the accurate timing
and amplitude of the SNS activation rather than the phasic
component. In contrast, we are more interested in the tonic
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component itself rather than its cubic B-spline coefficients as
the exact cause and appropriate system theoretic modeling of
tonic component is unknown. Further, as the body tries to
regulate its skin moisture, i.e. the tonic component depending
on the cooling demand in the body. Tonic component itself
is an indication of the factor related to the thermoregulation
rather than its coefficients. Therefore, we use much less
number of coefficients in vector q in order to model the tonic
components compared to u. In this study, we have used 39
coefficients to model 200 seconds of SC signal.

Noise can corrupt SC signal, and sometimes small noise
spikes can be comparable to the small insignificant SCRs.
To avoid such cases, we used an internal threshold in each
iteration of GCV-FOCUSS+ part while estimating u. If an
estimated non-zero element in u is smaller than the threshold,
that particular value is set to be zero. In this study, we used 3
as the threshold. This threshold works well for almost all the
experimental and simulated data. However, our algorithm has
detected some small noise spikes as SCRs in simulated data
for a few participants. The reason of detecting more spike
for these signals is that there are more noise added to these
signals compared to the other signals. Although we mentioned
we have added noise so that SNR is 25 dB, the SNR value
of the simulated data is with respect to phasic component.
For these particular simulated signals, the phasic components
have more energy compared to the other simulated signals.
Because of this corresponding noise power is also higher.
Some noise peak amplitudes are comparable to noise and in
few places they have been detected as SCRs. Furthermore, the
estimation of tonic component is also slightly inaccurate in
places where there is a noise spike that has been detected as
an SCR. However, this only happens for a few badly condition
cases where noise level is comparable to SCRs.

From our results, we can see the R? values are close to
1, denoting that model fits are very good in case of reason-
able noise level. Quantile-quantile plots in the supplementary
material also follow approximately a straight line. However,
there are still slight deviations from the straight line in the
quantile-quantile plots for a few experimental data although
for simulated data there no such case. This indicates there is
a scope of improvement in the system modeling. Specially
modeling tonic component with arbitrary cubic B-spline func-
tion might not be the most effective way to model the tonic
component. Therefore, there is a need for development of tonic
component with systematic way based on physiology.

As three unknowns (i.e. u, q, and @) have been solved
in a coordinate descent manner along with the GCV tech-
nique to minimize the optimization problem in (10) with
appropriate physiologically plausible solution, it takes more
time to complete the deconvolution compared to some of
the previous methods. The time elapsed for the deconvo-
lution with our approach for Dataset 1 is provided in the
supplementary materials. The deconvolution time required for
LedalLab (CDA), LedaLab(DDA), PsPM (DCM), PsPM (MP),
cvxEDA, sparsEDA and our approach for the deconvolution
comparison shown in Figure 10 is respectively 1.45 seconds,
8.05 seconds, 153.23 seconds, 0.3162 seconds, 0.211 seconds,
0.1563 seconds, and 89.95 seconds. The other approaches do

not concurrently optimize the problem for the SCR shape
parameters, the sparsity neural stimuli, and the smoothness
level of the tonic component. Although our approach takes
more time to deconvolve, our approach outperforms previous
approaches in terms of balancing between discarding the noise
and capturing significant SCRs.

Perhaps, the most appropriate way of evaluating a method
would be to use a dataset that contains the recording from
the nerve endings to the sweat glands and the corresponding
SC recording similar to the study in [53]. However, we could
not perform such a comparison because of the unavailability
of such datasets. Bach et al. [54] have suggested evaluating
metrics by an algorithm’s ability to separating the experimental
event vs the non-events or the ability to separate a high-arousal
condition. We have performed a similar analysis to show our
algorithm’s ability to be able to distinguish between separating
the experimental event-related vs the non-event-related SCRs
obtained corresponding ROC curves. Nevertheless, our algo-
rithm is designed to capture the SCRs for emotional events as
well as the spontaneous SCRs which might not be related to an
emotional event but originating from the natural physiological
control of the body. For example, visually it can be seen
that for some participants, there are a lot more spontaneous
pulses than the number of auditory stimuli, for some other
participants the numbers of SCRs are a lot less than the
numbers of provided stimuli. Therefore, there is a limitation
in such an evaluation. Distinguishing between event-related
and non-event-related SCRs will also heavily depend on how
a detection scheme is devised for a specific algorithm and the
scheme can be different for different algorithms to obtain the
best performance. For example, some algorithms use some
sort of thresholding as post-processing before performing
the classification [25]. On the other hand, our evaluation
does not involve any post-processing. Therefore, we did not
perform any comparison based on such evaluation with other
algorithms to avoid any unfair comparisons. The objective of
the current study is not to show its ability to separate the
event-related response but to perform a plausibility assessment
with a large dataset of 109 participants and show its ability
to capture any phasic response regardless of its reason for
the occurrence. We have further demonstrated the performance
evaluation of our approach in terms of estimating neural stim-
uli and the physiological system parameters in simulated data
at different noise levels. Further, we qualitatively demonstrate
how results from our approach compare with other approaches.
The qualitative comparison shows that results are correlated,
and our approach is performing better in terms of balancing
between noise reduction and capturing the underlying phys-
iological phenomenon. Apart from the visual demonstration
for comparisons with different previous algorithms, we have
also included a list of estimated R? values and the estimated
numbers of neural impulses from the noisy experimental data
in the supplementary information. The results show that almost
the same R? is obtained by detecting a greater number of
pulses which could be an indication of potential over-fitting for
the other algorithms except for sparsEDA, where our algorithm
has estimated fewer numbers of impulses but had the same
level of model fit. However, the lack of comparative metrics
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between different algorithms can be considered as a limitation
of the study.

V. CONCLUSION

In this study, we proposed an approach to decompose
SC recordings into its constituents to accurately identify
the SNS generated neural stimuli to sweat glands and the
physiological system parameters. We propose a GCV and
coordinate descent-based deconvolution algorithm for simulta-
neously estimating the tonic component, neural stimuli and the
physiological system parameters by automatically balancing
the smoothness of the tonic component, the sparsity of neural
stimuli, and the residual error. Analyzing experimental and
simulated data we showed that our approach successfully
uncovers the neural stimuli due to the known auditory stimu-
lation times. We have performed comparisons with six widely
used previous approaches and have qualitatively shown that
our approach outperforms previous approaches in terms of
balancing between the discarding noise spikes and capturing
the significant neural impulses.

In the future, we plan to exploit the state-space formulation
of SC and implement a Bayesian inference framework to
reduce the time complexity. The obtained SNS activities can
be used to track the cognitive arousal state [3], [9], [55]. For
further accurate estimation of emotional arousal, we intend to
utilize the inferred SNS activity from SC recording with our
approach and to combine with other physiological signals sim-
ilar to [17], [56]-[61]. Finally, we plan to design appropriate
control measures in order to regulate the arousal level inferred
using the deciphered SNS activity, similar to the strategies in
[62]-[65].
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