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A Rapid Approach to Determine Soil Carbon Quality and Its 
Relationship to Soil Greenhouse Gas Emissions
Peter Baas a,b, Jennifer D. Knoeppc, Daniel Markewitzd, and Jacqueline E. Mohana

aOdum School of Ecology, University of Georgia, Athens, GA, USA; bNatural Resource Ecology Laboratory, Colorado 
State University, Fort Collins, CO, USA; cCoweeta Hydrologic Laboratory, USDA Forest Service, Southern Research 
Station, Otto, NC, USA; dWarnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA

ABSTRACT
Soil organic matter composition controls many microbial processes in the 
soil matrix. How these processes interact to drive carbon cycling through 
greenhouse gas fluxes or carbon stabilization through biochemical transfor
mations continues to evolve. From laboratory incubations, it is clear that low 
molecular weight compounds (LMWCs; e.g. dextrose, mannitol, and treha
lose) can have a profound effect on microbially mediated fluxes. However, 
relationships between LMWCs and soil efflux have been largely unproven in 
field studies due to methodological constraints. In the current study we 
developed a novel use of Near Infrared Reflectance Spectroscopy (NIRS) to 
quantify LMWCs (explaining 38–51% of the variance). Paradoxically, we 
found dextrose concentrations to be negatively correlated with carbon 
dioxide fluxes in residential sites while mannitol was positively correlated 
with carbon dioxide fluxes in agricultural sites. Methane fluxes were strongly 
correlated with trehalose indicating a potential fungal interaction with bac
terial methanogens. We found no clear link between LMWCs on nitrous oxide 
emissions suggesting inorganic nitrogen is a stronger limiting factor. The 
results from this study showed how a NIRS-based approach can improve 
mechanistic understanding of the drivers of soil greenhouse gas fluxes.
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Introduction

Soil organic matter degradation is a pivotal part of ecosystem functioning and controls many 
ecological features such as organic matter formation, nutrient cycling, and greenhouse gas emissions 
(Schlesinger and Bernhardt 2013). Floodplains and riparian forests can be hotspots for these processes 
due to high productivity and can have a profound effect on watershed scale soil nutrient cycling, 
greenhouse gas emissions (Baas et al. 2017; Knoepp et al. 2018), and regional stream water quality 
(Webster et al. 2012). In addition, changing land use in riparian zones from forest to agriculture to 
residential development can have widely divergent influences on CO2 (Vose and Bolstad 2007; Vose 
et al. 2005), CH4 (Goldman et al. 1995) and N2O fluxes (Baas et al. 2017; Groffman, Gold, and Jacinthe 
1998; Hefting, Bobbink, and de Caluwe 2003).

Theoretical and empirical studies can explain a part of the variance in microbial-mediated releases 
of greenhouse gases using temperature, pH, (in)organic nitrogen, and organic carbon concentrations 
(Baas et al. 2017; Davidson, Belk, and Boone 1998; Werner, Kiese, and Butterbach-Bahl 2007). In some 
cases, bulk carbon concentrations have been found to result in a mitigation (i.e., a decrease) of CH4 
and N2O emissions (Merino, Pérez-Batallón, and Macías 2004). Different types of carbon, however, 
interact with microbial processes in a variety of manners (van Hees et al. 2005). Growing evidence 
suggests that soil organic matter (SOM) formation and cycling does not progress simplistically from 
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the easily soluble components (i.e., low molecular weight compounds [LMWCs] such as amino acids 
and sugars) to progressively more complex compounds (i.e., high molecular weight compounds 
[HMWCs] such as cellulose and lignin) resulting in recalcitrant forms of SOM (Melillo, Aber, and 
Muratore 1982; Rovira and Rovira 2010). A diversity of microbially driven pathways can result in 
greenhouse gas efflux and SOM formation and may be specifically dependent on microbial turnover of 
labile LMWCs (Calderón et al. 2011; Cotrufo et al. 2013; Kleber et al. 2015; Preston, Nault, and 
Trofymow 2009).

This shifting paradigm suggests that models of carbon cycling focusing on the effect of HMWCs on 
greenhouse gas emissions or SOM formation (Aber, Melillo, and McClaugherty 1990; McKee et al. 
2016; Talbot et al. 2012) is in need of more attention to LMWC substrate availability and cycling. 
Indeed, LMWCs have been found essential for many processes producing the three major greenhouses 
gasses (Denman et al. 2007); CO2 (Eilers et al. 2010; van Hees et al. 2005), CH4 (Lu et al. 2000; Rothfuss 
and Conrad 1992) and N2O (Hill et al. 2000; Richardson and Ferguson 1992). For example, additions 
of the LMWC glucose has resulted in spikes in CO2 and N2O effluxes in wide ranging ecosystems like 
rice paddies (Wang et al. 2005), forest soils (Baas et al. In prep), and agricultural cropping systems 
(Henderson et al. 2010; Sanchez-Martin et al. 2008; Shelp, Beauchamp, and Thurtell 2000). Further, in 
wetland ecosystems, glucose additions are associated with increased methane efflux (Aerts and de 
Caluwe 1999; Peng et al. 2015). Understanding temporal and spatial heterogeneity (Baas et al. 2014; 
Groffman et al. 2009; McClain et al. 2003) is a critical challenge, particularly as it relates to microbial- 
mediated greenhouse gas fluxes. Meeting this challenge, however, will require greater knowledge of the 
abundance of LMWCs, which is currently limited by the lack of high throughput, cost-effective 
measurement approaches.

Innovative uses of 13C Nuclear Magnetic Resonance (NMR), Fourier Transformed Infrared 
Reflectance Spectroscopy (FTIR), and Near Infrared Reflectance Spectroscopy (NIRS) provide 
some new alternatives for measuring carbon forms. Of these technologies, NIRS is the only option 
that is field-deployable and it has a limited need for soil preparation (Peltre et al. 2011). NIRS has 
been used frequently to predict total soil carbon and organic nitrogen concentrations (Chang and 
Laird 2002; Ladoni et al. 2010) and to distinguish between different carbon pools (Cozzolino and 
Morón 2006; Vasques, Grunwald, and Sickman 2009) as well as estimating microbial biomass 
(Coûteaux, Berg, and Rovira 2003). Success has also been achieved in using NIRS in determining 
beet (Roggo et al. 2002) and fruit sugar concentrations (Ji, Li, and Shigefuji 2008). However, to our 
knowledge, no literature exists that has utilized NIRS to predict specific ecologically relevant LMWC 
concentrations in the soil matrix. The goal of the current study was to determine if NIRS spectra 
could be calibrated to common LMWCs and, secondly, if the predicted carbon composition could 
explain greenhouse gas effluxes for different riparian land-uses and times of the year. Given the 
previous success with NIRS for predicting total soil carbon we expected that common sugars such as 
dextrose, trehalose, and mannitol could be well predicted (r2 > 0.8). Further, we expected that these 
sugars would be well related to greenhouse gas efflux (i.e., CO2, CH4 and N2O) across a range of 
land uses (forest, agriculture, and residential).

Materials and methods

Site description

The study was conducted in Macon County, North Carolina, in the Blue Ridge physiographic province 
in the southern Appalachian Mountains. This region receives an average of 1300 mm of precipitation 
a year (NOAA 1950-2013). The highest temperatures are between May and September (20°C) and the 
lowest temperatures are between December and February (5°C). The growing season starts in May and 
ends in September (Swift and Cunningham 1988).We selected 8 study sites that included forest cover 
(N = 3), undisturbed since the 1920s; agricultural use (N = 3), comprised of managed pasture with and 
without grazing, and low-density residential development (N = 2). All sites were adjacent to a first 
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or second order headwater stream. At each site we established a riparian zone sampling area 3 m wide 
and 20 m long perpendicular to the stream. For more site information see Baas et al. (2017).

Carbon composition

We estimated the available C content of mineral soils present as lignin, cellulose, dextrose, trehalose, and 
mannitol in the lab using a NIRS for July and November 2012, and March and May 2013 samples. This 
required creation of a NIRS calibration model for mineral soil (0–15 cm) from each of the eight sites. Soils 
were combusted (500°C for 24 h) to remove all organic matter, we then added and mixed concentrations of 
specific carbon compounds (0–5% w/w range) in the form of lignin (Lignin, alkali Sigma-Aldrich 370959, 
batch #: 0801288), cellulose, dextrose, trehalose, or mannitol. Soil/C mixtures were scanned with an ASD 
FieldSpec 3 (Analytical Spectral Devices [ASD], Inc., Boulder, CO). The NIRS scans from 350 to 2500 nm 
in 1-nm increments using a contact probe with a 2-cm-diameter window. The scans were completed by 
first performing a baseline scan using a Spectralon® white blank (Labsphere, North Sutton, NH). The lens of 
the contact probe was pressed firmly against the surface of the soil within its sample bag so that no light 
from the lens was visible. Soil within the sample bag was mixed, and the refreshed surface was scanned 
again. Each spectrum was averaged from a compilation of 50 readings during each scan. This was 
performed three times per sample, and the three scans were then averaged. Between each sample, the 
contact probe was cleaned. A baseline scan was performed after every 10 samples. Spectra were transformed 
to the first-derivative before statistical analysis. The samples were divided into a calibration (70%) and 
validation (30%) dataset. Using The Unscrambler software (CAMO PROCESS AS, Oslo, Norway) partial 
least squares best cross-validated models were developed with the training dataset for each of the specific 
carbon compounds. The models were validated by regression analysis using the validation dataset.

We conducted additional validation of this technique using traditional soil extraction and analysis 
approaches on a subset of air-dried soil samples (N = 10) at the Complex Carbohydrate Research 
Center at the University of Georgia. For carbohydrate analysis, about 3.0 g of each soil sample was 
weighed into a pre-rinsed screw-cap glass tube and extracted with 80% ethanol for mannitol, trehalose, 
and glucose through an end to end shaker/rocker. Thereafter, the tubes were spun and the super
natant/extract of each sample was transferred into another glass tube, dried under a stream of nitrogen 
gas. The dried extracts were dissolved with water and transferred into high-performance liquid 
chromatography vials for analysis. Four concentrations of mannitol, trehalose, and glucose standard 
mixture were prepared serially to establish a calibration equation. The quantity of each analyte in the 
sample was calculated by linear interpolation of respective residue area units into the calibration 
equation. The soil carbohydrates were analyzed by High Performance Anion Exchange 
Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) using a Dionex ICS3000 
system equipped with a gradient pump, an electrochemical detector, and an autosampler. The residues 
were separated by a Dionex CarboPac PA20 (3 x 150 mm) analytical column with pre-installed amino 
trap and eluted with degassed nanopure water and 200 mM NaOH. Injection was made every 32 min. 
For cellulose analysis between 15 and 20 mg of each of the samples was used for the analysis. The 
samples were mixed with 1 ml of 2 M trifluoracetic acid (TFA) for 2 hours at 121°C to hydrolyze all 
non-cellulosic polysaccharides. The samples were then washed multiple times with DI water to remove 
the TFA and hydrolyzed monosaccharides. The amount of cellulose in the samples was then calculated 
using a variation of the method of Dubois et al. (1956) in which a portion of between 420 and 530 ug of 
the dried samples was mixed with 5% phenol and subjected to concentrated sulfuric acid. Absorbance 
of the solution was then read at 500 nm and estimations are made in relation to cellulose standards. 
For lignin analysis each sample was prepared in duplicate by weighing ~5.0 mg and single-shot 
pyrolyzed (Frontier Lab) at 500°C. The volatile compounds were separated by HP-5 MS column 
(30 m x 0.25 mm, Agilent Technologies, Inc.) fitted to a 6890 N gas chromatography system, which 
was interfaced to 5975B inert MSD (Agilent Technologies). Oven temperature was initially set at 50°C 
and ramped to 280°C over a period of 53 min. Helium was the carrier gas for the volatile compounds 
and the split ratio was set at 50:1.
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Greenhouse gas fluxes

We measured net soil CO2, CH4 and N2O fluxes from May 2012 and May 2013 between 0900 and 
1600 h using static PVC flux chambers as described in Baas et al. (2017).

Statistics

We conducted tests for treatment effects on respiration rates using standard least squares analysis of 
variance (ANOVA) to determine differences in predicted soil carbon concentrations with regards to 
different land-use. The relationship between drivers of processes and gas flux rates were determined 
using Spearman correlation analysis on non-transformed data to determine the strongest predictors 
for greenhouse gas fluxes and N cycling rates. All statistical analyses were conducted in JMP 11 (SAS 
Institute Inc., Cary, NC) and significant differences are indicative of p < .05 unless otherwise stated.

Results

Carbon composition

Calibrations of carbon compound concentrations using NIRS varied with carbon type (Table 1; 
Figures 1 and 2). The carbon compound concentrations in the synthesized mixed samples were 
relatively well-validated, explaining between 48 and 88% of the variation. However, external validation 
using traditional extraction methods proved less successful. Significant relationships were found for 
dextrose and trehalose while mannitol and cellulose were not significantly related to the NIRS 
predicted concentrations. Lignin concentrations were found to be below detection limit and, thus, 
no external validation of the NIRS method was possible.

Carbon compounds showed significant land-use effects for lignin, significant sample date effects for 
cellulose, lignin, mannitol and trehalose, and significant interactions for dextrose (Figure 3; Table 2). 
Dextrose concentrations were greater in agricultural and residential sites compared to forested sites. 
Soil dextrose in agricultural and residential land use showed no sample date effect while for forested 
systems the greatest concentrations were found in May 2013 compared to March 2013 and 
November 2012 (F3,53 = 10.4, P < .001). In November 2012 forested sites had lower dextrose 
concentrations compared to residential and agricultural land use (F7,31 = 4.6, P < .001) while in 
May 2013 dextrose concentrations were greater in forested sites than agricultural land use (F7,32 = 9.5, 
P < .001). Mannitol (F = 0.6, P = .58) and trehalose (F = 0.2, P = .81) concentrations showed no 
significant land-use effects. Mannitol concentrations were greatest in July 2012 compared to 
November 2012, March and May 2013 (P < .001) while trehalose concentrations were greatest in 
May 2013 compared to July 2012 and March 2013 (P < .05). May 2013 was greater in cellulose 
concentrations than July 2012, November 2012, and March 2013 (P < .001). Lignin concentrations 

Table 1. Near infrared reflectance spectroscopy (NIRS) prediction calibration and validation statistics on 0–15 cm mineral soils. 
External validation was based on comparison with other analytical approaches.

Calibration dataset Validation dataset External validation

p r2 (N) p r2 (N) p r2 (N)
Dextrose <.001 0.95 (31) .008 0.66 (9) .0565 0.38 (10)
Mannitol <.001 1.00 (31) .038 0.48 (9) .12 0.49 (6)
Trehalose <.001 0.53 (31) <.001 0.82 (9) .0298 0.51 (9)
Cellulose <.001 1.00 (31) .002 0.75 (9) .68 0.03 (9)
Lignin <.001 0.69 (31) .015 0.60 (9) bdl bdl
Total C-mix† <.001 0.90 (31) <.001 0.88 (9) - -

†determined on combusted soil mixed with C-compounds 
ǂSaturation after 0.35 µg C gsoil

−1. Samples over threshold not included in validation 
bdl = below detection limit
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were greater in residential sites than agricultural sites (P = .053) and May 2013 was greater than 
July 2012, November 2012 and March 2013 (P < .001).

Drivers of fluxes and processes

Overall, Spearman correlation analysis (Table 3) showed that both HMWCs (lignin and cellulose) and 
LMWCs (dextrose, mannitol, and trehalose) correlated with greenhouse gas fluxes but were highly land- 
use and compound dependent. Soil dextrose concentrations showed a trend of correlating negatively with 
CO2 fluxes, particularly in residential sites. Inversely, soil mannitol concentrations showed a positive trend 
with CO2 fluxes in agricultural sites. Trehalose concentrations were significantly correlated with CH4 flux 
in residential ecosystems. Cellulose concentrations proved to be negatively correlated with CO2 flux in 
both the forested and residential sites. N2O flux showed a trend for a positive relationship with cellulose 
concentrations. Lignin concentrations showed no significant correlations with N2O or CH4 flux but did 
show a positive trend with CO2 flux in agricultural land use.

Figure 1. Scatterplots showing the regressions for the calibration (red circles) and validation (blue crosses) for soil dextrose (a), 
mannitol (b), trehalose (c), cellulose (d), lignin (e) and total carbon concentrations (f). Calibration statistics are presented in Table 1.

Figure 2. Scatterplots showing the regressions for the soil dextrose (a), mannitol (a), trehalose (b) and cellulose (b) against an 
external validation method. Calibration statistics are presented in Table 1.
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Discussion

The main goal of the current study was to investigate the potential for NIRS to advance understanding 
of LMWCs and assess their role in microbial driven greenhouse gas fluxes. Our results indicate that 
NIRS can be calibrated and validated for the five compounds tested. However, only mannitol and 
dextrose concentrations were able to be validated by traditional extraction-based methods. This result 

Figure 3. Concentration of dextrose (a), mannitol (b), trehalose (c), cellulose (d) and lignin (e) in the southern Appalachian Mountains 
based on near infrared reflectance spectroscopy (NIRS) models. The bars indicate the mean and the error bars indicate the standard 
error of the mean. Different lower-case letters indicate significant differences between land uses and different capitalized letters 
indicate differences between sample dates (p <.05). Forest = forested riparian zones; Res = residential development; Ag = pasture 
management.
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does not necessarily invalidate this approach because these extraction methods are known to create 
a variety of artifacts which is why many recent studies have focused on FTIR and NMR approaches 
(Calderón et al. 2011; He et al. 2007).

The second objective was to determine the relationships between carbon composition and green
house gas fluxes which are dependent on a variety of LMWCs. Stoichiometric principles would inform 
us that carbon use efficiency would be greater under nutrient limiting conditions while nitrogen use 
efficiency would be greater under low carbon conditions. LMWCs and HMWCs were found to have 
differential relationships with greenhouse gas fluxes.

Temporal dynamics were found to be more important for LMWCs and HMWCs than land-use 
type. However, dextrose concentrations were greater in the July and May sampling time point than the 
agricultural land-use type. It is likely that tree roots in the forested sites are exuding greater amounts of 
dextrose during the growing season as found for the July and May sampling times. In general, our data 
showed that the May sampling time was greater in all carbon compound concentrations. This is 
similar to findings by Guggenberger and Zech (1994) showing the summer to be the season with the 
greatest carbon inputs of both carbohydrates and lignin. Seasonal differences in root exudation have 
been observed before and a likely explanation for the carbon concentrations we observed (Kaiser et al. 
2010).

CO2 fluxes were negatively correlated with dextrose. This is contradictory to other studies finding 
increased emission with greater dextrose concentrations (Liang et al. 2015) and is also a critical 
assumption of the Substrate-Induced Respiration (SIR) assay (West and Sparling 1986). Liang et al. 
(2015) found that at N saturated conditions CO2 fluxes were reduced with dextrose additions and 
fluxes did not increase unless dextrose was added to relieve microbial C-limitation. They stated that 
this result supports a dynamic carbon use efficiency (CUE). Perhaps the dextrose concentrations in 
our study should be interpreted inversely with greater dextrose concentrations indicating a lack of 
utilization. Further, this would suggest that the magnitude of the response is associated with the level 
of N limitation. Trehalose concentrations, on the other hand, showed no significant effects on CO2 
fluxes. Trehalose concentrations, specifically under residential land-use, showed significant correla
tions with CH4 flux. Increased CH4 flux rates with the greater availability of labile carbon has been 
previously found (Hedin et al. 1998) but we are not aware of any other studies suggesting trehalose to 
be a preferred substrate for methanogenesis. It is also possible that microsites higher in trehalose were 
able to sustain higher respiration rates and thus, correlated with the creation of anoxic microsites that 
are conducive to methanogenesis (Von Fischer and Hedin 2007). N2O fluxes did not yield strong 
relationships with any of the carbon compounds except for cellulose concentrations. This is suggestive 
that nitrification, not denitrification, is the dominant process for N2O production, which is in line with 
the dominance of nitrifier denitrification found previously for soils in this region (Baas, Knoepp, and 
Mohan 2019). Cellulose concentrations might just be indicating a lower bulk density due to greater 
organic carbon concentrations (Heuscher, Brandt, and Jardine 2005) resulting in a more oxygenated 
environment that is conducive for nitrification (Knoepp and Vose 2007). It is not uncommon that soils 
high in cattle-based manure inputs are characterized by high nitrification-based N2O fluxes 
(Dendooven et al. 1998; Paul, Beauchamp, and Zhang 1993).

Table 2. Mixed model statistic comparing effect of land use and time of sampling on low molecular weight compounds reflecting 
carbon quality.

Variable Land-use Time Land-use x Time

df,dferror F p df,dferror F p df,dferror F p

Carbon Quality Cellulose 2,5 2.5 .18 3,140 30.2 <.001 6,140 1.4 .22
Dextrose 2,5 0.4 .68 3,140 2.5 .06 6,140 6.4 <.001

Lignin 2,5 5.4 .05 3,140 17.3 <.001 6,140 0.9 .48
Mannitol 2,5 0.6 .58 3,140 8.1 <.001 6,140 1.7 .12
Trehalose 2,5 0.2 .81 3,140 4.1 .008 6,140 0.5 .81
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In conclusion, calibrating a variety of LMWC and HMWC concentrations to NIRS spectra is possible 
and a potentially affordable and powerful tool to unravel relationships between carbon composition and 
ecosystem function. This is particularly the case if NIRS is used in the field and can capture fine-scale 
spatial variance.
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