
Novel nucleocytoplasmic protein O-fucosylation by
SPINDLY regulates diverse developmental processes
in plants
Tai-ping Sun

Available online at www.sciencedirect.com

ScienceDirect
In metazoans, protein O-fucosylation of Ser/Thr residues was

only found in secreted or cell surface proteins, and this post-

translational modification is catalyzed by ER-localized protein O-

fucosyltransferases (POFUTs) in the GT65 family. Recently, a

novel nucleocytoplasmic POFUT, SPINDLY (SPY), was identified

in the reference plant Arabidopsis thaliana to modify nuclear

transcription regulators DELLAs, revealing a new regulatory

mechanism for gene expression. The paralog of AtSPY, SECRET

AGENT (SEC), is an O-link-N-acetylglucosamine (GlcNAc)

transferase (OGT), which O-GlcNAcylates Ser/Thr residues of

target proteins. Both AtSPY and AtSEC are tetratricopeptide

repeat-domain-containing glycosyltransferases in the GT41

family. The discovery that AtSPY is a POFUT clarified decades of

miss-classification of AtSPY as an OGT. SPY and SEC play

pleiotropic roles in plant development, and the interactions

between SPY and SEC are complex. SPY-like genes are

conserved in diverse organisms, except in fungi and metazoans,

suggesting that O-fucosylation is a common mechanism in

modulating intracellular protein functions.
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Discovery of nucleocytoplasmic protein
O-fucosyltransferase SPINDLY in plants
The discovery of the nucleocytoplasmic protein O-fuco-
syltransferase (POFUT) came from the studies of SPIN-

DLY (SPY) in Arabidopsis. AtSPY was initially identified

as a negative regulator of plant hormone gibberellin (GA)

signaling because the hypomorphic mutations in AtSPY
partially rescue the seed germination defect and dwarf

phenotypes caused by chemical-induced GA deficiency
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or genetic mutations in GA biosynthesis [1,2]. In addition,

SPY represses other aspects of GA-regulated processes,

including floral induction, anther development and pollen

tube growth [1–3].

Based on sequence comparison, both AtSPY and its

paralog AtSEC (SECRET AGENT) were predicted

to be OGTs, with a tetratricopeptide-repeat (TPR)

domain and a putative OGT catalytic domain

(Figure 1a) [4–7]. The TPR domain of SPY and SEC

functions as a protein-protein interaction domain for

recruiting target proteins, and overexpression of the

TPR domain of AtSPY has a dominant negative effect

that confers a spy-like phenotype [8,9]. Recombinant

AtSEC expressed in Escherichia coli was shown to

exhibit OGT activity [5], but the enzymatic activity

of AtSPY was not detected conclusively in a similar in
vitro assay.

Because spy displays elevated GA signaling, and the

presence of putative O-GlcNAc sites in the nuclear

DELLA repressors (also known as GA-signaling repres-

sors), AtSPY was long proposed to activate AtDELLAs by

O-GlcNAcylation [10–12]. Through a combination of

electron transfer dissociation (ETD)-MS/MS analysis,

in vitro enzyme assays and genetic studies, AtSEC was

shown to be an OGT that O-GlcNAcylates DELLAs

using UDP-GlcNAc as its donor substrate [13]. Surpris-

ingly, AtSPY was found to be a novel POFUT, which is

highly selective to GDP-fucose as its donor substrate and

catalyzes the transfer of O-Fucose monosaccharide to the

hydroxyl oxygen on Ser and Thr residues of DELLA

proteins (acceptor substrates) [14��] (Figure 2).

Predicted 3D structure of AtSPY is unrelated
to ER-localized POFUTs, but is similar to
OGTs
Sequence alignment and three dimension (3D) protein

structure modeling indicate that AtSPY is distinct from

the ER-localized POFUTs, which belong to Glycosyl-

Transferase Family 65 (GT65 [15], http://www.cazy.org)

and modify secreted cell surface proteins in animals

[16�,17,18]. Instead, AtSPY’s 3D model is highly similar

to the TPR domain-containing OGTs, members of the

GT41 family [14��,19] (Figure 1b). Moreover, like OGTs,

AtSPY is localized to both cytoplasm and nucleus [20].

AtSPY is the first nucleocytoplasmic-localized POFUT

found in any organism.
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mailto:tps@duke.edu
https://doi.org/10.1016/j.sbi.2020.12.013
http://www.cazy.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbi.2020.12.013&domain=pdf
http://www.sciencedirect.com/science/journal/0959440X


114 Protein-carbohydrate complexes and glycosylation
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Structure comparison among human OGT, Arabidopsis SEC and SPY. (a) Diagrams of HsOGT, AtSEC and AtSPY. TPRs are in grey. N-

terminal catalytic domains, N-Cat, are in cyan. C-terminal catalytic domains, C-Cat, are in blue. (b) 3D structures of HsOGT (PDB ID: 4N3C,

containing 4.5-TPRs) [71], and predicted 3D structures of Arabidopsis SEC and SPY using SWISS MODEL [72,73]. The HsOGT crystal

structure (PDB ID: 4N3C) [71] was used as scaffold to predict AtSEC and AtSPY structures. The color schemes for HsOGT, AtSEC and AtSPY

are as in (a). In (b), UDP-GlcNAc in HsOGT is shown as spheres (in lime-green). In the HsOGT structure in (b), the transitional helix (H3)

between TPRs and N-Cat, and the first 2 a-helices (H1 and H2) of N-Cat are highlighted in magenta. The long intervening domain between N-

Cat and C-Cat of HsOGT is omitted from the structure because this domain is uniquely present in the animal OGTs. This figure was modified

from Zentella et al. [14��].
Multiple O-Fuc and O-GlcNAc sites identified in

AtDELLA are clustered within two structurally disor-

dered polyS/T sequences flanking the conserved

DELLA domain [13,14��], suggesting that AtSPY and

AtSEC may modify target proteins via a similar mecha-

nism as in HsOGT, which modifies flexible sequences of

its target proteins by binding to the substrate amide

backbone [19,21]. The critical residue(s) that contribute

to the distinct substrate selectivity of AtSPY have not

been identified experimentally, although some differ-

ences between AtSPY and OGTs have been noted

through sequence alignment and 3D model comparison.

The H3 transition helix and the H1 and H2 helices of N-

Cat are more divergent in AtSPY (Figure 1b). Moreover,

two key His residues (H498-H499 in HsOGT and F540-

H541 in AtSEC) that are crucial for OGT activity, are

absent in AtSPY [13,14��,19,22,23].
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Opposing roles of AtSPY and AtSEC in
regulating DELLA function and activities of
multiple signaling pathways
Intriguingly, genetic and biochemical studies further

showed that O-GlcNAc and O-Fuc modifications by the

two paralogs AtSEC and AtSPY display opposite effects

on DELLA function and GA signaling activity [13,14��].
DELLAs are master growth repressors, which integrate

multiple signaling activities by protein-protein interac-

tions with key transcription factors to coordinate plant

growth with internal and external cues [12,24]. For exam-

ple, BRASSINAZOLE-RESISTANT1 (BZR1) and

PHYTOCHROME-INTERACTING-FACTORs (e.g.

PIF3 and PIF4) are key transcription factors that promote

hypocotyl elongation in response to the phytohormone

brassinosteroid (BR) and external light conditions,

whereas DELLAs inhibit hypocotyl growth by
www.sciencedirect.com
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Figure 2
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Model for the opposing roles of O-fucosylation and O-GlcNAcylation of DELLA in regulating plant growth.

(a) O-GlcNAcylation by OGT (SEC). (b) O-Fucosylation by POFUT (SPY). (c) The nuclear growth repressor DELLA proteins are activated by O-

Fucosylation, and repressed by O-GlcNAcylation. Each DELLA protein contains an N-terminal DELLA domain and a C-terminal GRAS domain. O-

Fucosylation (labeled as F) by SPY may induce the DELLA protein to an open conformation that is a more active growth repressor; this open form

promotes binding of the GRAS domain to interacting transcription factors (e.g. BZR1 and PIFs), which leads to down-regulated expression of

target genes of BZR1 and PIFs to restrict plant growth. In contrast, O-GlcNAcylation (labeled as G) by SEC may cause the DELLA protein to fold

into a closed conformation that is less active because this form reduces its binding affinity to BZR1 and PIFs so that growth-related target genes

can be activated. TF, DELLA-interacting transcription factor. The figure (c) was modified from Zentella et al. [14��].
antagonistic interactions with BZR1 and PIFs to repress

expression of BZR1-target and PIFs-target genes [25–27].

The null sec mutant shows reduced GA responses with a

shorter hypocotyl and internode length than the wild-

type Arabidopsis plant [13]. These results indicate that

AtSEC is an activator of GA signaling, which is in contrast

to the repressive role of AtSPY in GA signaling. By

deduction, AtSEC may reduce DELLA activity and
www.sciencedirect.com 
AtSPY may increase DELLA activity to achieve their

effects on GA signaling activity. Indeed, in vitro pulldown

assays showed that O-fucosylation by AtSPY enhances

DELLA interactions with BZR1 and PIFs [14��]. In

contrast, O-GlcNAcylation by AtSEC reduces DELLA

interactions with these key transcription factors in BR and

light signaling pathways [13]. Furthermore, spy mutations

confer increased responses to BR and elevated transcript
Current Opinion in Structural Biology 2021, 68:113–121
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levels of target genes of BZR1 and PIFs, whereas the sec
null allele shows an opposite effect. Therefore, these two

distinct O-glycosyl modifications of DELLAs by AtSPY

and AtSEC differentially modulate GA, BR and light

signaling pathways to regulate plant growth and develop-

ment. The identified O-GlcNAc and O-Fuc sites in

DELLA are partially overlapping or nearby. A model

was proposed in which highly O-GlcNAcylated DELLA

may lock into a ‘closed form’ that interferes with binding

of target proteins. Increasing O-fucosylation may convert

DELLA conformation to an ‘open form’ that enhances

interaction with target proteins (Figure 2c).

It is unclear how SPY and SEC activities are regulated,

although they appear to be unaffected by the GA status in

the plant [13,14��]. In animals, OGT functions as a

nutrient sensor because its activity is tightly correlated

with the levels of its donor substrate UDP-GlcNAc,

which is derived from several key metabolites in the cell

via the hexosamine biosynthesis pathway [7,28,29]. It was

proposed that dynamic O-GlcNAc vs O-Fuc modifications

of DELLAs (and additional regulatory proteins) may help

to coordinate the metabolic status of the plant with its

growth and development in response to internal and

external cues, although specific glycosidases have not

been identified [14��].

Protein O-fucosylation and O-GlcNAcylation
play diverse roles in plant development
The interplay between AtSPY and AtSEC during Arabi-

dopsis development is complex. Although SPY and SEC

play opposite roles in regulating DELLA-mediated signal-

ing activities as described above, these two protein glyco-

syltransferases may interact differently in DELLA-inde-

pendent cellular processes in plants. Both AtSPY and

AtSEC regulate embryogenesis and flowering time

[1,5,30��], whereas each enzyme displays unique roles in

a subset of developmental processes. For example, SPY is a

positive regulator of phytohormone cytokinin signaling

[31,32], and regulates the circadian clock [33,34��]. In

contrast, the sec mutations do not alter cytokinin responses

or circadian rhythms. On the other hand, SEC but not SPY

promotes Plum Pox Virus (PPV) infection by O-GlcNAcy-

lating thecoat proteinof PPV [35,36]. In vitro assays suggest

that O-GlcNAcylation regulates protein trafficking through

plasmodesmata by altering their interactions with the Nico-
tiana tabacum NON-CELL-AUTONOMOUS PATH-

WAY PROTEIN1 [37]. Mechanisms of cellular processes

regulatedbybothSPYandSEC,andthosethatareuniquely

regulated by SPY are described below.

Embryo development

While AtSPY and AtSEC play opposite roles in regulating

DELLA to modulate multiple signaling activities

[13,14��], the spy sec double mutant is embryo lethal

[5,38]. This synthetic lethal phenotype of spy sec indicates

that AtSPY and AtSEC regulate unidentified essential
Current Opinion in Structural Biology 2021, 68:113–121 
process(es) during embryogenesis. The knockout OGT

mutants in mouse and in Drosophila are embryo lethal

[39–41]. The OGTs in animals are known to regulate

intracellular functions including altering gene expression

at the epigenetic and transcription levels as well as

modulating protein synthesis, stability, activity or subcel-

lular localization [42,43]. In contrast, the functions of

OGT (SEC) and POFUT (SPY) in plants are much less

understood. Recently, proteomic studies have identified a

large number of O-GlcNAcylated proteins in Arabidopsis

(262) and in winter wheat Triticum aestivum (168), many of

which function in epigenetic and transcriptional regula-

tion, RNA processing, translation and metabolic pro-

cesses [44��,45�], suggesting that OGT in plants also play

diverse roles as the animal OGTs do. So far, the known

protein substrates of AtSPY only include DELLAs and

PSEUDO RESPONSE REGULATOR 5 (PRR5, a cir-

cadian clock component) (see below), although several

other interacting proteins have been identified by Y2H or

co-IP assays (including MYB, NAC-like, TCP and ZIM

domain transcription factors, a circadian clock regulator

GIGANTIA, and SWI3C, a subunit of the chromatin

remodeling complexes) [33,46–49]. Considering that O-
Fuc and O-GlcNAc sites in DELLA largely overlap

[13,14��], SPY and SEC may share additional common

targets in plants. However, the interaction between O-
GlcNAcylation and O-fucosylation may be different

depending on the target proteins because the embryo-

lethal phenotype of the spy sec mutant suggests an additive

interaction, which is in contrast to their antagonistic

interaction in modulating DELLA activity. In addition,

AtSPY plays unique roles in a subset of cellular processes,

which will be discussed below.

Flowering time

The hypomorphic spy mutants in Arabidopsis flower

earlier than WT in both long-day and short-day condi-

tions, indicating that AtSPY negatively regulates floral

induction [1,10]. One way for AtSPY to delay flowering is

by enhancing DELLA activity to repress GA-induced

flowering. Additionally, AtSPY interacts with a core cir-

cadian clock protein GIGANTIA (GI) that promotes

flowering in long day [33]. The gi mutant is late flowering,

whereas spy gi double mutant is early flowering, indicating

that spy is epistatic to gi, although the role of SPY-GI

interaction in flowering time control is unclear. Interest-

ingly, O-GlcNAcylation catalyzed by AtSEC also delays

flowering in Arabidopsis. AtSEC upregulates the expres-

sion of the major flowering repressor FLOWERING
LOCUS C (FLC) [30��]. Further analysis of the chromatin

around the FLC locus indicates that H3 lysine 4 trimethy-

lation (H3K4me3, an active chromatin mark) is reduced

significantly in the sec mutant. Importantly, AtSEC O-
GlcNAcylates the histone methyltransferase ATX1 in

planta, and this modification enhances ATX1’s activity

to methylate H3 in vitro. Thus, AtSEC induces expres-

sion of FLC to delay flowering, at least in part by O-
www.sciencedirect.com
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Figure 3
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SPY regulates circadian period by inducing PRR5 degradation.

O-Fucosylation (labeled as F) of the transcription repressor PRR5 by

SPY promotes PRR5 degradation. The spy mutant has a longer

circadian period than WT.
GlcNAcylation and activation of the histone methyltrans-

ferase ATX1 to increase the H3K4me3 active chromatin

mark at the FLC locus. In contrast, O-GlcNAcylation in

Triticum aestivum (winter wheat) mediates vernalization-

induced flowering [50]. Vernalization (prolonged cold

period) promotes flowering in winter wheat by enhancing

expression of a flowering activator TaVRN1 (a MADS-

box transcription factor). Without vernalization, TaVRN1

mRNA processing is inhibited by an RNA binding pro-

tein TaGRP2 that binds to the first intron of TaVRN1

pre-mRNA. Vernalization increases TaVRN1 mRNA

levels by inducing O-GlcNAcylation of TaGRP2, which

in turn promotes sequestration of TaGRP2 by a vernali-

zation-induced lectin VERN2.

Cytokinin responses

In addition to an elevated GA-response phenotype, the

spy single mutants in Arabidopsis display other pleiotropic

phenotypes, including abnormal cotyledon numbers,

altered phyllotaxy, reduced leaf serration, and decreased

trichomes on sepals [10,32,51]. The reduced leaf serration

and sepal trichome formation in spy mutants are caused by

reduced responses to another phytohormone cytokinin,

indicating that AtSPY is a positive regulator of cytokinin

signaling [31,32]. Screening and characterization of

AtSPY-interacting proteins identified two bHLH tran-

scription factors TCP14 and TCP15 that are involved in

AtSPY-regulated cytokinin responses [49]. The tcp14
tcp15 double mutant shows reduced cytokinin responses,

whereas overexpression of TCP14 displays enhanced

cytokinin responses. The GFP-TCP14 protein accumu-

lates to a lower level in the spy mutant than that in WT,

but this reduced protein stability of TCP14 can be

reversed by treatment with the 26S proteasome inhibitor

MG132 or in the mutant cul1 background (CULLIN1
encodes a component of the SCF E3 ligase complex)

[52]. It is likely that AtSPY stabilizes TCP14 by O-
fucosylation, although this has not been demonstrated

directly.

Circadian clock

The animal OGTs have been shown to regulate the

circadian clock by rhythmic O-GlcNAcylation of key

components of the clock. In Drosophila and mammals,

the transcription repressor PERIOD binds to and inhibits

transcription activators CLOCK and BMAL, whereas

CLOCK/BMAL induces transcription of PERIOD. O-
GlcNAcylation of PERIOD by OGT inhibits the activity

of PERIOD by promoting its degradation and preventing

its translocation to the nucleus [53,54]. In addition, O-
GlcNAcylation of BMAL and CLOCK stabilizes these

transcription activators [55]. Reducing OGT expression

results in a longer circadian period [53]. OGT in Arabi-

dopsis, however, does not play a significant role in regu-

lating the circadian clock as the sec mutants do not show

abnormal circadian phenotypes [34��]. Instead, AtSPY

was found to regulate circadian clock. The spy mutants
www.sciencedirect.com 
display a longer circadian period in comparison to that of

WT [33,34��]. The circadian period phenotype of spy is

rescued more effectively by PSPY:GFP-SPY-NLS (nuclear

localization signal) than by PSPY:GFP-SPY-NES (nuclear

export signal), suggesting that AtSPY mainly functions in

the nucleus to modulate circadian clock speed. Intrigu-

ingly, expression of the cytoplasmic SPY fusion protein

(GFP-SPY-NES) is required to inhibit GA responses (e.g.

in seed germination, leaf expansion, floral induction) and

to promote cytokinin signaling (leaf serration) [31,34��].
These results suggest that cytoplasmic-localized and

nuclear-localized AtSPY regulates distinct cellular

responses, although it remains to be determined whether

DELLAs and TCP14 are O-fucosylated in the cytoplasm

or nucleus.

How does AtSPY regulate circadian clock? PRR5, a

transcription repressor that is a key circadian clock com-

ponent, was identified recently to be an interactor of

AtSPY by MS analysis of proteins that were co-immuno-

precipitated with SPY using PSPY:GFP-SPY and PSPY:
GFP-SPY-NLS transgenic lines [34��]. The prr5 mutant

shows a reduced circadian period, and prr5 partially

rescues the longer circadian period phenotype of spy,
whereas overexpression of PRR5 confers a longer circa-

dian period. Transient co-expression of PRR5 and AtSPY

in N. benthamiana showed that PRR5 is O-fucosylated by

AtSPY. In addition, PRR5 protein levels are elevated in

the spy mutant. Taken together, these results indicate

that the nuclear-localized AtSPY modulates circadian

clock speed by promoting PRR5 degradation via O-fuco-
sylation (Figure 3).

Plant architecture

Alteration of SPY function in Arabidopsis and petunia has

been shown to affect plant height and leaf shape through
Current Opinion in Structural Biology 2021, 68:113–121
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changes in GA and cytokinin signaling activities [9,10,32].

In addition, RNAi silencing of SPINDLY in Oryza sativa
(OsSPY in rice) results in an increase in the leaf angle (due

to increased bending of the lamina joint), which resem-

bles an elevated BR response [56]. The OsSPY knock-

down plants accumulate slightly elevated BR levels,

suggesting that OsSPY may inhibit BR biosynthesis. If

OsSPY and AtSPY are functionally conserved, it is also

possible that OsSPY may repress BR signaling by enhanc-

ing DELLA-BZR1 interaction in rice.

A recent genome-wide association study (GWAS) identi-

fied OsSPY as a key factor in regulating rice architecture,

including stem (culm) height, and size and numbers of

panicles (branched flower clusters) [57�]. In comparison to

haplotype I, two polymorphisms in haplotype II, which

result in S9T and R833L substitutions in OsSPY, corre-

late with taller stem and increased panicle size, but lower

numbers of panicles. Importantly, the R833L substitution

in the conserved POFUT catalytic domain was shown to

reduce OsSPY activity by an in vitro enzyme assay.

Further studies revealed that the effect of altered OsSPY

activity on rice architecture is mainly through its regula-

tion of GA signaling. This GWAS analysis also indicates

that the enhanced OsSPY allele with R833 (in haplotype

I) has a selective advantage through recent breeding

programs because it confers a semidwarf and larger pani-

cle-number phenotype in response to chemical fertilizer.

Root development

The spy mutants show root development defects, includ-

ing formation of premature middle cortex (an extra layer

of cortex) [58], and ectopic root hairs [59�]. SPY may

inhibit extra cortex formation by modulating redox

homeostasis in the root meristem and elongation zone

because H2O2 induces middle cortex formation in WT

seedlings and the spy mutants accumulate higher amounts

of H2O2 in their root tips than WT [60]. The precise

mechanism of SPY-regulated root hair cell patterning is

unclear, although SPY functions upstream of WERE-

WOLF and GLABRA2, which are two transcription fac-

tors that promote non-hair cell fate in the developing

epidermal cells of the root [59�].

Abiotic and biotic stresses

In addition to regulation of plant development, SPY also

functions in plant’s responses to abiotic and biotic stres-

ses. The hypomorphic spy mutants in Arabidopsis are

more tolerant to high salt and drought conditions than

WT, whereas SPY overexpression confers reduced

drought tolerance [61]. These results suggest that SPY

negatively regulates plant’s responses to these abiotic

stresses. On the other hand, the spy mutants display

enhanced susceptibility to a bacterial pathogen, P. syr-
ingae [62�]. The quadruple della mutant, however, was

previously shown to be more resistant to this pathogen

infection [63], suggesting that SPY promotes plant
Current Opinion in Structural Biology 2021, 68:113–121 
defense responses by regulating pathways that are inde-

pendent of GA and DELLAs.

SPY orthologs are present in diverse
organisms
Phylogenetic analysis indicates that SPY-like genes are

evolutionarily conserved, and are found in diverse organ-

isms, including prokaryotes, protists, algae and all plants

[4]. Both SPY and SEC genes are present in genomes of all

plants, and in red algae. Different lineages of bacteria and

protists contain either a SPY-like or a SEC-like gene [4].

Intriguingly, animal and fungi kingdoms only contain

SEC-like (OGT) genes, but not the SPY-like genes. In

addition, protein O-GlcNAcylation by OGT in animals is

a dynamic modification that is reversible by O-GlcNAcase

(OGA), whereas no OGA orthologs have been identified

in plant genomes.

Although SPY orthologs have long been assumed to be

OGTs based on sequence similarity, the finding that

AtSPY is a POFUT raised the question whether SPY-

like proteins in non-plant organisms are also POFUTs.

Consistent with this hypothesis, recent studies in Toxo-
plasma gondii (a parasitic protist) indicate that TgSPY also

encodes a POFUT [64]. Phylogenetic analysis suggests

that TgSPY is a SPY-like gene [4]. Importantly, Bendini

et al. identified O-fucosylated nucleocytoplasmic proteins

in T. gondii by affinity purification using a terminal fucose-

specific Aleuria aurantia lectin (AAL) and MS/MS analysis

[65]. Predicted functions of these O-fucosylated proteins

in T. gondii include nucleoporins, transcription regulators,

and components involved in mRNA processing and sig-

naling, suggesting that O-fucosylation may regulate

nuclear targeting and gene expression in T. gondii [65].

The knockout TgSPY mutant generated by CRISPR-

Cas9 approach failed to exhibit any intracellular signals

by AAL staining [66�]. Furthermore, the POFUT activity

of TgSPY was demonstrated recently by in vitro enzyme

assays [67��]. Mutant analysis further showed that TgSPY

plays a role in promoting the accumulation of its target

proteins, and T. gondii proliferation in vitro and in mice.

Besides AtSPY and TgSPY, two additional SPY-like

proteins from Cryptosporidium parvum (a parasitic protist)

and Synechococcus elongatus (a cyanobacterium) have been

reported in earlier studies to hydrolyze UDP-GlcNAc in
vitro, although the specific glycosyltransferase activity

was not demonstrated directly [68,69]. Another study

reported the crystal structures of TtOGT in Thermobacu-
lum terrenum (a thermophilic bacterium) and the TtOGT-

UDP complex [70]. However, TtOGT did not exhibit

any OGT activity in vitro, and MS analysis of the T.
terrenum proteome failed to identify any O-GlcNAcylated

proteins. Sequence alignment suggests that TtOGT is

more similar to SPYs than to OGTs [14��]. It remains to be

determined whether these SPY-like proteins are

POFUTs. Alternatively, they may display both OGT
www.sciencedirect.com
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and POFUT activities, or novel glycosyltransferase activ-

ity with distinct donor substrate selectivity.

Future perspectives
The discovery of AtSPY-catalyzed protein O-fucosylation
reveals a novel mechanism for regulating nucleocytoplas-

mic protein functions in plants. Our understanding of

SPY-regulated and SEC-regulated plant growth and

development is only the tip of the iceberg. Future studies

using multifaceted approaches including proteomics,

chemical biology, genomics and metabolomics will help

to elucidate the global functions of SPY and SEC, and the

interplay between protein O-fucosylation and O-GlcNA-

cylation in regulating plant development. In addition, it is

important to determine whether and how O-GlcNAc and

O-Fuc modifications serve as sensors of metabolic status

in plants and how these PTMs are modulated to integrate

external conditions with internal programs. Recent char-

acterization of TgSPY, the AtSPY ortholog in the human

parasite T. gondii, supports the notion that intracellular

protein O-fucosylation by SPY orthologs may regulate a

wide range of biological processes in diverse organisms.

The knowledge gain from studying how SPY functions in

plants has broader implication in illuminating the molec-

ular mechanisms by which nucleocytoplasmic protein O-
fucosylation regulates gene expression and other cellular

processes.
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