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Abstract. In this paper, the stochastic vector-host model has been proposed

and analysed using nice properties of piecewise deterministic Markov processes
(PDMPs). A threshold for the stochastic model is derived whose sign de-

termines whether the disease will eventually disappear or persist. We show

mathematically the existence of scenarios where switching plays a significant
role in surprisingly reversing the long-term properties of deterministic systems.

1. Introduction. Vector-borne diseases are infectious diseases, such as yellow fever,
malaria, dengue fever, chikungunya which are spread by vectors, e.g., mosquitoes,
fleas, ticks, triatomine bugs, etc. It is reported by WHO that about half of the
world’s population is infected with at least one vector-borne illness [29]. For many
vector-borne diseases, there is no vaccine available [22], so it is important to un-
derstand the disease transmission dynamics and make efforts to control it. In this
context, mathematical modeling has played a very significant role.

Researchers have proposed many epidemic models to understand and control
disease dynamics under constant environmental conditions [7, 11, 25, 26, 31, 32].
These kinds of models fall under the category of deterministic modeling (see e.g.
[1, 24]). In real life, however, random environmental changes affect the growth of
infectious diseases. This gives rise to random switching in the epidemic parameters.
For example, in the case of mosquito-borne diseases like dengue fever and malaria,
changes in the mosquito population due to fluctuating environments (high temper-
ature, rain fall) lead to significant changes in the disease dynamics. Also, during
the course of an epidemic, human behaviour (using control measures) can change
the outcome of the disease. It is therefore important to model the disease dynamics
under the impact of random fluctuations; see [2, 3, 16].

A common approach for modeling stochasticity in the model is to assume the
environment can switch randomly between a number of states depending on changes
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in environmental conditions, such as temperature, humidity, etc. This is called tele-
graph noise perturbation [10, 16, 21]. In models with telegraph noise, the dynamics
of the system together with the driven source of the noise constitute a piecewise
deterministic Markov process (PDMP) [9]. The exposition of properties of PDMPs
(see [5, 9, 18]) has opened up opportunities for their application in population mod-
els. An SIRS epidemic model with random switching is investigated in [16]. Gray
et al. [12] have studied the SIS epidemic model under telegraph noise. Cao et
al. [8] proposed an SIR model with regime switching by taking into consideration
a ratio-dependent incidence rate and degenerate diffusion in the model. Surpris-
ing examples of stochastic predator-prey models are described in [19, 28]. Some
asymptotic properties of randomly switched Kolmogorov systems are given in [10].

For deterministic epidemic models, the reproduction number R0 is determined
by looking at the spectral radius of the next-generation matrix. However, in a
stochastic setting, the next-generation matrix is not constant. Determining the
reproduction number by examining the spectrum of the next-generation matrix is
therefore not feasible except in some very special cases. Lyapunov functions as
well as some martingale inequalities used in [8, 12, 16, 20, 21] do not seem very
effective. As an alternative approach (see [4, 6, 14], etc.), we look at the Lyapunov
exponent with respect to the invariant measure (which is actually the growth rate
of the disease when its density is low) to give a threshold for the dynamics of the
epidemic model. After the threshold is introduced, persistence and extinction of the
disease can be proved using advanced techniques in stochastic analysis introduced
in [4, 6, 9, 14].

The rest of the paper is organized as follows. In section 2, we formulate the
stochastic model then transform it into an equivalent model which is easier to deal
with. In section 3, we analyze the dynamics of the model on the boundary to obtain
a threshold value for extinction and persistence of the disease. Subsequently, the
main results are introduced and proved. Section 4 is devoted to a case study of
the stochastic model with bilinear incidence rates. We show mathematically that
in some scenarios, switching can completely reverse the long-term properties of
the deterministic model. Some numerical examples are provided to illustrate these
interesting findings by using dengue fever data from the literature. The last section
contains some concluding remarks.

2. Formulation. The deterministic vector-host model is now presented. Let N(t)
be the total host population at time t, which is divided into three classes of indi-
viduals: susceptible SH(t), infectious IH(t) and recovered RH(t). In an SIR model,
the recovered class RH is comprised of those who have been infected at a previous
time and currently have immunity to the disease. Assume that ω1 is the constant
birth rate of susceptible individuals. Let µ1 be the natural death rate of all host
classes and γ be the recovery rate of infectious individuals.

As for the vector dynamics, let SV (t) and IV (t) be the susceptible and infected
vector populations, respectively, and M(t) = SV (t) + IV (t). It is assumed that
vectors do not recover from the illness once infected. Let ω2 be the recruitment
rate for the vectors, i.e., the natural birth rate, and µ2 be the natural death rate of
the vectors. Further, let σ be transmission rate of infection to vectors by infectious
hosts.

Assuming all parameters are positive, the following model is formulated:
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dSH
dt

= ω1 − g(SH , IV )IV − µ1SH ,

dIH
dt

= g(SH , IV )IV − (γ + µ1)IH ,

dRH
dt

= γIH − µ1RH ,

dSV
dt

= ω2 − g̃(SV , IH)IH − µ2SV ,

dIV
dt

= g̃(SV , IH)IH − µ2IV .

(1)

In general, a bilinear incidence rate of the form g(SH , IV ) = βSHIV has been
used in standard epidemiological models [12]. However, for a large population size,
it is not reasonable to consider a bilinear incidence rate. Keeping this fact in

mind [15] have considered a saturation incidence (of the form
βSHIV

1 + αSH
), and [15,

17] use a nonlinear incidence βSpHI
q
V . Accordingly, here a general incidence rate

g(SH , IV ) has been proposed for infected vector to susceptible host interaction.
The characteristics of this model, including the reproduction number, are analyzed
in [32].

2.1. Stochastic model. Suppose the environmental fluctuations make the epi-
demic dynamics switch between two or more systems of differential equations. We
model that effect as follows. Let (Ω,F ,Ft,P) be a probability space, and let (ξt) be a
Markov process on (Ω,F ,Ft,P) taking values in the state spaceM = {1, 2, . . . ,m0}.
Denote by Q = (qkl)m0×m0

the generator of the Markov chain(ξt). This means that

P{ξt+δ = l|ξt = k} =

{
qklδ + o(δ) if k 6= l,

1 + qkkδ + o(δ) if k = l,

as δ → 0. Here, qkl is the transition rate from k to l and qkl ≥ 0 if k 6= l, while
qkk = −

∑
k 6=l qkl. We assume that the Markov chain (ξt) is irreducible, which

means that the system may switch from any regime to any of the other regimes.
Under this condition, the Markov chain (ξt) has a unique stationary distribution
π = (π1, π2, . . . , πm0). Suppose the incidence rates g(ξt, SH , IV ) and g̃(ξt, SV , IH)
and the recovery rate γ(ξt) depend on the state of (ξt).

By the definition of M and N ,

dN

dt
= ω1 − µ1N(t),

dM

dt
= ω2 − µ2M(t).

(2)

We can easily obtain the global positive solutions to (1) in each state. Moreover,
because

lim
t→∞

N(t) =
ω1

µ1
and lim

t→∞
M(t) =

ω2

µ2
,

we let M(0) = ω2

µ2
and N(0) = ω1

µ1
for simplicity. Note that the behavior of RH(t)

does not affect the dynamics of the other equations when SV (t) = ω2

µ2
− IV (t). Let

γ1(ξt) = γ(ξt) + µ1. We restrict our consideration to the following system:
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dSH
dt

= ω1 − g(ξt, SH , IV )IV − µ1SH ,

dIH
dt

= g(ξt, SH , IV )IV − γ1(ξt)IH ,

dIV
dt

= g̃

(
ξt,

ω2

µ2
− IV , IH

)
IH − µ2IV .

(3)

As mentioned in the introduction, in oder to obtain conditions for extinction and
persistence of the disease, we wish to consider the dynamics of (3) when IH(t) is
small. We can see from (3) that if IH(t) converges to 0, so does IV (t). This suggests

we should look at the ratio IV (t)
IH(t) when IH(t) is small. Having this ratio involved will

give us an idea to estimate the long-term growth rate of IH(t) when it is close to
0. This idea is similar to the well-known polar decomposition of linear differential

equations. Defining Y (t) = IV (t)
IH(t) , we convert the system (3) into

dSH
dt

= ω1 − g(ξt, SH , IHY )IHY − µ1SH ,

dIH
dt

= g(ξt, SH , IHY )IHY − γ1(ξt)IH ,

dY

dt
= −

(
g(ξt, SH , IHY )Y − γ1(ξt)

)
Y +

(
g̃

(
ξt,

ω2

µ2
− IHY, IH

)
− µ2Y

)
.

(4)

2.2. Existence and uniqueness. Throughout this paper, we denote

Rn+ := {(x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n}

and Rn,◦+ := {(x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

Theorem 2.1. Suppose that g and g̃: M× R2
+ 7→ R+ are non-negative, locally

Lipschitz functions and g(ξt, SH , IV ) = 0 only if SH = 0, g̃(ξt, SH , IV ) = 0 only if
SH = 0.

1. There exists s0 > 0 such that (3) has a unique solution in the invariant set
D ×M, where

D :=

{
(SH , IH , IV ) ∈ R3,◦

+ : s0 < SH , SH + IH ≤
ω1

µ1
; IV ≤

ω2

µ2

}
.

2. There exists s0, Y0 > 0 such that (4) has a unique solution in the invariant
set ∆×M, where

∆ :=

{
(SH , IH , Y ) ∈ R3

+ : s0 ≤ SH ≤ SH + IH ≤
ω1

µ1
, IHY ≤

ω2

µ2
, Y ≤ Y0

}
.

Proof. The set
{

(SH , IH , IV ) ∈ R3,◦
+ : SH + IH ≤ ω1

µ1
, IV ≤ ω2

µ2

}
is invariant for (3)

because we can obtain from (2) that
d

dt
(SH + IH) < 0 if SH + IH ≥ ω1

µ1
and IH > 0,

and dIV
dt < 0 if IV ≥ ω2

µ2
. Moreover, since g(ξt, 0, SH) = 0, there exists s0 > 0 such

that if SH ≤ s0 then

dSH
dt

= ω1 − g(ξt, SH , IV )IV − µ1SH > 0.

As a result, we can assume without loss of generality that SH(t) ≥ s0 and the
smaller invariant set we are working on is D.
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In a similar way, the set
{

(SH , IH , Y ) ∈ R3,◦
+ : s0 ≤ SH ≤ SH + IH ≤ ω1

µ1
, IHY

≤ ω2

µ2

}
is invariant for (4). Since

inf{g(k, SH , IHY ) : k ∈M, IH ≥ 0, s0 ≤ SH ≤ SH ≤ SH + IHY ≤
ω1

µ1
} > 0,

there exists Y0 > 0 such that dY
dt < 0 if Y > Y0. Then

∆◦ :=

{
(SH , IH , Y ) ∈ R3,◦

+ : s0 ≤ SH ≤ SH + IH ≤
ω1

µ1
, IHY ≤

ω2

µ2
, Y ≤ Y0

}
is an invariant set of (4) that attracts all positive solutions of (4). Because the
coefficients of (4) are locally Lipschitz, and because

dIH(t)
dt = 0 if IH(t) = 0,

dSH
dt > 0 if SH(t) ≤ s0,
dSH
dt ≤ 0 if SH(t) = ω1

µ1
and IH(t) = 0, and

dY (t)
dt ≤ Y0 if Y (t) ≥ Y0, SH(t) ≥ s0 and SH(t) + IH(t) ≤ ω1

µ1
,

we can easily see that for IH(0) = 0, SH(0) ∈ [s0,
ω1

µ1
], Y (0) ∈ [0, Y0], (4) has a

unique solution satisfying IH(t) = 0, SH(t) ∈ [s0,
ω1

µ1
], Y (t) ∈ [0, Y0], for all t ≥ 0.

As a result, the process (SH(t), IH(t), Y (t)) as solutions to (4) are well-defined on
the expanded invariant set ∆.

Remark 1. It is well-known that the process (Z(t) := (SH(t), IH(t), Y (t), ξt)) is a
Markov-Feller process on ∆ ×M, i.e., for each bounded and continuous function
f : ∆×M 7→ R, the function: z 7→ Ezf(Z(t)) is a continuous function in z for each
fixed t. See, e.g., [5, 9, 23].

2.3. Disease-free process. Although (3) and (4) are not equivalent when IH = 0,
that does not affect our consideration of (SH(t), IH(t), Y (t)) on ∆, because we only
apply the transformation (SH , IH , IV ) 7→ (SH , IH , Y := IV /IH) when IH > 0. We
consider (4) on ∆0 := {(SH , IH , Y ) ∈ ∆ : IH = 0} to learn about the dynamics of
(4) on ∆◦ where the transformation is well-defined. Since IH(t) = 0 for all t ≥ 0
if IH(0) = 0, ∆0 is also an invariant set of (4). To determine the threshold of the
model, we follow the approach in [4, 14] and consider the system when IH(t) = 0.
In the absence of disease, we have

lim
t→∞

SH(t) =
ω1

µ1
, given IH(0) = 0. (5)

If IH(0) = 0, then SH(0) =
ω1

µ1
, and the equation of

dY

dt
in (4) is reduced to the

following:

dỸ

dt
:= −

(
g

(
ξt,

ω1

µ1
, 0

)
Ỹ − γ1(ξt)

)
Ỹ +

(
g̃

(
ξt,

ω2

µ2
, 0

)
− µ2Ỹ

)
= −A(ξt)Ỹ

2 +B(ξt)Ỹ + C(ξt),

(6)

where

A(ξt) = g

(
ξt,

ω1

µ1
, 0

)
, B(ξt) =

(
− µ2 + γ1(ξt)

)
, C(ξt) = g̃

(
ξt,

ω2

µ2
, 0

)
. (7)
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Factor the equation (6), and for each fixed ` ∈M define

h(`, Ỹ ) :=
dỸ

dt
= −(Ỹ − q(`))(A(`)Ỹ + d(`)), (8)

where q(`) and d(`) are given by

q(`) =
C(`)

d(`)
and d(`) =

−B(`) +
√
B(`)2 + 4A(`)C(`)

2
. (9)

Proposition 2.1. Let q̂ = min{q(`) : ` ∈ M}, q̌ = max{q(`) : ` ∈ M}. Then the

process (Ỹ (t), ξt) satisfying (6) has a unique invariant measure πY on [q̂, q̌]×M.

Proof. For each fixed `, we have A(`) > 0, C(`) > 0, so there exists a unique root

q(`) > 0 of h(`, Ỹ ), and {
h(`, Ỹ ) > 0, 0 ≤ Ỹ < q(`),

h(`, Ỹ ) < 0, Ỹ > q(`).
(10)

If q̂ = q̌ = q∗ then (10) implies that limt→∞ Ỹ (t) = q∗ for any initial value Ỹ (0) > 0.
That is, δq∗ × π is the unique invariant probability measure of the Markov process

(Ỹ (t), ξt), where δq∗ is the Dirac measure at q∗.
Now we consider the case when q̂ < q̌. We deduce from (10) that [q̂, q̌] is an

attracting invariant set of (Ỹ (t)). Let τq̂ = inf{t > 0 : Ỹ (t) > q̂}. We want to show
that

Px{τq̂ <∞} = 1

for ỹ0 > 0, where x = (ỹ0, `0) indicates the initial value of (Ỹ (t), ξt). It is clearly

true if ỹ0 > q̂. If ỹ0 ≤ q̂ ∀t > 0 then h(ξt, Ỹ (t)) ≥ 0, given t < τq̂. Moreover, there

exists mh > 0 such that h(ˇ̀, ỹ0) ≥ mh ∀ ỹ0 ≤ q̂, where ˇ̀ is the state such that
h(ˇ̀, q̌) = 0. We have

Ỹ (t ∧ τq̂)− Ỹ (0) =

∫ t∧τq̂

0

h(ξs, Ỹ (s))ds ≥
∫ t∧τq̂

0

mh1{ξs=`0}ds. (11)

Due to the ergodicity of ξt,

lim
t→∞

∫ t

0

1{ξs=ξ0}ds =∞, a.s.,

while the left hand side of (11) is bounded, so it is implied that τq̂ <∞ a.s. Sim-

ilarly, we can show that inf{t : Ỹ (t) < q̌} < ∞ a.s. Therefore Ỹ (t) will eventually
enter and stay on [q̂, q̌].

On the other hand, if Ŷ and Y̌ respectively satisfy the equations dŶ = h(ˆ̀, Y )dt

and dY̌ = h(ˇ̀, Y )dt, where ˆ̀ and ˇ̀ are the states such that q(ˆ̀) = q̂ and q(ˇ̀) = q̌,

respectively, then limt→∞ Ŷ (t) = q̂ and limt→∞ Y̌ (t) = q̌ ∀ Ŷ (0), so Y̌ (0) > 0.

Using [14, Lemma 3.1] implies that the support of {Ỹ (t)}t≥0 for sufficiently large t

contains [q̂, q̌]. This, together with the invariance of [q̂, q̌] and the fact that Ỹ (t) will
eventually enter [q̂, q̌] imply the existence and uniqueness of an invariant probability

measure of (Ỹ (t), ξt) with support [q̂, q̌]×M.
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3. Persistence and extinction.

3.1. Definitions. For each ` ∈M, define the vector fields

F`(SH , IH , Y ) =

 ω1 − g(`, SH , IHY )IHY − µ1SH
g(`, SH , IHY )IHY − µ1IH − γ1(`)IH

g̃
(
`, ω2

µ2
− IHY, IH

)
IH − µ2IHY

 .
Let [F,G] be the Lie bracket of two vector fields F and G and F0 the set of vector
fields {F` : ` ∈ M}. For k = 1, 2, ..., define Fk = Fk−1 ∪ {[F`, V ] : ` ∈ M, V ∈
Fk−1}, where Fk(SH , IH , Y ) is the vector space spanned by {V (SH , IH , Y ) : V ∈
Fk}. Similarly, let G0 = {F` − Fm : ` 6= m ∈ M} and Gk = Gk−1 ∪ {[F`, V ] : ` ∈
M, V ∈ Gk−1}. We recall two definitions in [5] before stating the main results.

Definition 3.1. The weak bracket condition (resp. strong bracket condition) is
satisfied at (SH , IH , Y ) ∈ ∆◦ if there exists k ≥ 0 such that Fk(SH , IH , Y ) = R3

(resp. Gk(SH , IH , Y ) = R3).

Remark 2. In general, the strong bracket condition will be satisfied when the
vector fields in different switching states are not proportional and sufficiently “non-
linear,” although verifying it for a general set of parameters may be very compli-
cated because the calculations of Lie brakets are cumbersome. For a specific set of
parameters, we can however verify that, which will be shown in an example.

Definition 3.2. Let φ`t = φ
in−1
un ◦ ... ◦φi0u1

be the semi flow associated with F`. The
positive orbit of (SH , IH , Y ) ∈ ∆ is the set

Γ+(SH , IH , Y ) =
{
φ`t(SH , IH , Y ) : n ∈ N , i0, . . . , in−1 ∈M, u1, . . . , un > 0

}
.

The accessible set of (Z(t)) from ∆◦ is the (possibly empty) compact set Γ ⊂ ∆×M
defined as

Γ =
⋂

z∈∆◦×M
Γ+(z).

3.2. Threshold. The threshold for extinction and persistence of the disease is given
by

λ =
∑
`∈M

∫ q̌

q̂

(
g

(
`,
ω1

µ1
, 0

)
y − γ1(`)

)
πY (dy, `). (12)

When the coefficients do not depend on ξt, we have

λ = g

(
ω1

µ1
, 0

)
2g̃(ω2

µ2
, 0)

µ2 − γ1 +
√

(µ2 − γ1)2 + 4g(ω1

µ1
)g̃(ω2

µ2
, 0)
− γ1

The intuition for the introduction of λ is that whether IH(T ) goes extinct or persists

depends on the sign of the growth rate ln IH(T )
T given that IH(t), t ∈ [0, T ] is small

for a long time T . We have

ln IH(T )

T
=

1

T

∫ T

0

(g(ξt, SH(t), IH(t)Y (t))Y (t)− γ1(ξt)IH(t)) dt (13)
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When IH(t) is small, Y (t) ≈ Ỹ (t), SH(t) ≈ ω1

µ1
, and by the ergodicity we have

1

T

∫ T

0

(g(ξt, SH(t), IH(t)Y (t))Y (t)− γ1(ξt)IH(t)) dt

≈ 1

T

∫ T

0

(
g(ξt, SH(t), 0)Ỹ (t)− γ1(ξt)

)
dt ≈ λ.

Thus, λ plays the threshold role in determining the long-term behavior of the sys-
tem. A rigorous statement and its proof is provided in the following theorem.

Theorem 3.3. Assume that the conditions on g, g̃ in Theorem 2.1 hold. We have
the following conclusions.

1. If λ > 0, the disease is persistent in the sense that for any ε > 0, there exists
δ > 0 such that

lim inf
t→0

Pz{IH(t) < δ} ≥ 1− ε. (14)

If there exists (s0, i0, y0) ∈ Γ ∩ ∆◦ such that the strong bracket condition
is satisfied at (s0, i0, y0), then there exists uniquely an invariant probability
measure π∗ on ∆◦ ×M and the transition probability of Z(t) converges to π∗

exponentially fast in total variation.
2. If λ < 0, the disease-free equilibrium is locally asymptotically stable. If Γ ∩

∆0 ×M 6= ∅, then for any z ∈ R3,◦
+ ×M,

Pz
{

lim
t→∞

ln IH(t)

t
= λ

}
= 1.

3. The conclusions of part 2 hold if g(`, s, v) ≤ g
(
`, ω1

µ1
, 0
)

and g̃(`, v, i) ≤

g̃
(
`, ω2

µ2
, 0
)

for 0 ≤ s, i ≤ ω1

µ1
and 0 ≤ v ≤ ω2

µ2
.

Proof. The proof uses the techniques in [4] and [6]. When IH(t) = 0,
dSH
dt

=

ω1 − µ1SH which implies limt→∞ SH(t) =
ω1

µ1
. Moreover, when SH =

ω1

µ1
, Y (t) =

Ỹ (t), and (ξt, Ỹ (t)) has a unique invariant measure πY . As a result there exists a
probability measure π∗ on ∆×M defined by

π∗ ({z = (s, i, y, `) : (s, i) ∈ A, (`, y) ∈ B}) = 1{
(
ω1
µ1
,0)∈A

}πY (B),

and π∗ is the unique invariant measure of (Z(t)) on ∆0 ×M.
To ease the reading, we present here the main idea of the proof before giving a

rigorous proof. The idea is as follows. Using the fact that weak-limits of occupation
measures must be invariant measures of the process {Z(t)}, the uniqueness of an
invariant measure on ∆0 and the Feller property, we can show that for sufficiently
large T and sufficiently small δ, we have from (13) that

Ez[ln IH(T )− ln i] ≈ λT

if dist(z,∆0) ≤ δ. This approximation gives us an idea about the long-term growth
rate of IH when Z(t) is close to ∆. However, we can not draw a mathematical
conclusion from it. We need to interchange the order of expectation and logarithm
to obtain a Lyapunov-type estimate, which can be done by utilizing some properties
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of the log-Laplace transformation. To be precise, we can show that for some θ > 0,
we have

Ez
IθH(T )

IθH(0)
≤ exp

{
λTθ

4

}
, if λ < 0

and

Ez
IθH(0)

IθH(T )
=≤ exp

{
−λTθ

4

}
, if λ > 0

With these standard Lyapunov estimate, we can easily obtain desired results in two
cases: λ > 0 and λ < 0.

Now, we proceed with rigorous arguments. Define the occupation measure

Πt
z(·) =

1

t
Ez
∫ t

0
1{Z(s)∈·}ds. Since ∆ is compact, Πt

z is tight and any weak limit

of Πt is an invariant measure of (Z(t)). If z ∈ ∆0×M then Πt
z(∆0×M) = 1. This

implies the weak limit of Πt
z is π∗ because π∗ is the unique invariant probability

measure on ∆0 ×M. As a result, for any z ∈ ∆0 ×M, we have

lim
t→∞

Ez
1

t

∫ t

0

(g(ξu, SH(u), IH(u)Y (u))Y (u)− γ1(ξu)) du

=

∫
∆×M

(g(`′, s′, i′y′)y′ − γ(`′))π∗(dz′) = λ.

Since ∆0×M is compact and (Z(t)) has the Feller property, we can find a T > 0
that does not depend on z ∈ ∆0 ×M satisfying∣∣∣∣∣Ez 1

T

∫ T

0

(g(ξu, SH(u), IH(u)Y (u))Y (u)− γ1(ξu)) du− λ

∣∣∣∣∣ < |λ|4 , ∀ z ∈ ∆0 ×M.

By the Feller property of (Z(t)), there exists δ > 0 such that if dist(z,∆0×M) ≤ δ,
then ∣∣∣∣∣Ez

[∫ T

0

(g(ξu, SH(u), IH(u)Y (u))Y (u)− γ1(ξu)) du

]
− λ

∣∣∣∣∣ ≤ T |λ|2 ,

for any z ∈ ∆×M such that dist(z,∆0 ×M) ≤ δ. As a result of [14, Lemma 3.5],
there exists θ > 0 such that,

Ez
IθH(T )

IθH(0)
= Ez exp

{
θ

∫ T

0

(g(ξu, SH(u), IH(u)Y (u))Y (u)− γ1(ξu))du

}

≤ exp

{
λTθ

4

} (15)

if λ < 0, and

Ez
IθH(0)

IθH(T )
= Ez exp

{
−θ
∫ T

0

(g(ξu, SH(u), IH(u))Y (u)− γ1(ξu))du

}

≤ exp

{
−λTθ

4

} (16)

if λ > 0, provided dist(z,∆0 ×M) ≤ δ.

Proof of part 1: λ > 0.
We have from (16) that

EzI−θH (T ) ≤ i−θe
−λTθ

4 , (17)
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if dist(z,∆0 ×M) ≤ δ. Since dI−1
H (t) ≤ −H−1I

−1
H (t)dt where

H−1 = sup
z∈∆×M

{γ1(`)− g(`, s, `y)y},

we have

I−θH (t) ≤ i−θ exp{θH−1t}, if i ≥ δ. (18)

From (17) and (18), we have

EzI−θH (T ) ≤ qi−θ + Cθ for z ∈ ∆×M, q = e
−λTθ

4 , Cθ = δθ exp{θH−1T}.

By the Markov property, we deduce that

EzI−θH ((k + 1)T ) ≤ qEzI−θH (kT ) + Cθ for z ∈ ∆×M, k ∈ N .

Using this recursively we obtain

EzI−θH (nT ) ≤ qni−θ +
Cθ(1− qn)

1− q
for z ∈ ∆×M, n ∈ N .

This estimate together with (18) leads to

EzI−θH (t) ≤
(
qni−θ +

C(1− qn)

1− q

)
exp(θH−1T ) for t ∈ [nT, nT + T ]. (19)

Letting n→∞ we obtain lim supt→∞ EzI−θH (t) =
Cθ

1− q
exp(H−θT ), which implies

(14).
Due to [5, Theorem 4.6] and (19), we obtain the exponentially fast convergence

of the transition probability of Z(t) to an invariant probability measure on ∆◦×M
if there exists (s0, i0, y0) ∈ Γ∩∆◦ at which the strong bracket condition is satisfied.

Proof of part 2: λ < 0.
We have from (15) that

EzIθH(T ) ≤ iθeλTθ4 . (20)

Moreover, if dist(z,∆0 ×M) ≤ δ, as a result

Ez(IθH(T ) ∨ δθ) ≤ i ∨θ δθ ∀ z ∈ ∆×M.

This and the Markov property of (Z(t)) imply that U(k) = IθH(T ) ∨ δθ is a su-
permartingale. Defining the stopping time η = inf{k : U(k) ≥ δ}, we have for all
ε > 0,

EzU(η ∧ k) ≤ IθH(0) ∨ δθIθH ≤ (εδ)θ, if i < εδ.

Then P{η < k} ≤ EzU(ηε∧k)
δθ

≤ εθ if i < εδ. Let k → ∞, we have P{η < ∞} ≤ εθ,
where η = inf{k : U(k) ≥ δ}.

Now, pick ρ1 satisfying 1 > ρ1 > e
λTθ
4 := ρ0, we have from the Markov property

of (Z(t)) and (20) that

Ez1{η<k}IθH(kT ) ≤ ρ0Ez1{η<k−1}I
θ
H((k − 1)T ) ≤ · · · ≤ ρk0iθ, for i ≤ εδ, k ∈ N

and

Pz
{
1{η<k+1}I

θ
H(kT + T ) ≥ ρk+1

1 iθ
}
≤

Ez[1{η<k}IθH(kT )]ρ0

ρk+1
1

≤
(
ρ0

ρ1

)k+1
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for i ≤ εδ, k ∈ N . Since
∑∞
k=0

(
ρ0
ρ1

)k+1

<∞, from an application of Borel-Cantelli

lemma, we obtain

lim sup
T→∞

1{η<k}I
θ
H(kT ) = 0 a.s. if i ≤ εθ

which, in view of Pz{η <∞} ≤ εθ, implies

Pz
{

lim
k→∞

IH(kT ) = 0

}
≥ 1− εθ if i ≤ εθ.

Since

IH(kT + t) ≤ exp

{
t× sup

z∈∆,`∈M
{g(`, s, i, y)y − γ1(`)}

}
IH(kT ) a.s., t ≥ 0,

for some k > 0, we derive that sup0≤t≤T IH(kT + t) ≤ KT IH(kT ) for some constant
KT > 0. As a result,

Pz
{

lim
k→∞

IH(t) = 0

}
≤ 1− εθ if i ≤ ε; (21)

that means the disease-free equilibrium is locally asymptotically stable. If the clo-
sure of Γ+(s, i, y) in ∆◦ has non-empty intersection with ∆0, it follows from [5,
Lemma 3.1] that

Pz{IH(t) < ε for some t > 0} > 0, for any z ∈ ∆×M,

which together with (21) and the strong Markov property of (Z(t)) implies

Pz{ lim
t→∞

IH(t) = 0} > 0, z ∈ ∆×M.

As a result, there is no invariant probability measure of (Z(t)) on ∆◦ ×M, which
leads to the claim that π∗ is the unique invariant probability measure of (Z(t)).
Since (Z(t)) is a Markov-Feller process living inside a compact space, and π∗ is

the unique invariant probability measure, we have that with probability 1, Π̃t
z(.) =

1

t

∫ t
0

1{Z(s)∈.}ds converges weakly to π∗; see [14, Lemma 5.3]. As a result,

lim
T→∞

ln IH(T )

T
= lim
T→∞

1

T

∫ T

0

(g(ξt, SH(t), IH(t)Y (t))Y (t)− γ1(ξt)) dt

= lim
T→∞

∫
∆×M

(g(`′, s′, i′y′)y′ − γ1(`)) Π̃T
z (dz′)

=

∫
∆×M

(g(`′, s′, i′y′)y′ − γ1(`)) π̃∗(dz′) = λ < 0, a.s.

for any z ∈ ∆◦ ×M. The proof for Part 2 is complete.

Proof of part 3
Under the hypothesis of Part 3, a standard comparison argument for systems of

differential equations implies that IH(t) ≤ ĨH(t), IV (t) ≤ ĨV (t) given they have the
same initial values, where

dĨH
dt

= g(ξt,
ω2

µ2
, 0)ĨV − γ1(ξt)ĨH ,

dĨV
dt

= g̃

(
ξt,

ω2

µ2
, 0

)
ĨH − µ2ĨV .

(22)
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Then with straightforward calculations, we have

d ln(ĨH)

dt
= g(ξt,

ω1

µ1
, 0)Ỹ (t)− γ1(ξt),

where Ỹ is the solution to (6). As a result,

lim sup
t→∞

ln IH(t)

t
≤ lim sup

t→∞

ln ĨH(t)

t

≤ lim sup
t→∞

1

t

∫ t

0

(
g

(
ξu,

ω1

µ1
, 0

)
Ỹ (t)− γ1(ξu)

)
du = λ

< 0.

Then, combining with Part 2, we obtain that

lim
t→∞

ln IH(t)

t
= λ, a.s. for any z ∈ ∆◦ ×M.

4. Examples.

4.1. Average system. Let us consider the case when the transmission rates are
bilinear for the model (3), i.e.,

dSH
dt

= ω1 − β(ξt)SHIV − µ1SH ,

dIH
dt

= β(ξt)SHIV − (γ(ξt) + µ1)IH ,

dIV
dt

= σ(ξt)(
ω2

µ2
− IV )IH − µ2IV .

(23)

For any probability measure u = (uk)k∈M onM, consider the average deterministic
system

dSH
dt

= ω1 − βuSHIV − µ1SH ,

dIH
dt

= βuSHIV − (γu + µ1)IH ,

dIV
dt

= σu(
ω2

µ2
− IV )IH − µ2IV ,

(24)

where fu =
∑
f(k)uk for f ∈ {β, σ, γ}.

The complete analysis of this deterministic model can be found in [32]. The basic
reproduction number is given by

Ru0 =
βuσuω1ω2

µ1µ2
2(γu + µ1)

.

The disease-free state E0 = (ω1

µ1
, 0, 0) always exists and is found to be globally stable

when Ru0 is less than one. The unique positive equilibrium(
S∗H =

ω1

µ1 + βuI∗V
, I∗H =

(Ru0 − 1)µ1µ
2
2

σu(βuω2 + µ1µ2)
, I∗V =

σuω2I
∗
H

µ2(µ2 + σuI∗H)

)
(25)

is globally stable when Ru0 > 1.

Let Eu∗ =
(
S∗H , I

∗
H , Y

∗ :=
I∗V
I∗H

)
, and consider (Z(t) = (SH(t), IH(t), Y (t), ξt)),

where the process (SH(t), IH(t), IV (t), ξt) is the solution to (23). In view of [9,
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Lemma 3.5], we know that Eu∗ ∈ Γ+(z) for any z ∈ ∆◦ ×M. An application to
Theorem 3.3 implies the following proposition.

Proposition 4.1.

1. If λ > 0, the disease is persistent. Suppose that Ru0 > 0 for some probabil-
ity measure u in M, and that Γ+(Eu∗ ) contains a point satisfying the strong
bracket condition. Then there exists a unique invariant probability measure π∗

on ∆◦×M, and the transition probability of Z(t) converges to π∗ exponentially
fast in total variation. Moreover, Γ+(Eu∗ ) is the support of π∗.

2. If λ < 0, then for any z = (s, i, y, `) ∈ ∆◦ ×M,

Pz
{

lim
t→∞

ln IH(t)

t
= λ

}
= 1.

Remark 3. Our results will be applied to the special case when all the parameters
are constant in each state. To be more specific, when there is no switching, the
threshold for the fixed system in state ` is given in the terms of (12) by

λ` = A(`)q(`)− γ1(`), (26)

where q(`) =
(γ1(`)− µ2) +

√
(γ1(`)− µ2)2 + 4A(`)C(`)

2A(`)
, and A,B and C are given

in (7). The system is disease free if λ` = A(`)q(`) − γ1(`) < 0. That condition is
equivalent to A(`)C(`) < γ1(`)µ2. Moreover, the disease persists if λ` > 0, or
equivalently, A(`)C(`) > µ2γ1(`).

4.2. The case M = {1, 2}. When m0 = 2, we can compute the density of the
disease-free invariant measure πY when q̂ < q̌. Without loss of generality, assume
that q̂ = q(1) < q(2) = q̌. Using the formula in [10], the invariant measure has the
density πY given by,

πY (y, `) =
θF (y)

(y − q(`))(A(`)y + d(`))
, ` = 1, 2 (27)

where

F (y) =

∣∣∣∣ y − q(2)

A(2)y + d(2)

∣∣∣∣
q21

d(2)+q(2)A(2)
∣∣∣∣ y − q(1)

A(1)y + d(1)

∣∣∣∣
q12

d(1)+q(1)A(1)

, (28)

and θ is given as

θ−1 =

∫ q(2)

q(1)

( F (y)

(q(2)− y)(A(2)y + d(2))
+

F (y)

(y − q(1))(A(1)y + d(1))

)
dy. (29)

Proposition 4.2. Suppose that M = {1, 2}. For ε > 0 sufficiently small, the
switched system (23) with (ξt) generated by Qε exhibits the same long-term behavior
as the average system (24), i.e., λ has the same sign as Ru0 − 1.

Proof. We consider 2 cases.

Case 1. λ` < 0, ` = 1, 2
Suppose that

A(1)C(1) < γ1(1)µ2, A(2)C(2) < γ1(2)µ2, q(1) 6= q(2). (30)

There are always sets of A(1), A(2), B(1), B(2) satisfying (30) as well as

(uA(1) + (1− u)A(2)) (uB(1) + (1− u)B(2)) > µ1µ2 (31)
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for some u ∈ [0, 1]. Note that the left hand side of (31) has the same sign with
Ru0 − 1, where Ru0 is defined using the probability measure (u, 1− u). We consider
(23), where (ξt) is the Markov chain on M = {1, 2} with generator

Qε =

u−1
ε

1−u
ε

u
ε

−u
ε

 ,

for sufficiently small ε. Let Ỹ be as defined in and (6), with generator Qε given
above. It is well known (e.g. see [13]) that for any T > 0, there exists constant
KT > 0 such that

Py,`
{
|Ỹ (t)− Ȳ (t)| < ε ∀t ∈ [0, T ]

}
> 1− e−εKT , ∀(y, `) ∈ [q̂, q̌]×M, (32)

and ∣∣∣E`g(ξt)−
∑

g(k)vk

∣∣∣ < max
k∈M
{|g(k)|}e−εKT , ∀(y, `) ∈ [q̂, q̌]×M, (33)

where Ȳ (t) is the solution to

dȲ

dt
= −Ā + Ȳ 2B̄Ȳ + C̄,

and f̄ = uf(1) + (1− u)f(2) for f ∈ {A,B,C}.

Consider function Λ(y, `) = −γ1(`)+A(`)y on [q̂, q̌]. Let q̄ =
−B̄ +

√
B̄2 + 4Ā C̄

Ā
and γ̄1 = uγ(1) + (1− u)γ(2) + µ1. Then

Λ(y, `) = −γ̄1 + Ā q̄ − (γ1(`)− γ̄1) +
(
A(`)− Ā

)
q̄ +A(`)(y − q̄).

Since 
dȲ

dt
< 0, if Ȳ < q̄,

dȲ

dt
> 0, if Ȳ > q̄,

it is easy to show that for any δ > 0, there exists T > 0 such that

|Ȳ (T )− q̄| ≤ δ

max`∈M{A(`)}
, for any Ȳ (0) ∈ [q̂, q̌]. (34)

Due to (33), we can choose ε0 > 0 such that

|E`A(ξT )− Ā| ≤ δ, |E`γ1(ξT )− γ̄1| < δ ∀ε < ε0, ` = 1, 2. (35)

From (32), (35) we have

Ey,`|A(`)(Ỹ − q̄)| ≤ δ + max
`∈M
{A(`)}ε+MY e

−εKT , (36)

where MY = maxy∈[q̂,q̌],`∈M{A(`)|y − q̄| : y ∈ [q̂, q̌]}. From (35) and (36)

|Ey,`Λ(Ỹ (T ), ξT )− Ā q̄ + γ̄1| < 5δ,

where ε is sufficiently small. Due to the invariance of πY , we have

λ =

2∑
`=1

∫
Λ(y, `)πY (dy, `) =

∫
[Ey,`Λ(Ỹ (T ), ξT )]πY (dy, `). (37)

Then |λ + γ̄ − Ā q̄| < 4δ. Note that if Ā q̄ − γ̄ > 0 due to (31), we get that

λ >
Ā γ̄ − γ̄

2
> 0 if δ is sufficiently small. As a result, the switching between
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two disease-free systems makes the disease persist.

Case 2. λ` > 0, ` = 1, 2
Suppose that

A(1)C(1) > γ1(1)µ2, A(2)C(2) > γ1(2)µ2, q(1) 6= q(2) (38)

but

(uA(1) + (1− u)A(2))(uC(1) + (1− u)C(2)) < γ1µ2. (39)

With similar arguments, when ε > 0 is sufficiently small and (ξt) has generatoru−1
ε

u−1
ε

u
ε

u
ε


we have λ < 0. That is, switching between two systems exhibiting disease-
persistence can make the disease disappear.

4.3. Simulations.

Example 4.1. Dengue fever is transmitted by mosquitoes and has been modeled
in the deterministic setting by many researchers, see [26], [25], [27], [30]. We apply
dengue fever data from a scaled model [30, Table 2.1] to illustrate the effect of
switching on the infection dynamics. Consider a community of 10,000 people and
30,000 mosquitoes, where initially 50 people and 600 mosquitoes are infectious with
dengue, and 4,000 people are susceptible. The infection can be modeled in a fluc-
tuating environment by (23), with initial conditions SH(0) = 0.4, IH(0) = 0.005,
and IV (0) = 0.02. Suppose that without intervention (state 1), the dynamics of
the infection are described by the following set of parameters: ω1 = 0.005, ω2 =
0.025, β(1) = 0.15, σ(1) = 0.15, µ1 = ω1, µ2 = ω2, and γ(1) = γ(2) = 0.3. Now say,
for example, some intervention like mosquito nets is introduced (state 2) at random
points in time in such a way that the mosquito-to-human transmission rate is re-
duced to β(2) = 0.05. We can check that λ1 = 0.04018 > 0 and λ2 = −0.00038 < 0
as defined in (26), so the fixed system witnesses the persistence of the disease in
state 1 but eradicates the disease with constant intervention (state 2). The equi-
librium point for the average system is calculated under the uniform probability
u = (0.5, 0.5) by (25) as (S∗H , I

∗
H , I

∗
V ) = (0.5317, 0.0077, 0.0440) with reproduction

number Ru0 = 1.9672 > 1. The threshold for the switched system with generator
Qε, ε = 25, is calculated via (37) as λ = 0.0500 > 0 using the disease-free invariant
measure given by (27). Accordingly, the switched system witnesses the persistence
of the disease; see Figure 1.

Example 4.2. Consider the initial conditions SH(0) = 0.4, IH(0) = 0.005, and
IV (0) = 0.02, as in Example 4.1. Suppose that without intervention the dynam-
ics in state 1 are described by the following set of parameters: ω1 = 0.005, ω2 =
0.025, β(1) = 0.15, σ(1) = 0.05, µ1 = ω1, µ2 = ω2, and γ(1) = 0.3. Then λ1 =
−3.7922 × 10−4 < 0 and the disease eventually dies out. Now suppose that, for
example, to speed up the eradication of the disease, some intervention is introduced
(state 2) at random points in time in such a way that the mosquito-to-human trans-
mission rate is reduced to β(2) = 0.05, but the human-to-mosquito transmission rate
is raised to σ(2) = 0.15. Then λ2 = −3.7922× 10−4 < 0. These theoretical param-
eters have been selected from observed ranges in the literature for related models
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Figure 1. Sample paths of IH(t) (Example 4.1). In the determin-
istic systems (LEFT) there is persistence in state 1 and extinction
in state 2. In the switched system (RIGHT), the infection persists.

[30] to satisfy (30), i.e., both fixed systems exhibit the extinction of the disease; see
Figure 2.

However, the basic reproduction number for the average system as defined in
(24) under the uniform probability measure u = (0.5, 0.5) is calculated as Ru0 =
1.967 > 1. That is, (31) holds. The positive equilibrium point of (24) is calculated
as (S∗H , I

∗
H , I

∗
V ) = (0.5317, 0.0077, 0.04403). To verify the strong bracket condition

in a neighborhood of (S∗H , I
∗
H , I

∗
V ), we do as follows: Let

F`(SH , IH , IV ) =

 ω1 − β(`)SHIV − µ1SH
β(`)SHIV − µ1IH − γ1IH

σ(`)
(
ω2

µ2
− IV

)
I − µ2IV

 , ` = 1, 2.

and
G0 = F1(x)− F2(x), G1 = [G0, F1(x)], Gk = [Gk−1, F1(x)], k ≥ 1.

Using the MATLAB Symbolic Toolbox, we show that (S∗H , I
∗
H , I

∗
V ) does not solve

the system of equations 
det
([
G0 G1 G2

])
= 0,

det
([
G0 G1 G3

])
= 0,

det
([
G0 G1 G4

])
= 0.

Then G5 := span{G0, ..., G4} = F3, and the strong bracket condition is satisfied at
(S∗H , I

∗
H , I

∗
V ). By proposition 4.1 there exists a unique invariant measure π∗ in the

interior F3,◦
+ ×M. The approximate joint density of (SH(t), IH(t), ξt) is given in Fig-

ure 3 using 1000 simulations of the occupation measure over the period [0, 1500000].
As a result of proposition 4.2, for ε sufficiently small, the disease in the switched
system (23) will persist; see Figure 2 with ε = 25.

Example 4.3. Consider the following parameters: ω1 = 1, β(1) = 1.1, β(2) =
2.1, σ(1) = 1, σ(2) = 2, µ1 = 1, γ(1) = 0.01, γ(2) = 3, µ2 = 1, ω2 = 1, These
parameters are unrealistic and have been chosen to satisfy the conditions (38) and
(39). Each fixed system witnesses the persistence of the disease. However, fast
switching (u = 0.5, ε = 0.05) makes the disease die out eventually, as illustrated in
Figure 4.

5. Conclusion. In this paper, the vector-host model has been studied under switch-
ing environments. The effect of telegraph noise has been considered in the model
parameters. The threshold that is crucial for determining the disease persistence
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Figure 2. Sample paths of IH(t) (Example 4.2). In both deter-
ministic systems (LEFT), IH(t) converges exponentially fast to 0.
Switching makes the disease persist (RIGHT).

Figure 3. Joint density of (SH(t), IH(t), ξt) in state 1 (LEFT)
and state 2 (RIGHT), according to the invariant measure (Exam-
ple 4.2).

Figure 4. Sample paths of IH(t) (Example 4.3). In both de-
terministic systems, IH(t) converges to a positive equilibrium
(LEFT). Switching allows for extinction (RIGHT).

and extinction for the stochastic model has been obtained. Conditions for the per-
sistence and extinction of infection have been derived for the piecewise-deterministic
model. In a case study with constant parameters, it has been found that in two
deterministic systems where the disease persists, switching between them can allow
for extinction, and vice-versa. Numerical simulations have been performed by tak-
ing dengue fever data from the literature to present the importance of switching in
a real scenario.
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