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1. Introduction

This paper focuses on stability of stochastic functional dif-
ferential equations (SFDEs) with random switching. The dis-
tinct features of the paper include general nonlinear stochastic
functional differential equations and interactions with discrete
events represented by random switching processes. In many real
world scenarios, for example, in queueing systems, biological
and ecological systems, finance and economics, control engineer-
ing, networked systems, wired and wireless communications, as
well as other related fields, delays are often unavoidable. Such
dynamic systems have memory and include the past depen-
dence (Kolmanovskii & Myshkis, 1992). Because dynamic systems
are often corrupted by noise, stochastic functional differential
equations (SFDEs) have been studied extensively in the past
decades; see Federico and @ksendal (2011), Mao (1999), Mo-
hammed (1986) and Scheutzow (2005) and references therein.
From another angle, in addition to noise appearing in an analog
fashion, random switching frequently takes place in a finite set
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resulting in the systems being hybrid, in which continuous dy-
namics and discrete events coexist and interact. With the pressing
need and taking the above points into consideration, this paper
concentrates on the SFDEs with random switching. Many systems
are in operation for a long period of time, thus it is necessary to
examine stability of the systems. Various notions of stability for
stochastic functional differential equations have been considered
using Razumikhin methods and Lyapunov functionals in Bao,
Yin, and Yuan (2016), Guo, Mao, and Yue (2016), Mao and Yuan
(2006), Shaikhet (2013) and Zhao and Deng (2014) for systems
without switching and in Li and Mao (2012), Nguyen and Yin
(2020) and Yuan and Mao (2004) for systems with switching. In
the literature, treating stochastic differential equations evolving
delays and switching, the past-dependence often appears to be in
certain specific forms; see Li and Mao (2012) and Yuan and Mao
(2004) resulting in the problems being still finite dimensional.
Similar to the counterpart of functional differential equations,
by examining the segment processes, stochastic functional dif-
ferential equations are generally infinite dimensional. Recently,
inspired by the work of Dupire, Nguyen and Yin in Nguyen and
Yin (2020) obtained sufficient conditions for stability of SFDEs
with regime switching by using appropriate Lyapunov function-
als. Nevertheless, the systems considered in Nguyen and Yin
(2020) are autonomous, i.e., the coefficients do not depend on the
time variable. Moreover, the main theorems in Nguyen and Yin
(2020, Theorem 3.2), as well as in Li and Mao (2012, Theorem
1), Yuan and Mao (2004, Theorem 2.1), and references therein,
use conditions that require the existence of certain Lyapunov
functionals satisfying suitable conditions at each discrete state i
together with some uniformity. Such conditions can be restrictive
and difficult to verify in applications.
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The novelty and contribution of this paper can be summa-
rized as follows. We provide weaker and more verifiable con-
ditions for stability of more general stochastic delay systems
allowing the coexistence of continuous dynamics and discrete
events with time-varying delays, which generalize the results
of Li and Mao (2012), Nguyen and Yin (2020) and Yuan and Mao
(2004). Our results can be applied to linear stochastic differential-
difference equations, nonlinear stochastic functional systems un-
der linearization, multi-agent systems (Zong, Li, & Zhang, 2019),
controls of networked systems (Donkers, Heemels, Bernardini,
Bemporad, & Shneer, 2012), and time-varying delay systems (Kao
& Lincoln, 2004; Yao, Zhang, & Xie, 2020; Zhou, 2019). In addition,
our approach enables one to generalize the results in the afore-
mentioned references for stability of more complex and more
general systems.

The rest of the paper is organized as follows. Section 2 is de-
voted to new conditions for exponential stability in probability of
SFDEs with regime switching. Section 3 discusses our results and
provides some examples. Further remarks are made in Section 4
to conclude the paper.

2. Stability of stochastic functional differential equations with
Markov switching

We work with a complete filtered probability space
(82, F, {Ft}t>0, P). Let R" be Euclidean space with Euclidean norm
|], Ry := [0, 00), W(t) be a d-dimensional standard Brownian
motion, a(t) be an ergodic Markov chain independent of W(t)
taking value in a finite set M with invariant probability measure
{vk : k € M} and generator Q = (qu)kiem, and r > 0. For
X(t) : R —> R" we use X; to denote the segment function,
ie, Xy .= {X(t +5s):se€[-r,0]} € C:=c([-r, 0], R"), the space
of continuous functions endowed with the sup-norm || - || and let
b(-,,):CXMXRy = R, o(-, ) : C X M x Ry — R™4,
Consider the stochastic functional differential equation

dX(t) = b(X;, a(t), t)dt 4+ o (X;, a(t), £)dW(t), (1)

and denote by (X%(t), «!(t)) its solution with initial data X, =
¢, (0) = i. Use Py; and E4; to denote the probability and
expectation corresponding to initial data (¢, i). To simplify the
notation, in what follows, the solution of (1) will be denoted by
(X(t), a(t)); we will only use the notation (X?(t), &!(t)) when it is
necessary.

Suppose V(x) € C*(R",R,), the set of twice continuously
differentiable functions, V(x) = 0 only if x = 0, we define the
operator on C x R, by

1
[£iV1(9, t) = Vi(p(0)b(¢, i, t) + Etr(Vxx(¢(0))2(¢, i,t)).

where X(¢,i,t) = o(¢,i, t)o'(¢,i,t). Note that (¢,t) in
[£iV](¢, t) is the variables of [£;V] instead of V. Throughout this
paper, we assume the following assumptions hold.

Assumption 1. For each i € M, the functions b(¢,i,t) and
o(¢, 1, t) are locally Lipschitz continuous with respect to the first
variable.

Assumption 2. Let V : R" — R, := [0,00) be a twice
continuously differentiable function satisfying
c1]x]? < V(x) < c2|x|?, Vx € R for some ¢y, ¢; > O. (2)

Suppose that there exist Ag > 0, m(i) > 0, and a(i) € R for
eachi € M, q € [0, 1], and a probability measure u, (allowed to
depend on t) on [—r, 0] such that if ||¢|| < Ao

[£iV1(g, t) = a(i)V(¢(0))
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0

+m(i) | [V(ONI[V((s))]'~puc(ds), (3)
and
> _(ati) +m(@iy; <0, (4)
ieM
where y = 0 A minea{a(i) + m(i)}, and o =

0 _
maxeo f_, €' (ds).

Assumption 3. There exist a constant ¢ >0, q e [0,1], and
a probability measure i, on [—r, 0] such that for all (¢,i,t) €
CXMxR4

Ib(¢. i, t)]* + tr(2(, i, t))

0 ~ i~
< CpO)> + | 19(0)* ()T (ds)).

Remark 4. In contrast to the existing works, a(i), m(i) in (3)
depend on states of switching rather than being constants for all
switching states. One can verify conditions for complex systems
at each fixed state i. Moreover, the measures u; and i can
depend on t. Thus our conditions can be used effectively to treat
time-varying delays.

Let 7! and 72 be the filtration generated by W(t) and a(t),
respectively. For an event A, let 14(w) = 1if w € Aand 0
otherwise. Let A € (0, Ag], where Ag is as in Assumption 2.
Define 7, = inf{t > 0 : V(X(t)) > A}.

Lemma 5. There is a constant 0 < H; < oo independent of A such
that

E  (Yeyorse) I Xesr I21F2)
< Hi maXse[e—r,t+r] E(1(14>s}|x(5)|2|~7:§o)7 t>0.

Proof. We obtain from (1) that

SUPsere.en IX(S)] < IX(OI+ [ 1B(Xs, a(s), 5)lds
+ SUPseir e | f; 0(Xus (), u)dW(u)|.

Then, an elementary inequality implies that

(SuPse[t,[Jrr] |X(S)|)2
< 3IX(OP +3r [ 1b(Xs. a(s), s)|ds

2
+3 sUPseqe e |} 0 (Kuy (), AW ()]
Multiplying both sides by 1;, ¢4}, using the fact that 1;;,.,) <
1z, >ty if £ > b, taking conditional expectations on both sides,

and using the Burkholder-Davis-Gundy inequality (which is valid
owing to the independence of «(t) and W(t)), we have that

E(1jzp>t4r) SUPseqe sy IX(S)IIFE )
<3(r + DE [ 1ru=glX (0P
+ [T 1,2 DX, a(s), )| 7ds
+ sUPyeir i S Va5 (Xs, (), S)AW(s)12|FZ ]
< 3(r 4+ DE [ 1ry-q IX(0)?
+ [ =5 DX, a(s), 5)[2ds
t+r 2
+4 [ Vo (D (X, a(s), 5))ds| FZ ]
< 3(r + DE1, g X(0)1?
+12(r + DCE [ [ 1jpm [ IX()?
+ 2 IXEPINX )P g(du) ] ds|F2, ]
< 3(r 4+ DE(1yr -0 IX(0)1*1F2)
F12(r + 1)C [ E(1r, =5 IX ()1 F2 )ds
+12(r + 1)C [ ([E(U ey XS FE)T
X[E(1 ey =) IX ()11 F2, )its(du)] ' =9)ds
<H SUPye(t—r,t+r] E(1{1A>u}|x(u)|2|}—§o)’
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where H; is a finite constant. In the above, we applied Holder’s
inequality for conditional expectations, 1(;,~5; < 17,54 fors >
u,

" Flu)jis(du)|72) = f B(F()1 72, as(du),

s—r

and Assumption 3. O

Proposition 6. There exist p* > 0, C* > 0, and m* > 0 such that
vt >0, ¢l < Ao

Ep i1y IXe I < C* exp{—mt}|p]*". (5)
Consequently, there is a T* > 0 such that

Ep i 1jey=14 X+ 1% < 0.5]1011%", 9]l < Ao.

Proof. It is noted that if (4) is satisfied then y < 0. Let c(i) =
a(i) + &g + m(i)ir, where g9 > 0 is sufficiently small such that
D ieam C(vi < 0. Such an g exists because of (4). For each (fixed)
initial value Xo = ¢, @(0) = i, let a(s) = i for s € [—r, 0] and
consider the function

G(t) = e~ ho @ EiE, 11, VX)) F].

Since F! and F? are independent, G(t) is F!-adapted. We will
show that with probability 1, H(t) := supsc_, {G(s)} is non-
increasing.

Let ty > 0 be fixed. If G(ty) < H(tp), it is easy to derive from
the continuity of G(t) that H(ty + h) < H(tp) for sufficiently small
h. Now, consider the case G(tp) = H(tp), or equivalently, for all
t e [t() -, to],

e Jo° C(ai(s))dsE¢ﬁi[1{rA>t0}V(X(fo))u:go]
IR i1y VIXO)FL],
which together with the fact c(i) >
Eg. il 1izy>t0) VX)) FE]

< Egil iy -0VX(£))| F2]

< et maxie p{—Ci})Eg, il 1y =) V(X (t0))| F2 ]

< exp(—y(to — )Eg,i[ 1z >¢0) V(X(fo))|f§o]~

Although the derivative of fo s))ds is not continuous, it is
piecewise constant, thus, we can stlll obtain (7) by applying Itd’s

"D (AT ) n € Ly,

formula successwely for [(to + h) A 7y,
where ‘L'[ is the nth jump of «(t) after tp. By virtue of Itd’s

formula, we have

> o~ Jo clelt

a(i) + m(i) > y implies that

(6)

e " Oy Xty + )

= e MY (X(1))

+ [0 e o O £, V(X E)de (7)
— [ caltye

[0 e Iy O, (X (1)) (X, au(t), OW(E).

—Jo el Ndsy (x (£ ))dt

Multiplying both sides by
F2Z, we have

1-,~¢) and taking expectation w.r.t.

~ toth i
e Jo i(al(S))dsE@i(l{m>t0}v(x(t0 +h))|}—§°)
_i’ +f; e fs))djE¢,i(1{rA>f0]V(X(tomfgo)
< [ el (1) [LaoVI(Ke. O1F)dE
b ieeyyom [
— T clal())e Jo MR (1, i) VIX(£))|F2 )t
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Since G(ty) = e~ Jo’ @ R, (1,201 V(X (£0)) F2,) and G(to +

_ loth o .
h) < e o CSE, (1 V(X (to +h))|F2,). by applying (8),
Assumption 2, and definition of c(i), we have

D, G(to)

G(to + h) — G(to)
h

< e o CCOBE (1, 1 [ Latig)V 1K 0)IF2,)
~ cla(to))e 0" IR (1, VIX(1)IFE)
< —[b(e(t0)) f°, €= 1y, (du) + so]

xe= o’ C(ai(s))dSEQD,i[]{rA>t0}v(x(t0))|]:§o]

+ bla(to))e o’ cle')s I° b (du)

XEg, il 1=t} [V (X (ONILV (Xeg (W] 7412, .
Moreover, using Holder’s inequality and (6), we have
f Eg,i( 1y 0) [V (X (0)][V (Xgo (1 ))]17q|f§o)ﬂt0(du)

< f_r(Eqs,i(1[TA>t0)V(X(f0))|f§o))q

X (B il Lyt V Xeg (UDIF2 ) pgy (du)
< Epilliey i) VX (00)IFZ] [, €=, (du).

Combining (9) and (10), we get that D, G(tp) < 0. It can be 0 only
if 17, >} V(X(to)) = 0 and then, G(t) = 0, for t > to, it is a trivial
case. If D, G(tg) < 0, G(to + h) < G(to) when h is small. Thus, H(t)
is not increasing. As a result, for t > 0

= limp_, 04

(9)

(10)

e~ o el (7, (ra=0 )V (X(W)| F2)
< SUPue[_r,O]{ Jo el (s))dsE¢ o

In view of (11), we obtain for t > 0
DBy i(1eyon VX (W) FZ) < Kallp 1%,

where K, = cye" ™®iem <) As a consequence,

V@),

11
VXu)IFZ))- a

1{1A>u]

e~ fot cal(s

Ep lVX(E)IF2] < Kpelo €@ sup

ue[—r,0]

Therefore, by virtue of Lemma 5 and (2), we obtain that
.
B ilry>0) X |71 72 < Kselo 5 )2,

where K3 = %1262 Therefore, by conditional Jensen’s inequality
for p € (0, 1), we have

t i
Eg[Lieyoe) X 1P 172 ] < Ksllp]|?PeP Jo c@'sDs, (12)

Since Y c(i)v; < 0, it follows from Bardet, Guérin, and Malrieu
(2010) that there exist p* > 0, C* > 0, and m* > 0 such that

E;eP Jo ctat)ds < ra exp(—m*t). (13)
3

Combi*ning (12) and (13) implies (5). Finally, let T* > 0 be such
that %3 exp(—m*T*) < 0.5, one has

Eg il 111X 1?71 < 0.5]|¢p[|1F".

The proof is complete. O

Lemma 7. For any p and T > O, there exists a constant H,
depending on p and T such that

lpl%
Py i{ta <T} < H, 7

,(@,i) e C x M.
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Proof. Let ¢ = max{|a;| + b;, i € M}. Define

G(t) = e By V(Xirr,) and H(t) = sup G(s).

se[t—r,t]
Hence, by arguments analogous to those in the proof of
Proposition 6 but much simpler (since we do not need to estimate
conditional expectation with respect to ]—'2 ), we obtain that H(t)
is a non-increasing function. Therefore, for any T > 0, one
has Eg iV(Xrar,) < H,||¢||%, for some constant H, > 0. As a
consequence, for any (¢, i) € C x M

AV 2p
Ey.iV (XWA)SHZIWII ’
AP AP

O

Py i{ta <T} <

Theorem 8. Forany ¢ > 0,0 < A < Ay (4p is as in
Assumption 2), there exists a § > 0 such that

Py i{ta =00} = 1—¢if ¢l <4, and

Po{ Ml < 3} > 1— ¢ if |p]) <6, (14)

for some A > 0 independent of ¢, 8.

Proof. In view of Proposition 6 and the strong Markov property
of (X;, a(t)), we have that

Eg il 1 y=ire) 1 Xar= 171 < 278101 %" Kk € Z..

We also obtain from the strong Markov property and Lemma 7
that
Py i{kT* < T4 < (k+ 1)T*}
=Eg i1z > k%) Eg il 1z, <tk 1)1} | Fier* ]

=Eg.ilc >k Ex e atkr) Vo <14

H, (15)
2p*
_AP —Eg i[> k) 1 Xier= 177 ]
_Hallel®
AP
As a result,
P(f).i{tA < OO} = Zk— Pd,l{kT* < Tp < (k+ 1)T*}
Hz||¢>||2” $% gk = 2H, |91
k=l Ap* .
Thus, there exists § > 0 such that Pyi{ta = o0} > 1 —

¢ if ||¢|| < 8. Now, applying Lemma 7 with A replaced by Ay =
(0.75H,8%P*)1/P* we have

< (k+ 1)}
< (k+1)T*}
= Epiliy < B il ey <ternyr | Fir+]

Py {ta = o0, TAg

P(b,i{TA > kT*, 'L'Ak

= Egiljra <k Expe atkr) Tea, <14)

H, .
< FE¢,i[1{rAk>kT*}||XkT*||2p]
2p*
< PO s sy
Ay

Since Z;’io(l.S)*k < o0, it follows from the Borel-Cantelli
lemma that there exists an integer m = m(w) > 0 such that
with probability 1, we have 7, < oo or {ry, < (k+ 1)T*}
for any k > m. Thus, for almost every w € {t4 = oo}, we
have that {t,, < (k+ 1)T*} for any k > m or equivalently, for
t e [kT*, (k+ 1)T*],k > m

VX)) _ 1
C1 ?

IX(t)? < (0.75%H,82P")1/P",
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As a result, we obtain

o In || X(t
be"‘{tll) In I X(6)I )II

A} = Py i{ta =00} > 1 —¢,
for some A > 0. O
3. Examples

We provide some examples in this section. For demonstration
purpose, only relatively simple systems are considered.

Example 9. Consider a linear stochastic delay differential equa-
tion with regime-switching of the form:

dX(t) = [A(ee(t))X(t) + B(e(t))X(t — r)]dt
d
+ 3 TGOX() + Dilalt)X(E — rYdwi(o), (16)
=1
where X(t) € R"; A(:),B(:) : M — R™", G(-), Dj(:) : M —

R™™; Wj(t) are standard and independent Brownian motions for
j = 1,...,d. Moreover, we assume that for each i € M, B(i)
is positive definite. Note that for all x,y € R" and i € M,
2xTB(i)y < x"B(i)x + y " B(i)y. For a symmetric matrix U € R™",
denote AM[U] := sup{x"Ux : x € R", |x| = 1} and let

a(i) = AMI(AT()) + A(D) + B() + L, GG ()],
m(i) = AM[B(i) + Y_i_, D;(D)D] ()],

Considering a Lyapunov function V(x) = |x|* and applying
Theorem 8, one has that under condition (4) with a(i), m(i)
defined above and u, & being measures concentrating on {—r},
(16) is exponentially stable in probability.

Remark 10. In contrast to the existing results, the coefficients in
our conditions can depend on time and switching states. In par-
ticular, m(i) in (3) can depend on the switching states whereas its
counter-part in Nguyen and Yin (2020) (see also Li & Mao, 2012;
Yuan & Mao, 2004) must be a constant. When m(i) is forced to be
independent of i, the condition on a(i) will be more restrictive.
One can check that our conditions for stability in Example 9 are
weaker and easier to verify than that in Nguyen and Yin (2020,
Example 3.2) as well as similar examples in Li and Mao (2012)
and Yuan and Mao (2004). Moreover, while existing results for
stochastic delay systems often cannot handle time-varying delays
or are more restrictive (e.g., using uniform conditions (Kao &
Lincoln, 2004; Nguyen & Yin, 2020; Yao et al., 2020; Zhou, 2019)),
our conditions can handle effectively time-varying delays without
required uniformity.

Example 11. Consider again the example above, however, the
delay T = t(t) € [0, r] depends on time, i.e.,

dX(t) = [A(ee(t))X(t) + Blee(t))X(t — T(t))]dt
d

+ S IGO0 + DX — teawye). )
=1

In this case, we cannot choose measures x and & uniformly in t
as usual. Fortunately, in our conditions, we can choose measures
¢, ¢ concentrating on t — t(t) to verify the conditions as in
Example 9. Note that the measures u, and ji; in our setup can
depend on t.

Compared with the existing results, our results can be readily
applied to examine the stability of stochastic delay systems under
random switching such as Example 9, stochastic functional sys-
tems under linearization, multi-agent systems (Zong et al., 2019),
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controls of networked systems (Donkers et al., 2012). Next, we
demonstrate the utility of our result. For numerous applications,
linearization is an important approach. An immediate question
is: under what conditions, stability of linearized systems yields
the associated nonlinear systems. Consider a stochastic nonlinear
functional system of the form

dX(t) = b(¢(t, X;), a(t), t)dt + o (S(t, X ), a(t), £)dW(t), (18)

where ¢(t, ¢) R x ¢ — R"is an M-grid “approximation
operator” (for some fixed M), i.e.,, for each fixed t, ¢(t, ¢) is
defined as follows ¢(t, ¢) = 224:1 cp(ry) Vo € ¢, for some
“M-grid” points ry, ...,y € [—r, 0] and weights c1,...,cy € R
(depending on t). One cannot store an infinite-dimensional vector
X; in a computer, so a finite dimensional approximation ¢ acting
on segment function is used as above.

Although system (18) is inhomogeneous and depends on
switching, our results allow us verify the condition for stability
at a fixed discrete state. In fact, we can linearize the system at
fixed t and i as follows

~

bly. i, £) = B(i. 0y + o(1y1).
o(y.i,0) = (510, O, ... Gl ) + oy,

where o(-) represents high-order terms. The linearized system of
(18) leads to consideration of the linear system

d
dx(t) = B(oz(t), £)e(t, X )dt + Zc’?j(a(t), 6)e(t, Xe)dwj(e).  (19)

i=1

As in Example 9, we can obtain a sufficient condition such that
system (19) is exponentially stable in probability; and show that
under these conditions, nonlinear system (18) is also exponen-
tially stable in probability.

Applying our results to multi-agent systems, we obtain the
conditions for consentability of multi-agent systems, which gen-
eralize the results in Zong et al. (2019) because a random switch-
ing process is added. The study of the stability of networked
control systems considered in Donkers et al. (2012) can also be
improved because our setting allows the system to be observed
under noises. In contrast to applications in literature, our setting
is more general because we allow both discrete and continu-
ous states coexist and we do not require “uniform” conditions
and still use “local” conditions. To close this section, we note
that our results can be applied effectively to systems in which
time-varying delays are unavoidable (see Example 11). Such de-
lays often occur in networked control systems, ethernet, CPU
scheduling, etc (see e.g., Lincoln, 2000). While there were many
applications on stability of time-varying delay system in the lit-
erature (Kao & Lincoln, 2004; Yao et al., 2020; Zhou, 2019), much
work was restricted to deterministic cases or systems involving
continuous noise only. Our results enable one to capture both
discrete and continuous states.

4. Concluding remarks

Devoted to stochastic functional differential equations with
random switching, this paper established stability under weaker
and more verifiable conditions compared to the existing litera-
ture. We established the results by using probabilistic techniques
to handle functional hybrid systems. For future study, it would be
interesting to treat stochastic functional differential systems with
random switching and additional jumps as in the setup on Chen,
Chen, Tran, and Yin (2019), in which we face the difficulty of
treating non-local behaviors of the underlying systems.
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