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A METHOD TO DEAL WITH THE CRITICAL CASE IN
STOCHASTIC POPULATION DYNAMICS\ast 

DANG H. NGUYEN\dagger AND EDOUARD STRICKLER\ddagger 

Abstract. In numerous papers, the behavior of stochastic population models is investigated
through the sign of a real quantity which is the growth rate of the population near the extinction
set. In many cases, it is proven that when this growth rate is positive, the population is persistent
in the long run, while if it is negative, the population goes extinct. However, the critical case when
the growth rate is null is rarely treated. The aim of this paper is to provide a method that can
be applied in many situations to prove that in the critical case, the process converges in temporal
average to the extinction set. A number of applications are given for stochastic differential equations
and piecewise deterministic Markov processes modeling prey-predator, epidemiological or structured
population dynamics.
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1. Introduction. Much effort in population biology has been devoted to un-
derstanding under what conditions interacting populations, whether they be viruses,
plants, or animals, coexist or go extinct. The variation of environmental factors such
as temperature, precipitation, and humidity inherently affects the growth rates of
the species. There is rich literature showing that the interplay of biotic interactions
and environmental fluctuations can facilitate or suppress the persistence of species
or disease prevalence; see [16, 9, 1, 8, 6] and the references therein. There has been
intensive attention paid to modeling and analysis of ecological and epidemiological
models under environmental stochasticity.

As one of the simplest models, the evolution of a single species can be modeled
by the stochastic logistic equation:

(1) dXt = Xt(r  - kXt)dt+ \sigma XtdWt.

The key quantity is the so-called stochastic growth rate \Lambda := r - \sigma 2

2 . It is well-known
that if \Lambda < 0, the population goes extinct almost surely, that is, limt\rightarrow \infty X(t) = 0
a.s. In the case \Lambda > 0 the population is persistent and the transition probability of
(X(t)) converges to its unique invariant probability measure on (0,\infty ). In the critical

case r  - \sigma 2

2 = 0, the process is null-recurrent, and X(t) does not go extinct almost
surely but also does not have an invariant probability measure on (0,\infty ) and the

time-average 1
t

\int t

0
X(s)ds converges to 0 almost surely. Readers are referred to [14]

for the proof and more details. However, it requires more advanced and dedicated
methods to analyze higher dimensional systems, which depict interacting populations,
especially when one has to analyze invariant measures instead of an equilibrium.
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1568 DANG H. NGUYEN AND EDOUARD STRICKLER

In [28], a condition for coexistence was given, which requires a certain weighted
combination of populations' invasion rates to be positive for any invariant measures
associated with a subcollection of populations. The results were then improved and
generalized to a very general setting by Bena\"{\i}m in [4], where the concept of H-
persistence was coined and developed. With the same idea, [18] provided conditions
for both extinction and persistence in a setting of stochastic differential equations.
The long-term properties of some specific models are also classified in [12, 13, 6, 26,
20, 7, 17]. For many models, the conditions in the aforesaid references for extinction
and persistence of a species in an interacting population are determined by a threshold
\Lambda whose sign indicates whether the species will be persistent or extinct. Namely, the
result obtained is that if \Lambda > 0, the species persists and if \Lambda < 0, extinction will
happen.

The critical case \Lambda = 0 largely remains untreated, except for a few special cases
such as the stochastic logistic model introduced above. Although the set of parameters
for which \Lambda = 0 often has Lebesgue measure, it is of great mathematical interest to
discover the dynamics of the systems in the critical cases. Analyzing the critical case
not only fully classifies the long-term behaviors of the system but helps to gain more
insights about the nature of the system. However, similar to (but more complicated
than) the case of an equilibrium of a deterministic dynamical system whose maxi-
mum eigenvalue is 0, treating the critical cases of stochastic systems is, in general,
extremely difficult, which might be the reason why the critical case usually remains
open, especially for high dimensional systems.

However, population models often exhibit some certain monotone properties that
can be utilized to tackle the critical cases. This paper provides some methods for
treating the critical cases of population dynamics under certain conditions. It is
partially inspired by the work of the first author [26], where the critical case is treated
for a stochastic chemostat dynamic modeled by a switching diffusion.

The rest of the paper is organized as follows. In section 2, we formulate the model
in the general setting of [4] and give a general condition for extinction in the average
of stochastic populations in a critical case. Section 3 is devoted to the analysis of
a number of specific models in critical cases. Different techniques are introduced so
that the general result in section 2 becomes applicable for those models.

2. Notation and results. Before we give our result, we present the very general
framework of [4] for stochastic persistence and extinction. Let (Xt)t\geq 0 be a c\`adl\`ag
Markov process on a locally compact Polish metric space (\scrM , d). For a distribution
\nu on \scrM , we set, as usual, \BbbP \nu for the law of the process X with initial distribution \nu 
and \BbbE \nu for the associated expectation. If \nu = \delta x for some x \in \scrM , we write \BbbP x for \BbbP \delta x .
We denote by (Pt)t\geq 0 the semigroup of X acting on bounded measurable function
f : \scrM \rightarrow \BbbR as

Ptf(x) = \BbbE x (f(Xt)) .

An invariant distribution for the process X is a probability \mu such that \mu Pt = \mu for
all t \geq 0. We let \scrP inv denote the set of all invariant probability measures of X and for
N \subset \scrM and let \scrP inv(N) and \scrP erg(N) denote the (possibly empty) sets of invariant
probability measures and ergodic invariant probability measures, respectively, giving
mass 1 to the set N . The following is the standing assumption.

Hypothesis 2.1. There exists a nonempty closed set\scrM 0 \subset \scrM called the extinction
set which is invariant under (Pt)t\geq 0. That is, for all t \geq 0,

Pt1\scrM 0 = 1\scrM 0 .
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1569

We set

\scrM + = \scrM \setminus \scrM 0.

The two following assumptions are taken from [4].

Hypothesis 2.2. The semigroup (Pt)t\geq 0 is Cb-Feller, meaning that for all contin-
uous bounded functions f : \scrM \rightarrow \BbbR , (t, x) \mapsto \rightarrow Ptf(x) is a continuous function.

We let \scrL denote the infinitesimal generator of Pt on the space Cb(\scrM ) of continuous
bounded functions, defined for f \in \scrD (\scrL ) by

\scrL f(x) = lim
t\rightarrow 0

Ptf(x) - f(x)

t
,

where the domain is the set of functions such that the above convergence holds point-
wise, with the additionnal property that sup0<t\leq 1 \| t - 1(Ptf  - f)  - \scrL f\| < +\infty . We
also let \scrD 2(\scrL ) be the set of functions such that both f and f2 lie in \scrD (\scrL ), and we
define the carr\'e du champ operator on \scrD 2(\scrL ) by

\Gamma f = \scrL f2  - 2f\scrL f.

For all t > 0, we let \Pi t denote the empirical occupation measure of the process X up
to time t. This is the random probability measure defined on \scrM by

\Pi t =
1

t

\int t

0

\delta Xs
ds.

When we want to emphasize the starting point, we set \Pi x
t for the empirical occupation

measure whenever X0 = x almost surely.

Hypothesis 2.3. For all x \in \scrM , the sequence \{ \Pi x
t , t \geq 0\} is almost surely tight.

As proved in [4, Theorem 2.1], a sufficient condition for the tightness of the
sequence of the empirical occupation measures is the existence of a suitable Lyapunov
function, as defined in the following assumption. Recall that a map f : \scrM \rightarrow \BbbR + is
said to be proper if for all R > 0, the sublevel set \{ f \leq R\} is compact in \scrM .

Hypothesis 2.4. There exist continuous proper maps W, \~W : \scrM \mapsto \rightarrow \BbbR + and a
continuous map LW : \scrM \mapsto \rightarrow \BbbR enjoying the following properties:

(a) For all compact K \subset \scrM there exists WK \in \scrD 2 with W | K = WK | K and
(\scrL WK)| K = LW | K .

(b) For all x \in M , sup\{ t\geq 0,K:K\subset \scrM ,K compact\} Pt\Gamma (VK)(x) < \infty .

(c) LW \leq  - \~W + C.

The latter assumption also implies that all weak-limit points of the sequence
(\Pi t)t>0 are almost surely in \scrP inv(\scrM ) (see [4, Theorem 2.1]).

The next assumption ensures the existence of a Lyapunov function near the
boundary \scrM 0.

Hypothesis 2.5. There exist continuous maps V : \scrM + \mapsto \rightarrow \BbbR + and H : \scrM \mapsto \rightarrow \BbbR 
enjoying the following properties:

(a) For all compact K \subset \scrM + there exists VK \in \scrD 2 with V | K = VK | K and
(\scrL VK)| K = H| K .

(b) For all x \in \scrM , sup\{ K:K\subset \scrM ,K compact; t\geq 0\} Pt\Gamma (VK)(x) < \infty .

(c) The map
\~W

1+| H| is proper.
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1570 DANG H. NGUYEN AND EDOUARD STRICKLER

Remark 2.6. Assumption 2.4 to control the dynamics of the system near infinity.
The Lyapunov function W together with the function \~W with satisfying conditions
(a), (b), (c) in Hypothesis 2.4 ensures that we have the tightness and boundedness
in certain sense of the solution. On the other hand, the Lyapunov function V will
manage the dynamics when the solution is near the boundary \scrM 0. Roughly speaking,
analyzing the average ofH = \scrL V with respect to invariance measures on the boundary
will determine whether the process will converge to the boundary \scrM 0. Condition (c)
in Hypothesis 2.5 is needed to handle the scenario when the process is close to both
the boundary and infinity. A quick example will be given below while more details
about the main ideas and examples can be found in [4] and [18].

Example 2.7. This example is taken from [4, section 5.2]. We consider the fol-
lowing stochastic Rosenzweig--MacArthur model:

(2)

\left\{   dXt = Xt

\Bigl( 
1 - Xt

K  - Yt

1+Xt

\Bigr) 
dt+ \varepsilon XtdBt,

dYt = Yt

\Bigl( 
 - \alpha + Xt

1+Xt

\Bigr) 
dt.

In this case, \scrM = \BbbR 2
+ := \{ (x, y) \in \BbbR 2 : x, y \geq 0\} , \scrM + := \{ (x, y) \in \BbbR 2 : x, y > 0\} 

and \scrM 0 = \scrM \setminus \scrM +. It is proven in [4, Theorems 5.1 and 5.5] that Assumption
2.4 is satisfied with W (x, y) = (x + y)2 and \~W = (1 + C)W , where C is some
constant. The function V can be chosen such that V (x, y) \leq C1 ln(1 + x + y) and
V (x, y) =  - C2 lnx  - ln y when (x, y) is close to \scrM 0, where C1, C2 are sufficiently
large positive numbers. The use of  - lnx and  - ln y is to manage the behavior of
the systems when X and Y are small, respectively. The function H in this case is
H(x, y) = \scrL V (x, y). We refer to [4, Theorems 5.1 and 5.5] for more details.

From Assumption 2.5, it is possible to define the H-exponent of X as in [4,
Definition 4.2].

Definition 2.8. For V and H as in Hypothesis 2.5, we set

\Lambda  - (H) =  - sup\{ \mu H, \mu \in \scrP erg(\scrM 0)\} 

and
\Lambda +(H) =  - inf\{ \mu H, \mu \in \scrP erg(\scrM 0)\} .

We say that X is H-persistent if \Lambda  - (H) > 0 and that X is H-nonpersistent if
\Lambda +(H) < 0.

The main results in [4] could be summed up as follows. If \Lambda  - (H) > 0, then
\scrP inv(M+) is nonempty and the family \{ \Pi t, t \geq 0\} is tight in \scrM +. Furthermore, the
process X is stochastically persistent (see [27])) in the sense that, for all \varepsilon > 0, there
exists a compact subset K of \scrM + such that, for all x \in \scrM +,

\BbbP x (lim inf \Pi t(K) \geq 1 - \varepsilon ) = 1.

On the contrary, when \Lambda +(H) < 0, Xt converges to \scrM 0 exponentially fast. (This is
not yet proven in [4], but one can look at the thesis of the second author [30, section
1.3] for a proof in the special case where \scrM 0 is compact, relying on the proof made
in [6].) However, the critical case where \Lambda +(H) = 0 is not investigated. It is known
from the deterministic case that in general, the information that \Lambda +(H) = 0 is not
sufficient to conclude on the long term behavior of the process. (One can think to the
stability of an equilibrium point for a dynamical system, when the Jacobian matrix
of the vector field at that point has eigenvalues with null real part.)

We now state the result of this note, which follows from a basic argument.
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1571

Proposition 2.9. Assume that if \scrP inv(\scrM +) is nonempty, then there exists \mu \in 
\scrP inv(\scrM +) and \pi \in \scrP inv(\scrM 0) such that

(3) \mu H > \pi H.

Then \Lambda +(H) > 0.

Proof. Assume that \scrP inv(\scrM +) is nonempty. Let \mu \in \scrP inv(\scrM +) satisfying (3) for
some \pi \in \scrP inv(\scrM 0), then \mu H >  - \Lambda +(H). By [4, Lemma 7.5], since \mu \in \scrP inv(\scrM +),
we must have \mu H = 0. (Note that the proof of this fact in [4] does not require the
process to be H-persistent.) This proves that \Lambda +(H) > 0.

We get the following immediate corollary.

Corollary 2.10. Assume that the hypothesis in Proposition 2.9 holds. If \Lambda +(H)
= 0, \scrP inv(\scrM +) is empty and all weak-* limit points of \Pi t lie almost surely in
\scrP inv(\scrM 0). In particular, if \scrP inv(\scrM 0) = \{ \pi \} , then for all bounded continuous func-
tions f : \scrM \rightarrow \BbbR ,

(4) lim
t\rightarrow +\infty 

1

t

\int t

0

f(Xs)ds = \pi f.

Remark 2.11. Actually, one can prove that (4) holds for all f : \scrM \rightarrow \BbbR such that
the map W

1+| f | is proper, where W satisfies Assumption 2.4 (see [4, Lemma 9.1]).

Thus, the idea is that ifH is strictly bigger on\scrM + than on\scrM 0 and if \Lambda +(H) = 0,
then the process goes on average to extinction. Rather than giving abstract conditions
ensuring that (3) holds, we provide in the next sections five examples on which we
prove (3) with different methods that can be easily reproduced for other models.

3. Applications. To illustrate the applicability of our method, we examine the
critical cases in five stochastic models in ecology and epidemiology. The four first
examples come from the literature, where the case \Lambda = 0 has not been treated. The
last example is new. It should be emphasized that each model requires to be treated
differently before Proposition 2.9 can be applied. New distinct techniques are therefore
introduced to handle each model, especially when usual comparison arguments are not
straightforwardly applicable.

3.1. SIRS model with switching. For some diseases such as influenza, an
individual's immunity may wane over time after recovery. SIRS models, which are
often used for this type of disease, describe the course of the transmission, recovery,
and loss of immunity. Stochastic SIRS models have been studied extensively over the
last decade. However, few papers have successfully classified the asymptotic behaviors
of the models. In this section, we apply our method to a SIRS model with random
switching that was studied in [24]. We first describe the process. Let N be a positive
integer, and set \scrE = \{ 1, . . . , N\} . For k \in \scrE = \{ 1, . . . , N\} let F k be the vector field
defined on \BbbR 3 by

(5) F k(S, I,R) =

\left(  \Lambda  - \mu S + \lambda kR - \beta kSGk(I)
\beta kSGk(I) - (\mu + \alpha k + \delta k)I

\delta kI  - (\mu + \lambda k)R

\right)  ,

where Gk is a regular function such that Gk(0) = 0. The reader is referred to [24] for
the epidemiological interpretation of the different constants. Let (\alpha t)t\geq 0 be an irreduc-
ible Markov chain on \scrE . We denote by p = (p1, . . . , pN ) its unique invariant probability

D
ow

nl
oa

de
d 

04
/0

8/
21

 to
 1

30
.1

60
.5

7.
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1572 DANG H. NGUYEN AND EDOUARD STRICKLER

measure. We consider the process (Zt)t\geq 0 = (Xt, \alpha t)t\geq 0 with Xt = (St, It, Rt) \in \BbbR 3
+

evolving according to

(6)
dXt

dt
= F\alpha t(Xt).

The process Z is a piecewise deterministic Markov process (PDMP) as introduced in
[11], and belongs to the more specific class of PDMPs recently studied in [3] and [5]
(see also [6, 20, 7] and [17] for PDMP models in ecology or epidemiology).

Remark 3.1. In [24], \beta is the only parameter allowed to depend on k. The general
case where the other constants and the function G can depend on k has been treated
in [31].

We make the following assumptions, which are taken from [24].

Hypothesis 3.2.
(i) For all k, Gk : \BbbR + \rightarrow \BbbR + is C2 with Gk(0) = 0 and 0 < Gk(I) \leq G\prime 

k(0)I for
I > 0.

(ii) For all k, if \beta k
\Lambda 
\mu G

\prime 
k(0)  - (\mu + \alpha k + \delta k) > 0, then F k admits an equilibrium

point x\ast \in \scrM + which is accessible from \scrM +.

We consider the process on the space \scrM := K \times \scrE , where K = \{ (s, i, r) \in 
\BbbR 3

+ s + i + r \leq \Lambda 
\mu \} . The set K0 = \{ (s, i, r) \in K : i = 0\} is invariant for the F k, and

thus the set \scrM 0 = K0\times E is invariant for Z. On this set, it is not hard to check that
X converges almost surely to (S\ast , 0, 0), where S\ast = \Lambda 

\mu . Thus, the unique invariant

probability measure of Z on \scrM 0 is \delta \ast \otimes p, where \delta \ast is the Dirac mass at (S\ast , 0, 0).
Consider the function V : \scrM + \times \scrE \rightarrow \BbbR + given by

V (s, i, r, k) = log
\Lambda 

\mu 
 - log i for all (s, i, r, k) \in \scrM + \times E.

Define also the function H : \scrM \times E \rightarrow \BbbR by H(s, i, r, k) = (\mu + \alpha k + \delta k  - \beta ks \~Gk(i)),
where \~Gk is given by

\~Gk(i) =

\Biggl\{ 
Gk(i)

i if i \not = 0,

G\prime (0) if i = 0.

It is not hard to check that V and H satisfy assumption 2.5. Moreover, we have for
\pi = \delta \ast \otimes p,

\pi H =
\sum 
k\in \scrE 

pk

\biggl( 
\mu + \alpha k + \delta k  - \beta k

\Lambda 

\mu 
G\prime 

k(0)

\biggr) 
for k \in \scrE = \{ 1, . . . , N\} . As in [24], we set

R0 =

\sum 
k pk\beta k

\Lambda 
\mu G

\prime 
k(0)\sum 

k pk(\mu + \alpha k + \delta k)
.

Note that R0 < 1 (respectively, R0 > 1, R0 = 1) if and only if \pi H > 0 (respectively,
\pi H < 0, \pi H = 0). The behavior of the process when R0 < 1 or R0 > 1 is studied in
[24] (see also [31] for an alternative and more general proof). With our method, one
can prove the following.

Proposition 3.3. Assume that R0 = 1. Then, for all (s, i, r, k) \in \scrM , \BbbP (s,i,r,k)-
almost surely,

lim
t\rightarrow \infty 

1

t

\int t

0

Sudu = S\ast ,

D
ow

nl
oa

de
d 

04
/0

8/
21

 to
 1

30
.1

60
.5

7.
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CRITICAL CASE IN STOCHASTIC DYNAMICS 1573

and

lim
t\rightarrow \infty 

1

t

\int t

0

(Iu +Ru)du = 0.

Proof. We show that when \scrP inv(\scrM +) is nonempty, then for all \mu \ast \in \scrP inv(\scrM +),
one has

\mu \ast H > \pi H.

For convenience, we write Ck for \mu + \alpha k + \delta k. By Assumption 3.2, we have

H(s, i, r, k) \geq Ck  - \beta kG
\prime (0)s,

and thus

\mu \ast H \geq 
\sum 
k\in E

pkCk  - 
\sum 
k\in E

\beta kG
\prime 
k(0)

\int 
M+

sd\mu \ast 
k(s, i, r),

where \mu \ast 
k is the measure of total mass pk defined on \scrM by \mu \ast 

k(A) = \mu \ast (A \times \{ k\} ).
Note that as i > 0 on \scrM + and that for (s, i, r) \in \scrM , s + i + r \leq S\ast , then for all
(s, i, r) \in \scrM +, s < S\ast . In particular,\int 

\scrM +

sd\mu \ast 
k(s, i, r) < pkS

\ast ,

which yields

\mu \ast H >
\sum 
k\in \scrE 

pkCk  - 
\sum 
k\in \scrE 

pk\beta kG
\prime 
k(0)S

\ast = \pi H.

This proves by Corollary 2.10 that if R0 = 1, then \scrP inv(\scrM +) is empty and for all
bounded measurable function f : \scrM \times E \rightarrow \BbbR ,

lim
t\rightarrow \infty 

1

t

\int t

0

f(Su, Iu, Ru, ru)du =
\sum 
k

pkf(S
\ast , 0, 0, k).

3.2. Stochastic Rosenzweig--MacArthur. Although the results below can
also be obtained for a more general predator-prey model, we consider in detail the
stochastic Rosenzweig--MacArthur predator-prey model, which was introduced in sec-
tion 2, as a specific model to illustrate our method. To be precise, consider the system

(7)

\left\{   dXt = Xt

\Bigl( 
1 - Xt

K  - Yt

1+Xt

\Bigr) 
dt+ \varepsilon XtdBt,

dYt = Yt

\Bigl( 
 - \alpha + Xt

1+Xt

\Bigr) 
dt.

In this case, \scrM = \BbbR 2
+ := \{ (x, y) \in \BbbR 2 : x, y \geq 0\} . We set \scrM x

0 = \{ (x, y) \in \scrM : x = 0\} ,
\scrM y

0 = \{ (x, y) \in \scrM : y = 0\} , and \scrM 0 = \scrM x
0 \cup \scrM y

0. We also let \scrM x
+ = \scrM \setminus \scrM x

0,
\scrM y

+ = \scrM \setminus \scrM y
0, and \scrM + = \scrM \setminus \scrM 0. We also define the invasion rate of species x

and y, respectively, as

\lambda 1(x, y) =

\biggl( 
1 - x

K
 - y

1 + x

\biggr) 
 - \varepsilon 2

2
and \lambda 2(x, y) =  - \alpha +

x

1 + x
.

By [4, Theorem 5.5], if \varepsilon 2 > 2, then for any initial condition, one has (Xt, Yt) \rightarrow 0 as
t \rightarrow \infty . Thus, we assume now that \varepsilon 2 < 2. In that case, the process is H-persistent
with respect to \scrM x

0. Indeed, in that situation, \scrP erg(\scrM x
0) = \{ \delta 0\} , where \delta 0 is the
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1574 DANG H. NGUYEN AND EDOUARD STRICKLER

Dirac mass at 0 and \delta 0\lambda 1 = 1  - \varepsilon 2

2 > 0. Hence, the condition [4, Theorem 5.1(ii)] is
satisfied. In particular, every limit point of (\Pi t)t\geq 0 lies almost surely in \scrP inv(\scrM x

+).
Moreover, on \scrM x

+ \cap \scrM y
0, the process admits a unique invariant probability measure

denoted by \mu x ( see [4, section 5.2]).
It is easily seen that \scrP erg(\scrM 0) = \{ \delta 0, \mu x\} . We set

\Lambda (\varepsilon ,K, \alpha ) = \mu x(\lambda 2) =

\int +\infty 

0

x

1 + x
d\mu x(x) - \alpha .

By [4, Theorem 5.5], if \Lambda (\varepsilon ,K, \alpha ) > 0, then the process is stochatistically persistent
with respect to \scrM 0 and admits a unique invariant probability measure \mu \ast on \scrM +,
while if \Lambda (\varepsilon ,K, \alpha ) < 0, Yt converges to 0. We now prove the following proposition for
the critical case.

Proposition 3.4. If \Lambda (\varepsilon ,K, \alpha ) = 0, then for all (x, y) \in M+, one has \BbbP (x,y)-
almost surely,

lim
T\rightarrow \infty 

1

T

\int T

0

Ysds = 0

and

lim
T\rightarrow \infty 

1

T

\int T

0

Xsds =

\int +\infty 

0

xd\mu x(x) = K

\biggl( 
1 - \varepsilon 2

2

\biggr) 
.

Proof. We prove that if \scrP inv(\scrM y
+) is nonempty, then for all \mu \ast \in \scrP inv(\scrM y

+), one
has \mu \ast H > \mu xH, where

H(x, y) = H1(x, y) - \lambda 2(x, y)

with

H1(x, y) =
1

1 + x+ y

\biggl( 
x - \alpha y  - x2

K

\biggr) 
 - \varepsilon 2x2

2(1 + x+ y)
.

We set, for (x, y) \in \scrM +, V (x, y) = log(1 + x + y)  - log x. We can see that (V,H)
satisfy Assumption 2.5. Moreover, we have \scrL [log(1 + x+ y)] = H1(x, y), and then by
[4, Remark 19], we must have \nu H1 = 0 for any \nu \in \scrP inv(\scrM ). As a result,

\nu H =  - \nu \lambda 2 for any \nu \in \scrP inv(\scrM ).

Remark 3.5. In the framework of [4], it would have been natural to take for V
any function coinciding with  - log x for x small enough, so that H =  - \lambda 2 near \scrM 0,
because it is sufficient to know H on the boundary \scrM 0. However, to apply our
method, it is required to compare \pi H and \mu H for \mu \in \scrP inv(\scrM +), and thus it is
necessary to know H on the whole \scrM +. Thus the idea is to take V = V1 + V2 and
H = H1 +H2, with V2(x, y) =  - log x, H2 =  - \lambda 2, V1 defined on all \scrM so that V is
nonnegative, \scrL V1 = H1 and \nu H1 = 0 for all \nu \in \scrP inv(\scrM ) (see [4, Remarks 11 and 19
and Proposition 4.13]). We use a similar trick in subsection 3.3.

To continue the proof, note that on \scrM x
0 \cap \scrM y

+, Yt converges exponentially fast
to 0. Thus, it holds that \scrP inv(\scrM y

+) = \scrP inv(\scrM +). Moreover, by Theorem 5.5 in [4],
if \scrP inv(\scrM +) is nonempty, it reduces to a unique element, which we denote by \mu \ast ,
and \mu \ast has a positive density with respect to the Lebesgue measure. This implies by
Birkhoff's ergodic theorem that for all (x, y) \in \scrM +,

\mu \ast \lambda 2 = lim
T\rightarrow \infty 

1

T

\int T

0

\lambda 2(Xs, Ys)ds, \BbbP x,y-almost surely.
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1575

We let \^X be the solution of the reduced system on \scrM y
0. That is,

(8) d \^Xt = \^Xt

\Biggl( 
1 - 

\^Xt

K

\Biggr) 
dt+ \varepsilon dBt.

By the comparison theorem, if X0 = \^X0, then Xt \leq \^Xt for all t \geq 0. The idea is now
to write

\mu \ast H =  - \mu \ast \lambda 2 =  - lim
T\rightarrow \infty 

1

T

\int T

0

\lambda 2( \^Xs, 0)ds - lim
T\rightarrow \infty 

1

T

\int T

0

\Bigl( 
\lambda 2(Xs, Ys) - \lambda 2( \^Xs, 0)

\Bigr) 
ds

and to prove that the first term is \mu xH and the second one is positive.
By [4, Theorem 5.1(i)], we have \mu x(\lambda 1) = 0. Moreover, the process \^X on \scrM y

0 is
persistent with respect to \scrM x

0 \cap \scrM y
0. Thus, for all x > 0, one has

lim
T\rightarrow \infty 

1

T

\int T

0

\lambda 2( \^Xs, 0)ds = \mu x\lambda 2

and

lim
t\rightarrow \infty 

1

T

\int T

0

\lambda 1( \^Xs, 0)ds = \mu x(\lambda 1) = 0,

which gives

lim
t\rightarrow \infty 

1

T

\int T

0

\^Xs = K

\biggl( 
1 - \varepsilon 2

2

\biggr) 
.

On the other hand, since (X,Y ) is persistent with respect to \scrM x
0, one has

lim
t\rightarrow \infty 

1

T

\int T

0

\lambda 1(Xs, Ys)ds = \mu \ast \lambda 1 = 0,

which leads to

lim
t\rightarrow \infty 

1

T

\int T

0

Xs = K

\biggl( 
1 - \varepsilon 2

2

\biggr) 
 - 
\int +\infty 

0

y

1 + x
d\mu \ast (x, y).

Now, due to the fact that \mu \ast (M+) = 1, one has

\=y :=

\int +\infty 

0

y

1 + x
d\mu \ast (x, y) > 0

and thus

lim
t\rightarrow \infty 

1

T

\int T

0

( \^Xs  - Xs)ds = \=y > 0.

From this we have

lim
T\rightarrow \infty 

1

T

\int T

0

\Bigl( 
\lambda 2(Xs, Ys) - \lambda 2( \^Xs, 0)

\Bigr) 
ds < 0.

Indeed, let C > 0 such that

lim
T\rightarrow \infty 

1

T

\int T

0

( \^Xs  - Xs)1\{ \^Xs\leq C\} ds \geq 
\=y

2
.
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1576 DANG H. NGUYEN AND EDOUARD STRICKLER

Then, it is easily seen that there exists c > 0 such that for all 0 \leq x \leq \^x \leq C, and all
y \geq 0, one has \lambda 2(x, y) - \lambda 2(\^x, 0) \leq  - c(\^x - x). In particular, by the monotonicity of
H and the fact that Xs \leq \^Xs for all s \geq 0, we have

lim
T\rightarrow \infty 

1

T

\int T

0

\Bigl( 
\lambda 2(Xs, Ys) - \lambda 2( \^Xs, 0)

\Bigr) 
ds

\leq lim
T\rightarrow \infty 

1

T

\int T

0

\Bigl( 
\lambda 2(Xs, Ys) - \lambda 2( \^Xs, 0)

\Bigr) 
1\{ \^Xs\leq C\} ds

\leq  - lim
t\rightarrow \infty 

c

T

\int T

0

( \^Xs  - Xs)1\{ \^Xs\leq C\} ds

\leq  - c\=y

2
.

We conclude that \mu \ast H =  - \mu \ast \lambda 2 \geq  - \mu x\lambda 2 + c\=y
2 = \mu xH + c\=y

2 > \mu xH. This proves
that when \Lambda (\varepsilon ,K, \alpha ) = 0, \scrP inv(\scrM +) is empty. Moreover, we know that the process
is persistent with respect to \scrM x

0. Putting this together, the only possible limit point

for (\Pi t)t\geq 0 is \mu x. Furthermore, since the maps (x, y) \mapsto \rightarrow (x+y)2

1+y and (x, y) \mapsto \rightarrow (x+y)2

1+x
are proper, Corollary 2.10 and Remark 2.11 imply that

lim
T\rightarrow \infty 

1

T

\int T

0

Ysds = 0

and

lim
T\rightarrow \infty 

1

T

\int T

0

Xsds =

\int +\infty 

0

xd\mu x(x) = K

\biggl( 
1 - \varepsilon 2

2

\biggr) 
.

3.3. A stochastic model in spatially heterogeneous environments. In
this section, we consider the example treated in [19] of a population submitted to
random fluctuations of the environment and to spatio-temporal heterogeneity. The
model aims to analyze the effect of both spatial and temporal variations to the evo-
lution of the species; see [14] and [19] for more biological interpretations. In that
setting, the space is divided into n patches, and the dynamics of the population
within a patch follows a logistic SDE. There is also dispersal of the population, that
is, individuals can move from one patch to the other. The precise model is the fol-
lowing. Let Xt = (X1

t , . . . , X
n
t ) be the vector of abundance in each patch at time t,

then X satisfies the SDE

(9) dXi
t =

\left[  Xi
t

\bigl( 
ai  - bi(X

i
t)
\bigr) 
+

n\sum 
j=1

Dj,iX
j
t

\right]  dt+Xi
tdE

i
t ,

where ai > 0 is the per capital growth rate in patch i, bi : \BbbR + \rightarrow \BbbR + is the competition
term in patch i, and Dj,i \geq 0 is for j \not = i, the dispersal rate of patch j to patch i
and E = \Gamma TB, where \Gamma is a square n\times n matrix and B = (B1, . . . , Bn) is a standard
Brownian motion. We also set Di,i =  - 

\sum 
j \not =i Dj,i and \Sigma = \Gamma T\Gamma .

We work under the following assumptions, made in [19].

Hypothesis 3.6.
1. For each i \in \{ 1, . . . , n\} , bi : \BbbR + \rightarrow \BbbR + is locally Lipschitz and vanishes only

at 0, and there exist constants \gamma b and Mb such that, for all x \in \BbbR n
+ with
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1577\sum 
i xi \geq Mb, one has \sum n

i=1 xi(bi(xi) - ai)\sum n
i=1 xi

> \gamma b.

2. The matrix D is irreducible.
3. The matrix \Sigma is nonsingular.

These assumptions guarantee the existence of a unique strong solution to (9),
which moreover stays in \BbbR n

+ if X0 \in \BbbR n
+. As in [19], we introduce the decomposition

of the process: for any x0 \not = 0 and t \geq 0, we set St =
\sum 

i X
i
t and Y i

t = Xi
t/St. By

Ito's formula, it can be shown that (St, Yt) evolves according to

(10)

\left\{     
dYt =

\bigl[ 
Diag(Yt) - YtY

T
t

\bigr] 
\Gamma T dBt +DTYtdt

+
\bigl[ 
Diag(Yt) - YtY

T
t

\bigr] 
(a - \Sigma Yt  - b(StYt)) dt,

dSt = St (a - b(StYt))
T
Ytdt+ StY

T
t \Gamma T dBt,

where Yt = (Y 1
t , . . . , Y

n
t ) lies in the simplex

\Delta = \{ x = (x1, . . . , xn) \in \BbbR n
+ : x1 + \cdot \cdot \cdot + xn = 1\} ,

and a := (a1, . . . , an), b(x) := (b1(x), . . . , bn(x)). It is now possible to extend equation
(10) on \{ 0\} \times \Delta by setting St = 0 and

(11) dYt =
\bigl[ 
Diag(Yt) - YtY

T
t

\bigr] 
\Gamma T dBt +DTYtdt+

\bigl[ 
Diag(Yt) - YtY

T
t

\bigr] 
(a - \Sigma Yt) dt.

If we let \~Xt be the solution to

(12) d \~Xi
t =

\left[  ai \~Xi
t +

n\sum 
j=1

Dj,i
\~Xj
t

\right]  dt+ \~Xi
tdE

i
t ,

and \~St =
\sum 

i
\~Xi
t , then

(13) d \~St = \~Sta
T \~Ytdt+ \~St

\~Y T
t \Gamma T dBt

with \~Y = Y subjected to (11). It is proven in [15] that \~Y admits a unique invariant
probabilty measure \pi on \Delta . Set

(14) r =

\int 
\Delta 

\biggl( 
aT y  - 1

2
yT\Sigma T y

\biggr) 
d\pi (y).

In [19], the authors show that the sign of r determines the long term behavior of
X: if r < 0, then the population abundance in each patch converges to 0 exponentially
fast, while if r > 0, the process X admits a unique invariant probability measure on
\BbbR n

++ := \{ x \in \BbbR n
+ : xi > 0\} and the law of X converges polynomially fast to this

stationary distribution. The case r = 0 is not treated and left in the discussion as an
open question.

We show now that our method enables us to handle the critical case r = 0.

Proposition 3.7. If r = 0, then, for all i, for all x \in \BbbR n
+, \BbbP x-almost surely

lim
t\rightarrow \infty 

1

t

\int t

0

Xi
sds = 0.
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1578 DANG H. NGUYEN AND EDOUARD STRICKLER

Proof. First, let us write the process in our background. We consider the process
(Zt)t\geq 0 = (St, Yt)t\geq 0 defined on \scrM = \BbbR + \times \Delta , and evolving according to (10) on
\scrM + = \BbbR \ast 

+ \times \Delta and according to (11) on \scrM 0 = \{ 0\} \times \Delta . Proposition A.1 in [19]
implies that Assumption 2.2 is satisfied under Assumptions 3.6.

One can check that for a function f : \scrM \rightarrow \BbbR , of class C2 with bounded support,
the generator \scrL of Z is given by

\scrL f(s, y) = \partial 

\partial s
f(s, y)s (a - b(sy))

T
y +

1

2

\partial 2

\partial s2
f(s, y)s2yT\Sigma y +Af(s, y),

where Af is a sum of terms, each of them involving at least one derivative of f with
respect to one of the coordinates of y. In particular, if f(s, y) = g(s) for some function
g, one has

\scrL f(s, y) = g\prime (s)s (a - b(sy))
T
y +

1

2
g\prime \prime (s)s2yT\Sigma y.

Let \varepsilon > 0, and set g(s) = (1 + s)1+\varepsilon and f(s, y) = g(s). Then, we get (formally) that

\scrL f(s, y) = (1 + \varepsilon )f(s, y)

\Biggl[ 
s

1 + s
(a - b(sy))T y +

\biggl( 
s

1 + s

\biggr) 2
1

2
\varepsilon yT\Sigma y

\Biggr] 
,

which by Assumption 3.6 implies that

\scrL f(s, y) \leq  - \alpha f(s, y) + C,

where \alpha = \gamma b - 1
2\varepsilon \| \Sigma \| is positive for \varepsilon small enough, and C = sup(s,y)\in [0,Mb]\times \Delta \scrL f(s, y)

is finite. From this, it is possible to prove that Assumption 2.4 is satisfied for
W (s, y) = (1 + s)1+\varepsilon , provided \varepsilon is small enough.

Next, we prove that Assumption 2.5 is satisfied. We define two functions on \scrM :

H1(s, y) =
s

1 + s
(a - b(sy))

T
y  - 1

2

s2

(1 + s)2
yT\Sigma y

and

H2(s, y) = (a - b(sy))
T
y  - 1

2
yT\Sigma y.

We define V on \scrM + by setting V (s, y) = log(1 + s)  - log s. By definition of V and
Ito's formula,

\scrL V (s, y) = H1(s, y) - H2(s, y).

It is not hard to check that the functions V and H so defined satisfy Assumption 2.5.
We have from Ito's formula that

lim
T\rightarrow \infty 

\Pi z
TH1 = lim

T\rightarrow \infty 

\BbbE z log(1 + ST ) - log(1 + s)

T
= 0, z \in \scrM ,

due to [19, Lemma A.2]. As a result, \nu H1 = 0 for any invariant probability measure
\nu on \scrM of (Zt)t\geq 0. Subsequently, we have, r =  - \pi H2 = \pi H, where r is defined by

(14), and by the ergodicity of \~Y and (13), we have

(15) r = \pi H = lim
t\rightarrow \infty 

1

t

\int t

0

\Bigl[ 
aT \~Yu  - \~Yu\Sigma \~Yu

\Bigr] 
du = lim

t\rightarrow \infty 

1

t
log \~St.
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1579

Now we assume that Z admits an ergodic invariant probability measure \mu on \scrM +.
By the strong Feller property of X on \BbbR n

++, \mu has to be unique, and thus the process
is ergodic. In particular, we have

 - \mu H = \mu H2 = lim
t\rightarrow \infty 

1

t

\int t

0

\Bigl[ 
(a - b(SuYu))

T
Yu  - Yu\Sigma Yu

\Bigr] 
du.

Thus, to obtain the desired result that \mu H > \pi H, we will show that

(16)

lim
t\rightarrow \infty 

1

t

\int t

0

\Bigl[ 
aT \~Yu  - \~Yu\Sigma \~Yu

\Bigr] 
du

> lim
t\rightarrow \infty 

1

t

\int t

0

\Bigl[ 
(a - b(SuYu))

T
Yu  - Yu\Sigma Yu

\Bigr] 
du.

While componentwise a > a  - b(SuYu), (16) is not straightforward because \widetilde Yu  - Yu

can be both negative and positive. The difficulty will be overcome by introduc-
ing an intermediate process to ease the comparison. For all u \geq 0, we set \varsigma u =
mini bi(SuY

i
u). Note that \varsigma u > 0 by assumption on b. Now we introduce the process

\=X = ( \=X1, . . . , \=Xn) defined by

(17) d \=Xi
t =

\left[  \=Xi
t (ai  - \varsigma t) +

n\sum 
j=1

Dj,i
\=Xj
t

\right]  dt+ \=Xi
tdE

i
t .

By a classical comparison argument for SDE (see, i.e., [10]) and the positivity of
\varsigma t, we have Xi

t \leq \=Xi
t \leq \~Xi

t for all t \geq 0, provided the inequality holds at 0. We also
set \=St = \=X1

t + \cdot \cdot \cdot + \=Xn
t , and then St \leq \=St \leq \~St. Finally, we introduce \=Y = \=X/ \=S,

which is well defined as soon as \=X0 \not = 0. One can see that \=S and \=Y evolve according
to

(18) d \=St = \=St (a - \varsigma t)
T \=Ytdt+ \=St

\=Y T
t \Gamma T dBt,

(19) d \=Yt = [Diag( \=Yt) - \=Yt
\=Y T
t ]\Gamma T dBt+DT \=Ytdt+[Diag( \=Yt) - \=Yt

\=Y T
t ](a - \Sigma \=Yt - \varsigma t1) dt,

where 1 is the vector with all components equal to 1. Now, since \=Yt \in \Delta , one has
(Diag( \=Yt) - \=YtY

T
t )1 = 0, and thus

(20) d \=Yt =
\bigl[ 
Diag( \=Yt) - \=Yt

\=Y T
t

\bigr] 
\Gamma T dBt +DT \=Ytdt+

\bigl[ 
Diag( \=Yt) - \=Yt

\=Y T
t

\bigr] \bigl( 
a - \Sigma \=Yt

\bigr) 
dt,

and by the uniqueness of a strong solution to (11), \=Y = \~Y almost surely whenever
\=Y0 = \~Y0. Thus we have

lim
t\rightarrow \infty 

1

t
log( \=St) = lim

t\rightarrow \infty 

1

t

\int t

0

\Bigl( 
aT \~Yu  - \~Yu\Sigma \~Yu  - \varsigma u1

T \~Yu

\Bigr) 
du

=  - \pi H  - lim
t\rightarrow \infty 

1

t

\int t

0

\varsigma udu

=  - \pi H  - 
\int 
\scrM +

min
i

bi(syi)d\mu (y)

=  - \pi H  - \=\varsigma ,
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1580 DANG H. NGUYEN AND EDOUARD STRICKLER

where \=\varsigma =
\int 
\scrM +

mini bi(syi)d\mu (y) > 0 because \mu (\scrM +) = 1. Now, since \=St \geq St, we

have

 - \pi H  - \=\varsigma = lim
t\rightarrow \infty 

1

t
log( \=St)

\geq lim
t\rightarrow \infty 

1

t
log(St) =  - \mu H,

which yields \mu H \geq \pi H + \=\varsigma . Thus, one can apply Corollary 2.10 (and Remark 2.11):

since the map (s, y) \mapsto \rightarrow (1+s)1+\varepsilon 

1+s is proper, if r = 0, one has for all (s, y) \in \scrM ,
\BbbP s,y-almost surely

lim
t\rightarrow \infty 

1

t

\int t

0

Sudu = 0,

or equivalently, for all i, for all x \in \BbbR n
+, \BbbP x-almost surely

lim
t\rightarrow \infty 

1

t

\int t

0

Xi
sds = 0.

3.4. Multigroup SIS model in a fluctuating environment. Here, we prove
that the method used above also works in an SIS model with a random switching
environment. More precisely, we consider a stochastic counterpart of a heterogeneous
SIS model that was introduced by Lajmanovich and Yorke [23]. Note that SIS models
(susceptible-infected-susceptible) describes the evolution of a disease that does not
confer immunity. Suppose we are dealing with a heterogeneous population divided
into d homogeneous groups. Let xi(t) be the number of susceptibles in the ith group,
yi(t) the number of infecteds, \alpha i(t) the recovery rate, and ci the total size of the ith
subpopulation. Let \beta ij be the contact rate of the ith group's susceptibles with the jth
group's infecteds. Assume that (\beta ij) is an irreducible matrix. Since xi(t)+yi(t) = ci,
we have

(21)
dyi(t)

dt
=  - \alpha iy

i(t) +
\sum 
i,j

\beta jiciyj  - 
\sum 
i,j

\beta jiyiyj .

Nondimensionalizing the system by letting

Xt = (X1(t), . . . , Xd(t)) = (
y1(t)

c1
, . . . , y1(t)c1),

we can transform the (21) to
\.Xt = F (Xt),

where
F (x) = (C  - Diag(D))x - Diag(x)Cx

and C = (Ci,j) be an irreducible d \times d matrix with nonnegative entries and D =
(D1, . . . , Dd) a vector with positive entries. In [7], taking into account the fluctuations
of the environment which is modeled by a switching process, we have considered a
PDMP U = (X,\alpha ) on [0, 1]d \times \scrE , where \scrE = \{ 1, . . . , N\} for some integer N and
evolves as follows:

(22)
dXt

dt
= F\alpha t(Xt),
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1581

where \alpha is a Markov chain on E and for all k \in \scrE , F k is the vector field defined like
F with C and D replaced by Ck and Dk, respectively, where Ck and Dk are a matrix
and a vector as described above. We also set Ak = Ck  - Diag(Dk). To analyze the
long-term behavior of Z, we have done in [7] a polar decomposition: for X0 \not = 0, we
set \rho t = \| Xt\| and \Theta t =

Xt

\rho t
. Then W = (\rho ,\Theta , \alpha ) is still a PDMP, evolving according

to

(23)

\biggl\{ 
d\Theta t

dt = G\alpha t(\Theta t),
d\rho t

dt = \langle A\alpha t  - \rho tDiag(\Theta t)C\Theta t,\Theta t\rangle \rho t,

where for all i \in E, Gi is the vector field on Sd - 1 defined by

(24) Gi(\theta ) =
\bigl( 
Ai  - \rho Diag(\theta )C

\bigr) 
\theta  - \langle 

\bigl( 
Ai  - \rho Diag(\theta )C

\bigr) 
, \theta \rangle \theta .

We set \scrM + = \Psi ([0, 1]d \setminus \{ 0\} ) \times \scrE , where \Psi : \BbbR n \setminus \{ 0\} \rightarrow \BbbR \ast 
+ \times Sd - 1 is defined by

\Psi (x) = (\| x\| , x
\| x\| ). We also set \scrM 0 = \{ 0\} \times Sd - 1 \times \scrE , and then (23) can be defined

on \scrM 0 be letting \rho t = 0 for all t \geq 0 and

(25)
d\Theta t

dt
= A\alpha t\Theta t  - \langle A\alpha t ,\Theta t,\Theta t\rangle \Theta t.

We proved in [7, Proposition 2.13] that on \scrM 0 \simeq Sd - 1\times \scrE , the process (\Theta , \alpha ) admits
a unique invariant probability \pi . We set

\Lambda =

\int 
Sd - 1\times \scrE 

\langle Ai\theta , \theta \rangle d\pi (\theta , i).

It has also been proven that the functions V : \scrM + \rightarrow \BbbR + and H : \scrM \rightarrow \BbbR , defined
by V (\rho , \theta , i) =  - log(\rho ) and by H(\rho , \theta , i) =  - \langle Ai\theta , \theta \rangle + \rho \langle Diag(\theta )C\theta , \theta \rangle , respectively,
satisfy assumption 2.5. It is easily seen that \Lambda =  - \pi H. With our method, together
with the results in [7], we can now fully describe the behavior of U according to the
sign of \Lambda .

Theorem 3.8. There are three possible asymptotic behaviors:
1. If \Lambda < 0, then for all (x, i) \in [0, 1]d \times \scrE , we have

\BbbP x,i

\biggl( 
lim sup

log \| Xt\| 
t

\leq \Lambda 

\biggr) 
= 1.

2. If \Lambda = 0, then for all (x, i) \in [0, 1]d \times \scrE , we have

lim
t\rightarrow \infty 

1

t

\int t

0

\| Xs\| ds = 0 \BbbP x,i-a.s.

and
\BbbP x,i  - lim

t\rightarrow \infty 
Xt = 0,

where \BbbP x,i  - lim denotes the convergence in probability.
3. If \Lambda > 0, then U admits a unique invariant probability measure \mu on (0, 1]d\times 

E. Moreover, there exists a Wasserstein distance \scrW and r > 0 such that, for
all probability \nu with \nu (\{ 0\} \times \scrE ) and all t \geq 0,

\scrW (\nu Pt, \mu ) \leq e - rt\scrW (\nu , \mu ).
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1582 DANG H. NGUYEN AND EDOUARD STRICKLER

Proof. The case \Lambda < 0 is Theoerem 4.3 in [7], while \Lambda > 0 is Theorem 4.12 in [7].
To treat the case \Lambda = 0, we first prove that one can apply Proposition 2.9. We

assume that W admits an invariant distribution \mu on \scrM +. For all t > 0, we define

\varsigma t = min
1\leq i\leq d

Xi
t

\left(  \sum 
j

C\alpha t
i,jX

j
t

\right)  ,

and we let \=X be the solution to

(26)
d \=Xt

dt
= (A\alpha t  - \varsigma tI) \=Xt,

where I is the identity matrix of size d. We also let Y be the solution to

(27)
dYt

dt
= A\alpha tYt.

By a comparison theorem for ordinary differential equations, we have Xi
t \leq \=Xi

t \leq Yt

for all t \geq 0, provided the inequality holds at time 0. Finally, let \=\rho t = \| \=Xt\| , \=\Theta t =
\=Xt

\=\rho t
,

\~\rho t = \| Y \| t, and \~\Theta t =
Yt

\~\rho t
. Then \rho t \leq \=\rho t \leq \~\rho t and

d\=\Theta t

dt
= (A\alpha t  - \varsigma t) \=\Theta t  - \langle (A\alpha t  - \varsigma t) \=\Theta t, \=\Theta t\rangle \=\Theta t,

while \~\Theta t evolves according to (25). Now, since \langle \=\Theta t, \=\Theta t\rangle = 1 for all t \geq 0, we can see
that \=\Theta t is also driven by (25), and thus \=\Theta t = \~\Theta t for all t \geq 0 whenever \=\Theta 0 = \~\Theta 0. On
the other hand, one can check that

lim
t\rightarrow \infty 

log \=\rho t
t

= lim
t\rightarrow \infty 

1

t

\int t

0

\langle (A\alpha s  - \varsigma t) \=\Theta s, \=\Theta s\rangle ds.

We also have

 - \pi H = lim
t\rightarrow \infty 

log \~\rho t
t

= lim
t\rightarrow \infty 

1

t

\int t

0

\langle A\alpha s \~\Theta s, \~\Theta s\rangle ds.

Without loss of generality, one may assume that \mu is ergodic, and therefore, one has
for \mu almost every (\rho 0, \theta 0, i) \in \scrM +, \BbbP (\rho 0,\theta 0,i)-almost surely,

lim
t\rightarrow \infty 

1

t

\int t

0

\varsigma t =

\int 
\scrM +

\rho 2 min
i

\theta i

\left(  \sum 
j

Ck
i,j\theta 

j

\right)  d\mu (\rho , \theta , k) := \=\varsigma .

Then, \=\varsigma > 0 because on \scrM +, \rho > 0 and \mu (\{ (\rho , \theta , i) \in \scrM + : \theta i > 0\} ) = 1 since \partial Sd - 1

is transient for W . Thus, due to the fact that \=\Theta t = \~\Theta t, we get for \mu almost every
(\rho 0, \theta 0, i) \in \scrM +, \BbbP (\rho 0,\theta 0,i)-almost surely,

lim
t\rightarrow \infty 

log \=\rho t
t

=  - \pi H  - \=\varsigma ,

which combined with

lim
t\rightarrow \infty 

log \rho t
t

=  - \mu H \BbbP (\rho 0,\theta 0,i)-a.s.
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1583

and \=\rho t \geq \rho t gives \mu H \geq \pi H + \varsigma > \mu H. Thus, by Proposition 2.9, \Lambda > 0. Hence,
if \Lambda = 0, the unique stationary distribution of W is \pi , which is concentrated on
\scrM 0. In particular, going back to the process U , its unique invariant distribution is
\delta 0 \otimes p, where p is the unique stationary distribution of \alpha on \scrE . In particular, for all
(x, i) \in [0, 1]d \times \scrE , one has \BbbP x,i-almost surely that

(28) lim
t\rightarrow \infty 

1

t

\int t

0

\| Xs\| ds = 0.

To prove that X converges in probability to 0, we use results on monotone random
dynamical systems due to Chueshov [10]. Let \Omega = \BbbD (\BbbR +, \scrE ) be the Skorhokhod space
of c\`adl\`ag functions \omega : \BbbR + \rightarrow \scrE , endowed with its Borel sigma field \scrF , and on which
we define the shift \Theta = (\Theta t)t\geq 0 by

\Theta t(\omega )(s) = \omega (t+ s).

We let \BbbP p be a probability measure on (\Omega ,\scrF ) such that the canonical process I has
the law of \alpha starting from its ergodic probability measure p. Then, the process \Psi (\omega , t)
defined by

(29)

\Biggl\{ 
d\Psi (t,\omega )x

dt = F\omega (t)(\Psi (t, \omega )x),

\Psi (0, \omega )x = x

is a random dynamical system over the ergodic dynamical system (\Omega ,\scrF ,\BbbP p,\Theta ) (see,
e.g., [2] for definitions and the thesis of the second author [30, section 1.4] for more
details on random dynamical systems and links with PDMPs). Moreover, the proper-
ties of F make \Psi a monotone subhogeneous random dynamical system (see [7, section
4]) for which 1 = (1, . . . , 1) is a superequilibrium. That is, \Psi (t, \omega )1 \leq 1 for all t \geq 0
and \omega \in \Omega (see [10, Definition 3.4.1]). Moreover, for all t \geq 0 and all \omega \in \Omega ,

\Psi (t, \omega )
\bigl( 
[0, 1]d \setminus \{ 0\} 

\bigr) 
\subset (0, 1)d.

Hence, it is easily to check that we can apply Proposition 5.5.1 in [10]. According to
this result, either for all x \in [0, 1]d,

(30) lim
t\rightarrow \infty 

\Psi (t,\Theta  - t\omega )x = 0

or there exists an equilibrium u(\omega ) \gg 0 such that for all x > 0 and all \omega \in \Omega ,

(31) lim
t\rightarrow \infty 

\Psi (t,\Theta  - t\omega )x = u(\omega ).

Now, assume that (31) holds. In particular, by dominated convergence and invariance
of \BbbP p under \Theta , one has on the one hand

(32) lim
t\rightarrow \infty 

\BbbE p (\| \Psi (t, \omega )x\| ) = \BbbE p(\| u\| ) > 0.

On the other hand, one can check that the law of Xt under \BbbP x,p is the same as the
law of \Psi (t, \cdot )x under \BbbP p. In particular,

(33) \BbbE (x,p) (\| Xt\| ) = \BbbE p (\| \Psi (t, \omega )x\| ) .

Thus, (32) and (33) imply that

lim
t\rightarrow \infty 

1

t

\int t

0

\BbbE (x,p) (\| Xs\| ) ds = \BbbE p(\| u\| ) > 0,
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1584 DANG H. NGUYEN AND EDOUARD STRICKLER

which is in contradiction (by dominated convergence) to (28). Hence, (30) holds. This
and (33) yield that for all continuous maps f : [0, 1]d \rightarrow \BbbR ,

lim
t\rightarrow \infty 

\BbbE x,p (f(Xt)) = f(0),

which implies that Xt converges in law, hence in probability, to 0, under \BbbP x,p. It is
easily seen that one can now replace p by any starting point i.

3.5. SEIR model with switching. SEIR models describe the dynamics of an
infectious disease with which individuals experience a long incubation duration (the
``exposed"" compartment).

Susceptible individuals, when in contact with an infectious individual, may con-
tract the disease with a given rate, and then go into the exposed disease state when
they become infected but are not yet infectious themselves. Infectious individuals
can transmit the disease and, after a period of time, enter the recovered phase and
have permanent immunity to the disease. The classical SEIR model consists of the
following differential equations for four classes of individuals (susceptible-exposed-
infectious-recovered):

(34)

\left\{         
\.S = \Lambda  - \gamma S  - \beta SI,
\.E = \beta SI  - (\gamma + \delta )E,
\.I = \delta E  - (\gamma + \gamma 1)I,
\.R = \gamma 1I  - \gamma R,

where \Lambda , \gamma , \beta , \delta , \gamma 1 are positive constant. This system has been used to model a
number of infectious diseases, such as measles, mumps, and rubella. We refer to
[29, 21] for details about this model and its variants. In contrast to stochastic SIR
and SIRS models, which have been studied extensively, few papers deal with stochastic
SEIR models because standard arguments used to treat SIR and SIRS models do not
seem effective for SEIR models due to the extra compartment E. In this section, we
wish to consider an SEIR model in a switching environment and fully characterize its
long-term property. The model (35) below has not been studied in the literature. Let
N be a positive integer, and set \scrE = \{ 1, . . . , N\} . Let (\alpha t)t\geq 0 be a irreducible Markov
chain on \scrE and consider the following system:

(35)

\left\{     
\.S = \Lambda  - \gamma S  - \beta (\alpha t)SI,
\.E = \beta (\alpha t)SI  - (\gamma + \delta (\alpha t))E,
\.I = \delta (\alpha t)E  - (\gamma + \gamma 1(\alpha t))I,

where the component R is removed because it does not affect the dynamics of the
others.

Letting Ut = Et + It and Vt =
It
Ut
, Zt = (St, Vt, Ut, \alpha t), we can rewrite (35) as

(36)

\left\{     
\.S = fS(Zt),
\.V = fV (Zt),
\.U = UtfU (Zt),

where
fS(z) = \Lambda  - \gamma s - \beta (k)su(1 - v),

fU (z) = (\beta (k)s - \gamma 1(k) - \gamma )v  - \gamma (1 - v) = (\beta (k)s - \gamma 1(k))v  - \gamma ,
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CRITICAL CASE IN STOCHASTIC DYNAMICS 1585

fV (z) = (\sigma (k)(1 - v) - \gamma v - \gamma 1(k)v) - vfU (z) = \sigma (k)(1 - v) - \gamma 1(k)v - (\beta (k)s - \gamma 1(k))v
2,

and z = (s, u, v, k). For this system, we have

(37) \scrM :=

\biggl\{ 
z \in \BbbR 2

+ \times [0, 1]\times \scrE : s+ u \leq \Lambda 

\gamma 

\biggr\} 
and \scrM 0 := \{ z \in \scrM : u = 0\} .

In this model, H(z) :=  - fU (z) and \scrV (z) := log \Lambda 
\gamma  - log u satisfy Assumption

2.5. Unlike the arguments in subsections 3.3 and 3.4, it does not seem practically
possible to treat the critical case by introducing an intermediate process. Because
the function fU (z) is increasing in s while fV (z) is decreasing in s, we introduce the
following function:

(38) \widetilde H(z) =  - fU (z) - 
fV (z)

v
=  - \sigma (k)

1 - v

v
+ \gamma + \gamma 1(k).

If U0 = 0, then Ut = 0, t \geq 0, and limt\rightarrow \infty St =
\Lambda 
\gamma . Let

\widetilde Vt be the solution to

\.\widetilde V = fV

\biggl( 
\Lambda 

\gamma 
, 0, \widetilde Vt, \alpha t

\biggr) 
.

Then, one can show that (\widetilde Vt, \alpha t) has a unique invariant measure \pi V on [0, 1]\times \scrE (see,
e.g., [6, Proposition 2.1] or [25]). Moreover, since fV (z) = \sigma (k) > 0 if z = (s, u, v, k)
with v = 0, there exists v0 > 0 such that lim inft\rightarrow \infty Vt \geq v0 > 0 for any initial value
z \in \scrM . As a result,

\BbbP z

\Biggl\{ 
lim

T\rightarrow \infty 

1

T

\int T

0

fV (Zt)

Vt
= lim

T\rightarrow \infty 

log Vt

T
= 0

\Biggr\} 
, z \in \scrM .

Hence, for any invariant probability measure \mu of (Zt)t\geq 0, we have

(39)

\int 
\scrM 

fV (z)

v
\mu (dz) = 0, or equivalently \mu H = \mu \widetilde H.

Then \pi := \bfitdelta (\Lambda 
\gamma ,0) \otimes \pi V is the unique invariant measure on \scrM 0. By the ergodicity

of (\widetilde Vt, \alpha t) and (38), (39) we have

(40)

\widetilde \Lambda :=  - \pi H = - \pi lim
T\rightarrow \infty 

\int T

0

fU

\biggl( 
\Lambda 

\gamma 
, 0, \widetilde Vt, \alpha t

\biggr) 
dt

= lim
T\rightarrow \infty 

\int T

0

\Biggl( 
\sigma (\alpha t)

1 - \widetilde Vt\widetilde Vt

 - \gamma  - \gamma 1(\alpha t)

\Biggr) 
dt.

With \scrM ,\scrM 0 defined in (37), we have the following theorem.

Theorem 3.9.
1. If \widetilde \Lambda < 0, then for all 0 < \lambda <  - \widetilde \Lambda , there exist \eta > 0 and r > 0 such that, for

all z \in \scrM + := \scrM \setminus \scrM 0 with u \leq r, we have

\BbbP x,i

\biggl( 
lim sup

logUt

t
\leq  - \lambda 

\biggr) 
\geq \eta .
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1586 DANG H. NGUYEN AND EDOUARD STRICKLER

2. If \widetilde \Lambda = 0, then for all z \in \scrM + \times \scrE , we have

lim
T\rightarrow \infty 

1

T

\int T

0

Utdt = 0 \BbbP z-a.s.

3. If \widetilde \Lambda > 0, then Z is H-persistent and it admits an invariant probability mea-
sure on \scrM +.

Proof. We start by proving the first and third claims. For \alpha \in \scrE , we define the
vector field

F\alpha (s, e, i) =

\left\{     
\Lambda  - \gamma s+ \beta (\alpha )si,

\beta (\alpha )si - (\gamma + \delta (\alpha ))e,

\delta (\alpha )e - (\gamma + \gamma 1(\alpha ))i.

Then, letting (Xt)t\geq 0 = (St, Et, It)t\geq 0, we have \.Xt = F\alpha t(Xt). Note that (\Lambda \gamma , 0, 0)

is a common equilibrium of the vector fields F\alpha and that the line \BbbR + \times \{ (0, 0)\} is
invariant for each of the vector fields. This is exactly the setting of application of the
results in [31]. The Jacobian matrix of F\alpha at (\Lambda \gamma , 0, 0) is given by

A\alpha =

\left(   - \gamma  - \beta (\alpha )\Lambda \gamma 0

0  - (\gamma + \delta (\alpha )) \beta (\alpha )\Lambda \gamma 
0 \delta (\alpha ) (\gamma + \gamma 1(\alpha ))

\right)  .

We let D = (\gamma ), C\alpha = ( - \beta (\alpha )\Lambda \gamma , 0) and

B\alpha =

\biggl( 
 - (\gamma + \delta (\alpha )) \beta (\alpha )\Lambda \gamma 

\delta (\alpha ) (\gamma + \gamma 1(\alpha ))

\biggr) 
,

so that

A\alpha =

\biggl( 
D C\alpha 

0 B\alpha 

\biggr) 
.

Finally, we define \Lambda D =  - \gamma and \Lambda B =
\int 
\langle B\alpha \theta , \theta \rangle d\pi (\alpha , \theta ), where \pi is the unique

invariant probability measure of the process (\Theta , \alpha ), where \Theta is subjected to (25) with
A\alpha replaced by B\alpha . (The uniqueness of \pi comes from the particular form of B; see
[7, Proposition 2.13].) Then, \~\Lambda = \Lambda B . Indeed, \~\Lambda is defined as the growth rate of
U , which is the L1-norm of (E, I), while \Lambda B is defined as the growth rate of U2, the
L2-norm of (E, I). By equivalence of the norm on \BbbR 2, we must have \~\Lambda = \Lambda B . The
third claim is hence a direct application of Theorem 2.8 in [31]. The first claim follows
from Theorem 2.7 in [31].

Now, we prove the second claim. Let assume that \scrP inv(\scrM +) is nonempty with
an ergodic measure \mu .

Since fV (z) + \beta (k)
\Bigl( 

\Lambda 
\gamma  - s)

\Bigr) 
v2 = fV (

\Lambda 
\gamma , 0, v, k) for any z = (s, u, v, k) \in \scrM , we

have Vt \geq \widetilde Vt given V0 \geq \widetilde V0. Let Zt have the initial distribution \mu and \widetilde V0 = V0.
By the ergodicity we have

lim
T\rightarrow \infty 

1

T

\int T

0

(Vt  - \widetilde Vt)dt =

\int 
\scrM 

v\mu (dz) - 
\int 
\scrM 

v\pi (dz) a.s.

We will show that
\int 
\scrM v\mu (dz)  - 

\int 
\scrM v\pi (dz) > 0 by a contradiction argument. Note

that, since
| fV (s, u, v, k) - fV (s, u, \widetilde v, k)| \leq C| v  - \widetilde v| 
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for some constant C > 0, we have
(41)

lim sup
T\rightarrow \infty 

1

T

\int T

0

\bigm| \bigm| \bigm| fV (Zt)dt - fV

\Bigl( 
St, Ut, \widetilde Vt, \alpha t

\Bigr) \bigm| \bigm| \bigm| dt \leq lim
T\rightarrow \infty 

1

T

\int T

0

C
\Bigl( 
Vt  - \widetilde Vt

\Bigr) 
= 0

if
\int 
\scrM v\mu (dz) - 

\int 
\scrM v\pi (dz) = 0. On the other hand,

fV (s, u, \widetilde v, k) = fV

\biggl( 
\Lambda 

\gamma 
, 0, \widetilde v, k\biggr) +

\biggl( 
\Lambda 

\gamma 
 - s

\biggr) 
\beta (k)\widetilde v2,

which leads to

(42)

lim
T\rightarrow \infty 

1

T

\int T

0

fV

\Bigl( 
St, Ut, \widetilde Vt, \alpha t

\Bigr) 
dt = lim

T\rightarrow \infty 

1

T

\int T

0

fV

\biggl( 
\Lambda 

\gamma 
, 0, \widetilde Vt, \alpha t

\biggr) 
dt

+ lim
T\rightarrow \infty 

1

T

\int T

0

\biggl( 
\Lambda 

\gamma 
 - St

\biggr) 
\beta (\alpha t)\widetilde Vt

> lim
T\rightarrow \infty 

1

T

\int T

0

fV

\biggl( 
\Lambda 

\gamma 
, 0, \widetilde V 2

t , \alpha t

\biggr) 
dt,

where we use the ergodicity of (Zt, \widetilde Vt) on \scrM + \times (0, 1) to have that

lim
T\rightarrow \infty 

1

T

\int T

0

\biggl( 
\Lambda 

\gamma 
 - St

\biggr) 
\beta (\alpha t)\widetilde Vt > 0.

Combining (41) and (42) we have

lim
T\rightarrow \infty 

1

T

\int T

0

fV (Zt)dt - lim
T\rightarrow \infty 

1

T

\int T

0

fV

\biggl( 
\Lambda 

\gamma 
, 0, \widetilde Vt, \alpha t

\biggr) 
dt > 0

if
\int 
\scrM v\mu (dz) - 

\int 
\scrM v\pi (dz) = 0.

However, it contradicts the fact that

lim
T\rightarrow \infty 

1

T

\int T

0

fV (Zt)dt - lim
T\rightarrow \infty 

1

T

\int T

0

fV

\biggl( 
\Lambda 

\gamma 
, 0, \widetilde Vt, \alpha t

\biggr) 
dt

=

\int 
\scrM 

fV (z)\mu (dz) - 
\int 
\scrM 

fV (z)\pi (dz) = 0 - 0,

where the last equality is due to an argument similar to (39). Thus,

(43) lim
T\rightarrow \infty 

1

T

\int T

0

(Vt  - \widetilde Vt)dt > 0-a.s.

Since \widetilde H is an increasing function in v with positive derivative, we can easily infer
from (43) and the fact that Vt \geq \widetilde Vt that

\mu \widetilde H  - \pi \widetilde H = lim
T\rightarrow \infty 

1

T

\int T

0

\widetilde H(Zt)dt - lim
T\rightarrow \infty 

1

T

\int T

0

\widetilde H \biggl( \Lambda 

\gamma 
, 0, \widetilde Vt, \alpha t

\biggr) 
dt > 0.

In view of Corollary 2.10, we obtain the second claim of the theorem. The proof is
complete.

D
ow

nl
oa

de
d 

04
/0

8/
21

 to
 1

30
.1

60
.5

7.
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1588 DANG H. NGUYEN AND EDOUARD STRICKLER

4. Conclusion. In this paper, we have given a general method to deal with the
critical case in population dynamics in a random environment. We apply the method
to five different models, including epidemiological, prey-predator, and population in
a structured environment.

When our results apply, there is extinction in temporal average in the critical
case. A natural question is whether it is possible to find other results, such that there
is persistence (maybe in a weaker sense) in the critical case.

Our method consists of looking at integrals of the function H = \scrL V with respect
to invariant measures of the process. For some models, another method is possible,
as used, for example, for some PDMPs in [22]. The idea is the following. Assume
that if \scrP inv(\scrM +) is nonempty, then it is possible to compute, or at least, to estimate,
the density of an invariant probability \mu \in \scrP inv(\scrM +). Then, this density must
satisfy some integrability conditions, which can be violated if \Lambda +(H) = 0 (see e.g [22,
Theorem 3.1] or [17, Lemma 6]). Hence, if \Lambda +(H) = 0, \scrP inv(\scrM +) has to be empty.
This alternative method is close in spirit to ours, since it comes to a contraction when
assuming that \scrP inv(\scrM +) is nonempty and \Lambda +(H) = 0.

Acknowledgment. We thank two anonymous referees for valuable comments to
improve the presentation of the paper.
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