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We consider the propagation of tension along specific filaments of a semiflexible filament network in
response to the application of a point force using a combination of numerical simulations and analytic
theory. We find the distribution of force within the network is highly heterogeneous, with a small
number of fibers supporting a significant fraction of the applied load over distances of multiple mesh
sizes surrounding the point of force application. We suggest that these structures may be thought of as
tensile force chains, whose structure we explore via simulation. We develop self-consistent calculations
of the point-force response function and introduce a transfer matrix approach to explore the decay of
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1 Introduction

The transmission of force through filamentous networks on the
mesoscale is a complex problem that cannot be directly
addressed by appeals to continuum elasticity. Understanding
that, at sufficiently large length scales, a filamentous network
must act like a continuum elastic solid is not helpful in
predicting how that force is supported at mesoscopic length
scales in the network immediately surrounding the point of
force application. The complexities associated with this ques-
tion are reasonably clear; they are related both to the spatial
heterogeneity and geometric complexity of filament intercon-
nections and the inherent nonlinearity of the filaments’ force
extension relations. Biopolymer filaments are generically
strongly strain hardening under tension, but quite soft under
compression, due to Euler buckling.

A well-known system that combines both geometric hetero-
geneity of force-transmitting contacts and strong mechanical
nonlinearity is granular piles.'™ In a sand pile, one has a
complex network of force-transmitting contacts that are elastically
nonlinear - the contacts support large compressive loading and
essentially no tensile loading. These granular systems generically
exhibit long and quite ramified force chains, spanning large
numbers of intergrain contacts. Although the bending stiffness
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tension (into bending) energy and the branching of tensile force chains in the network.

of the filaments makes the analogy between filamentous networks
and granular media imperfect, one might expect similar force
chains in such networks in the response to point forces. This
expectation seems to be supported by previous simulations®® of
the point force response of mikado networks and experiments on
force-based interactions of cells with the fibrous extracellular
matrix (ECM).>” In the former, one sees the breakdown of the
continuum elastic response on scales much larger than the mesh
size. In the latter, one observes intercellular force transmission
over long lengths, but only along particular, directed paths.
Intriguingly, numerical studies of three-dimensional filament
networks subjected to large shear strains® reveal the appearance
of percolating tensed subnetworks that may also be related to
force chains.

In the ECM experiments, it is not clear if these long tracks of
force transmission are a generic consequence of isotropic
random networks, or due, in part, to some filament anisotropy
or heterogeneity either in the form of stiffer filament bundles or
spatial variations in the networks density. Such heterogeneity
may well be important. In even slightly anisotropic networks,
previous work® ™" has shown that there exist long-ranged buckling
scars forming in the network’s response to even uniform shearing.

Another consequence of the mesoscopic failure of continuum
elasticity (by which we mean on scales greater than several mesh
sizes is that the collective point-force response of the network is
remarkably heterogeneous). Active microrheology experiments'*"?
have shown that the linear response of a bead embedded in the
network to force varies from location to location within the
network by one order of magnitude. Similarly, recent
experiments'* have shown that the response of the network to a
force acting on one filament is also highly heterogeneous. The
displacement of the surrounding network depends critically on
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which filament is pulled, and in which direction. These complexi-
ties of the point force response are not attributable to large-scale
spatial gradients in either the density of cross links or filaments.
Instead, the experiments suggest that the inherent mesoscale
structure of a network, whose density and connectivity is, at least,
statistically homogeneous or self-averaging on long length scales,
is responsible for these effects.

To better understand the peculiarities of the response of
these seemingly simple systems, we examine in this manuscript
the question of force chains and the elastic response of
isotropic and homogeneous filament networks to point forces.
These choices allow us to assess the complexity of force
propagation in the most simple form of a random filament
network. In this work, we combine the results of large-scale,
finite-element simulations with theoretical modeling to determine
how a force applied to a single point on a filament spreads out
through the network. We confine our studies here entirely to the
static response of the system. We show via simulation that tensile
force chains exist in the vicinity of the point of force application.
We use these simulations to further characterize both the spatial
structure of the force chains and the forces they carry, paying
particular attention to how the force applied to a particular
filament bleeds off into the surrounding network through cross-
linked junctions. In addition, we examine the collective response
of the network to applied point forces by determining the point
force response that is measured by low-frequency microrheology
experiments in fibrous materials like the ECM.

We then turn to two theoretical approaches to understanding
force chains and the point force response of the network. We
develop a self-consistent approach to calculating the point-force
response function. We also develop a transfer matrix approach,
which allows us to study the decay of tension (into bending)
energy along the filament to which a force is applied. Using this
theory, we also explore the branching of tensile force chains in
networks. Finally, we compare simulation and theory, as well as
discuss our results in the broader context of intercellular force
propagation in tissues in our summary. There we address the
question of whether one can account for the observations of both
long force chains and the dramatic spatial heterogeneity of the
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collective response of the network to point forces within a
statistically isotropic and homogeneous filament network.

2 Simulations

This section covers the large-scale, finite-element simulations
we performed to study the point force response of randomly
assembled 3D networks of semiflexible filaments. After a brief
description of the conducted numerical experiments and the
underlying computational model in Sections 2.1 and 2.2,
respectively, we present the simulation results in Section 2.3.

2.1 Computational experiments

A schematic overview of the setup and protocol of the performed
experiments is given in Fig. 1. In a pre-processing step, a number
of straight filaments and free linker molecules are randomly
distributed inside a cubic simulation box with periodic boundary
conditions (Fig. 1(A)). We chose the filament concentration so that
we end up with 834 filaments in a box with edge length of 10 pm.
The number of linker molecules is chosen as N, = 10*. During the
first simulation phase of ¢ = 1.5 s, the filaments experience
stochastic, thermal undulations, and cross links are established,
such that we obtain a random 3D network geometry (Fig. 1(B)).
The final number of (doubly bound) cross links in these
assembled networks varies from 2998 to 3097 over the ten random
realizations that have been considered in our study. A subsequent
relaxation phase of 1 s allows the network to release some of the
prestress that has been trapped during the assembly in order to
start the subsequent force application from an equilibrium state.
For this purpose, the thermal energy ksT and the binding and
unbinding rates k., and k. of the linkers are set to zero after the
assembly phase.

Finally, a point force is applied in order to investigate the
quasi-static response of the network (Fig. 1(C)). The point of
force application is chosen close to the box center in order to
restrict the influence of the boundary conditions. Specifically,
the filament nodes in the outermost shell of the network
sample (the volume between the brown and black box in

©

Fig. 1 Schematic of the setup and protocol of the numerical experiments. (A) Pre-processing: random placement of straight filaments (green) and free
linker molecules (not shown) in a cubic box with periodic boundaries. (B) Simulation of the network assembly driven by Brownian motion and random
formation of cross links (pink). Subsequent equilibration of the system considering permanent cross links and zero temperature. (C) Simulation of the
quasi-static network response to a point force (red arrow), applying zero displacement boundary conditions in the thin outermost shell of the network

(between brown and black box).
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Fig. 1(C)) are pinned via zero displacement Dirichlet boundary
conditions. The thickness of this shell is chosen to be 0.5 um,
which corresponds to 5% of the edge length. The direction of
the applied force is chosen either tangentially to the filament
axis or transverse to it. It is important to note, however, that the
point force direction is kept constant, i.e., it will not follow the
filament’s deformation. The force magnitude is increased
linearly until it reaches its maximum F = 100 pN after another
1 s of simulation. This is sufficiently slow to ensure a quasi-
static response of the system. At the smallest forces recorded,
we do observe viscous effects dependent on the rate of force
increase, which perturb our results for pulling forces around
1 pN. Note that the third phase of the simulation, consisting of
the actual force application, is run independently several times
in order to generate our complete data set, and to observe the
influence of the direction of force application. Starting from the
identical equilibrated network configuration, the network is
thus probed along three mutually orthogonal axes with two
directions each, which leads to six numerical pulling experi-
ments for each network geometry.

2.2 Numerical model

We employ the numerical model developed and applied in our
previous work,'** describing semiflexible filaments via geome-
trically exact beam theory, subjected to Brownian dynamics.
Thermal excitations and the presence of cross-linker molecules
give rise to network self-assembly, which produces isotropic
and uniform random 3D networks, which are to be probed by
applying a point force later on. Further details including the
parametrization of the model are given as follows.

2.2.1 Filament model. Each filament is modeled by non-
linear, geometrically exact, 3D Simo-Reissner beam theory and
discretized in space using beam finite elements. In terms of the
structural rigidity of the filament, we thus account for axial,
torsional, bending, and shear deformation. All filaments are
chosen to be initially straight with a length of L, = 4 um and
persistence length L, ~ 7 um. The geometrical and material
parameters resemble F-actin, which is a key constituent of the
cytoskeleton. A complete specification is given by the cross-
section area A = 1.9 x 10~ um?, area moment of inertia I =
2.85 x 10 ' um*, polar moment of inertia I, = 5.7 x 10~ "' pm*,
Young’s modulus E = 10° pN pm >, and Poisson ratio v = 0.3.
By default, we discretized each filament with four beam finite
elements of the Hermitian Simo-Reissner type, which has been
presented in our recent contribution.®

As described above, once the networks have been created by
the Brownian diffusive dynamics of cross links and filaments,
we explore force propagation in the network in zero tempera-
ture simulations. Other computational approaches to forming
filament networks starting from individual filaments have been
pursued,® leading to similar networks without resorting to this
Brownian dynamics approach to network construction. Force
propagation in these networks depends only on the relative size
of two length scales, the filament length and the distance
between consecutive cross links along the filament. As a result,
our studies of force propagation under static loading apply
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equally well to filament networks at all scales including cyto-
skeleton and ECM.

2.2.2 Brownian dynamics. To model the Brownian motion,
we include viscous drag as well as thermal forces, each dis-
tributed along the entire filament length as in previous work."®
Viscous forces and moments are computed assuming a quiescent
background fluid and individual damping coefficients for transla-
tions parallel and perpendicular to the filament axis, as well as
rotation around the filament axis. Thermal forces are determined
from the stochastic Wiener process in accordance with the
fluctuation-dissipation theorem. Finally, an implicit Euler scheme
is used to discretize in time and a Newton-Raphson algorithm
solves the resulting nonlinear system of equations. Further details
on this simulation framework including all formulae can be found
in ref. 16.

Here, temperature is set to 7 = 293 K and the dynamic
viscosity of the quiescent background fluid to = 107> Pa s. The
base time step size is chosen as At = 0.01 s, which is augmented
by an adaptive time stepping scheme that reduces the time step
size whenever necessary.

2.2.3 Cross-link model. Our numerical model tracks linker
molecules explicitly as they switch between three possible
states: free, singly bound, or doubly bound. All details on the
linker model can be found in the original publication.’® Free
linker molecules experience Brownian motion until eventually
all binding criteria are met and they establish a first, and later
possibly a second, connection to a filament. In the doubly
bound state, i.e., a cross-link spanning two filament binding
spots on different filaments, each linker is treated as an
additional, very short beam element, which can transmit forces
and moments between the filaments. We do not prescribe a
preferred binding angle between the filament axes that needs to
be met for binding. However, due to the rigid connection to the
filaments, the cross links act to maintain the specific angle(s)
that were present at the time of binding. As such, these short
filaments (the cross linkers) behave more like a-actinin or other
bundling cross linkers than they do act like filamin, which is
known to form quite flexible hinges. The binding decision is
made based on a given binding rate and a distance criterion
that takes into account the spatial extent and thus action range
of the linker molecule. Here, the length of the linker is chosen
to be L, = 0.1 um (with a tolerance of AL, = 2 nm) and binding
spots are assumed to be located equidistantly along the filament
with a spacing of As,s = 0.1 um. During the assembly of the
networks, the binding and unbinding rates are set to ko, = 10> s~
and k. = 0 s~ in order to speed up the network generation
process.

2.3 Simulation results

All the simulations were performed by means of the parallel,
multi-physics, in-house research code BACL>* The following
simulation results aim to characterize the collective point force
response of the system, the resulting deformation and the
stress state inside the system. In particular, we explore how
the applied external force propagates through the system.

This journal is © The Royal Society of Chemistry 2020
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2.3.1 Force-displacement curves and effective spring
constants. Fig. 2(A) shows the measured force-displacement
curves for 10 different network geometries with two axial and
four transverse pulling directions each, i.e., for a total of sixty
numerical pulling experiments. The response from both the
axially (red) and transversely (blue) applied point forces reveal a
highly nonlinear, hyperelastic behavior. Generally, we observe
significantly smaller local stiffness in the regime of low forces
(see magnified part on the left of Fig. 2(A)) as compared to the
high-force regime, which yields a pronounced strain hardening
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behavior. To further characterize and investigate the system
response, we compute the local, effective spring constant as the
slope of each curve, both for the low- and high-force regime as
indicated by the green and orange triangles, respectively.
Specifically, we use the first two data points of each curve to
compute the slope at zero force and the two data points with
largest force values of each curve to compute the slope in the
high-force regime.

The resulting distributions of the effective spring constants
in both regimes are shown in Fig. 2(B and D). On average, the
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(A) Force—displacement curves for 10 different network geometries with 2 axial (red) and 4 transverse (blue) pulling directions each, i.e., a total of

60 numerical pulling experiments. The inset on the left shows the magnified low-force regime. The green and orange triangle indicates the calculation of
the effective spring constants for the low- and high-force regime, respectively. (B) Histogram of effective spring constants for the low-force regime and
(C) the same data broken down into axial (red) and transverse (blue) pulling. (D) Histogram of effective spring constants for the high-force regime and
(E) the same data broken down into axial (red) and transverse (blue) pulling.
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effective stiffness for high forces is approximately one order of
magnitude higher than for low forces. In addition, the shape of
the distribution changes from a bell shape with fat right tail for
low forces, to a rather broad and uniform distribution for high
forces. Breaking this down into axial and transverse pulling
experiments results in the histograms shown in Fig. 2(C and E).
In the low-force regime (Fig. 2(C)), this clearly reveals a strong
dependence on the pulling direction relative to the filament
orientation. On average, the stiffness values observed for tan-
gentially applied point forces are a factor of 2.6 higher than for
transverse point forces. This is an expected result, because
slender, semiflexible filaments typically have a significantly
larger axial stiffness than (effective) bending stiffness, making
them much more compliant under transverse loading. In the
high-force regime (Fig. 2(E)), the picture is less clear and
the difference between both cases is reversed. A close look at
the deformed states of the network (see Fig. 3 for an example)
suggests a reason for this change. When a filament is pulled
transversely, it deforms as shown in Fig. 3(E). In effect, at high
force the pulled filament (green), after becoming sharply bent,
might be thought of as two axially-tensed filament halves, each
of which may generate its own tensile force chains and thus
becoming stiffer to further pulling. When the filament is pulled
axially, however, this effect is weaker - see Fig. 3(C). In that
case, we surmise that the load is imperfectly transferred to two
tensile force chains, leading to a smaller increase in the
collective stiffness of the system to these large forces. We
speculate that the reversed effect of slightly higher mean
effective stiffness in the case of transverse loading might
originate from the fact that the load is distributed more evenly
on both branches and thus involves a larger fraction of the
entire network for high forces.
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2.3.2 Comparison of the resulting displacement field to
the analytical solution for a linear elastic continuum. In this
section, we characterize the resulting displacement field in the
filament network, and compare it to the analytical solution for
an infinite homogeneous, isotropic, linear elastic continuum.
For an isotropic elastic continuum, the displacement u; of each
point x; of the medium with Young’s modulus E and Poisson
ratio v under the action point force F; at the origin obeys the
equation®

1+v
S (Fixi). @

(wixi)|X] =

Fig. 4 characterizes the resulting displacement field in the
network at a point force magnitude of (A) F=2 pN, (B) F =10 pN,
(C) F = 20 pN, and (D) F = 100 pN. Each scatter plot contains
the data of 2000 nodes in the filament network. These plots show
the correlation between the scalar products (ux;) and (Fx;),
where F denotes the applied point force vector acting at the
origin and # and X denote the displacement and position vector
of a particular point in the network. Whereas the analytical
solution for a homogeneous, isotropic, linear elastic continuum
would be a straight line with the slope equal to (1 + v)/(2nE) (see
eqn (1)), the simulation results for the filament network show an
entirely different behavior.

Irrespective of the force’s magnitude, there is a high concen-
tration of points around zero displacement, indicating that a
large fraction of the network is barely influenced by the applied
point force. The remaining data points become distributed
more widely upon increasing the force magnitude. Only for
the smallest force value of F =2 pN (Fig. 4(A)) can one find a linear
feature consistent with the solution from continuum elasticity. We
show this as a guide to the eye with a black, dashed line. Note also

D)

B

Fig. 3 Close-up views of the filament being pulled at (green) by a point force (black arrow). All other filaments in the network are shown in gray.
(A) Equilibrated state, i.e., point force magnitude F = 0. (B) Axial loading at F = 1 pN. (C) Axial loading at F = 100 pN. (D) Transverse loading at F = 1 pN.

(E) Transverse loading at F = 100 pN.
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Fig. 4 Scatter plots showing the correlation between the scalar products (u;x;) and (Fx;), where F denotes the applied point force vector acting at the
originand U and x denote the displacement and position vector of a particular point. The data contains approx. 2000 nodes in the filament network for
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the asymmetry of the data with respect to the origin, which again
increases with the force magnitude. It may be explained by the
strong asymmetry of the filaments to bear tensile versus compres-
sive loads. Altogether, one may conclude - on the mesoscale
considered here - the point force response of a semiflexible
filament network is conceptually different to the response of a
continuous elastic medium, even in the regime of small forces. We
now consider other ways to characterize the distribution of forces
within the network.

2.3.3 Distribution of axial force in the network. To char-
acterize the stress state of the entire filament network as a
result of point force application, we report the distribution of
axial force measured at the center of each finite element. Fig. 5
compares, on a semi-log scale, the distribution obtained after
the equilibration phase (blue) with the one obtained for an
applied point force magnitude of F = 100 pN (red). In order to
obtain more data points in the long high-force tail of the
distribution, we have included data from thirty numerical
pulling experiments.

As expected, the reference distribution of axial forces in the
equilibrated state has a sharp peak near zero force, with mean
value and standard deviation —0.006 £+ 0.1 pN. Applying the
point force significantly broadens and shifts the distribution
towards tensile, i.e., positive force values with mean value and
standard deviation 0.3 £ 1.9 pN. Also, the skewness increases by
more than two orders of magnitude, reflecting the well-known,
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Fig. 5 Histogram of axial forces at the element center in the entire
network for 30 numerical pulling experiments and an applied point force
magnitude of F = 100 pN. Note the logarithmic scale on the vertical axis.

strong asymmetry between tensile and compressive force trans-
mission in semiflexible filaments. The median, however, of that
distribution changes only very little from —0.003 pN to 0.007 pN
when compared to the significant increase of the mean value. This
indicates, once again, that the vast majority of the filaments in the
network remain almost unaffected by the applied point force.
Together with the long tail of the distribution, it provides evidence
for the existence and importance of tensile force chains.
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2.3.4 Force propagation via force chains. Fig. 6(A) shows
the concept of force chains to be used for the characterization
of force propagation in filament networks. Filament segments
with a total elastic energy per finite element above 0.75 aJ, 0.25 aJ,
and 0.075 aJ are highlighted in red, blue, and green respectively,
while all other filaments are depicted as thin, gray lines. Choosing
and varying this threshold value allows one to track force trans-
mission from the point of force application to the support at the
boundaries. The resulting force-chain structures are typically
connected, and span cone-shaped subregions of the network
volume. To get a clearer picture, all other untensed filaments
are hidden in Fig. 6(B). Cross links supporting a force greater than
a threshold of 8 pN are also shown in pink to demonstrate that the
tensile force chains pass between filaments via such highly loaded
cross links. Finally, Fig. 6(C) shows an overlay of three different
pulling directions and the resulting force chains distinguished by
color. All the simulation snapshots shown in Fig. 6(A-C) corre-
spond to the highest point force magnitude F =100 pN used in the
numerical experiments.

Since the threshold value is fundamentally arbitrary, it is
helpful to look at changes of force-chain-related quantities as
function of that threshold. The most basic quantity associated
with the force chains is the fraction of the total filament length
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with tensile loading above the chosen threshold. This quantity,
which can be computed at the level of individual finite
elements, simply measures how much of the network (by filament
length) is sufficiently tensed to reach the chosen force-chain
criterion. Specifically, we calculate the total length of those finite
elements whose tensile loading exceeds the threshold and divide
that by the total length of all finite elements in the network.
Fig. 6(D) shows a double-logarithmic plot of that fraction of the
total filament length making up the force chains as a function of
the applied point force magnitude for three different threshold
values (dotted, dashed, and solid lines). The colors indicate six
pulling experiments with different point force directions. The
smallest threshold value 0.01 aJ is chosen such that it is exceeded
by a small fraction of filaments already for small point force
magnitudes (dotted lines). We observe that the corresponding
filament length fraction approximately increases with the square
root of the point force magnitude in the high-force regime.
A second threshold of 0.1 aJ is exceeded only for intermediate to
high point force magnitudes and the corresponding filament
length fraction seems to increase linearly for high force values.
The highest threshold value of 1 aJ is exceeded only for very high
point force magnitudes and only in a very small fraction of the
filament length.
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Fig. 6 Analysis of force chains. (A) Force chains resulting for an elastic energy threshold (per finite element) of 0.75 aJ (red), 0.25 aJ (blue), and 0.075 aJ
(green) among all other filaments in the network (gray, thin lines). (B) Top view hiding all other filaments for clarity and showing also all cross links with a
force magnitude above 8 pN (pink). (C) Overlay of three different pulling directions and the resulting force chains (for an elastic energy threshold of 0.1 aJ)
in one color each. The simulation snapshots in (A—C) show the state for the highest considered point force magnitude F = 100 pN. (D) Fraction of filament
length exceeding a certain elastic energy threshold (per finite element) over the magnitude of the applied point force for three different threshold values.
Colors indicate 6 different pulling experiments. (E) Fraction of filament length exceeding a certain elastic energy threshold (per finite element) over the
threshold value for three different force magnitudes. Again, colors indicate 6 different pulling experiments.
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Fig. 6(E) gives the complementary picture, where the frac-
tion of filament length is plotted as a function of the threshold
value for three different values of the applied point force
magnitude (dotted, dashed, and solid lines). Again, the colors
indicate six pulling experiments with different point force direc-
tions. Naturally, as the elastic energy threshold approaches zero,
the entire network is activated, and so all curves collapse to
unity. For the smallest chosen force magnitude 2 pN, we observe
a rapid decrease of the filament fraction decaying approximately
~E~° at large E. This behavior changes for higher applied force
magnitudes, where the fraction of filament length falls off much
slower, especially in the regime of intermediate threshold values.
For the largest threshold values E observed for a given force
magnitude, there seems to be a similar behavior with ~E°
decay for all three force magnitudes considered here.

Finally, we note that the topology of the observed force
chains was that of a branching network - see Fig. 6(A-C). In
the sixty simulations we performed, we did not observe any
loops in these force-chain networks, suggesting that such
structures are quite rare. Moreover, the force chains (at the
higher threshold values) were generally connected; as the threshold
force was lowered, we did observe occasional disconnected pieces of
force chains arising in the vicinity of the main, connected chains.

2.3.5 Decay of axial tension along force chains. For a
detailed study of the decay of the axial force along the filaments
and force chains, we use a slightly modified setup, which is
shown in Fig. 7(A). In addition to all the filaments with (initial,
stress-free) length L, = 4 um (gray), one long filament with
Lo = 20 pm (green) is placed along the axis of an elongated
simulation box of size 25 x 6 x 6 um. The central filament is
discretized with 100 beam finite elements to ensure a fine
spatial discretization. Instead of the filament midpoint, the
point force is now applied to one of the filament endpoints and
we only consider tangential tensile loading. All other parts of
the setup and protocol of the numerical experiments as
described in Sections 2.1 and 2.2 remain unchanged. In parti-
cular, once again 10 different network geometries have been
generated by random initial placement of the straight fila-
ments, simulating the dynamic assembly driven by Brownian
motion, and a subsequent equilibration simulation.

Fig. 7(A-C) show simulation snapshots of the same pulling
experiment at three different point force magnitudes of F =100 pN,
F =50 pN, and F = 2 pN, respectively. All filaments in the force
chains for an elastic energy threshold (per finite element) Ej eje =
0.1 aJ are highlighted in blue. This already reveals that the
perturbation of the network in form of the applied point force
is transmitted along a few paths of cross-linked filaments in the
vicinity of the location of force application. From the persistent
wavy form of the left half of the central filament even for very
high point force magnitudes, it becomes obvious that the
perturbation is absorbed quite rapidly. Note in this respect that
the force chains reaching from the central filament to the pinned
boundaries typically include a couple of cross links and thus
different filaments such that the pathological edge case of one
filament reaching from the central filament to the pinned
boundary is typically not observed in this simulation setup.
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For a quantitative analysis of the tension decay along the
filaments, we look at the axial force along the central filament.
The semi-logarithmic plot in Fig. 7(D) shows the mean values over
all twenty numerical pulling experiments obtained for 5 different
point force magnitudes. In addition, the data for all twenty
individual realizations at the lowest (F = 2 pN) and highest
(F = 100 pN) force magnitude is plotted (with linear scale on the
vertical axis) in Fig. 7(E and F), respectively. Most importantly,
Fig. 7(D) reveals an approximately exponential decay of the average
axial tension with increasing distance from the location of force
application — more or less irrespective of the applied force magni-
tude. Second, the slope of the curves and therefore also the
characteristic decay length, varies slightly over the five different
applied force magnitudes with the fastest decay being observed for
the smallest force magnitude. Finally, from looking at the data for
each individual realization in Fig. 7(E and F), a characteristic step-
wise decay behavior is revealed. This can be explained by the fact
that tensile force is transmitted to other filaments at the (randomly
distributed) discrete locations of cross links along the filament
axis. To conclude, this analysis confirms the rapid absorption of
tension along the filaments in a quantitative manner, and reveals
an exponential decay, which is consistent with the theoretical
calculations presented in the following section.

3 Analytical models

We adopt a simple model of semiflexible filament networks that is
often referred to in the literature as a mikado model."***” This class
of network models imagines that the system is composed of initially
straight, stiff filaments cross linked by permanent bonds that allow
for free rotation of the filaments at these connections. Typically such
models are treated in two dimensions. We do so as well, except in
specific instances where we consider three dimensional extensions;
these are explicitly noted. Inextensible filaments are placed one by
one in a cube of volume L truncating at the boundaries. Intersect-
ing filaments are then cross-linked together, creating a collection of
filament segments that form the network. The lower coordination
number of our model differs from those of previous studies on force
chains on lattices."”® As mentioned above, we study this model in
two dimensions. We believe that this choice is not important for our
analysis of force balance at a given cross-linked node in the network.
Dimensionality is important when discussing the isostaticity condi-
tion in the network.>*>" 1t is also likely to be important in its effect
on how branching force chains interact with each other. In three
dimensions, we expect them to more rarely intersect than in two. We
briefly comment on these points in the conclusions.

The mechanics of each filament is controlled by its bending
rigidity x and its longitudinal modulus x. In thermalized net-
works of effectively inextensible filaments, these two elastic
constants are actually connected. The filaments bend and there-
fore contract under thermal fluctuations, leading to an entropic
effective longitudinal spring constant kengopic ~ K/(ksT?7).>
Here we treat the longitudinal compliance u as a simple phe-
nomenological constant. For a large number of regular filament
networks, one can compute the collective elastic constants in
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Fig. 7 Simulation snapshots for an applied point force of magnitude (A) F = 100 pN, (B) F = 50 pN, or (C) F = 2 pN. The central, long filament is
highlighted in green in the middle of the network of all other filaments (thinner, gray lines) and cross links (pink). All filaments in the force chains for an
elastic energy threshold (per finite element) E¢ e = 0.1 aJ are highlighted in blue. The black arrow indicates the applied point force and the thin shell
outside the brown box represents the region where filaments are pinned. (D) Semi-logarithmic plot of the axial force N along the central filament for 5
different point force magnitudes F, using the average over 20 pulling experiments. The error bars indicate the standard deviation at five exemplarily
chosen, equidistant points along the filament. The curves for all individual pulling experiments at a point force magnitude of F = 2 pN and F = 100 pN are
shown in (E) and (F), respectively. Each pulling experiment is indicated by a different combination of color and line style. Performing a linear fit to the
mean tension decay in (C), we obtain decay lengths & = 2.24, 2.99, 3.55, 3.80, and 3.67 um, in order of increasing applied force.
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3334 95 well as for

terms of these filament-level elastic quantities,
random elastic gels.*?
The Hamiltonian density for a filament segment (directed along

X axis) spanning two cross linked sites on that filament is given by

SH [0\ Kk/[80\°

ﬁ‘i(&) *5(&) : @)
where 8/(s) is the extensional deformation of the filament as a
function of arclength s, and 86(s) the change in angle of local
filament tangent with respect to the x-axis. In the presence of an
applied force f; a length scale \/x/f emerges in the system, which

may be relevant at high forces. In the absence of applied force the
system admits an inherent length scale:

Loend = mv (3)

governing the competition between bending and stretching in the
network. The length /peng sets a tension absorption length, to be
confirmed later. Incidentally, /,enq also represents the crossover
length for ensemble-averaged semiflexible networks to shift from
non-affine to affine elasticity.””” The lowest energy modes of the
mikado model involve filament bending. In one limit where this
bending energy is taken to be zero, these result in so-called floppy
modes,* or zero-energy deformations of the network.

Force propagation within the network depends strongly on
the boundary conditions imposed at the ends of the filaments.
To illustrate this point, consider a situation where, in the
undeformed state, the central filament (along the x axis) is
crossed by a number of filaments normal to that central filament.
If one were to pull on the left end of the central inextensible
filament, while leaving the right end free, one would expect that
the displacement of the network would resemble a sort of “bow
and arrow” configuration, in which each crossing filament bends
and that bending transfers the tensile loading on the central
filament to these crossing ones. The displacements of each of
these cross-linked points would be equal but nonzero. On the
other hand, if one were to pin the right end of the central filament,
these displacement would all vanish and the tensile load would be
perfectly transmitted along the central filament. Another way that
the connection to the boundary can play a role is in the excitation
of topologically protected surface modes of the network.>® We do
not consider such surface states here. In our calculations, we
assume that the filament is not directly pinned to the boundary,
except where explicitly noted. As long as the tension applied to the
filament in question has been transferred to the rest of the
network before coupling to the boundary, we expect that the effect
of the boundary condition should be small.

3.1 Self-consistent theory of tension propagation within
linear response

We begin by treating the filaments as linear elastic elements,
but accounting for their different responses to longitudinal and
bending deformation. The bending rigidity of the filaments
eliminates the floppy modes of the network. We now apply a
tension t along a particular filament within the network at an
arbitrary point of the filament. The point where this force is
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applied is displaced by Ax along the % axis. In the following, we
use a self-consistent approach to compute the collective linear
response of the network to this force by computing

k= 2y (@

The self-consistency condition is invoked by demanding that
the effective spring constant of the particular filament to which
we apply the force, called the central filament hereafter, is
equal to the one of all other filaments cross-linked to it. The
validity of this approximation rests on the assumption that
the tension in the crossing filaments are all selected from the
same distribution, and that there are no correlations in those
tensions. The former seems reasonable for a statistically homo-
geneous network. The latter is not obviously valid, especially if
there are a large number of closed paths, or loops, in the
network along which tensions may propagate. Thus, we do not
expect the self-consistent approach to remain valid for the case
of regular lattices, where such loops abound.

Now, we consider force balance at one node on the central
filament labeled i - see Fig. 8. As shown in the inset of that figure,
there are six forces acting on the node on the central filament,
shown in blue and green. We treat these forces as being linearly
related to the displacements of the nodes. Specifically, the long-
itudinal springs associated with the extension of the crossing
filaments (shown in black) have an effective Hookean spring
constant k&, which takes into account both the longitudinal com-
pliance of that filament and the displacement of other nodes in the
network. This spring constant will be determined self-consistently
in the following calculation. This Hookean spring generates the
forces T;* and 77 shown in green in the inset of Fig. 8.

In addition to this force, there is a force associated with the
bending of the filament crossing the central one at node i. This

=3 Tension force
mEm Bending force

Ff )

Fig. 8 Schematic representation of forces and displacements at a single
node. The central filament (deformed, red; undeformed, dashed), pointing in
the Af direction, is aligned along the x-axis. The crossing filament (black), in
the direction A7/ makes an angle 6; with the central filament. The network is
pulled in the —X direction, leading to two incoming tensions T and T/, and
two outgoing tensions Tf4, T at node i (see inset). In the self-consistent
model of Section 3.1, displacements (wide gray arrow) AX ; are with respect
to the undeformed state. In the accordion model of Section 3.2, AX; is
relative to neighboring nodes — see Fig. 10 for further details. We show in the
inset the free-body diagram of forces at node i including the effects of tensions
T (green) and bending F (blue) associated with the semiflexible filaments.
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spring constant, k, ~ x//.>, is proportional to the bending
modulus of the filaments and inversely proportional to the
distance between consecutive cross links along a given filament,
¢/..*” The movement of the neighboring nodes can be taken into
account by a diminishing of this constant: k;, — ¢k, for0 < ¢ <
1. This bending spring generates the force F;* (shown in blue).
The central filament may also bend, generating a displacement
of node 7 in the vertical direction Ay; Using the same k|, this
produces the force F{ = k, Ay, We expect that the bending
modulus of the central filament will not be affected by the
motion of the surrounding nodes, so that k;, > ¢k, is fixed.

We now apply tension 75 to the filament segment to the left
of the node and in the left direction. Writing down the force-
balance conditions along the X and Y axes, we obtain:

—Tf + Tfy + (TF — TF)cos 0; + Fi sin6; = 0, (5)
(T7 — T7)sin0; — F cos0; — Ff = 0. (6)

The forces, written in terms of displacements of node i, are given by:

Ff = —k, Ay, (7)
T,X — Tlx = —kH(Ax,’cos 01' — Ayl sin 01‘), (8)
FY = —¢k, (Ax;sin 0; + Ay;cos 6),). 9)

After some algebra we obtain
o qe_ tkiko+ (kycos’ 0; + ek, sin” 0;)k |
P (ky sin® 0; + ek, cos? 0; + k)

Axi. (10)

To connect the displacements of the ith and (i + 1)th nodes
(counting to the left), we include the Hookean extensibility of
the central filament segment between these nodes to write

Tl'C = ks(Axi,l — Axi). (11)

For many biopolymers, at low forces the longitudinal compliance
is dominated by the pulling out of thermally generated undulatory
modes. In that case, the Hookean spring constant introduced
above in eqn (11) can be related to the bending modulus and
temperature via ks = 6x>/ksT/.*.>> However, nothing in the follow-
ing analysis requires this, and the calculation applies equally well
to athermal systems. We solve eqn (10) and (11) numerically to
find the self-consistent solution for k; (k).

This solution is shown in Fig. 9, where we plot the effective
longitudinal response k; of the network as a function of the
segment longitudinal spring for different numbers of cross
links N and for pinned (solid) and free (dashed) boundary
conditions. Both spring constants are scaled by the underlying
bending spring constant of the network &, . On the log-log plot,
we observe that for small longitudinal spring constants, the
collective longitudinal spring constant of the network grows
~k¥*. In this region the behavior of k; does not depend on the
number of cross links or the boundary conditions on the
filament. For larger ks we observe the transition of & to a
plateau for free end boundary condition. There is linear growth
in the case of a pinned end boundary condition. This transition
occurs at a characteristic spring constant that depends on the
number N of crossing filaments, as shown in Fig. 9.
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N = 100, pinned
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ks/k)

Fig. 9 Numerical solution of the self-consistent eqn (10) and (11) for both free
(black) and pinned (red) boundary conditions, for a total number of crossing
filaments N = 100 (solid curves) and N = 10 (dashed curves). We set ¢ = 1. For
small longitudinal spring constants ks the behavior of k| is independent of the
number of cross links N and the boundary conditions. The transition to a regime
where boundary condition affect the result occurs at higher ks for larger N.

In addition to this numerical solution of the self-consistent
equations, there are two particular cases that admit a straight
forward analytic solution. It is instructive to look at them to directly
observe in detail how tension propagates along the central filament.
The first case applies to perfectly inextensible filaments, k; — co. The
second is a scale-free solution, Ze., one that is independent of the total
number of filaments cross linked to the central one, N. We refer to this
solution as a critical point. The case of the inextensible filament leads
to a constant Ax; = Ax for all i. Summing eqn (10) for all i we obtain

TS~ A Zak”lq—i- (k) cos? 0; + ek, sin® O)kL.
k”sm 0; + ek cos? 0; + k. )

(12)

Imposing self-consistency for k; forces that spring constant to satisfy

o iskaL—O—(kHcosz(),-—o—skLsinz(i,»)kL 1)
P TNS T (kysin? 0+ ki cos? 0+ k1) ]

Note that the random angle 0; at each node is assumed to be
uncorrelated with the other angles, so each average is independent
of the others. Thus, we find

N rﬂ o Kk ko (kj cos? 0 + ek, sin® 0). (14)

k=5, o S2 0 2
0 | sin” 0 + ek cos? 0 + k.

After performing the integral and solving the self-consistent
equation we obtain

1
kH = z(—szN + klN2 + BkLNz)
. (15)
+ 5(\/ (2% N — kN> — gk N?)* + 4N28klkl>
In the limit of large N, this simplifies to
]CH = (kL + SkL)NZ. (16)

The effective spring constant is proportional to N°.
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The other case that allows for an analytical solution results from
the assumption that the displacements decay exponentially from
node to node, i.e., Ax;4 = (1/g)Ax; for all i and for g > 1. Substituting
this ansatz into eqn (10) and (11) gives, after some algebra,

(g—1)— (1 —l) 1 ekiky + ko (K cos® 6; + ek sin’ 0;)
1 ks Ky sin®0; + ¢k cos20; +k,
(17)

This is consistent with our assumptions if, and only if, the right
hand side of the above equation is also independent of i. This
requires that the dependence on the random angles 6; vanishes.
The necessary condition for this is ek, = kj, which leads to:

q2—<2+sk—L>q+1:0. (18)
ks

The solution of this quadratic equation defines the allowed values
of g consistent with our assumption of an exponential decay of
displacements and the spring constant relation & = ¢k , . Depending
whether we apply tension (a) between nodes or (b) directly on the
node, we get (a) k| = To/Axy, or (b) k; = T5/Axy. Thus, in the first

case (a)
i = ks (1 - %1) (19)

and in the second case (b)
kP = k(g — 1). (20)

We obtain two equations for roots of the polynomial g, ,. One
for case (a)

g — {2+(1—qi)]qa+1:0, (21)

and one for case (b)
g - 2+q —1)g+1=0. (22)
The first (a) gives us the roots
ga=1, 2. (23)

The second (b) gives us a linear equation for gy, having the
single root

gp = 1. (24)

These roots are now independent of the number of crossing
filaments, which means that the decay of tension and displace-
ment along the central filament is independent of filament length
at this critical point. This ansatz provides an analytic solution. To
test whether that solution is unique, we can compare it to the
results of our numerical solutions of eqn (10) and (11). We did not
find other numerical solutions at or near the critical point that
differed substantially from the analytic one. In fact, it appears that
the exponential tension decay is a robust result in this region.
The solution g = 1 corresponds to the previously considered
case of inextensible filaments, which have equal displacements
at each node. The other solution, g = 2, is consistent with the
assumed exponential decay of those displacements. At every
node, the magnitude of the tension falls by a factor of 2, ie.,
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Tfq = T;i/2. Substituting this tension relation into the force
balance equation for the X direction, we obtain

(TF — TF)cos 0; + F¥ sin 6; = T¢/2, (25)

which means that the tensile force exactly splits between the
crossing filament and the central filament at each node. Using
the mean-field approximation, we can infer that the displacement
of node i — 1 on the central filament is equal to the displacement
of the other nodes on the ith crossing filament that neighbor the
central one. This is due to the fact that both of these nodes have
half of the tensile load T},,. By continuity, we assume this division
of the tension and displacement is, at least approximately, true
when the system is not precisely at this critical point ks = 2¢k, . This
is supported by our numerical results. This observation leads us to
introduce what we call the accordion approximation, which
assumes this relation between displacements remains exactly valid.
We use this approximation to study the problem of force propaga-
tion in the vicinity of the critical point in the following section.

3.2 Accordion model

We treat the filaments as identical linear elastic elements. There
are two spring constants, which should be derivable from the
longitudinal modulus and bending moduli** of the filaments and
where /. is the average spacing between consecutive crosslinks
along the same filament. In terms of these quantities, one finds

= ufle, K=K/t (26)

This result may not hold for our zero temperature simulations of
bent filaments. We return to this point in the conclusions where we
quantitatively compare our theoretical predictions with our numer-
ical results. The longitudinal and transverse springs (k| and k')

attached to each node are located along the blue and green arrows
respectively in the inset of Fig. 8.

We consider the pulling scheme depicted in Fig. 10, where at
the far left end of the central filament we apply a leftward
tension T (wide blue arrow). The far right end of the filament
is pinned to the anchored face. The central filament is oriented
along the x-axis. We also fix the lateral extent of the network in
the direction transverse to the central filament.

Pulling the central filament creates a force imbalance on the
first node, located at X,. This node moves in order to reestablish
mechanical equilibrium. For the moment, we assume that all
nodes to the right of this node are stationary. The movement of
node one has now, in turn, created a force imbalance on its
neighboring node located at X,. In keeping with the accordion
approximation, we move all points in the network to the left of
node two and its crossing filament by the same displacement
AX,, such that node two is now in mechanical equilibrium.
Since node one, the crossing filament at node one, and node
two have all been displaced equally, the mechanical equili-
brium established at node one remains valid. The result of this
procedure is the third panel in Fig. 10. There is now a force
imbalance at node three. We now apply the same displacement
procedure, this time collectively moving nodes one and two,
and their crossing filaments in addition to node three. The
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Fig. 10 Schematic of the accordion model deformation. The network is
initially undeformed, and oriented with the central filament (solid black line)
running horizontal. For reference, the position of the central filament in the
undeformed network is shown via dashed, gray line. Hashed green boundaries
represent the network in the transverse direction, black circles represent
crosslinks, and solid black lines represent filament segments. Filaments under
unbalanced tension are shown in red. In the top panel, a tension Ty (blue thick
arrow) is applied at the leftmost filament segment causing force imbalance on
the first node. This node is allowed to come to mechanical equilibrium by
displacing an amount Ax ;. This puts a tension T; on its neighboring filament
segment. Node two is allowed to come to mechanical equilibrium by
simultaneously displacing itself, node one, node one's crossing filament
segment, and the network transverse to node one, by an amount AX ». This
procedure maintains force balance between node one and its crossing
filament, while putting filament segment three under tension Ts. The displace-
ment procedure is iterated until we reach the pinned boundary.

method is then iterated until we reach the pinned face at the
boundary (assumed to be infinitely far away).

This procedure treats the network as a type of layered solid,
with the layers having normals along the direction of the
central filament. Each layer displaces uniformly, but that dis-
placement varies from layer to layer. In this way, the deforma-
tion is reminiscent of the extension of an accordion, from
which we take the name of our approach.

By using an effective transverse spring constant k, , we have
incorporated bending by approximating the bending energy
contribution of a fiber as the sum of the bending energies of
the cusps created by node displacement. For 0, the local tangent
formed between the displaced nodes i and i — 1, a cusp has

g(@iﬂ — 0,)*.% Bending couples nearest neighbor

normal displacements along the central filament. Our iterative

energy Ucysp =
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accordion model cannot account for this, and misses bending
energy reductions when adjacent nodes have similar transverse
displacements. Since the applied force is directed in the long-
itudinal direction though, we expect this to be negligible, with
the main bending contributions coming from crossed fibers.

The propagation of tension down the central fiber can now
be described in terms of transfer matrices that relate the
incoming to the outgoing tensions. We first consider the
displacements of a single cross-linker as shown in Fig. 8,
subject to two tensions 7§ and T; applied from the left. The
crossing filament is restricted to angles of intersection 0; < m/2,
at which point the tension would have to change sign. The
system Hamilton is given by the sum over nodes®*

S P ias AN Ll (A5 o A N2L TS (AS . A
HZEZ {Z} [ H(n, CAX)T 4K (] x AR) 42T (7 -Ax,»)}.
i=1 s={c,x

(27)

with accordion model displacements AX; as defined in Fig. 10.
The i summation is over all nodes. Since the central filament is
assumed straight along the x-axis in the undeformed state, for
every node i we may replace 7; = %.

Force balance determines the displacement AX; in terms of
incoming tensions 77 and T;. In terms of AX;, the two outgoing
tensions must satisfy: 77, = k|t- A% and T = kA - AX,.
Solving for the displacement AX; allows us to express the
outgoing tensions in terms of the incoming tensions. Since
there is a linear relation between these pairs of forces, we may
introduce a transfer matrix converting incoming tensions into
outgoing ones. This is the key simplification of the accordion
method. The transfer matrix is given by

Ti, Ty
_ | =M(0) : (28)
Ty Ty

1

as a function of crossing angle ;. Because these angles are
random, the transfer matrix M is, itself, a random variable. We
assume that the network is isotropic, so that the distribution of
these crossing angles is uniform and uncorrelated from node to
node. We write

T

NV
P(0,,...,0y) = (—) . (29)
Expressing the transfer matrix in terms of the random angle
(see Appendix A), we obtain
(1 — o) sin® 0 + 202 20% cos
(1 —a2)’sin® 0+ 402 (1 — a2)’sin® 0 + 402

M(0) =
202 cos 0
(1 — 2)’sin® 0 + 4o

(1 —o?)sin® 0 + 202
(1 — 2)’sin® 0 + 4a2
(30)

where we have defined the ratio o of bending to stretching in

the system:
d=1/kL/k“. (31)
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If we consider the relations in eqn (26) to be valid, & = /pena/Z.
as well.

If there are no loops, which would allow forces transferred
away from the central filament to return to it, then we note that
T; = 0. Due to the fact that the total force must split at network
junctions and that loops require multiple junctions (at least
two) we expect that the tension contribution from loops will be
subdominant. If we ignore the loop contribution and set T} = 0,
then M;4(0;) gives the fraction of tension Tj,/T that remains
on the central fiber after a crossing.

Tension propagation along the central filament is now
determined by the repeated multiplication of the transfer
matrix component My,(0). We define the tension fraction
remaining on the central filament after the n.th cross link

T = T / TE. (32)

We find that

e

Ty, = HMH(@,'). (33)
i=1

For any given central filament, the tension in each segment t,,
is also a random variable. Given the probability distribution of
angles 0; factorizes, the moments of segment tension over an
ensemble of central filaments are computable by a single
contour integration. We find the average

1

() =1 (34)
and the variance
1— 2
(t?) — () = %~ (35)

The angled brackets denote angular averages.

We observe that the tension on the central filament decays
exponentially. In the limit of small bending as compared to
stretching, where o « 1, that decay length (measured in units
of number of cross link nodes) is approximately 1/o. For
filament systems, this limit of small o is likely to be valid.
We can convert that decay per cross link to a decay per distance
x along the filament, by approximating n. = x//.. In that case,
and in the limit of small , we may write

x>l —x/¢&
N 36
<Tnc> z ¢ 3 ( )

where we have defined the tension propagation length

Le
== (37)

This can be viewed as penetration length for tension in a
network, before it is absorbed by bending of crossed filaments.

More information on the distribution of tension along the
central filament can be gleaned by taking the logarithm of
eqn (33). We find that In<,_is given by the sum of n. indepen-
dent random variables InM,(0;). Applying the central limit
theorem to that sum of random variables yields a log-normal
distribution of tension. Specifically, the probability of observing
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In 7 at the n.th cross link is governed by a normal distribution with
mean ji = n.(InMy,(0)) and variance ¢* = n.((InMy(0) — ji/n.)?).
We can then convert back to a distribution for tension itself via a
change of variables. We find the distribution (see Appendix B)

exp[—(Int — 1) /267]
o121 7

where we have indicated that n. > 1 must hold in order to make use of
the central limit theorem. The average /i can be computed analytically

'W”c>>l (T) =

(38)

using the identity [/’In(1 + asin’(0))d0 = nln(L VZH‘Z)“*
We obtain
VEFT+V2
ﬁ=<li.<0>>=2m<W>- (39)

The variance ¢°, on the other hand, does not have a simple representa-
tion in terms of known functions. We numerically compute it, and plot
the corresponding distributions for #,,(7) as a function of both n. and
o — see Fig. 11.

Though t,,_is by definition less than unity, the probability
distributions possess long tails extending beyond one. This is a
consequence of our use of the central limit theorem to infer the
full probability distribution from its moments. A similar issue

3.0F
2.5F|
2.0
P 1.5¢|
1.0

0.5

0.0

Fig. 11  Probability distribution of the tension fraction t,,_along the central
filament. Top: Ee fix « = 0.1 and vary the number N, of crossings. Bottom:
We fix n. = 10 and vary the bending to stretching ratio «. As the number of
crossings (x) increases, the peak of the distribution tends toward zero,
indicating that most of the tension has been absorbed into the network via
bending.
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arises in the study of spin glasses®® and directed paths in
random media."’

As the number of crossings n. increases, the upper panel of
Fig. 11 shows that the tension distribution exhibits an increasingly
narrow peak at smaller values of tension. This is a consequence of
tension decay, whereby at long distances the network has
absorbed most of the tensile load into bending. At fixed n., the
lower panel of Fig. 11 shows that a similar effect occurs with
increasing o. Larger o leads to more bending absorption, and
hence a peak of the distribution at smaller tensions.

We now turn to an analysis of force branching to investigate
force-bearing pathways that diverge from the central filament.
At a given node, the central filament with incoming tension
T; will distribute a fraction of that tension, defined as the
tension fraction 7,(0) = T7/Tf, along the crossing filament
making an angle 6; with it. This tension fraction is given by a
multiplicative factor 7(0,) = M,,(0;). As expected, this has a
vanishing probability to split tension into the direction perpendi-
cular to the central filament.

The matrix element M, is invariant under inversion of o:

Mo (0,02) = M (0,1/). (40)

This suggests that branching effects depend only on the ratio of
bending to stretching in a network. A network that is weak to
bending and stiff to stretching could exhibit the same branching
characteristics as a network that is stiff to bending and weak to
stretching.

We consider the following thought experiment. Having
applied a tension to the central filament, we measure the
tension on other filaments passing through a thin spherical
shell of radius R. One can then repeat this measurement on
multiple realizations of the network to arrive at an ensemble
average of this tension propagation in a particular (solid) angle.
Assuming that this average must be azimuthally symmetric
(about the central filament) we define the ensemble-averaged
angular distribution of tension branching as Tg(6).

In order to calculate Ty(6), we consider the process shown in
Fig. 12. Ensemble averaging of the network makes the position
of nodes at any location equally likely, so the average is
equivalent to taking a sum over all possible paths for tension
to leave from the origin and reach the shell. Paths can be
categorized by the number of “scattering” events (the black x’s
in Fig. 12), where the tension path changes direction. For shell
radii on the order of a few /., these paths consist of a small
number of straight line segments with average length /.. The
problem simplifies if we look in the far field, R > /., where we
may replace an analysis of discrete scattering events at the
randomly placed nodes with decay of tension as a function of
distance along the central filament - see eqn (36). In that case,
each path is given by the exponentially decaying tension
propagators e "' connected by scattering events where the
tension is reduced by a factor of M,,(6;), for angular deviation 6;
from the unscattered direction.

In the single scattering approximation, we include only the
effects of one scatterer. Here, each path can be confined to a
plane. We can extend our results to three dimensions by
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Paper

Fig. 12 Off-axis branching of tension, for one (blue line) and two (red line)
scattering events. The black semi-arc on the right denotes a tension
detector at R away from the site of point force application at the origin.
Averaging over network configurations amounts to a sum over path
configurations. These are organized in terms of the number of scattering
events, where tension changes direction.

computing the tension at fixed azimuthal angle in one plane,
then rotating. For more than one scattering event, one must
take into account the three dimensional nature of the network.
Neglecting contributions from zero scattering, (i.e. tension
decay along the central filament), using the geometry/notation
of Fig. 12, we find the single scattering tension

Rcos0

Tr(0) = J dxe /< Moy [ (x)]e /<. (41)

0
To normalize, we divide by the ensemble averaged total tension
on all filaments crossing through the spherical shell. The
normalized tension is now

7a(0) = 20, (12)
N
with normalization
2 /2
N = fJ Tr(0)d0. (43)
TJo

The tension may be expressed in terms of the dimensionless
ratio R/¢, which is the number of tension decay lengths we are
away from the origin. This is accomplished via change of
integration variables x — xRcos0. Expressing M,,[¢(x)] in
terms of x using the geometry of Fig. 12, we obtain the integral
equation

el

0
©) N 1 — o2)’sin? 0 + 402 (x(x — 2) cos? 0 + 1)

_ cosﬁr[ 20%(1 — x) cos /1 + x(x — 2) cos? 0
o[(

x e—(R/é)xe—m/q“)\/m] d.
(44)

In Fig. 13 we evaluate this integral numerically for several
values o and R/, for 0 in the domain (—mn/2,m/2). The upper
panel of Fig. 13, shows that at fixed distance from the origin, o = 1
corresponds to the broadest angular distribution of tension. Since
o is a ratio of the effective spring constants acting on a node due to
bending and stretching, we find that branching is maximal when
the network equally supports a tensile load via bending and
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-15 -10 -05 0.0 0.5 1.0 1.5
0

Fig. 13 Ensemble averaged tension on filaments located a distance R
away and at polar angle 0 with respect to a point force applied at the origin.
Tension is normalized by the total tension on all filaments passing through
a shell of radius R. Top: We fix R/¢ = 2 and vary the ratio of bending to
stretching «. Bottom: We fix « = 0.5 and vary the distance from the point
force R/&. The distribution of tension is widest at o = 1 and at low R/&. In the
inset of the lower panel, we plot the same curve but for values R/¢ = 1073,
1072, 1071, Each of these curves give the same distribution as R/¢ = 1.

stretching. Due to the inversion symmetry « — 1/x of the function
M,,(0), networks that support tensile loads via mainly bending and
via mainly stretching exhibit the same branching, provided their
ratios of effective bending to stretching spring constants are inverse.

The lower panel of Fig. 13 shows that the angular distribu-
tion of tension becomes increasingly narrow at distances R > &
away from the origin. Naturally, one would expect that at longer
distances multiple branching events would lead to a broader
angular distribution of tension. This counter-intuitive result is
due to tension decay. At long distances from the origin, tension
is determined primarily by the length of the tension chain,
which favors paths along the forward direction. At distances
smaller than the decay length (R < ¢), the angular distribution
is broad, and remains fixed to its value at R = £ — see the inset in
the lower panel of Fig. 13. In this limit, the tension distribution
is highly dependent on details of the network.

4 Conclusions

Experiments on the force propagation between cells in a filamen-
tous extra-cellular matrix suggest that forces are transmitted over
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long distances along particular pathways. This observation raises
the question: do these force pathways arise naturally in randomly
structured filament networks, or does the ECM contain particular
structural heterogeneities, such as system-spanning subnetworks
of filament bundles, that prescribe these force-transmitting paths?
In our work, we make a preliminary investigation of this question
by addressing the first possibility.

Our simulations of random homogeneous and isotropic
networks do indeed show weakly branching force chains over
scales of many mesh sizes in the network. Based on the
imperfect analogy between force propagation in filament networks
and force chains in granular media, such structures are not entirely
surprising. We believe that the high-force pathways observed in
simulation are sufficiently similar to those seen in granular media,
so as to warrant using the same terminology. The principle
distinction between the two types of mechanical systems is that
filament bending in the network provides (typically) highly com-
pliant elastic degrees of freedom, which, in some sense, absorb the
tensile loading on a highly tensed filament. In this way, filament-
based force chains naturally terminate over some finite distance.

The simulations demonstrate that the point-force response
of the network is highly heterogeneous. It depends on both the
point of loading and the direction of that applied force. This is,
again, in qualitative agreement with the results of active
microrheology experiments in fibrin gels. In particular, we
observe that the microscopic geometry of the network near
the point of loading has a large effect on the collective point-
force response of the system. Based on the numerical data
presented here, we believe that the wide distribution of linear
response observed in experiment is qualitatively consistent
with our numerical results. In short, our distribution appears
to be narrower than that seen in experiment. There may be
multiple causes for this quantitative difference including neces-
sarily smaller system sizes explored in our numerical work.
An alternative potential cause is that the fibrin networks used
in experiment are more structurally heterogeneous on the
microscale, either due to bundle formation, or simply length
polydispersity.

We also show the expected asymmetry between pushing and
pulling on a filament. This is evident in our simulations, which
show force chains propagating only in the direction associated
with tension (rather than compression) in the filaments. The
importance of buckling in limiting the propagation of com-
pressive loading is clear. This buckling-controlled case seems
to correspond to the non-affine bending regime,”> where force
chains were observed, while the linear case fits the affine-
stretching regime® with more a homogeneous distribution. In
our theoretical analysis of the collective mechanical response of
the network, we treated the crossing filaments as linear elastic
objects, but we did not include compressive loading of the
filament to which the force was applied. In the self-consistent
analysis of the mechanical response functions, these imposition
of the elastic nonlinearity affects the mechanical properties of
the entire network through the self-consistently determined spring
constants. In this way we partially included the elastic nonlinearity
that is evident in the simulations. The semi-quantitative agreement
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of that simplified analysis with the simulation data suggests that
improvements in handling the elastic nonlinearity of the filaments
should be explored in future work.

The effect of this nonlinearity may be weakened in highly
tensed networks, where the applied forces do not typically
reach the threshold for Euler buckling. Such tensed networks
may, in fact, behave more like continuum elastic solids with
regard to their point-force response. We do not, as yet, have
numerical data to test this supposition. The recent work on a
strain-induced rigidity transition in disordered elastic networks
and athermal filament networks without bending
interactions*'~** points to the idea that, quite generally, loading
may push the network towards elastic behavior consistent with
continuum elasticity. In addition, we observe in simulations
that the collective point force response depends quite strongly
on the direction of pulling with respect to the local filament
tangent and that there appear to be two distinct types of
response corresponding to a low-force regime and a high-
force regime where the pulling changes the local structure of
the network.

We also approached the problem of force propagation in the
network through simple analytic models of the system using
harmonic springs (of two classes: bending and stretching) and
rather simple assumptions of how forces propagate through the
network (which are supported by simulation), i.e., they do not
form closed loops. By invoking self-consistency for the collec-
tive longitudinal compliance (which takes into account the
motion of other nodes in the network) of the filament, we
obtain an analytic prediction for the point-force response
measured in our numerical experiments.

These calculations qualitatively agree with the simulated
results in that they predict the decay of tension along the
filament of force application due to those tensile forces being
transmitted into a combination of bending and tensile loading
on the filaments cross linked the filament of force application.
In one analytically tractable limit, the self-consistent calcula-
tion predicts that tensions decay exponentially along the fila-
ment of force application. Numerical solutions away from this
point suggest that the exponential behavior is more broadly
applicable.

Using this result, we introduce the accordion approxi-
mation, which allows us to study this exponential decay via
transfer matrices. It also allows us to study the branching of
force chains. We learn a few things. First, the system produces
the largest angular distribution of force chain branches when
bending and stretching compliances are comparable. Second,
we find that branching occurs primarily at small angles; in the
language of optics, one may assert that forces are strongly
forward scattering. Third and finally, we note that, due to the
exponential decay of tension from the main force paths, shorter
and less ramified force chains should dominate the distribu-
tion of these structures. This appears to be qualitatively sup-
ported by the numerical experiments. The second point shows
how force may propagate over long distances along essentially
straight paths, which are controlled primarily by the tension
decay length.
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To quantitatively compare the predicted and observed ten-
sion decay lengths, we need to use parameters from the
numerical simulations. Using the average filament segment
length /. = 0.56 pm and filament rigidity x = 5.6 x 10> pN um?,
and making the seemingly reasonable estimate of k', = /{7,
we obtain a value of ~0.33 pN pum *. This value is much
smaller than the average of K/, ~ 8.2 pN um~! observed in the
low-force regime of our simulations - see Fig. 2(D). If we also
use the same analysis to determine k| ~ 3.4 x 102 pN um~!, we

obtain a prediction for the tension decay length ¢ ~ 18 um,
which is an order of magnitude greater than the & = 2.2 um
observed for the lowest magnitude force simulation - see
Fig. 7(D). There are, however, reasons to be skeptical of these
approximations, particularly in the case of &’ , since one expects
the boundary conditions imposed on the other end of these
crossing filaments to significantly change the estimates. Recog-

nizing this, we instead can take our value of k| and k', directly

from the numerical data - see Fig. 2(C). We now obtain a much
more reasonable prediction of ¢ ~ 0.9 um. One might suggest
that this discrepancy between the first estimate of the local
bending spring constant and the measured one is attributable
to prestress in the numerically simulated networks. If the
filaments are under tension 7 = 0.1 pN (from the standard
deviation of observed tensions in the equilibrated networks —
see Fig. 5) then, k, =47/, ~ 1 pN um™ ", but this alone is not
sufficient. We suspect that the aforementioned uncertainties
associated with the boundary conditions within the network
have an important effect.
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A. Transfer matrix

Our starting point is the Hamiltonian of eqn (27). We decompose
the total displacement Ax; of the ith node into an amount x;
along the x-axis (defined parallel to 7 in Fig. 8) and an amount y;
along the y-axis (defined perpendicular to 77 in Fig. 8). Force
balance yields the two equations:

<Ti>< — ¥ (k\/l - kl) sin 9) cos 0 + xik’H cos® 0 + xik| + T7

+ x;k sin* 0 =0

(45)
and
—x;( K — k', ) sinOcos 0 + y;k} sin®> 0 — T sin 0
=L I i (46)
+ ik’ cos® 0 + y;ik', = 0.
Solving for the displacement, we find:
¢ (k’L - k/H> sin> 0 — 2k, (T¢ + T} cos 0)
Xi = (47)

2
4k K, + (kg‘ - k;) sin 0
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and
(77 (W + k) = T3 (K| = K. ) cos 0) sin0

2
akik -+ (K — k) sin 0

Yi= (48)

The outgoing tensions may also be expressed in terms of the
displacement vector. These are found easily via application of
Hooke’s law:

Ty = X-AX (49)
T = A7 -AX. (50)

Eliminating the displacements, solving the corresponding set
of linear equations, and inserting the definition of «, we recover
the transfer matrix of eqn (30).

B. Single scattering integral equation

We use the geometry of Fig. 12 to express both a and ¢ in terms
of the distance x to the scattering event. From the law of
cosines, we find

a* = R* + x>+ 2xRcos 0 (51)

From the definition eqn (30) of M,;, we need only cos ¢ and
sin ¢. These are easily found from the diagram to be

cos = (Rcos 0 — x) (52)
a
and
sing = Rsin 0, (53)
a

Per the main text, we make the integration variable substitution
x — xRcos 0, after which these parameters become

a=Ry\/1+ x(x—2)cos?0, (54)

(I —x)cos0
14 x(x —2)cos?0

cos¢p = (55)

and

in 0
sin ¢ = o (56)
1+ x(x —2)cos?0

Substitution of these values into eqn (41) and multiplying by
the Jacobian factor R cos 0 yields eqn (44).
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