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Abstract. In numerous papers, the behavior of stochastic population models is investigated
through the sign of a real quantity which is the growth rate of the population near the extinction
set. In many cases, it is proven that when this growth rate is positive, the population is persistent
in the long run, while if it is negative, the population goes extinct. However, the critical case when
the growth rate is null is rarely treated. The aim of this paper is to provide a method that can
be applied in many situations to prove that in the critical case, the process converges in temporal
average to the extinction set. A number of applications are given for stochastic differential equations
and piecewise deterministic Markov processes modeling prey-predator, epidemiological or structured
population dynamics.
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1. Introduction. Much effort in population biology has been devoted to un-
derstanding under what conditions interacting populations, whether they be viruses,
plants, or animals, coexist or go extinct. The variation of environmental factors such
as temperature, precipitation, and humidity inherently affects the growth rates of
the species. There is rich literature showing that the interplay of biotic interactions
and environmental fluctuations can facilitate or suppress the persistence of species
or disease prevalence; see [16, 9, 1, 8, 6] and the references therein. There has been
intensive attention paid to modeling and analysis of ecological and epidemiological
models under environmental stochasticity.

As one of the simplest models, the evolution of a single species can be modeled
by the stochastic logistic equation:

(1) dXt = Xt<7“ — ]{JXt)dt + O'Xtth.

The key quantity is the so-called stochastic growth rate A :=r — U—; It is well-known
that if A < 0, the population goes extinct almost surely, that is, lim; ,. X(¢) = 0
a.s. In the case A > 0 the population is persistent and the transition probability of
(X (t)) converges to its unique invariant probability measure on (0, 00). In the critical
case r — %2 = 0, the process is null-recurrent, and X (¢) does not go extinct almost
surely but also does not have an invariant probability measure on (0,00) and the
time-average + fot X (s)ds converges to 0 almost surely. Readers are referred to [14]
for the proof and more details. However, it requires more advanced and dedicated
methods to analyze higher dimensional systems, which depict interacting populations,
especially when one has to analyze invariant measures instead of an equilibrium.
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In [28], a condition for coexistence was given, which requires a certain weighted
combination of populations’ invasion rates to be positive for any invariant measures
associated with a subcollection of populations. The results were then improved and
generalized to a very general setting by Benaim in [4], where the concept of H-
persistence was coined and developed. With the same idea, [18] provided conditions
for both extinction and persistence in a setting of stochastic differential equations.
The long-term properties of some specific models are also classified in [12, 13, 6, 26,
20, 7, 17]. For many models, the conditions in the aforesaid references for extinction
and persistence of a species in an interacting population are determined by a threshold
A whose sign indicates whether the species will be persistent or extinct. Namely, the
result obtained is that if A > 0, the species persists and if A < 0, extinction will
happen.

The critical case A = 0 largely remains untreated, except for a few special cases
such as the stochastic logistic model introduced above. Although the set of parameters
for which A = 0 often has Lebesgue measure, it is of great mathematical interest to
discover the dynamics of the systems in the critical cases. Analyzing the critical case
not only fully classifies the long-term behaviors of the system but helps to gain more
insights about the nature of the system. However, similar to (but more complicated
than) the case of an equilibrium of a deterministic dynamical system whose maxi-
mum eigenvalue is 0, treating the critical cases of stochastic systems is, in general,
extremely difficult, which might be the reason why the critical case usually remains
open, especially for high dimensional systems.

However, population models often exhibit some certain monotone properties that
can be utilized to tackle the critical cases. This paper provides some methods for
treating the critical cases of population dynamics under certain conditions. It is
partially inspired by the work of the first author [26], where the critical case is treated
for a stochastic chemostat dynamic modeled by a switching diffusion.

The rest of the paper is organized as follows. In section 2, we formulate the model
in the general setting of [4] and give a general condition for extinction in the average
of stochastic populations in a critical case. Section 3 is devoted to the analysis of
a number of specific models in critical cases. Different techniques are introduced so
that the general result in section 2 becomes applicable for those models.

2. Notation and results. Before we give our result, we present the very general
framework of [4] for stochastic persistence and extinction. Let (X;);>0 be a cadlag
Markov process on a locally compact Polish metric space (M,d). For a distribution
v on M, we set, as usual, P, for the law of the process X with initial distribution v
and E, for the associated expectation. If v = ¢, for some x € M, we write P,, for Ps_.
We denote by (P;);>0 the semigroup of X acting on bounded measurable function
f:M—=Ras

Pof(x) = Eq (f(X3)) -
An invariant distribution for the process X is a probability u such that uP; = u for
allt > 0. We let P;,,, denote the set of all invariant probability measures of X and for
N C M and let Pjpy(N) and Perg(IN) denote the (possibly empty) sets of invariant
probability measures and ergodic invariant probability measures, respectively, giving
mass 1 to the set N. The following is the standing assumption.

Hypothesis 2.1. There exists a nonempty closed set My C M called the eztinction
set which is invariant under (P;);>¢. That is, for all ¢ > 0,

P, =1y,
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We set
My = M\ M.

The two following assumptions are taken from [4].

Hypothesis 2.2. The semigroup (P;);>¢ is Cy-Feller, meaning that for all contin-
uous bounded functions f: M — R, (¢,2) — P, f(x) is a continuous function.

We let £ denote the infinitesimal generator of P; on the space Cy(M) of continuous
bounded functions, defined for f € D(L) by

£fe) — i P@ = 1)

t—0 t

)

where the domain is the set of functions such that the above convergence holds point-
wise, with the additionnal property that supg.,<q [t (P:f — f) — Lf|| < +oo. We
also let D?(L) be the set of functions such that both f and f2 lie in D(L), and we
define the carré du champ operator on D?(L) by

I'f=Lf?—-2fLF.

For all t > 0, we let II; denote the empirical occupation measure of the process X up
to time ¢. This is the random probability measure defined on M by

1 t
Ht = — / (SXSdS
t Jo

When we want to emphasize the starting point, we set II¥ for the empirical occupation
measure whenever Xo = x almost surely.

Hypothesis 2.3. For all © € M, the sequence {II¥,¢ > 0} is almost surely tight.

As proved in [4, Theorem 2.1], a sufficient condition for the tightness of the
sequence of the empirical occupation measures is the existence of a suitable Lyapunov
function, as defined in the following assumption. Recall that a map f: M — R, is
said to be proper if for all R > 0, the sublevel set {f < R} is compact in M.

Hypothesis 2.4. There exist continuous proper maps W, W : M — R, and a
continuous map LW : M — R enjoying the following properties:
(a) For all compact K C M there exists Wx € D? with W|x = Wk|x and
(LWk) |k = LW|k.
(b) For all z € M, SUP {130, K:K CM,K compact} PI'(Vi)(x) < 0.
(c) LW < -W +C.

The latter assumption also implies that all weak-limit points of the sequence
(I1¢)¢>0 are almost surely in P, (M) (see [4, Theorem 2.1]).

The next assumption ensures the existence of a Lyapunov function near the
boundary M.

Hypothesis 2.5. There exist continuous maps V : My — Ry and H : M — R
enjoying the following properties:
(a) For all compact K C M there exists Vx € D? with V|x = Vik|x and
(LVi )|k = Hlk.
(b) For all x € M, Sup{x. ke M,k compact; t>03 D11 (Vi) (x) < oo.

(¢) The map % is proper.
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Remark 2.6. Assumption 2.4 to control the dynamics of the system near infinity.
The Lyapunov function W together with the function W with satisfying conditions
(a), (b), (c) in Hypothesis 2.4 ensures that we have the tightness and boundedness
in certain sense of the solution. On the other hand, the Lyapunov function V will
manage the dynamics when the solution is near the boundary Mg. Roughly speaking,
analyzing the average of H = LV with respect to invariance measures on the boundary
will determine whether the process will converge to the boundary Mg. Condition (c)
in Hypothesis 2.5 is needed to handle the scenario when the process is close to both
the boundary and infinity. A quick example will be given below while more details
about the main ideas and examples can be found in [4] and [18].

Ezample 2.7. This example is taken from [4, section 5.2]. We consider the fol-
lowing stochastic Rosenzweig—-MacArthur model:

ax, = X, (1- 3 — Y ) dt + =X,dB,,

av, =Y; (—a+ 2% ) dt

(2)

In this case, M = R2 := {(z,y) € R? : 2,y > 0}, My := {(z,y) € R? : 2,y > 0}
and My = M\ M. It is proven in [4, Theorems 5.1 and 5.5] that Assumption
2.4 is satisfied with W(z,y) = (z 4+ y)?> and W = (1 + C)W, where C is some
constant. The function V' can be chosen such that V(z,y) < CiIn(1 + 2 + y) and
V(z,y) = —Calnz — Iny when (z,y) is close to My, where C1,Cy are sufficiently
large positive numbers. The use of —Inx and —Iny is to manage the behavior of
the systems when X and Y are small, respectively. The function H in this case is
H(z,y) = LV (x,y). We refer to [4, Theorems 5.1 and 5.5] for more details.

From Assumption 2.5, it is possible to define the H-exponent of X as in [4,
Definition 4.2].

DEFINITION 2.8. For V and H as in Hypothesis 2.5, we set
A~ (H) = —sup{uH, p € Perg(Mo)}

and

AT(H) = —inf{uH, i € Perg(Mo)}.
We say that X is H-persistent if A~ (H) > 0 and that X is H-nonpersistent if
AT (H) <0.

The main results in [4] could be summed up as follows. If A~ (H) > 0, then
Pinv(M,) is nonempty and the family {II;,¢ > 0} is tight in M, . Furthermore, the
process X is stochastically persistent (see [27])) in the sense that, for all € > 0, there
exists a compact subset K of M such that, for all z € M,

P, (liminf I, (K) > 1—¢) = 1.

On the contrary, when AT(H) < 0, X; converges to My exponentially fast. (This is
not yet proven in [4], but one can look at the thesis of the second author [30, section
1.3] for a proof in the special case where My is compact, relying on the proof made
in [6].) However, the critical case where A*(H) = 0 is not investigated. It is known
from the deterministic case that in general, the information that A*(H) = 0 is not
sufficient to conclude on the long term behavior of the process. (One can think to the
stability of an equilibrium point for a dynamical system, when the Jacobian matrix
of the vector field at that point has eigenvalues with null real part.)
We now state the result of this note, which follows from a basic argument.
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PROPOSITION 2.9. Assume that if Pin, (M) is nonempty, then there exists u €
Pinv(My) and © € Pipy(My) such that

(3) wH > mH.

Then AT(H) > 0.

Proof. Assume that Pj,, (M) is nonempty. Let pu € Pjp, (M) satisfying (3) for
some 7 € Pipy(Mo), then uH > —A+(H). By [4, Lemma 7.5], since 1 € Pipp (M),
we must have pH = 0. (Note that the proof of this fact in [4] does not require the
process to be H-persistent.) This proves that AT (H) > 0. d

We get the following immediate corollary.

COROLLARY 2.10. Assume that the hypothesis in Proposition 2.9 holds. If A*(H)
= 0, Pino(My) is empty and all weak-* limit points of II; lie almost surely in
Pinv(Mo). In particular, if Piny(Mo) = {r}, then for all bounded continuous func-
tions f: M — R,

.1t
(4) Jim /O F(X,)ds = xf.
Remark 2.11. Actually, one can prove that (4) holds for all f : M — R such that
the map %\fl is proper, where W satisfies Assumption 2.4 (see [4, Lemma 9.1]).

Thus, the idea is that if H is strictly bigger on M than on Mg and if AT (H) = 0,
then the process goes on average to extinction. Rather than giving abstract conditions
ensuring that (3) holds, we provide in the next sections five examples on which we
prove (3) with different methods that can be easily reproduced for other models.

3. Applications. To illustrate the applicability of our method, we examine the
critical cases in five stochastic models in ecology and epidemiology. The four first
examples come from the literature, where the case A = 0 has not been treated. The
last example is new. It should be emphasized that each model requires to be treated
differently before Proposition 2.9 can be applied. New distinct techniques are therefore
introduced to handle each model, especially when usual comparison arguments are not
straightforwardly applicable.

3.1. SIRS model with switching. For some diseases such as influenza, an
individual’s immunity may wane over time after recovery. SIRS models, which are
often used for this type of disease, describe the course of the transmission, recovery,
and loss of immunity. Stochastic SIRS models have been studied extensively over the
last decade. However, few papers have successfully classified the asymptotic behaviors
of the models. In this section, we apply our method to a SIRS model with random
switching that was studied in [24]. We first describe the process. Let N be a positive
integer, and set £ = {1,...,N}. For k € £ = {1,...,N} let F¥ be the vector field
defined on R? by

A — S + MR — BpSG(I)
(5) F*(S,I,R) = | BuSGr(I) = (1 + a + 6,)1 |
S — (1 + )R

where Gy, is a regular function such that G (0) = 0. The reader is referred to [24] for
the epidemiological interpretation of the different constants. Let (a;)¢>0 be an irreduc-
ible Markov chain on £. We denote by p = (p1, . .., pn) its unique invariant probability
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measure. We consider the process (Z;)i>0 = (X, o )e>0 with Xy = (S, I, Ry) € ]Ri
evolving according to

dX;
6 — = F(Xy).
(6) o (X¢)
The process Z is a piecewise deterministic Markov process (PDMP) as introduced in
[11], and belongs to the more specific class of PDMPs recently studied in [3] and [5]
(see also [6, 20, 7] and [17] for PDMP models in ecology or epidemiology).

Remark 3.1. In [24], § is the only parameter allowed to depend on k. The general
case where the other constants and the function G can depend on k has been treated
in [31].

We make the following assumptions, which are taken from [24].

Hypothesis 3.2.

(i) For all k, G : Ry — Ry is C? with G, (0) = 0 and 0 < Gx(I) < G},(0)I for

I>0.
(ii) For all k, if Bk%G%(O) — (4 + ag + ) > 0, then F* admits an equilibrium
point ©* € M, which is accessible from M.

We consider the process on the space M := K x &, where K = {(s,i,7) €
R s+i+r< %} The set Ko = {(s,4,7) € K : i = 0} is invariant for the F* and
thus the set My = Ky x E is invariant for Z. On this set, it is not hard to check that
X converges almost surely to (S*,0,0), where S* = % Thus, the unique invariant
probability measure of Z on Mg is 6* ® p, where §* is the Dirac mass at (5*,0,0).
Consider the function V : M x & — R given by

A
V(s,i,r k) =log — —logi for all (s,i,r, k) € My x E.
1

Define also the function H : M x E — R by H(s,i,7,k) = (1 + ag + 0 — BrsGr(i)),
where G, is given by
_ SHONNTY
Go(iy=4 i 70
G'(0) ifi=0.

It is not hard to check that V and H satisfy assumption 2.5. Moreover, we have for
T™=0"Qp,

A,
TH = Zpk <,u+0zk+5k —BkMGk(O)>

ke&
for ke &E={1,...,N}. Asin [24], we set
R > 2B 5 G (0)
0

- Soe Pk + ag +60k)

Note that Ry < 1 (respectively, Ry > 1, Ry = 1) if and only if 7H > 0 (respectively,
7mH < 0, tH = 0). The behavior of the process when Ry < 1 or Ry > 1 is studied in
[24] (see also [31] for an alternative and more general proof). With our method, one
can prove the following.

PROPOSITION 3.3. Assume that Ry = 1. Then, for all (s,i,7,k) € M, P(s; . 1)-
almost surely,

1 t
lim 7/ Sudu = S*,
0

t—oo t
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and
t

1
lim - [ (I, + Ry)du = 0.

t—oo t 0

Proof. We show that when Pj,, (M) is nonempty, then for all p* € Py (M),
one has
w'H>mH.

For convenience, we write C for p + ay + d;. By Assumption 3.2, we have
H(s,i,m, k) > Cy — BrG'(0)s,

and thus

pH > Zpkck - Z ﬁkch(O)/ sduy,(s,i,7),

keE keE My

where p is the measure of total mass py defined on M by pj(A) = p*(A x {k}).
Note that as ¢ > 0 on M4 and that for (s,i,7) € M, s +i+r < S* then for all
(s,i,7) € M4, s < S*. In particular,

/ sdug(s,i,7) < prS*,
My

which yields
,u*H > Zkak. — ZpkﬂkG;c(O)S* =7nH.
kcE k€€
This proves by Corollary 2.10 that if Ry = 1, then Py, (M) is empty and for all
bounded measurable function f: M x E — R,

t—o0

1 t
lim ;/ F(Sus Luy Ruyro)du = pi f(S*,0,0, k). O
0 k

3.2. Stochastic Rosenzweig—MacArthur. Although the results below can
also be obtained for a more general predator-prey model, we consider in detail the
stochastic Rosenzweig—MacArthur predator-prey model, which was introduced in sec-
tion 2, as a specific model to illustrate our method. To be precise, consider the system

aX, = X, ( — X Jk) dt + e X,dB,,

@) ay; = Y, (—a X ) dt.

1+ X

In this case, M = R% = {(z,y) € R? : 2,y > 0}. Weset M§ = {(z,y) € M : z =0},
MG = {(z,y) € M :y =0}, and My = M§U M. We also let M¥ = M\ Mg,
ML = M\ M, and My = M\ My. We also define the invasion rate of species x
and y, respectively, as

2
Al(fmy):(l—;— g )—52 and  Ao(z,y) = —a+

1+

By [4, Theorem 5.5], if €2 > 2, then for any initial condition, one has (X;,Y;) — 0 as
t — oo. Thus, we assume now that €2 < 2. In that case, the process is H-persistent
with respect to M. Indeed, in that situation, Peqq(MG) = {do}, where &y is the
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Dirac mass at 0 and dpA; =1 — % > 0. Hence, the condition [4, Theorem 5.1(ii)] is
satisfied. In particular, every limit point of (II;)¢>o lies almost surely in Pjy, (M? ).
Moreover, on M N My, the process admits a unique invariant probability measure
denoted by py ( see [4, section 5.2]).

It is easily seen that Pe,q(Mo) = {do, 1x}. We set

x

— dpy(z) — .
T3 g 0k(@) —

+oo
Ae K, 0) = px(ha) = /

By [4, Theorem 5.5], if A(e, K, «) > 0, then the process is stochatistically persistent
with respect to Mg and admits a unique invariant probability measure p* on M,
while if A(e, K, «) < 0, Y; converges to 0. We now prove the following proposition for
the critical case.

PROPOSITION 3.4. If A(e,K,a) = 0, then for all (x,y) € My, one has P, -

almost surely,
1T
lim — Y,ds =0
0

T—oo T

and

1 T +oo 52
lim — Xsds = / rdpy(z) = K (1 - ) .
T—oo T 0 0 2
Proof. We prove that if Pjp, (M) is nonempty, then for all p* € Py, (M?), one
has p*H > pH, where

H(aj?y) = Hl('r’ y) - )\2(.23, y)

Hi( ) 1 x? e2x?
Yy =——|z2—-—ay— =) - —0———.
WY = ety Y"K) 2 tzty)

We set, for (z,y) € My, V(z,y) = log(1 + = +y) —logz. We can see that (V, H)
satisfy Assumption 2.5. Moreover, we have L[log(1 + = + y)] = H1(z,y), and then by
[4, Remark 19], we must have vH; = 0 for any v € P;p,(M). As a result,

with

vH = —v)g for any v € Pipy(M).

Remark 3.5. In the framework of [4], it would have been natural to take for V'
any function coinciding with —log « for  small enough, so that H = —Ay near My,
because it is sufficient to know H on the boundary M,. However, to apply our
method, it is required to compare mH and pH for u € Pipy(My), and thus it is
necessary to know H on the whole M . Thus the idea is to take V = V; 4+ V5 and
H = H; + Ho, with Va(z,y) = —logx, Hy = —)\y, V; defined on all M so that V is
nonnegative, LV = H; and vHy = 0 for all v € Py, (M) (see [4, Remarks 11 and 19
and Proposition 4.13]). We use a similar trick in subsection 3.3.

To continue the proof, note that on M§ N MY, Y; converges exponentially fast
to 0. Thus, it holds that Py, (M) = Piny(M). Moreover, by Theorem 5.5 in [4],
if Piny(My) is nonempty, it reduces to a unique element, which we denote by u*,
and p* has a positive density with respect to the Lebesgue measure. This implies by
Birkhoff’s ergodic theorem that for all (x,y) € M,

1 T
1o = lim T/ Ao (X5, Y)ds, P, ,-almost surely.
0

T—o0
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We let X be the solution of the reduced system on M. That is,

s X
(8) dX, = X, (1 - Kt> dt + edB;.

By the comparison theorem, if X, = XO, then X, < X, for all t > 0. The idea is now
to write

S A 17 .
WH = —p Ay = — lim 7/ Ao(Xs, 0)ds — lim 7/ (AQ(XS,YS) —/\Q(XS,O)) ds
T 0 T 0

T—o0 T—o0

and to prove that the first term is p H and the second one is positive.
By [4, Theorem 5.1(i)], we have px(A1) = 0. Moreover, the process X on M} is
persistent with respect to M N MY. Thus, for all z > 0, one has

T—o0

N

lim —/ A2(Xs,0)ds = px Ao
T Jo

and

1 (T
lim - / M (X, 0)ds = (M) = 0,
0

t—o0 T

1 (T . 2
lim—/ X.=K(1-2).
t—>ooT 0 2

On the other hand, since (X,Y) is persistent with respect to Mg, one has

which gives

1 /7
lim —/ M (X, Ys)ds = p*A =0,
0

t—o0 T

which leads to

1 (7 g2 teo oy
lim — Xe=K|[1—— | — du* .
dm o )X ( 2) /0 T 0 (@)

Now, due to the fact that p*(M;) =1, one has

“+o0 y
= du* >0
U /O Tz (z,9)
and thus

t—o00

1 [T
lim 7/ (X, — X,)ds =7 > 0.
T 0
From this we have
1 [T .
lim T/o (AQ(XS,YS) - )\Q(XS,O)> ds < 0.

Indeed, let C' > 0 such that

8
| =
S—
A'ﬂ
>
w
|
>
N
=
_
_ﬁ><>
IN
Q
-}
QL
)
(A2
N
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Then, it is easily seen that there exists ¢ > 0 such that for all 0 < z < 2 < C, and all

y >0, one has Aa2(z,y) — A2(2,0) < —c(& — z). In particular, by the monotonicity of
H and the fact that X, < X, for all s > 0, we have

1 [T X
lim T/o ()\Q(XS,YS)—/\Q(XS,O)> ds

T—o00
1 7 5
STh—{I;oT/O ()\Q(Xs,ys)—)u(XsaO)) lig <cnds
C T 5,
s - fim T/O (Xe = X)Lx, <cyds
<9
- 2

We conclude that p*H = —p*Ae > —puzAo + %ﬂ = u. H + %7 > uxH. This proves

that when A(e, K, @) = 0, Piny(M4) is empty. Moreover, we know that the process
is persistent with respect to M§. Putting this together, the only possible limit point
(z+y)*

for (II;)¢>0 is px. Furthermore, since the maps (z,y) — % and (z,y) —

14z
are proper, Corollary 2.10 and Remark 2.11 imply that
1 T
lim —/ Y.ds =0
T—o0 0
and
1 T +o0 62
lim — Xsds = =K(1-=].
Jim /0 sds /0 xdpy(x) ( 5 ) 0

3.3. A stochastic model in spatially heterogeneous environments. In
this section, we consider the example treated in [19] of a population submitted to
random fluctuations of the environment and to spatio-temporal heterogeneity. The
model aims to analyze the effect of both spatial and temporal variations to the evo-
lution of the species; see [14] and [19] for more biological interpretations. In that
setting, the space is divided into m patches, and the dynamics of the population
within a patch follows a logistic SDE. There is also dispersal of the population, that
is, individuals can move from one patch to the other. The precise model is the fol-
lowing. Let X; = (X/,..., X]") be the vector of abundance in each patch at time ¢,
then X satisfies the SDE

(9) dX} = | X} (a;i = b(X})) + Y D;i X7 | dt + X[dE],

j=1

where a; > 0 is the per capital growth rate in patch ¢, b; : Ry — R is the competition
term in patch ¢, and D;; > 0 is for j # ¢, the dispersal rate of patch j to patch ¢
and E = I'" B, where I' is a square n x n matrix and B = (B',..., B") is a standard
Brownian motion. We also set D; ; = — Zj# Dj;and ¥ = I'TT.

We work under the following assumptions, made in [19].

Hypothesis 3.6.
1. For each i € {1,...,n}, b; : Ry — R is locally Lipschitz and vanishes only
at 0, and there exist constants 7, and M; such that, for all z € R} with
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>; @i > My, one has

iy i(bi() — ag
Yl wilbie) —a)
Die1 T

2. The matrix D is irreducible.
3. The matrix ¥ is nonsingular.

These assumptions guarantee the existence of a unique strong solution to (9),
which moreover stays in R? if Xy € R’}. As in [19], we introduce the decomposition
of the process: for any xg # 0 and t > 0, we set S; = >, X} and Y = X}/S;. By
Ito’s formula, it can be shown that (S, Y;) evolves according to

dY; = [Diag(V;) — ;Y,T] TTdB, + DTYdt
(10) + [Diag(V) — YiY;'] (a — DY, — b(S,Yy)) dt,
dS; = S, (a — b(S:Yy))" Yidt + S, Y TTdB,,

where Y; = (Y;},...,Y) lies in the simplex
A={r=(x1,...,00) ERY t21+-- -+ 2, =1},

and a := (a1,...,a,), b(x) := (bi(x),...,b,(x)). It is now possible to extend equation
(10) on {0} x A by setting S; = 0 and

(11) dY; = [Diag(V;) — Y;Y,"] T7dB; + D"Y,dt + [Diag(Y;) — V;Y}" | (a — £Y;) dt.

If we let X; be the solution to

(12) dX} = |a; X] + Y _D;;X]| dt + X}dE],

Jj=1
and S; = 3, X7, then
(13) dgt = S’tan’tdt + StfftTFTdBt

with Y = Y subjected to (11). It is proven in [15] that Y admits a unique invariant
probabilty measure m on A. Set

(14) r= /A (aTy - ;yTETy> dr(y).

In [19], the authors show that the sign of r determines the long term behavior of
X: if r < 0, then the population abundance in each patch converges to 0 exponentially
fast, while if » > 0, the process X admits a unique invariant probability measure on
RY, == {z € R} :x; > 0} and the law of X converges polynomially fast to this
stationary distribution. The case = 0 is not treated and left in the discussion as an
open question.

We show now that our method enables us to handle the critical case r = 0.

PRropPOSITION 3.7. If r =0, then, for all i, for all x € R’} , Py-almost surely
I
lim — [ Xids=0.

t—oo t 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/08/21 to 130.160.57.1. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1578 DANG H. NGUYEN AND EDOUARD STRICKLER

Proof. First, let us write the process in our background. We consider the process
(Zt)t>0 = (St, Yi)i>0 defined on M = R4 x A, and evolving according to (10) on
M, = R% x A and according to (11) on My = {0} x A. Proposition A.1 in [19]
implies that Assumption 2.2 is satisfied under Assumptions 3.6.

One can check that for a function f : M — R, of class C? with bounded support,
the generator £ of Z is given by

2
Lf(s,y) = %f(& y)s (a—b(sy) y+ %%f(s, y)s*y" Sy + Af(s,y),

where Af is a sum of terms, each of them involving at least one derivative of f with
respect to one of the coordinates of y. In particular, if f(s,y) = g(s) for some function
g, one has

Lf(5.9) =g (5)s(a~ bsy) "y + 5" (5)5%" .

Let € > 0, and set g(s) = (14 5)'*¢ and f(s,y) = g(s). Then, we get (formally) that

Lf(s,y)=(1+¢)f(s,9)

2
S 1
T 5(@ —b(sy) Ty + (1 " S) 25yTEy] ,

which by Assumption 3.6 implies that

Ef(s7y) < —af(&y) + C,

where o = y,—1¢|| 2| is positive for £ small enough, and C' = SUP (s ) efo,my]xa £ (8, Y)
is finite. From this, it is possible to prove that Assumption 2.4 is satisfied for
W(s,y) = (1 + s)'*¢, provided ¢ is small enough.

Next, we prove that Assumption 2.5 is satisfied. We define two functions on M:

82

(0= b))y = 5 sy S

H1(87y) = ].+S

and

Ha(5,) = (a = b(s) "y — 55",

We define V on M by setting V(s,y) = log(1 + s) — log s. By definition of V' and
Ito’s formula,

[:V(S,y) = Hl(say) - H2(S’y)'

It is not hard to check that the functions V' and H so defined satisfy Assumption 2.5.
We have from Ito’s formula that

E. log(1 — log(1
lim T5H, — Jim 2108+ 57) ~log(1 +5)

=0,ze M
T—o0 T—o0 T ’ ’

due to [19, Lemma A.2]. As a result, vH; = 0 for any invariant probability measure
von M of (Zy)i>0. Subsequently, we have, r = —mHy = mH, where r is defined by
(14), and by the ergodicity of ¥ and (13), we have

1 [t S 1. -
(15) r=nH = lim - {aTYu - YuEYu] du= lim ~log S;.

t—oo t 0
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Now we assume that Z admits an ergodic invariant probability measure p on M.
By the strong Feller property of X on Rt ,, i1 has to be unique, and thus the process
is ergodic. In particular, we have

1 t
—uH = pH, = lim - [(a — (S Y )Y, - YUZYH} du.
t—oo t 0

Thus, to obtain the desired result that pH > mH, we will show that

1 M e e e
lim = [a Yu—YuZYu} du
t—oot 0

(16)

t

> lim © [(a (S Y)Y — YuZYu} du.

t—o00 0

While componentwise a > a — b(S,Y,,), (16) is not straightforward because Y, — Y,
can be both negative and positive. The difficulty will be overcome by introduc-
ing an intermediate process to ease the comparison. For all uw > 0, we set ¢, =
min; b;(S,Y,)). Note that ¢, > 0 by assumption on b. Now we introduce the process
X = (X',..., X") defined by

(17) dX} = | X} (a; — )+ _ D;iX] | dt + X[dE}.

Jj=1

By a classical comparison argument for SDE (see, i.e., [10]) and the positivity of
&, we have X! < X! < X! for all t > 0, provided the inequality holds at 0. We also
set Sy = X} +---+ X7, and then S, < S, < S,. Finally, we introduce ¥ = X /S,
which is well defined as soon as Xy # 0. One can see that S and Y evolve according
to

(18) dS; = 8, (a — )" Yydt + S, TTdB,,

(19) dY; = [Diag(V;) — Y;Y;"|T"dB; + D" Y,dt + [Diag(V;) — Y;Y,"](a— 2V, — 1) dt,

where 1 is the vector with all components equal to 1. Now, since Y, € A, one has
(Diag(Y;) — Y;Y;1)1 = 0, and thus

(20) dY; = [Diag(¥;) — V;Y;"|T7dB; + D"Y,dt + [Diag(¥;) — ¥;Y'| (a — SY;) dt,

and by the uniqueness of a strong solution to (11), ¥ = Y almost surely whenever
Yy = Y,. Thus we have

1 - 1 [t - .
lim - log(S;) = lim ~ (aTYu —Y,%Y, - gu]lTYu) du
t—oo ¢ t—oo 0
t

1
t—oo t 0

=-—mH — min b; (sy;)du(y)
My b
=—7H —¢,
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where ¢ = fM+ min; b;(sy;)du(y) > 0 because u(M,) = 1. Now, since S; > S;, we
have

which yields uH > mH + ¢. Thus, one can apply Corollary 2.10 (and Remark 2.11):
(14s)te
1+s

since the map (s,y) — is proper, if » = 0, one has for all (s,y) € M,

P, ,-almost surely
t

lim E Sudu =0,

t—oo 0
or equivalently, for all ¢, for all z € R”, P,-almost surely

IR
lim — [ Xids=0. d

t—o0 0

3.4. Multigroup SIS model in a fluctuating environment. Here, we prove
that the method used above also works in an SIS model with a random switching
environment. More precisely, we consider a stochastic counterpart of a heterogeneous
SIS model that was introduced by Lajmanovich and Yorke [23]. Note that SIS models
(susceptible-infected-susceptible) describes the evolution of a disease that does not
confer immunity. Suppose we are dealing with a heterogeneous population divided
into d homogeneous groups. Let x%(¢) be the number of susceptibles in the ith group,
y*(t) the number of infecteds, a;(t) the recovery rate, and c¢; the total size of the ith
subpopulation. Let 3;; be the contact rate of the ith group’s susceptibles with the jth
group’s infecteds. Assume that (3;;) is an irreducible matrix. Since z*(t) 4+ y'(t) = ¢,
we have

dy'(t ,
(21) ydt( ) = —ay'(t) + Zﬂjiciyj - Zﬁjz‘yiyj~
%, %,

Nondimensionalizing the system by letting

we can transform the (21) to _
X: = F(Xy),

where

F(z) = (C — Diag(D)) z — Diag(z)Cx

and C' = (C; ;) be an irreducible d x d matrix with nonnegative entries and D =
(D1, ..., Dg) a vector with positive entries. In [7], taking into account the fluctuations
of the environment which is modeled by a switching process, we have considered a
PDMP U = (X,a) on [0,1]? x &, where & = {1,..., N} for some integer N and
evolves as follows:

dX;

(22) i F(Xy),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/08/21 to 130.160.57.1. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

CRITICAL CASE IN STOCHASTIC DYNAMICS 1581

where « is a Markov chain on E and for all k € £, F* is the vector field defined like
F with C and D replaced by C*¥ and D¥, respectively, where C* and D* are a matrix
and a vector as described above. We also set A¥ = C* — Diag(D*). To analyze the
long-term behavior of Z, we have done in [7] a polar decomposition: for Xo # 0, we
set pr = || X¢|| and ©; = %. Then W = (p, ©, a) is still a PDMP, evolving according
to

(23) { a5 = G (0y),

& = (A* — pDiag(6;)CO, Or)py,
where for all i € E, G? is the vector field on S9! defined by
(24) G'(0) = (A’ — pDiag(0)C) 6 — ((A* — pDiag(6)C) , 6)0.

We set My = ¥([0,1]?\ {0}) x &€, where ¥ : R™ \ {0} — R*% x S9! is defined by
V() = (|zll, 737)- We also set Mo = {0} x S9=1 x £, and then (23) can be defined
on My be letting p, = 0 for all ¢ > 0 and

o,

(25) 7

= A0, — (A“*,0,,0,)0,.
We proved in [7, Proposition 2.13] that on Mg ~ S9! x £, the process (O, a) admits
a unique invariant probability 7. We set

A= (A"9,0)dr(0,1).
Sd—1x¢g
It has also been proven that the functions V : My — R, and H : M — R, defined
by V(p,0,i) = —log(p) and by H(p,0,i) = —(A*0,0) + p(Diag(0)C9, ), respectively,
satisfy assumption 2.5. It is easily seen that A = —wH. With our method, together
with the results in [7], we can now fully describe the behavior of U according to the
sign of A.

THEOREM 3.8. There are three possible asymptotic behaviors:
1. If A <0, then for all (x,i) € [0,1]% x &, we have

P, <limsup M < A> =1.
2. If A =0, then for all (z,i) € [0,1]¢ x &, we have

1t
lim g/ | Xsllds =0 Py -a.s.
0

t—o0

and
P,; — lim X; =0,
t—o0

where P, ; — lim denotes the convergence in probability.

3. If A >0, then U admits a unique invariant probability measure pu on (0,1]% x
E. Moreover, there exists a Wasserstein distance W and r > 0 such that, for
all probability v with v({0} x &) and all t > 0,

W(VP;, p) < e " W(v, p).
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Proof. The case A < 0 is Theoerem 4.3 in [7], while A > 0 is Theorem 4.12 in [7].
To treat the case A = 0, we first prove that one can apply Proposition 2.9. We
assume that W admits an invariant distribution g on M. For all t > 0, we define

¢ = min Xti ZC’Za’;XtJ ,

1<i<d

J

and we let X be the solution to
dX,

(26) ar

= (A% —qI) X,

where [ is the identity matrix of size d. We also let Y be the solution to

dYy
27 — = AMY,.
@) % gy,
By a comparison theorem for ordinary differential equations, we have X} < X/ <V,
for all ¢ > 0, provided the inequality holds at time 0. Finally, let p; = || X¢||, ©; = %,

ot = ||Y]l¢, and O, = % Then p; < py < py and

de . =

ditt = (A% — ) O — (A" — ) ©1,04)0y,
While_(:)t evolves according to (25). Now, since (8;,0,) =1 for all t > 0, we can see
that ©; is also driven by (25), and thus ©; = O, for all ¢ > 0 whenever Oy = 0. On
the other hand, one can check that

log p I -
lim —8%% — 1im 7/ (A% —¢,) O,,0,)ds.
0

t—o00 t t—oo t

We also have

log p 1 [t -~

—nH = lim 28%% _ jim f/ (A*:8,,0,)ds.
t—o00 t t—oo t 0

Without loss of generality, one may assume that p is ergodic, and therefore, one has

for p1 almost every (po, 0o,1) € My, P, 0,,:)-almost surely,

1 [t , ,

lim — [ ¢ = / p* min 6° CF.07 | du(p,0,k) =3¢
t—oo t 0 M. i ; »J

Then, ¢ > 0 because on M, p > 0 and u({(p,0,i) € My : 0° > 0}) = 1 since §5*~*

is transient for W. Thus, due to the fact that ©, = ©,, we get for u almost every

(po,0o,1) € My, P, 0,,:)-almost surely,

loo 5
lim 08Pt _ —mH — ¢,
t—o0
which combined with
. logpy
Lm = —pH  Ppq,00,0)-2-5-
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and py > p; gives uH > mH 4+ ¢ > pH. Thus, by Proposition 2.9, A > 0. Hence,
if A = 0, the unique stationary distribution of W is m, which is concentrated on
M. In particular, going back to the process U, its unique invariant distribution is
0o ® p, where p is the unique stationary distribution of o on £. In particular, for all
(z,1) € [0,1]? x &, one has P, ;-almost surely that

1 t
(28) lim f/ | X lds = 0.
t—oo t 0

To prove that X converges in probability to 0, we use results on monotone random
dynamical systems due to Chueshov [10]. Let Q = D(R, &) be the Skorhokhod space
of cadlag functions w : Ry — &£, endowed with its Borel sigma field F, and on which
we define the shift @ = (0;);>0 by

O (w)(s) =w(t+ ).

We let P, be a probability measure on (€2, F) such that the canonical process I has
the law of « starting from its ergodic probability measure p. Then, the process ¥ (w, t)
defined by

d¥(t,w)x _ pw(t
(29) { = PeO(0(t,w)a),

U(0,w)r =2z

is a random dynamical system over the ergodic dynamical system (2, F,P,, ®) (see,
e.g., [2] for definitions and the thesis of the second author [30, section 1.4] for more
details on random dynamical systems and links with PDMPs). Moreover, the proper-
ties of F' make ¥ a monotone subhogeneous random dynamical system (see [7, section
4]) for which 1 = (1,...,1) is a superequilibrium. That is, U(t,w)1 < 1 for all¢ > 0
and w € Q (see [10, Definition 3.4.1]). Moreover, for all t > 0 and all w € ,

U(t,w) ([0,1]\ {0}) € (0,1)%.

Hence, it is easily to check that we can apply Proposition 5.5.1 in [10]. According to
this result, either for all x € [0, 1],

(30) tliglo U(t,O_tw)z =0
or there exists an equilibrium u(w) > 0 such that for all z > 0 and all w € Q,
(31) lim U(¢,0_w)z = u(w).

t—o0

Now, assume that (31) holds. In particular, by dominated convergence and invariance
of P, under ®, one has on the one hand

(52) Jim B, ([9(¢,w)z) = Ey(Jul) > 0

On the other hand, one can check that the law of X; under P, , is the same as the
law of ¥(¢, )z under P,. In particular,

(33) B p) ([ Xel]) = Ep (19 (2, w)]]).-
Thus, (32) and (33) imply that

1t
lim — [ Eqp (Xs]]) ds = Ep(J|ul]) >0,

t—oo t 0
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which is in contradiction (by dominated convergence) to (28). Hence, (30) holds. This
and (33) yield that for all continuous maps f : [0,1]¢ — R,

Jim B, (f(X:)) = £(0),

which implies that X; converges in law, hence in probability, to 0, under P, ,,. It is
easily seen that one can now replace p by any starting point . 0

3.5. SEIR model with switching. SEIR models describe the dynamics of an
infectious disease with which individuals experience a long incubation duration (the
“exposed” compartment).

Susceptible individuals, when in contact with an infectious individual, may con-
tract the disease with a given rate, and then go into the exposed disease state when
they become infected but are not yet infectious themselves. Infectious individuals
can transmit the disease and, after a period of time, enter the recovered phase and
have permanent immunity to the disease. The classical SEIR model consists of the
following differential equations for four classes of individuals (susceptible-exposed-
infectious-recovered):

S=A—~S—pBSI,

E =j3SI— (y+0)E,
fzéE—('y+'yl)[,

R=mI—-9R,

(34)

where A,~v,3,6,71 are positive constant. This system has been used to model a
number of infectious diseases, such as measles, mumps, and rubella. We refer to
[29, 21] for details about this model and its variants. In contrast to stochastic SIR
and SIRS models, which have been studied extensively, few papers deal with stochastic
SEIR models because standard arguments used to treat SIR and SIRS models do not
seem effective for SEIR models due to the extra compartment E. In this section, we
wish to consider an SEIR model in a switching environment and fully characterize its
long-term property. The model (35) below has not been studied in the literature. Let
N be a positive integer, and set £ = {1,..., N}. Let (a:)1>0 be a irreducible Markov
chain on & and consider the following system:

§=A—~S - Blay)SI,
(35) E = B(ay)ST — (v+ (o)) E,
I = 6(Oét)E — ("}/ + ’Yl(Oét))I,
where the component R is removed because it does not affect the dynamics of the

others.
Letting U; = B, + Iy and V; = {&, Zy = (S, Vi, U, o), we can rewrite (35) as

SZ fs(Zy),
(36) V = fV(Zt)v
U= Uth(Zt)a

where

fs(z) = A —vs — B(k)su(l —v),
fo(z) = (B(k)s = y1(k) = v)v = 7(1 —v) = (B(k)s — n(k))v -,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/08/21 to 130.160.57.1. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

CRITICAL CASE IN STOCHASTIC DYNAMICS 1585

fr(2) = (o(k)(1—v) =yv—m(k)v) —vfo(2) = o(k)(1—v) =71 (k)v— (B(k)s—71(k)v?,

and z = (s,u,v, k). For this system, we have
5 A
(37) M= zGR_‘_x[O,l]xé':eruS; and Mg := {z € M :u = 0}.

In this model, H(z) := —fy(z) and V(z) := log% — log u satisfy Assumption
2.5. Unlike the arguments in subsections 3.3 and 3.4, it does not seem practically
possible to treat the critical case by introducing an intermediate process. Because
the function fy(z) is increasing in s while fi/(z) is decreasing in s, we introduce the
following function:

(39) 1) = o)~ 1 = o=y )

If Up = 0, then Uy = 0,¢ > 0, and lim . S, = 2. Let V, be the solution to
< A ~
V= fV (707‘/taat> .
Y
Then, one can show that (‘Z, a¢) has a unique invariant measure 7y on [0, 1] x £ (see,
e.g., [6, Proposition 2.1] or [25]). Moreover, since fy(z) = o(k) > 0 if z = (s, u, v, k)

with v = 0, there exists vg > 0 such that liminf; ,., V; > vg > 0 for any initial value
z € M. As a result,

T
Pz{ i - [ V) lofpvt 20},zeM.

T—oo T /g Vi T—0o0

Hence, for any invariant probability measure p of (Z;);>0, we have
(39) / Mu(dz) =0, or equivalently uH = uH.
M v

Then 7 := 6 (4,0) @y is the unique invariant measure on My. By the ergodicity
of (V;, o) and (38), (39) we have

T A -
Ai=—7H =—7m lim fU <770a‘/taat) dt
0

T—o0

(40) T T
= lim ; (O’(Oét) S v - fyl(at)> dt.

T—o0 f

With M, My defined in (37), we have the following theorem.

THEOREM 3.9. _
1. If A <0, then for all0 < X\ < —A, there exist n > 0 and r > 0 such that, for
all z € My := M\ Mg with u < r, we have

log U;

P, <1imsup < —A) >n.
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2. If/~\ =0, then for all z € M4 x &€, we have

1 (7
lim —/ Uidt =0 P,-a.s.
T—oo T 0
3. IfK > 0, then Z is H-persistent and it admits an tnvariant probability mea-
sure on M .
Proof. We start by proving the first and third claims. For o € £, we define the
vector field
A — s+ B(a)si,
F(s,e,i) = ¢ B(a)si — (v + 6(a))e,
d(a)e — (v + m(a@))i.

Then, letting (X;)i>0 = (St, Et, It)i>0, we have X, = Fo (X:). Note that (%,0,0)
is a common equilibrium of the vector fields F'* and that the line Ry x {(0,0)} is
invariant for each of the vector fields. This is exactly the setting of application of the
results in [31]. The Jacobian matrix of F'* at (%, 0,0) is given by

-y =Bl 0
ar= 0 —ri@) B
0 §(a) (v + ()

We let D = (v), C* = (=f(@)%,0) and

e <—(v+ 5a)  Bla)d ) |

6(cv) (v +n(a))
so that
«_ (D C*
A% = (0 BO‘) '
Finally, we define Ap = —v and Ag = [(B“6,0)dr(a,0), where 7 is the unique

invariant probability measure of the process (0, ), where O is subjected to (25) with
A replaced by B%. (The uniqueness of 7 comes from the particular form of B; see
[7, Proposition 2.13].) Then, A = Ap. Indeed, A is defined as the growth rate of
U, which is the L'-norm of (E,I), while Ap is defined as the growth rate of Us, the
L?norm of (E,I). By equivalence of the norm on R?, we must have A = Ag. The
third claim is hence a direct application of Theorem 2.8 in [31]. The first claim follows
from Theorem 2.7 in [31].

Now, we prove the second claim. Let assume that P, (M) is nonempty with
an ergodic measure p.

Since fy(z) + B(k) (% — 8)) v? = fv(%,O,v,k;) for any z = (s,u,v, k) € M, we

have V; > 17} given V > 170. Let Z; have the initial distribution u and \70 =V.
By the ergodicity we have

1 (" ~
lim —/ (Vt—V})dt:/ v,u(dz)—/ vm(dz) a.s.
T—oo T 0 M M

We will show that [, vu(dz) — [, vm(dz) > 0 by a contradiction argument. Note
that, since
‘fv(S,U,"U,k) - fV(Saua:Jakﬂ < C‘U 7,17|
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for some constant C' > 0, we have
(41)

lim sup — / ‘fv Zy)dt — fv (St,UtanOét)

T—o0

1 [T ~
< lim — —V,) =
s fim 7 [0 (V=) =0

if [\, vp(dz) — [, vr(dz) = 0. On the other hand,

fv(s,u,0k) = fv ( ,0,7 k) <: —S> B(k)o,

which leads to

1T - R O
lim T/o fV(StyUta‘/tyat)dt:hInT fV<fyaOaV;§>at)dt

T—o0

where we use the ergodicity of (Z;,V;) on M x (0,1) to have that

T ~
lim l/0 (/’; — St) ﬁ(ozt)‘/} > 0.

Combining (41) and (42) we have

1 A =~
lim —/ fv(Zy)dt — hm —/ fv <’07Vt704t> dt >0
T—oo T ¥

if [\ op(dz) — [\ vr(dz) = 0.
However, it contradicts the fact that

lim —/ fv(Zy)dt— hm l/ fv (A70,‘7t,at> dt
T—oo T
~ [ Fma:) /fv )=0-0,
M

where the last equality is due to an argument similar to (39). Thus,
e ~

(43) lim —/ (Vi = Vp)dt > O-a.s.
T Jo

Since H is an increasing function in v with positive derivative, we can easily infer
from (43) and the fact that V; > V; that

1 (T /N~
[LH*WH— lim —/ HZt dt — hm —/ H<,O,Vt,at>dt>0.
0 Y

T—oo T T—o0

In view of Corollary 2.10, we obtain the second claim of the theorem. The proof is
complete. 0
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4. Conclusion. In this paper, we have given a general method to deal with the
critical case in population dynamics in a random environment. We apply the method
to five different models, including epidemiological, prey-predator, and population in
a structured environment.

When our results apply, there is extinction in temporal average in the critical
case. A natural question is whether it is possible to find other results, such that there
is persistence (maybe in a weaker sense) in the critical case.

Our method consists of looking at integrals of the function H = LV with respect
to invariant measures of the process. For some models, another method is possible,
as used, for example, for some PDMPs in [22]. The idea is the following. Assume
that if P;y,, (M) is nonempty, then it is possible to compute, or at least, to estimate,
the density of an invariant probability p € Pin,(M4). Then, this density must
satisfy some integrability conditions, which can be violated if AT(H) = 0 (see e.g [22,
Theorem 3.1] or [17, Lemma 6]). Hence, if A*(H) = 0, Piny(M) has to be empty.
This alternative method is close in spirit to ours, since it comes to a contraction when
assuming that P;,, (M) is nonempty and AT (H) = 0.

Acknowledgment. We thank two anonymous referees for valuable comments to
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