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Novel nucleocytoplasmic protein O-fucosylation by
SPINDLY regulates diverse developmental processes

in plants
Tai-ping Sun

In metazoans, protein O-fucosylation of Ser/Thr residues was
only found in secreted or cell surface proteins, and this post-
translational modification is catalyzed by ER-localized protein O-
fucosyltransferases (POFUTS) in the GT65 family. Recently, a
novel nucleocytoplasmic POFUT, SPINDLY (SPY), was identified
in the reference plant Arabidopsis thaliana to modify nuclear
transcription regulators DELLAs, revealing a new regulatory
mechanism for gene expression. The paralog of AtSPY, SECRET
AGENT (SEC), is an O-link-N-acetylglucosamine (GIcNAc)
transferase (OGT), which O-GlcNAcylates Ser/Thr residues of
target proteins. Both AtSPY and AtSEC are tetratricopeptide
repeat-domain-containing glycosyltransferases in the GT41
family. The discovery that AtSPY is a POFUT clarified decades of
miss-classification of AtSPY as an OGT. SPY and SEC play
pleiotropic roles in plant development, and the interactions
between SPY and SEC are complex. SPY-like genes are
conserved in diverse organisms, except in fungi and metazoans,
suggesting that O-fucosylation is a common mechanism in
modulating intracellular protein functions.
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Discovery of nucleocytoplasmic protein

O-fucosyltransferase SPINDLY in plants

The discovery of the nucleocytoplasmic protein O-fuco-
syltransferase (POFUT) came from the studies of SPIN-
DLY (SPY) in Arabidopsis. AtSPY was initially identified
as a negative regulator of plant hormone gibberellin (GA)
signaling because the hypomorphic mutations in AzSPY
partially rescue the seed germination defect and dwarf
phenotypes caused by chemical-induced GA deficiency
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or genetic mutations in GA biosynthesis [1,2]. In addition,
SPY represses other aspects of GA-regulated processes,
including floral induction, anther development and pollen
tube growth [1-3].

Based on sequence comparison, both AtSPY and its
paralog AtSEC (SECRET AGENT) were predicted
to be OGTs, with a tetratricopeptide-repeat (TPR)
domain and a putative OGT catalytic domain
(Figure 1a) [4-7]. The TPR domain of SPY and SEC
functions as a protein-protein interaction domain for
recruiting target proteins, and overexpression of the
TPR domain of AtSPY has a dominant negative effect
that confers a spy-like phenotype [8,9]. Recombinant
ACSEC expressed in Escherichia coli was shown to
exhibit OG'T activity [5], but the enzymatic activity
of AtSPY was not detected conclusively in a similar iz
VIlro assay.

Because spy displays elevated GA signaling, and the
presence of putative O-GlcNAc sites in the nuclear
DELLA repressors (also known as GA-signaling repres-
sors), AtSPY was long proposed to activate AtDELLAs by
O-GlcNAcylation [10-12]. Through a combination of
electron transfer dissociation (E'TD)-MS/MS analysis,
in vitro enzyme assays and genetic studies, AtSEC was
shown to be an OGT that O-GlcNAcylates DELLAs
using UDP-GIcNAc as its donor substrate [13]. Surpris-
ingly, AtSPY was found to be a novel POFU'T, which is
highly selective to GDP-fucose as its donor substrate and
catalyzes the transfer of O-Fucose monosaccharide to the
hydroxyl oxygen on Ser and Thr residues of DELLA
proteins (acceptor substrates) [14°°] (Figure 2).

Predicted 3D structure of AtSPY is unrelated
to ER-localized POFUTs, but is similar to
OGTs

Sequence alignment and three dimension (3D) protein
structure modeling indicate that AtSPY is distinct from
the ER-localized POFUTSs, which belong to Glycosyl-
Transferase Family 65 (G'T65 [15], http://www.cazy.org)
and modify secreted cell surface proteins in animals
[16°,17,18]. Instead, AtSPY’s 3D model is highly similar
to the TPR domain-containing OG'T's, members of the
G'T41 family [14°°,19] (Figure 1b). Moreover, like OGTs,
AtSPY is localized to both cytoplasm and nucleus [20].
AtSPY is the first nucleocytoplasmic-localized POFUT
found in any organism.
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Structure comparison among human OGT, Arabidopsis SEC and SPY. (a) Diagrams of HsOGT, AtSEC and AtSPY. TPRs are in grey. N-
terminal catalytic domains, N-Cat, are in cyan. C-terminal catalytic domains, C-Cat, are in blue. (b) 3D structures of HsOGT (PDB ID: 4N3C,
containing 4.5-TPRs) [71], and predicted 3D structures of Arabidopsis SEC and SPY using SWISS MODEL [72,73]. The HsOGT crystal
structure (PDB ID: 4N3C) [71] was used as scaffold to predict AtSEC and AtSPY structures. The color schemes for HsOGT, AtSEC and AtSPY
are as in (a). In (b), UDP-GIcNAc in HsOGT is shown as spheres (in lime-green). In the HsOGT structure in (b), the transitional helix (H3)
between TPRs and N-Cat, and the first 2 a-helices (H1 and H2) of N-Cat are highlighted in magenta. The long intervening domain between N-
Cat and C-Cat of HsOGT is omitted from the structure because this domain is uniquely present in the animal OGTs. This figure was modified

from Zentella et al. [14°°].

Multiple O-Fuc and O-GlcNAc sites identified in
AtDELLA are clustered within two structurally disor-
dered polyS/T sequences flanking the conserved
DELLA domain [13,14°°], suggesting that AtSPY and
AtSEC may modify target proteins via a similar mecha-
nism as in HsOG'T, which modifies flexible sequences of
its target proteins by binding to the substrate amide
backbone [19,21]. The critical residue(s) that contribute
to the distinct substrate selectivity of AtSPY have not
been identified experimentally, although some differ-
ences between AtSPY and OGTs have been noted
through sequence alignment and 3D model comparison.
The H3 transition helix and the H1 and H2 helices of N-
Cat are more divergent in AtSPY (Figure 1b). Moreover,
two key His residues (H498-H499 in HsOG'T and F540-
H541 in At¢SEC) that are crucial for OGT activity, are
absent in AtSPY [13,14°°,19,22,23].

Opposing roles of AtSPY and AtSEC in
regulating DELLA function and activities of
multiple signaling pathways

Intriguingly, genetic and biochemical studies further
showed that O-GlcNAc and O-Fuc modifications by the
two paralogs AtSEC and AtSPY display opposite effects
on DELLA function and GA signaling activity [13,14°°].
DELLAs are master growth repressors, which integrate
multiple signaling activities by protein-protein interac-
tions with key transcription factors to coordinate plant
growth with internal and external cues [12,24]. For exam-
ple, BRASSINAZOLE-RESISTANT1 (BZR1) and
PHYTOCHROME-INTERACTING-FACTORs (e.g.
PIF3 and PIF4) are key transcription factors that promote
hypocotyl elongation in response to the phytohormone
brassinosteroid (BR) and external light conditions,
whereas DELLAs inhibit hypocotyl growth by
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Figure 2
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Model for the opposing roles of O-fucosylation and O-GIcNAcylation of DELLA in regulating plant growth.

(a) O-GlcNAcylation by OGT (SEC). (b) O-Fucosylation by POFUT (SPY). (c) The nuclear growth repressor DELLA proteins are activated by O-
Fucosylation, and repressed by O-GlcNAcylation. Each DELLA protein contains an N-terminal DELLA domain and a C-terminal GRAS domain. O-
Fucosylation (labeled as F) by SPY may induce the DELLA protein to an open conformation that is a more active growth repressor; this open form
promotes binding of the GRAS domain to interacting transcription factors (e.g. BZR1 and PIFs), which leads to down-regulated expression of
target genes of BZR1 and PIFs to restrict plant growth. In contrast, O-GIlcNAcylation (labeled as G) by SEC may cause the DELLA protein to fold
into a closed conformation that is less active because this form reduces its binding affinity to BZR1 and PIFs so that growth-related target genes
can be activated. TF, DELLA-interacting transcription factor. The figure (c) was modified from Zentella et al. [14°°].

antagonistic interactions with BZR1 and PIFs to repress
expression of BZR1-target and PIFs-target genes [25-27].
The null sec mutant shows reduced GA responses with a
shorter hypocotyl and internode length than the wild-
type Arabidopsis plant [13]. These results indicate that
AtSEC is an activator of GA signaling, which is in contrast
to the repressive role of AtSPY in GA signaling. By
deduction, AtSEC may reduce DELLA activity and

AtSPY may increase DELLA activity to achieve their
effects on GA signaling activity. Indeed, iz vitro pulldown
assays showed that O-fucosylation by AtSPY enhances
DELLA interactions with BZR1 and PIFs [14°°]. In
contrast, O-GlcNAcylation by AtSEC reduces DELLA
interactions with these key transcription factors in BR and
light signaling pathways [13]. Furthermore, spy mutations
confer increased responses to BR and elevated transcript
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levels of target genes of BZR1 and PIFs, whereas the sec
null allele shows an opposite effect. Therefore, these two
distinct O-glycosyl modifications of DELLAs by AtSPY
and AtSEC differentially modulate GA, BR and light
signaling pathways to regulate plant growth and develop-
ment. The identified O-GIcNAc and O-Fuc sites in
DELLA are partially overlapping or nearby. A model
was proposed in which highly O-GlcNAcylated DELLA
may lock into a ‘closed form’ that interferes with binding
of target proteins. Increasing O-fucosylation may convert
DELLA conformation to an ‘open form’ that enhances
interaction with target proteins (Figure 2c¢).

It is unclear how SPY and SEC activities are regulated,
although they appear to be unaffected by the GA status in
the plant [13,14°°]. In animals, OGT functions as a
nutrient sensor because its activity is tightly correlated
with the levels of its donor substrate UDP-GlcNAc,
which is derived from several key metabolites in the cell
via the hexosamine biosynthesis pathway [7,28,29]. It was
proposed that dynamic O-GlcNAc vs O-Fuc modifications
of DELLAs (and additional regulatory proteins) may help
to coordinate the metabolic status of the plant with its
growth and development in response to internal and

external cues, although specific glycosidases have not
been identified [14°°].

Protein O-fucosylation and O-GlcNAcylation
play diverse roles in plant development

The interplay between AtSPY and AtSEC during Arabi-
dopsis development is complex. Although SPY and SEC
play opposite roles in regulating DELILA-mediated signal-
ing activities as described above, these two protein glyco-
syltransferases may interact differently in DELLA-inde-
pendent cellular processes in plants. Both AtSPY and
AtSEC regulate embryogenesis and flowering time
[1,5,30°°], whereas each enzyme displays unique roles in
asubset of developmental processes. For example, SPY isa
positive regulator of phytohormone cytokinin signaling
[31,32], and regulates the circadian clock [33,34°°]. In
contrast, the sec mutations do not alter cytokinin responses
or circadian rhythms. On the other hand, SEC but not SPY
promotes Plum Pox Virus (PPV) infection by O-GIcNAcy-
lating the coat protein of PPV [35,36]. In vitro assays suggest
that O-GlcNAcylation regulates protein trafficking through
plasmodesmata by altering their interactions with the Nico-
tiana tabacum NON-CELL-AUTONOMOUS PATH-
WAY PROTEINT1 [37]. Mechanisms of cellular processes
regulated by both SPY and SEC, and those thatare uniquely
regulated by SPY are described below.

Embryo development

While AtSPY and AtSEC play opposite roles in regulating
DELLA to modulate multiple signaling activities
[13,14°°], the spy sec double mutant is embryo lethal
[5,38]. This synthetic lethal phenotype of spy sec indicates
that AtSPY and AtSEC regulate unidentified essential

process(es) during embryogenesis. The knockout OGT
mutants in mouse and in Drosophila are embryo lethal
[39-41]. The OGTs in animals are known to regulate
intracellular functions including altering gene expression
at the epigenetic and transcription levels as well as
modulating protein synthesis, stability, activity or subcel-
lular localization [42,43]. In contrast, the functions of
OGT (SEC) and POFUT (SPY) in plants are much less
understood. Recently, proteomic studies have identified a
large number of O-GlcNAcylated proteins in Arabidopsis
(262) and in winter wheat T7iticum aestioum (168), many of
which function in epigenetic and transcriptional regula-
tion, RNA processing, translation and metabolic pro-
cesses [44°°,45°], suggesting that OG'T" in plants also play
diverse roles as the animal OGT's do. So far, the known
protein substrates of AtSPY only include DELILAs and
PSEUDO RESPONSE REGULATOR 5 (PRRS5, a cir-
cadian clock component) (sece below), although several
other interacting proteins have been identified by Y2H or
co-IP assays (including MYB, NAC-like, T'CP and ZIM
domain transcription factors, a circadian clock regulator
GIGANTIA, and SWI3C, a subunit of the chromatin
remodeling complexes) [33,46-49]. Considering that O-
Fuc and O-GIcNAc sites in DELLA largely overlap
[13,14°°], SPY and SEC may share additional common
targets in plants. However, the interaction between O-
GlcNAcylation and O-fucosylation may be different
depending on the target proteins because the embryo-
lethal phenotype of the spy sec mutant suggests an additive
interaction, which is in contrast to their antagonistic
interaction in modulating DELLA activity. In addition,
AtSPY plays unique roles in a subset of cellular processes,
which will be discussed below.

Flowering time

The hypomorphic spy mutants in Arabidopsis flower
carlier than WT in both long-day and short-day condi-
tions, indicating that AtSPY negatively regulates floral
induction [1,10]. One way for AtSPY to delay flowering is
by enhancing DELLA activity to repress GA-induced
flowering. Additionally, AtSPY interacts with a core cir-
cadian clock protein GIGANTIA (GI) that promotes
flowering in long day [33]. The g/ mutant is late flowering,
whereas spy gi double mutant is early flowering, indicating
that spy is epistatic to g7, although the role of SPY-GI
interaction in flowering time control is unclear. Interest-
ingly, O-GlcNAcylation catalyzed by AtSEC also delays
flowering in Arabidopsis. AtSEC upregulates the expres-
sion of the major flowering repressor FLOWERING
LOCUS € (FLC) [30°°]. Further analysis of the chromatin
around the FL.(C locus indicates that H3 lysine 4 trimethy-
lation (H3K4me3, an active chromatin mark) is reduced
significantly in the sec mutant. Importantly, AtSEC O-
GlcNAcylates the histone methyltransferase ATX1 in
planta, and this modification enhances ATX1’s activity
to methylate H3 iz vitro. Thus, AtSEC induces expres-
sion of FLC to delay flowering, at least in part by O-

Current Opinion in Structural Biology 2021, 68:113-121

www.sciencedirect.com



GlcNAcylation and activation of the histone methyltrans-
ferase ATX1 to increase the H3K4me3 active chromatin
mark at the FLC locus. In contrast, O-GlcNAcylation in
Triticum aestioum (winter wheat) mediates vernalization-
induced flowering [50]. Vernalization (prolonged cold
period) promotes flowering in winter wheat by enhancing
expression of a flowering activator TaVRN1 (a MADS-
box transcription factor). Without vernalization, TaVRN1
mRNA processing is inhibited by an RNA binding pro-
tein TaGRP2 that binds to the first intron of TaVRN1
pre-mRNA. Vernalization increases TaVRN1 mRNA
levels by inducing O-GlcNAcylation of TaGRP2, which
in turn promotes sequestration of TaGRP2 by a vernali-
zation-induced lectin VERNZ2.

Cytokinin responses

In addition to an elevated GA-response phenotype, the
spy single mutants in Arabidopsis display other pleiotropic
phenotypes, including abnormal cotyledon numbers,
altered phyllotaxy, reduced leaf serration, and decreased
trichomes on sepals [10,32,51]. The reduced leaf serration
and sepal trichome formation in spy mutants are caused by
reduced responses to another phytohormone cytokinin,
indicating that AtSPY is a positive regulator of cytokinin
signaling [31,32]. Screening and characterization of
AtSPY-interacting proteins identified two bHLH tran-
scription factors T'CP14 and T'CP15 that are involved in
AtSPY-regulated cytokinin responses [49]. The #pi4
fcpl15 double mutant shows reduced cytokinin responses,
whereas overexpression of TCP14 displays enhanced
cytokinin responses. The GFP-TCP14 protein accumu-
lates to a lower level in the spy mutant than that in WT,
but this reduced protein stability of TCP14 can be
reversed by treatment with the 26S proteasome inhibitor
MG132 or in the mutant cx#/] background (CULLINI
encodes a component of the SCF E3 ligase complex)
[52]. It is likely that AtSPY stabilizes TCP14 by O-
fucosylation, although this has not been demonstrated
directly.

Circadian clock

The animal OGTs have been shown to regulate the
circadian clock by rhythmic O-GlcNAcylation of key
components of the clock. In Drosophila and mammals,
the transcription repressor PERIOD binds to and inhibits
transcription activators CLOCK and BMAL, whereas
CLOCK/BMAL induces transcription of PERIOD. O-
GlcNAcylation of PERIOD by OG'T inhibits the activity
of PERIOD by promoting its degradation and preventing
its translocation to the nucleus [53,54]. In addition, O-
GlcNAcylation of BMAL and CLLOCK stabilizes these
transcription activators [55]. Reducing OG'T expression
results in a longer circadian period [53]. OGT in Arabi-
dopsis, however, does not play a significant role in regu-
lating the circadian clock as the sec mutants do not show
abnormal circadian phenotypes [34°°]. Instead, AtSPY
was found to regulate circadian clock. The spy mutants

Nucleocytoplasmic protein O-fucosylation in plants Sun 117

display a longer circadian period in comparison to that of
WT [33,34°°]. The circadian period phenotype of spy is
rescued more effectively by Pgpy:GFP-SPY-NLS (nuclear
localization signal) than by Pgpy:GFP-SPY-NES (nuclear
export signal), suggesting that AtSPY mainly functions in
the nucleus to modulate circadian clock speed. Intrigu-
ingly, expression of the cytoplasmic SPY fusion protein
(GFP-SPY-NES) is required to inhibit GA responses (e.g.
in seed germination, leaf expansion, floral induction) and
to promote cytokinin signaling (leaf serration) [31,34°°].
These results suggest that cytoplasmic-localized and
nuclear-localized AtSPY regulates distinct cellular
responses, although it remains to be determined whether
DELLAs and TCP14 are O-fucosylated in the cytoplasm

or nucleus.

How does AtSPY regulate circadian clock? PRR5, a
transcription repressor that is a key circadian clock com-
ponent, was identified recently to be an interactor of
AtSPY by MS analysis of proteins that were co-immuno-
precipitated with SPY using Pgpy:GFP-SPY and Pgpy:
GFP-SPY-NLS transgenic lines [34°°]. The p7v5 mutant
shows a reduced circadian period, and p7r5 partially
rescues the longer circadian period phenotype of spy,
whereas overexpression of PRR5 confers a longer circa-
dian period. Transient co-expression of PRR5 and AtSPY
in N. benthamiana showed that PRRS is O-fucosylated by
AtSPY. In addition, PRRS protein levels are elevated in
the spy mutant. Taken together, these results indicate
that the nuclear-localized AtSPY modulates circadian
clock speed by promoting PRR5 degradation via O-fuco-
sylation (Figure 3).

Plant architecture
Alteration of SPY function in Arabidopsis and petunia has
been shown to affect plant height and leaf shape through

Figure 3
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SPY regulates circadian period by inducing PRR5 degradation.
O-Fucosylation (labeled as F) of the transcription repressor PRR5 by
SPY promotes PRR5 degradation. The spy mutant has a longer
circadian period than WT.
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changes in GA and cytokinin signaling activities [9,10,32].
In addition, RNA: silencing of SPINDLY in Oryza sativa
(OsSPY in rice) results in an increase in the leaf angle (due
to increased bending of the lamina joint), which resem-
bles an elevated BR response [56]. The OsSPY knock-
down plants accumulate slightly elevated BR levels,
suggesting that OsSPY may inhibit BR biosynthesis. If
OsSPY and AtSPY are functionally conserved, it is also
possible that OsSPY may repress BR signaling by enhanc-
ing DELLA-BZR1 interaction in rice.

A recent genome-wide association study (GWAS) identi-
fied OsSPY as a key factor in regulating rice architecture,
including stem (culm) height, and size and numbers of
panicles (branched flower clusters) [57°]. In comparison to
haplotype I, two polymorphisms in haplotype II, which
result in S9T and R833L substitutions in OsSPY, corre-
late with taller stem and increased panicle size, but lower
numbers of panicles. Importantly, the R833L substitution
in the conserved POFU'T catalytic domain was shown to
reduce OsSPY activity by an iz vitro enzyme assay.
Further studies revealed that the effect of altered OsSPY
activity on rice architecture is mainly through its regula-
tion of GA signaling. This GWAS analysis also indicates
that the enhanced OsSPY allele with R833 (in haplotype
I) has a selective advantage through recent breeding
programs because it confers a semidwarf and larger pani-
cle-number phenotype in response to chemical fertilizer.

Root development

The spy mutants show root development defects, includ-
ing formation of premature middle cortex (an extra layer
of cortex) [58], and ectopic root hairs [59°]. SPY may
inhibit extra cortex formation by modulating redox
homeostasis in the root meristem and elongation zone
because H,O, induces middle cortex formation in WT
seedlings and the spy mutants accumulate higher amounts
of H,0O, in their root tips than WT [60]. The precise
mechanism of SPY-regulated root hair cell patterning is
unclear, although SPY functions upstream of WERE-
WOLF and GLLABRAZ2, which are two transcription fac-
tors that promote non-hair cell fate in the developing
epidermal cells of the root [59°].

Abiotic and biotic stresses

In addition to regulation of plant development, SPY also
functions in plant’s responses to abiotic and biotic stres-
ses. The hypomorphic spy mutants in Arabidopsis are
more tolerant to high salt and drought conditions than
WT, whereas SPY overexpression confers reduced
drought tolerance [61]. These results suggest that SPY
negatively regulates plant’s responses to these abiotic
stresses. On the other hand, the spy mutants display
enhanced susceptibility to a bacterial pathogen, P. syr-
ingae [62°]. The quadruple de/la mutant, however, was
previously shown to be more resistant to this pathogen
infection [63], suggesting that SPY promotes plant

defense responses by regulating pathways that are inde-
pendent of GA and DELLAs.

SPY orthologs are present in diverse
organisms

Phylogenetic analysis indicates that SPY-/ike genes are
evolutionarily conserved, and are found in diverse organ-
isms, including prokaryotes, protists, algae and all plants
[4]. Both §PY and SEC genes are present in genomes of all
plants, and in red algae. Different lineages of bacteria and
protists contain either a SPY-/ike or a SEC-like gene [4].
Intriguingly, animal and fungi kingdoms only contain
SEC-like (OGT) genes, but not the SPY-/ike genes. In
addition, protein O-GlcNAcylation by OGT in animals is
a dynamic modification that is reversible by O-GlcNAcase
(OGA), whereas no OGA orthologs have been identified
in plant genomes.

Although SPY orthologs have long been assumed to be
OGTs based on sequence similarity, the finding that
AtSPY is a POFUT raised the question whether SPY-
like proteins in non-plant organisms are also POFUTs.
Consistent with this hypothesis, recent studies in 7oxo-
plasma gondii (a parasitic protist) indicate that 7gSPY also
encodes a POFUT [64]. Phylogenetic analysis suggests
that 7gSPY is a SPY-/ike gene [4]. Importantly, Bendini
et al. identified O-fucosylated nucleocytoplasmic proteins
in 7. gondii by affinity purification using a terminal fucose-
specific Aleuria aurantia lectin (AAL) and MS/MS analysis
[65]. Predicted functions of these O-fucosylated proteins
in 7. gondii include nucleoporins, transcription regulators,
and components involved in mRNA processing and sig-
naling, suggesting that O-fucosylation may regulate
nuclear targeting and gene expression in 7. gondii [65].
The knockout 7gSPY mutant generated by CRISPR-
Cas9 approach failed to exhibit any intracellular signals
by AAL staining [66°]. Furthermore, the POFUT activity
of TgSPY was demonstrated recently by zz vitro enzyme
assays [67°°]. Mutant analysis further showed that TgSPY
plays a role in promoting the accumulation of its target
proteins, and 7. gondii proliferation iz vitro and in mice.

Besides AtSPY and TgSPY, two additional SPY-like
proteins from Cryprosporidium paroum (a parasitic protist)
and Synechococcus elongatus (a cyanobacterium) have been
reported in earlier studies to hydrolyze UDP-GIcNAc
vitro, although the specific glycosyltransferase activity
was not demonstrated directly [68,69]. Another study
reported the crystal structures of TtOGT in Thermobacu-
lum terrenum (a thermophilic bacterium) and the TtOGT-
UDP complex [70]. However, TtOGT did not exhibit
any OG'T activity 7z vitro, and MS analysis of the 7.
terrenum proteome failed to identify any O-GlcNAcylated
proteins. Sequence alignment suggests that TtOGT is
more similar to SPYs than to OGT's [14°°]. It remains to be
determined whether these SPY-like proteins are
POFUTs. Alternatively, they may display both OGT
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and POFU'T activities, or novel glycosyltransferase activ-
ity with distinct donor substrate selectivity.

Future perspectives

The discovery of AtSPY-catalyzed protein O-fucosylation
reveals a novel mechanism for regulating nucleocytoplas-
mic protein functions in plants. Our understanding of
SPY-regulated and SEC-regulated plant growth and
development is only the tip of the iceberg. Future studies
using multifaceted approaches including proteomics,
chemical biology, genomics and metabolomics will help
to elucidate the global functions of SPY and SEC, and the
interplay between protein O-fucosylation and O-GIcNA-
cylation in regulating plant development. In addition, it is
important to determine whether and how O-GIcNAc and
O-Fuc modifications serve as sensors of metabolic status
in plants and how these P'T'Ms are modulated to integrate
external conditions with internal programs. Recent char-
acterization of T'gSPY, the AtSPY ortholog in the human
parasite 7. gondii, supports the notion that intracellular
protein O-fucosylation by SPY orthologs may regulate a
wide range of biological processes in diverse organisms.
The knowledge gain from studying how SPY functions in
plants has broader implication in illuminating the molec-
ular mechanisms by which nucleocytoplasmic protein O-
fucosylation regulates gene expression and other cellular
processes.
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