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Dynamics of undulatory fluctuations of semiflexible filaments in a network
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We study the dynamics of a single semiflexible filament coupled to a Hookean spring at its boundary. The
spring produces a fluctuating tensile force on the filament, the value of which depends on the filament’s instanta-
neous end-to-end length. The spring thereby introduces a nonlinearity, which mixes the undulatory normal modes
of the filament and changes their dynamics. We study these dynamics using theMartin–Siggia–Rose–Janssen–De
Dominicis formalism, and compute the time-dependent correlation functions of transverse undulations and of
the filament’s end-to-end distance. The relaxational dynamics of the modes below a characteristic wavelength√

κ/τR, set by the filament’s bending modulus κ and spring-renormalized tension τR, are changed by the
boundary spring. This occurs near the crossover frequency between tension- and bending-dominated modes
of the system. The boundary spring can be used to represent the linear elastic compliance of the rest of the
filament network to which the filament is cross linked. As a result, we predict that this nonlinear effect will be
observable in the dynamical correlations of constituent filaments of networks and in the networks’ collective
shear response. The system’s dynamic shear modulus is predicted to exhibit the well-known crossover with
increasing frequency from ω1/2 to ω3/4, but the inclusion of the network’s compliance in the analysis of the
individual filament dynamics shifts this transition to a higher frequency.

DOI: 10.1103/PhysRevE.102.062406

I. INTRODUCTION

Semiflexible filament networks underlie the structure of
a number of biological materials, including the cytoskeleton
and the extracellular matrix of tissues [1–3]. The mechani-
cal properties of such materials depend on the mechanics of
their individual filaments. These semiflexible filaments are
essentially inextensible, with lengths less than their thermal
persistence length, indicating a large bending rigidity κ that
keeps them oriented along a mean direction.

Filamentous networks exhibit a number of interesting me-
chanical properties that differ from typical elastic continua,
such as nonaffine deformation [4,5] and negative normal
stress [6,7]. There is now a well-developed theory connect-
ing the tension response of individual filaments to the linear
collective shear response of their networks: G(ω). Due to the
appearance of multiple time scales in the networks’ dynamics,
G(ω) exhibits a rich variety of behaviors [8–11].

There is currently considerable interest in local microrhe-
ological probes of tension within the network at the single
filament scale. This approach allows one to noninvasively
measure tension in the constituent filaments of a semiflexible
network by measuring their fluctuation spectrum. This probe
is predicated on the idea that tension applied to a filament
segment changes the thermal fluctuation spectrum of the fila-
ment’s transverse undulations. The idea of using the measured
thermal fluctuations to map out the tension in a network has
been termed activity microscopy [12,13]. These tension maps
are likely to prove quite interesting in light of the breakdown
of continuum mechanics on mesoscopic scales, resulting in

force chains appearing in the network near the point of force
application [14–17]. In order to better understand the trans-
verse undulation spectrum of filaments within a network, one
should account for the fact that this spectrum is controlled in
part by the filament’s mechanical boundary conditions, due
to its coupling to the rest of the network. For example, the
fluctuations of the (red) filament in Fig. 1 are modified by that
filament’s mechanical coupling via cross links (black/gray
circles) to the surrounding network of (blue) filaments. These
boundary conditions include not only the tension imposed on
the filament (the goal of activity microscopy), but also the
elastic compliance of the surrounding material.

In our previous paper [13], we examined how the sur-
rounding network, including its elastic compliance and state
of tension, affects the equilibrium fluctuation spectrum of
the transverse undulations of a constituent filament in the
network. In this paper, we expand our analysis to dynam-
ics, looking at the time-dependent correlation and response
functions of both individual transverse modes of the fila-
ment and the filament’s end-to-end distance. In addition to
completing the analysis of these boundary conditions on the
undulation spectrum by exploring their equilibrium dynamics,
these results may be important for interpreting future studies
on the frequency-dependent nonequilibrium fluctuations of
network filament segments driven by endogenous molecular
motors [18–21] in a nonequilibrium extension of activity mi-
croscopy.

We model the mechanical boundary conditions on the
semiflexible filament by both a mean state of tension τ

and a linear elastic compliance, representing the surrounding
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FIG. 1. Top: Visualization of a particular filament (red) cross
linked into a network of similar filaments (blue). The cross links
are represented by black and gray rings. Bottom: Schematic diagram
of a single semiflexible filament. The left end point is pinned, and
the right end point is attached to a longitudinal spring with spring
constant k and a transverse spring with spring constant k⊥. These
represent the elastic compliance of the network. We focus on the
effect of the longitudinal spring. Both end points are subject to
torque-free boundary conditions.

network. This elastic compliance may be thought of as at-
taching the filament’s end to a pair of Hookean springs, one
longitudinal spring aligned with the mean extension of the
filament and one perpendicular to it. These springs have spring
constants k and k⊥, respectively. The lower panel of Fig. 1
shows a schematic illustration of the system, the dynamics of
which will be the focus of this paper. This set of orthogonal
springs provides a description of the mechanical compliance
of the surrounding network acting on the cross link at the
filament’s end. Since these springs reflect the linear response
of the surrounding network, they are related to its bulk me-
chanics (shear and compression moduli of the network), but
we do not investigate that further here.

The effect of the two springs on the filament’s fluctuation
spectrum are actually quite distinct. The perpendicular spring
changes the spatial structure of the eigenmodes of filament
deformation (see Appendix D). The longitudinal spring is
the most interesting, as it introduces a nonlinearity into the
filament’s Hamiltonian even in the limit of small bending. The
origin of this nonlinearity (explained more fully below and in
Ref. [13]) is that the state of tension in the filament depends
on the instantaneous projected length of the filament. Since
we work in the limit that the filament is inextensible, ten-
sion propagation is instantaneous, and the longitudinal spring
introduces a term that is nondiagonal in the Fourier modes
of the filament’s undulations, but local in time. As a result
of this nonlinearity, the equilibrium fluctuation spectrum [13]
of the filament and its dynamics are controlled by the set of
parameters (κ, τ, k).

The nonlinearity introduced by the boundary compliance
(due to the rest of the network) alters the power spectrum of
the variations of the projected length of a filament’s end-to-
end distance when it is cross linked into a network. We study
that here. Using our model, we also calculate the response of

that distance to applied forces. The time-dependent, single-
filament response can be then be used to calculate the dynamic
shear modulus and compliance of the network by well-known
methods [9]. The most direct experimental test of our theory,
however, is to be found at the single filament level. We pro-
pose that one can directly measure the relaxational dynamics
of a single filament anchored to a substrate and attached to a
bead held in an optical trap [22–24]. In such a configuration,
the trap provides a longitudinal spring of known (in princi-
ple) spring constant. By moving the trap’s center, one can
measure the changes in filament’s fluctuations as a function
of tension. In addition to passive measurements, one should
also be able to actively measure the response function of the
filament’s end-to-end distance by driving it via the sinusoidal
oscillations of the trap’s center. We predict that the new effect
associated with the elastic compliance of the trap will be most
evident at small values of applied tension.

The remainder of this paper is organized as follows. We
introduce the model, including the stochastic equation of
motion (Langevin equation) of the filament using slender
body dynamics, in Sec. II A. Due to the nonlinearity in the
Hamiltonian, we cannot solve these dynamical equations ex-
actly. Instead, in Sec. III we first compute the linear response
to transverse applied loads in the wave-number domain to
second order in the longitudinal spring constant. From this,
we determine the dynamical two-point function 〈|up(ω)|2〉
in Fourier space. These perturbative calculations are orga-
nized using the Martin–Siggia–Rose–Janssen–De Dominicis
(MSRJD) functional integral formalism [25]. Within this di-
agrammatic expansion, we comment on various classes of
diagrams and propose an approximation using a resummation
of the dominant terms of the perturbation series.

To make these approximations precise, we develop an ef-
fective field theory (in Sec. IV), the mean-field solution of
which reproduces the resummation of the dominant terms.
The mean-field solution is a type of dynamical self-consistent
theory, which we analyze in Sec. IVA. This self-consistent
approach allows us to explore nonequilibrium dynamics and
the time-dependent response of pulled filaments. In Sec. IVB
we expand our effective field theory about its mean-field
solution, allowing us to compute fluctuations, particularly
of normal modes and the filament’s projected length. These
corrections are found to be rooted diagrammatically in the
random phase approximation (RPA) borrowed from solid state
physics. By considering the terms arising at higher orders in
the expansion about the mean field, we identify the various
classes of diagrams postulated from the second-order per-
turbative result, thus determining the validity of our initial
approximations. We conclude with a discussion of our results
in Sec. V, where we discuss the expected experimental signa-
ture of the filament’s mechanical boundary conditions on its
dynamics. The reader interested primarily in those predictions
is encouraged to turn first to that section.

We find two principal effects of the longitudinal spring.
The primary one is a renormalization of the tension by the
mean force of the spring, which can be schematically viewed
as τ → τ + k〈��〉. Even if one tunes the applied tension to a
small value, the spring, responding to the fluctuations of the
end-to-end filament distance, will impose a tension on its own.
The spring thus adds an additional energy scale that competes
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with the work done by the imposed tension. For small exter-
nally applied tension τ (τ � κ2/kBT �4), we can approximate
the spring-induced tension by using the spring-free result
for the filament arc length taken up in thermal undulations:
〈��free〉 = kBT �2/12κ . There are linear in tension corrections
to this result that are well known (see Ref. [26]). Using this
approximation, we find that the longitudinal spring constant
makes a significant change to the effective tension when k
reaches at least k = k∗ ≈ 12κτ/kBT �2. Secondly, the non-
linearity generically reduces the effective longitudinal spring
constant k, as a result of the nonlinearity transferring the elas-
tic energy amongst the normal modes of filament deformation
to a more energetically favorable configuration. This effect is
primarily seen in the dynamical projected length fluctuations.
At high frequencies, this effect goes away so that the bare
spring constant once again becomes observable.

II. FILAMENT DYNAMICS

A. The model

The filament Hamiltonian with the spring-induced nonlin-
earity was discussed earlier [13], but we briefly reintroduce
it here. Since the filament of length � is assumed to be
nearly straight, we work in a Monge representation, omitting
overhangs, so we may specify the filament’s configuration
by its transverse coordinate u(x) at a distance x along the
mean orientation. Here we work in two dimensions, with the
understanding that in three dimensions the dynamics sim-
ply involves two copies of the fluctuations considered here,
one for each polarization state of the undulations. Where
necessary, we later mention the inclusion of both transverse
degrees of freedom. We treat the filament as being inexten-
sible. Tension propagation is instantaneous. The change in
the filament’s projected length due to bending is given to
quadratic order in the transverse displacement by

�� = 1

2

∫ �

0
(∂xu)

2dx. (1)

The Hamiltonian of the filament with bending rigidity κ ,
under tension τ , and coupled to a longitudinal spring with
spring constant k is

H = κ

2

∫ �

0
dx
(
∂2
x u
)2 + τ�� + 1

2
k��2, (2)

where �� is the amount of the length of the filament taken up
by its undulations [see Eq. (1)]. For notational convenience,
the spring constant k used here is equal to 4k in Ref. [13].
The first term is the usual wormlike chain model, with the
restriction of no overhangs. The second term represents the
contribution due to tension. The third term is due to to a
Hookean spring at the boundary. Since �� depends quadrat-
ically on the normal modes of the filament, this final term
is nonlinear. Though the nonlinearity was introduced via a
boundary condition (coupling the filament to a longitudinal
spring), it manifests as a contribution to the bulk Hamiltonian.

The tension τ = τapplied + kx0 can be freely adjusted us-
ing the externally applied tension τapplied, or by adjusting the
anchoring point of the longitudinal spring x0. By a suitable
choice of x0, it can be made to vanish. We assume that the

filament’s ends are pinned to the x axis and torque free: u
and ∂2

x u vanish at the end points. This choice enables one to
expand the transverse undulations in a sine expansion

u(x, t ) =
∑
p

up(t ) sin(px), (3)

with wave numbers

pn = nπ/�, (4)

where n = 1, 2, . . ..
This Hamiltonian provides minimal coupling of a filament

in a network to its surroundings (treated as a linear elastic
solid). It is necessarily nonlinear. The assumption of instan-
taneous tension propagation will eventually be violated at
sufficiently high wave number since these undulatory modes
will relax faster than the tension propagation time. Accounting
for tension propagation introduces other nonlinearities to the
Hamiltonian, which have been extensively studied [27–29].
We return to the relation of our paper to these studies in
Sec. IVA.

The network is overdamped, being immersed in a vis-
cous fluid with viscosity η so that inertial effects may be
ignored. We treat the hydrodynamic forces on the filament
using resistive-force theory, where the drag force is linear in
velocity and decomposes locally into a component perpendic-
ular to (with coefficient ξ⊥) and parallel to (with coefficient
ξ‖) the mean tangent t̂ ≈ x̂. In terms of the position vector of a
segment of the filament, �u = (x, u1(x), u2(x)), where the 1 and
2 subscripts label the coordinates transverse to the direction of
the undeformed filament x̂ and the drag force is [30]

[ξ‖t̂ t̂ + ξ⊥(1 − t̂ t̂ )] · ∂t �u = − �Fdrag, (5)

where the drag coefficients are given by ξ⊥ ≈ 4πη

ln �/a and ξ‖ ≈
ξ⊥/2. We neglect any modification of the effective drag per
unit length near the filament’s ends, and we neglect any
nonlocal hydrodynamics which produce logarithmic time cor-
rections [10,31]. The drag terms retained give the leading
contribution to the drag forces in slender body theory, which
provides a power series in ln(�/a)−1 [32] at zero Reynolds
number. Lastly, if we keep the drag forces acting on the
filament only to linear order in u, we may neglect the drag
associated with tangential motion.

We now obtain overdamped, model A dynamics [33]:

ξ⊥∂t u(x, t ) = −δH/δu(x, t ) + ζ (x, t ). (6)

We also include Gaussian white noise

〈ζ (x, t )ζ (x′, t ′)〉 = 2ξ⊥kBT δ(x − x′)δ(t − t ′) (7)

in the stochastic equation of motion, Eq. (6), consistent with
the fluctuation-dissipation theorem. The analysis presented
here is immediately generalizable to nonequilibrium and
frequency-dependent noise, as long as it remains Gaussian.

B. Spring-free results

We first review the previously studied dynamics of a fila-
ment with fixed applied tension and no coupling to springs.
The Langevin equation is linear and admits a normal mode
decomposition in terms of half integer wavelength sine waves
discussed above. Integrating over frequencies and averaging
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with respect to the white noise produces the dynamic correla-
tion function for the amplitudes of these sine waves [2] [see
Eqs. (3) and (4)]:

〈up(t )up(0)〉 = 2kBT

�

e−γ 0
p t/ξ⊥

γ 0
p

, (8)

where we have introduced

γ 0
p = κ p4 + τ p2, (9)

so that γ 0
p /ξ⊥ is the wave-number-dependent decay rate.

There are no cross correlations between amplitudes of differ-
ent normal modes.

There is a crossover between tension- and bending-
dominated relaxational dynamics, set by the tension length:

�τ =
√

κ/τ . (10)

In the long-wavelength λ 
 �t tension-dominated regime,
modes have an approximate relaxation time τrelax ∼ ηλ2

τ ln(�/a) .
In the short-wavelength bending-dominated regime, modes
have an approximate relaxation time τrelax ∼ ηλ4

κ ln(�/a) . With
vanishing applied tension, one observes a very broad range of
relaxation times due to the λ4 dependence. We now consider
dynamics with the inclusion of the longitudinal spring, which
mixes the filament’s normal modes.

III. THE LONGITUDINAL SPRING: PERTURBATIVE
EXPANSION

We hereafter work in units such that kBT = 1. At the end of
any calculation, we must then input factors of kBT where units
of energy are needed. In these units, we can use the Einstein
relation

D = ξ−1
⊥ (11)

to freely switch from ξ⊥ to D, the latter of which represents a
diffusion constant times a length. We now return to the full
model A equation of motion defined by Eq. (6). By using
Eqs. (1) and (2), we find

∂up
∂t

= −Dγ 0
p up − Dk��up + hp + ζp, (12)

where ζp(t ) and hp(t ) represent noise and externally applied
transverse force, respectively, each absorbing a factor of D.
From Eq. (7), we infer that equilibrium correlations of the
Gaussian white noise obey the usual relation

〈ζp(t )ζp′ (t ′)〉 = (4D/�)δpp′δ(t − t ′). (13)

The second term on the right hand side of Eq. (12), pro-
portional to k, couples each mode (labeled by p) to changes in
the total projected length of the filament, which depends on a
sum over the square of amplitudes of all the dynamical modes.
As a result, this term in the equation of motion is nonlinear.
In order to systematically compute correlation functions in
the presence of this nonlinearity, we make use of the MSRJD
functional integral method [25,34].

We start by introducing the moment generating MSRJD
functional

Z[ j, j̄] =
∫

D[iū(x)]D[u(x)]e− ∫
(A(ū,u)− j̄ū− ju )dxdt , (14)

with the action A separated into a Gaussian part A0, the
nonlinear and spring-dependent correction Aint, and a term
representing the external h-dependent forcing:

A[u(x, t ), ū(x, t )] = A0 + Aint + D
∫

dxdt ūh. (15)

The Gaussian part is

A0 =
∫

dtdx
{
ū
[
∂t + D

(
κ∂4

x − τ∂2
x

)]
u − Dū2

}
, (16)

and the nonlinear interaction is

Aint = −Dk

2

∫
dtdxdy ū(x, t )

∂2u(x, t )

∂x2

(
∂u(y, t )

∂y

)2

. (17)

For the nonlinear action, we have explicitly written out the
spatial and time dependencies. Each field is evaluated at the
same time (a consequence of instantaneous tension propaga-
tion), yet there are two independent spatial variables x and y
(nonlocality).

Finally, we recall that (n, n̄)-point cumulants, representing
response functions and correlation functions, are computed
via functional derivatives of the logarithm of the MSRJD
functional:〈 n,n̄∏

i,k

uiūk

〉
=

n,n̄∏
i, j

δ

δ ji

δ

δ j̄k
ln Z[ j, j̄]| j= j̄=0, (18)

where the brackets denote averages over the stochas-
tic forces ζ (x, t ). Specifically, by taking a derivative
δ〈u(x, t )〉/δh(x′, t ′)|h(x′,t ′ )=0, we obtain the transverse linear
response function:

χuu(x, x
′; t, t ′) = D〈u(x, t )ū(x′, t ′)〉. (19)

The source field j̄ provides the same information as h. Here-
after we set h = 0. The response function is trivially related to
the propagator G(x, x′; t, t ′) of the theory via a factor of D:

G(x, x′; t, t ′) = D−1χuu(x, x
′; t, t ′). (20)

We also define the dynamic or time-dependent correlation
function

C(x, x′; t, t ′) = 〈u(x, t )u(x′, t ′)〉, (21)

hereafter referred to as the correlator. Given knowledge of
χuu(x, x′; t, t ′), it can be found easily via the fluctuation-
dissipation theorem, so it need not be calculated indepen-
dently, at least for the equilibrium dynamics that we study
here.

We have chosen the Ito formulation of the Langevin
equation, such that the Jacobian of our field transformation
from ζ (x, t ) to u(x, t ) is unity. This corresponds to the step
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FIG. 2. Diagrams contributing to the perturbation theory of the
(u, ū) fields. The propagator (left) is a function of a single p and
the time difference: 〈up(t )up′ (t ′)〉 = δpp′G0

p(t − t ′). The noise vertex
(middle) produces two outgoing lines, and has a coefficient D. The
interaction vertex (right) is equivalent to −Dk�2

8 p2q2δpp′δqq′ . It carries
two Kronecker deltas, and depends on two wave numbers p and q.
This is a consequence of the spatial nonlocality of the nonlinear
interaction. Dashed lines connect two points at equal times. In the
interaction vertex (right), we associated a factor of p2δpp′ (q2δqq′ )

with each vertex of the dashed and solid lines, and a factor of −Dk�2

8
with the dashed line itself.

function continuation �(0) = 0, and, as a result, all pertur-
bative terms consisting of closed response loops evaluate
to zero, consistent with causality. For general time or-
dering schemes, closed response loops can be shown to
be canceled by the appropriate Jacobian factor, ensuring
that the physical result is independent of discretization
choice [25].

Equations (14) and (15) enable the full machinery of dia-
grammatic perturbation theory in k. Expectation values with
respect to the Gaussian action are denoted by the brackets
〈. . . 〉0. The diagrammatic rules are summarized in Fig. 2. In
wave-number space, the Gaussian propagator is proportional
to a Kronecker delta δpp′ , and therefore depends only on a
single wave number. The retarded (+) and advanced (−)
propagators are given by

G0,±
p (t ) = 2

�
θ (±t )e∓γ 0

p t , (22)

and represented by a directed line from earlier to later times.
The comma in the superscript emphasizes that the zero is a
label, and not related to whether the propagator is advanced
or retarded. The step function allows us to identify outgoing
lines as ū fields and incoming lines as u fields.

One may further define an undirected line to be the bare
correlator

C0(x, y, t ) = 〈u(x, t )u(y, 0)〉0. (23)

However, since the bare correlator is related to the transverse
linear response function via the fluctuation-dissipation theo-
rem, we can avoiding introducing the additional undirected
propagator by treating the noise term ≈Dū2 in Eq. (16) as a
new vertex [25] denoted by the filled square in the middle of
Fig. 2.

The spring-induced nonlinearity generates a spatially non-
local but instantaneous vertex. As a result, the bare vertex
shown in Fig. 2 carries two independent Kronecker deltas
in wave number and a delta function in time (dashed line),
as well as four factors of wave number. See the caption of
Fig. 2 for further details. We can easily switch from the time

(D1) (D2) 

(D3) (D4) 

(C1) 

(C2) (C3) 

(A1) (A2) 

(B2) (B1) 

(B3) 

FIG. 3. All diagrams contributing to the self-energy [see def-
inition preceding Eq. (25)] through O(k2). There are two O(k)
contributions, A1 and B1. Diagram labels containing an A and
a B represent contributions to tension and spring constant renor-
malization, respectively. For detailed calculations, see Appendix A.
Diagrams A1 and B1 are later used to renormalize tension [Eq. (34)]
and self-consistently compute the self-energy [Eq. (28)].

domain to the frequency domain, by Fourier transforming the
fields,

up(t ) =
∫ ∞

−∞

dω

2π
up(ω)e−iωt , (24)

and imposing frequency conservation at each vertex.
Using these diagrammatic rules, we compute the k-

dependent corrections to the propagator to two-loop order,
which is also second order in k. Generally, in perturbation the-
ory these corrections can be neatly grouped into a self-energy
�p(ω), defined by the relation 〈Gp(ω)〉−1 = (G0

p)
−1(ω) −

�p(ω) [34]. The physical interpretation of this quantity is
found in the shift of the bare decay rate from Eq. (9), so
that γ 0

p → γ 0
p − 2

D�
�p(ω). As such, we define the adjusted

self-energy:

�̃p(ω) = 2

D�
�p(ω), (25)

which is precisely the shift in γ 0
p .

All the necessary diagrams for this calculation are shown
in Fig. 3, and we refer to them hereafter by their label in
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that figure, beginning with A1 at the top and continuing to
D4 in the bottom right. They are individually calculated in

Appendix A. Here, we report the full two-loop self-energy
(writing out kBT explicitly for clarity):

�̃ p̄(�) = −kkBT p̄2

κ

[
1

p̄2 + 1
+ 1

2

∑
q̄

1

q̄2 + 1

]
+ k2k2BT

2

κτ 2

[
p̄2

2( p̄2 + 1)3
+ 3p̄4

( p̄2 + 1)2[−i� + 3p̄2( p̄2 + 1)]

+ 1

2

p̄2

( p̄2 + 1)

∑
q̄

1

(q̄2 + 1)2

(
1 − −i�

−i� + 2q̄2(q̄2 + 1) + γp̄

)
+ p̄2

4

∑
q̄

1

q̄2 + 1

∑
q̄

1

(q̄2 + 1)2

]
. (26)

We have nondimensionalized the wave numbers and frequen-
cies using a characteristic wave number of the tensed, spring-
free system,

√
κ/τ , and its corresponding frequency. This

wave number sets the transition between tension-dominated
modes (at longer wavelength) and bending-dominated ones (at
shorter wavelengths). Thus, we define dimensionless variables
p̄ = p

√
κ/τ = p�τ and frequencies � = ωκ

Dτ 2 = ω/ω∗. These
units are convenient, provided that the tension is not so small
that �τ ≈ �, but they are primarily used in order to aid in
a qualitative analysis of Eq. (26). For an alternative scheme
valid at small τ , see Eq. (A10).

The O(k) correction is negative, and proportional to p̄2,
which tells us that it renormalizes the effective tension to
a larger value. This is expected, as the spring stiffens the
filament to elongation, causing it to relax faster. To analyze the
effects of the spring beyond first order, we categorize the two-
loop self-energy into three types of contributions, beginning
with the most dominant. The first group consists of type A
diagrams in Fig. 3. These are ≈p̄2 so they become appreciable
at large wave number. Due to the summations, they also grow
with system size, i.e., filament length. As we will see in
Sec. IVA (and commented on more in Appendix A), these
correspond to a renormalization of the tension, and may be
eliminated by using a self-consistent approach to the Green’s
function.

The second group consists of the type B diagrams in
Fig. 3. After τ renormalization, these are the next most
important class of diagrams. We will later find that they
correspond to renormalization of the spring constant k. At
large p̄, they plateau to a constant value, and, at small p̄,
they decay as p̄2. These corrections are important for p̄ �
1. These contributions are largest at zero frequency, where
they acquire a prefactor ≈∑

q̄(q̄
2 + 1)−2. But this remains

small when compared to the type A diagrams, which are
proportional to

∑
q̄(q̄

2 + 1)−1. In general, we will find (see
Sec. IVB) that any diagram containing a solid loop with
n outgoing dashed lines will be proportional to a summa-
tion

∑
q̄(q̄

2 + 1)−n, and thus represent increasingly smaller
contributions.

The third and final group consists of both type C and D
diagrams of Fig. 3. These diagrams have a single solid line
with crossed (type C) or uncrossed (type D) dashed lines. At
large p̄, these vanish and are therefore small compared to the
diagrams of the first (A) and second groups (B). At small
p̄, they go to zero as p̄2; however, they lack a summation
compared to the other terms in Fig. 3 and are thus still smaller.
At O(k2), these summations are ≈∑

p̄ p̄
−2. As a result, we

infer that the missing summations in type C and D diagrams

cause them to be about an order of magnitude smaller than the
contributions from the other O(k2) diagrams. Furthermore, at
high frequency, the contributions from the crossed (C) dia-
grams are smaller than those from noncrossing (D) diagrams.
This suggests that we may ignore crossed diagrams in any
self-consistent treatment of the dynamics, as described below.
This distinction between the crossing and noncrossing dia-
grams is analogous to impurity scattering in condensed matter,
where one also finds that crossing diagrams in electron impu-
rity scattering calculations may be safely ignored [35,36].

We now use the previous analysis to develop a self-
consistent approximation for the propagator of Eq. (20) in
frequency and wave-number space. The principal effect of the
longitudinal spring is to renormalize tension. The details of
that process will be shown in Sec. IVA. We account for this
by defining

γp = κ p4 + τRp
2, (27)

which everywhere replaces γ 0
p . τR is the renormalized ten-

sion due to the longitudinal spring. We next incorporate the
remaining first-order correction (diagram A1), by considering
it as the first term in a series of diagrams that contain a single
solid line, with no crossed dashed lines [theO(k2) term in this
series consists of all type D diagrams in Fig. 3]. The infinite
summation can quickly be achieved by demanding that the
self-energy is equal to the contribution in diagram A1, so long
as we replace the bare propagators by dressed ones. This leads
to the self-consistent equation

�̃NCA
p (ω) = − kkBT p4

γp − �̃NCA
p (ω)

, (28)

known as the noncrossing approximation (NCA). This is cer-
tainly correct to O(k), and as ω → ∞ becomes precise to all
orders in k. Since this is a self-consistent equation, we are
free to extend k to large values where we can see its effect.
Equation (28) is algebraic, and we easily find the solution:

�̃NCA
p (ω) = γp

2

(
1 −

√
1 + 4kkBT p4

γ 2
p

)
. (29)

The simplicity of this result is a direct consequence of the
spatial nonlocality of our interaction; since dashed lines do
not carry wave number, there is no summation over modes
in diagram A1. From �̃NCA

p (ω), we find the NCA transverse
linear response function:

χNCA
p (ω) = 2D/�

−iω + 1
2Dγp

(
1 +

√
1 + 4kkBT p4/γ 2

p

) . (30)
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Using the fluctuation-dissipation theorem and reinserting kBT
where necessary to work in physical units, we obtain the
dynamic correlator

CNCA
p (ω) = 4kBT/ξ⊥�

ω2 + γ 2
p

4ξ 2
⊥

(
1 +

√
1 + 4kkBT p4/γ 2

p

)2 . (31)

At low tension, we intuitively expect the effect of the
longitudinal spring to be stronger. We thus seek units in
which the tension can easily be taken to small values. Per the
discussion of Sec. II B, at low wave number, the system is
in a tension-dominated regime. Accordingly, we switch to a
dimensionless length scale by factoring out the wave number
of the lowest mode p1 = π/�. We also adopt a dimensionless
tension, spring constant, and frequency:

φ = τ�2

κπ2
, (32a)

k̄ = kkBT �4

κ2π4
, (32b)

ω̄ = ωξ⊥�4

κπ4
. (32c)

To compute Cp(ω), we must further calculate tension renor-
malization. In terms of φ, this amounts to the replacement

φR = φ + �φ, (33)

where �φ is defined by the self-consistent equation

�φ = k̄

2

∞∑
n=1

1

n2 + φ + �φ
. (34)

This equation can be derived by approximating the entire
self-energy correction by the dominate diagram A2 in Fig. 3,
provided we replace the loop propagator with the dressed one.
This approximation is discussed more fully in the context of
the mean-field theory (MFT) in Sec. IVA. In terms of mode
number n, we find the correlator to be

CNCA
n (ω̄) = 4kBT ξ⊥�7/κ2π8

ω̄2 + [
1
2n

2(n2 + φR)
(
1 +

√
1 + 4k̄

(n2+φR )2
)]2 .

(35)
In Fig. 4, we plot the NCA correlator as a function of wave

number. Generically there are three regimes going from low
to high mode number. There is a low wave-number plateau
transitioning into an n−4 decay, followed by an n−8 decay at
sufficiently high mode numbers. The effect of the spring is to
shift these transitions to lower mode number. For sufficiently
high spring constants, the plateau regime may disappear en-
tirely as shown by the (blue and black) solid curves in the
figure. The condition for the appearance of the plateau is
that ω̄ > max{n4/4, φ/4} for some n � 1. The principal ef-
fect of the spring is still tension renormalization. Even as
φ → 0, the longitudinal spring ensures that the filament still
behaves as if it were under tension. For finite values of the
applied tension, the effect of the spring still increases the
total effective or renormalized tension, moving the transition
to higher-frequency, bending-dominated fluctuations to still
higher modes. The fact that the mode where the fluctuations

FIG. 4. NCA dynamical correlation function normalized by its
first mode at both low (black) and high (blue) tension in the presence
(solid) or absence (dashed) of the longitudinal spring. ω̄ = 100. The
solid black curve overlaps with the solid blue curve at low mode
numbers, indicating that the spring generates tension in the absence
of any preexisting tension, given in a nondimensionalized form as
φ. In the presence applied tension φ > 0, the spring increases the
effective tension, pushing the transition from tension- to bending-
governed fluctuations to higher mode numbers (blue curves).

change from stretching to bending dominated moves in re-
sponse to the external spring suggests that the effects of even
a weak spring will be most easily observed near this tension-
to-bending transition (p = �−1

τ ) of the spring-free model.
In Fig. 5, we look at how varying the applied tension and

spring constant shifts the lowest mode C1(ω). If the spring
does not significantly alter ��, then the tension k�� created
by the spring increases linearly in k. However, due to the
self-consistent condition, at high k, �� diminishes, causing
tension to increase as k2/3. We discuss this scaling more fully
in Sec. IVA. As a result, the correlator decays like k̄−4/3, as
shown in the top panel of Fig. 5. The transition occurs when
k∗ = τ/��, which we approximate as k∗ ≈ 12κτ/kBT �2

by replacing �� with its small tension and spring-free
result [26].

We can also see the transition in the correlation function
by keeping k constant and varying tension. The correlator
transitions from being φ independent to decaying as φ−2 with
increasing φ, as shown in the bottom panel of Fig. 5. The
dependence of the correlator upon applied tension is the same
as in the spring-free model. The transition occurs once φ is
greater than both 4ω̄2 (for the lowest mode) and the renor-
malized tension �φ, due to the spring. As a result, the spring
washes out the effect of small applied tensions, replacing
the overall tension with its renormalized value. We now turn
to a justification of the approximations outlined above, and
derive results concerning projected length fluctuations. Our
main tool will be functional techniques using the MSRJD
formalism.

IV. PROJECTED LENGTH AUXILIARY FIELD THEORY

The spatially nonlocal theory presented here was previ-
ously examined in equilibrium, where the nonlocal aspect
allowed for a complete resummation of diagrams contribut-
ing to the two-point function [13]. In the dynamical version,
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FIG. 5. Lowest mode of the dynamic correlation function vs
(top) spring constant and (bottom) applied tension. The top panel is
evaluated at low tension, φ = 10−2, and the bottom panel is evaluated
at ω̄ = 1. At large k̄, the effective tension grows sublinearly as ≈k̄2/3,
leading to the k̄−4/3 dependence ofC1. In the bottom panel, the lowest
mode dynamic correlation function decays as φ−2, which is identical
to the spring-free k = 0 case. The transition to the φ−2 decay occurs
at tensions higher than φ ≈ k̄〈��〉.

however, this resummation fails. The previous calculation of
equal-time correlation functions allowed for a great simpli-
fication due to the fact that all of these diagrams collapsed
into one of two groups (see Ref. [13]). The calculation of
dynamical correlations here, however, introduces a time asso-
ciated with each interaction. This time ordering makes all the
previously identical diagrams from Ref. [13] distinct. Since,
in the dynamical theory, dashed lines carry frequency, there
are an infinite number of inequivalent single-line diagrams,
differentiated by the arrangement of dashed-line contractions
(for example, compare the class C and D diagrams in Fig. 3).

Despite this complication, we may still proceed along
the lines of Ref. [13]. Inspection of Eq. (2) suggests that
the Hamiltonian is more naturally expressed in terms of
��(t ) rather than u(x, t ). This will allow us to more easily
compute projected length fluctuations 〈��(t )��(t ′)〉, which
are relevant for experiments measuring the dynamic shear
modulus. As a tradeoff, solving for the two-point function,
〈up(ω)up′ (ω′)〉, will be harder.

In order to change functional integration variables from
u(x, t ) → ��(t ), we first employ a Hubbard-Stratonovich
transformation to write the quartic interaction, 1

2k��2, in

=
1
4
p 2= −1

2
Dkp2 ,

FIG. 6. λūu and λ̄uu interactions. The Hubbard-Stratonovich
transformation cuts the four-point vertex into two three-point ver-
tices. Dashed lines are now directed, with λ incoming and λ̄

outgoing.

terms of an interaction with auxiliary fields λandλ̄. This
amounts to using the identity [37]

e− ∫
dt z̄z =

∫
D(λ̄, λ)e− ∫

[λ̄λ−z̄λ−λ̄z]dt (36)

in Eq. (14), while making the identifications z̄ =
−Dk

∫
ūu′′dx and z = �� = 1

2

∫
u′2dx. Diagrammatically,

this transformation severs the undirected dashed line
into the two three-point vertices depicted in Fig. 6. This
transformation is essentially a δ function, acting to assign
the change in projected length to the variable λ(t ). We may
alternatively arrive at this step by introducing a Lagrange
multiplier into the Hamiltonian, writing down the Langevin
equation, then finding the MSRJD functional.

We now add additional source terms
∫
dt jλ(t )λ(t ) +

j̄λλ̄(t ) to the expanded functional, which will generate cor-
relations of the auxiliary λ and λ̄ fields. To understand the
physical meaning of these new auxiliary fields, we take the
functional derivatives δ

δ jλ
and δ

δ jλ̄
of the generating functional

before and after integration over (λ̄, λ), and compare the
results. δZ[ jλ, j̄λ̄]/δ jλ produces the moments of ��(t ). As
a result, there is a one-to-one correspondence between ex-
pectation values of λ(t ) and ��(t ). That is, for any N-point
correlation, 〈

N∏
i

λ(ti )

〉
=
〈

N∏
i

��(ti )

〉
. (37)

λ̄ is related to the linear response of the projected length to
an applied tension. For a small change in applied tension �τ ,
this is defined as

χ��(t, t
′) = δ��(t )

δ�τ (t ′)

∣∣∣∣
�τ=0

. (38)

Equation (36) shows that λ̄ appears conjugate to ��, in the
same manner as would a time-dependent applied tension.
Applying two derivatives δ2 ln Z

δ jλδ j̄λ̄
|
jλ= j̄λ̄=0

before and after inte-

gration over auxiliary fields, and then comparing the results,
we find the linear response is expressed in terms of the auxil-
iary fields as

χ��(t, t
′) = k−1[1 − 〈λ(t )λ̄(t ′)〉]. (39)

As a result of the Hubbard-Stratonovich transformation,
the action A now depends on four fields A[λ̄, λ, ū, u]. It is
quadratic in the fields ū and u, so we may integrate them them
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out. Doing so yields the effective action

A[λ̄, λ, j̄, j] =
∫

λ̄λdt + 1

2
Tr lnG−1 − 1

2

∫
jTGjdt,

(40a)

G−1
p =

(−2D1 (G+
p )

−1

(G−
p )

−1 −p2λ̄1

)
(40b)

plus λ- and λ̄-dependent source terms. In the above expres-
sions, the lower case, bold letters stand for the vectors of the
fields u = (ū, u), λ = (λ̄, λ), and j = ( j̄, j). The trace runs
over fields. It also includes a summation over wave numbers p.
We have defined the 2 × 2 block matrix (since its components
are operators) G−1 in terms of the advanced and retarded
propagators:

G±
p (t, t

′) = G0,±
p (t )e∓Dkp2

∫ t
t ′ λ(t ′′ )dt ′′ . (41)

Since A retains its dependence on the source terms j, we
may still generate correlations of the transverse displacement
field via functional differentiation, as defined in Eq. (18).
As expected, correlations 〈uu〉 depend on expectation values
of operator inverses containing stochastic fields λ. We have
traded calculating a simple observable with a complex prob-
ability functional for a nonlinear observable with a simple
probability functional. Correlations with respect to ��, on the
other hand, are evaluated at j = 0 and are tractable, provided
we can simplify the trace log appearing in A.

Since the spring constant k appears only in the combina-
tion ≈Dkp2λ, we may shift integration variables λ → λ/Dk,
thereby putting all of the k dependence in A into the first
term

∫
dt λ̄λ/Dk. As k → 0, A oscillates wildly, indicating

that saddle-point evaluation of the functional integral becomes
exact. We may then carry out a controlled small k expansion
ofA about its saddle-point solution (λ̄0, λ0) plus fluctuations.
Incidentally, the saddle-point solution λ0 is precisely the aver-
age 〈��(t )〉, regardless of whether or not k is small.

A. Mean-field theory

We investigate the saddle-point solution corresponding to
the effective action Eq. (40a), which becomes exact as k → 0.
We denote the saddle-point solutions for the auxiliary fields
by λ0 and λ̄0. We will find that the saddle-point solution
corresponds to a type of dynamical MFT, and henceforth refer
to λ̄0 and λ0 as the mean-field solutions.

The saddle-point equations are

δA/δλ = δA/δλ̄ = 0, (42)

evaluated at λ = λ0 and λ̄ = λ̄0. Functional differentiation of
the trace log appearing in A is carried out in the standard
way [34], using δλ̄Tr lnG

−1 = Tr(Ĝδλ̄Ĝ
−1). As λ̄ appears

only in the (22) component of G−1, functional differentiation
yields a matrix with 1 in the (22) component, and zeros else-
where. Taking the matrix product with G and performing the
trace yields the (22) component of G. We emphasize again
that G−1 is really a 2 × 2 block matrix, with each block
representing an operator. Since G−1 is not diagonal in either
the time or frequency domains, we cannot trivially invert it. In-
stead, we determineG via its defining equation (Ĝ−1)ikĜk j =
δi jδ(t − t ′). This yields the result G22 = (1 − p2Ĉpλ̄0)−1Ĉp.

Since δĜ/δλ = 0, the first saddle-point equation is trivially

λ̄0(t ) = 0. (43)

The second saddle-point equation can now be easily found by
setting λ̄0 = 0. We find the second saddle-point equation:

λ0(t ) = D
∑
p

p2
∫ t

−∞
[G+

p (t, t
′)]2dt ′, (44)

where G+
p (t, t

′) was defined in Eq. (41). This depends only on
λ0, and we call it the mean-field condition.

There are two alternative ways to interpret this result, each
of which adds to our physical understanding. First, in the con-
text of the (ū, u) diagrammatic perturbation theory defined by
Fig. 2, we can recover the mean-field condition by summing
over all one-correlator loop corrections to the propagator.
These contributions can be grouped into a mean-field self-
energy �MFT

p (t ). We then demand that �MFT
p (t ) is equivalent

to diagram A1 in Fig. 3, when the loop correlator is replaced
by a dressed correlator. Looking for a solution of the form
�̃MFT

p (t ) = −k̄ p2λ0 reproduces the mean-field condition. This
observation suggests that the mean-field theory is the leading
term in an expansion of A[λ̄, λ], determined by the maximal
number of dashed lines emanating from a closed, solid line
loop. We call a subdiagram with n outgoing dashed lines an
n bubble. The suggestion turns out to be accurate, and is
elaborated on more in Sec. IVB.

Second, we may arrive at Eq. (44) by employing a type
of mean-field approximation, in which we make the replace-
ment: ��2 → 2〈��〉�� in the Hamiltonian [see Eq. (2)]. The
angled brackets denote averages with respect to the noise.
Looking at this replacement more closely, we note that the
equilibrium average 〈��(t )〉 must be a constant in time. Here,
however, the averaging is applied with respect only to the
noise, and not to the initial configuration of the filament. In
that case, the average 〈��(t )〉 can evolve in time from any
particular initial condition. The mean-field theory is capable
of describing the relaxation of this variable to its equilibrium
value. For example, we can consider a situation where the
filament is pulled starting at time t = 0.

Returning to our mean-field approximation, the MFT
Hamiltonian is now linear. The resulting Langevin equation
is also linear, and can be solved for up(t ) in terms of the
noise ζp(t ) and 〈��(t )〉. Imposing the self-consistency con-
dition given by the definition in Eq. (1) of projected length,
and identifying λ0(t ) = 〈��(t )〉, we reproduce the mean-field
condition Eq. (44). Physically, the mean-field approximation
assumes that the normal modes respond only to the change in
the averaged projected length, and ignore changes in �� due
to fluctuations of other normal modes. This approach is actu-
ally a mean-field differential equation for the function λ0(t ).
The mean-field theory is neatly summarized as the following
Langevin equation:

∂up(t )

∂t
= −D

[
γ 0
p + kp2λ0(t )

]
up(t ) + ζp(t ), (45a)

with the condition

λ0(t ) = �

4

∑
p

p2
〈
u2p(t )

〉
. (45b)
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Combining these two equations results in the integral
equation given by Eq. (44) for λ0(t ). When solving the
integral equation, it is more convenient to work with the
time derivative of λ0(t ). Following the notation of Hal-
latschek et al. [27–29], we hereafter refer to Eq. (44) as
a partial-integro-differential equation (PIDE). The quantity
kλ0(t ) acts as a time-dependent tension, the value of which
depends self-consistently on the instantaneous conforma-
tion of the filament. Our model appears similar to those
describing nonlinear tension propagation along inextensible
filaments [27–29,38]. This is true for both the ordinary and
multiscale perturbation theory [28]. These authors obtain a
PIDE similar to ours, where our λ0(t ) is analogous to their
stored thermal length 〈�(t )〉. Our analysis differs from the
previous work in that the inherent longitudinal compliance of
the system is concentrated in the external longitudinal spring,
rather than the extensional deformation of the filament. The
longitudinal spring responds only to a particular, collective
degree of freedom of the system (the end-to-end length).
Moreover, the longitudinal spring constant can be changed
arbitrarily for a filament with fixed elastic compliance, which
provides more freedom for exploration.

When comparing our analysis to the multiscale perturba-
tion theory PIDE, the key distinction is that our λ0(t ) does
not have spatial dependence. Theories of tension propagation
in untensed and tensed filaments [28,38–41] allow for a finite
propagation speed of tension, which requires that the longitu-
dinal extension be spatially dependent. One way to consider
the validity of our instantaneous tension propagation approx-
imation is to ask which modes of the filament relax slowly
on the time scale of that tension propagation. This result
depends on the length of the filament segment in question.
To do this, we use the results on tension propagation provided
in Ref. [28]. Taking as reasonable estimates a 1-μm filament
and a 17-μm thermal persistence length (consistent with a
1-μm strand of F-actin), we find that modes with wavelengths
longer than 1/17 of the filament’s length relax sufficiently
slowly for one to take the approximation of instantaneous
tension propagation. This suggests that instantaneous tension
propagation is a reasonable approximation for shorter filament
segments in a network, where only the lowest deformation
modes are typically observable. In the case of longer filaments
held in, e.g., an optical trap, the effects of the finite speed of
tension propagation are likely to be observable. This presents
a potentially interesting extension of the current paper.

In Eq. (53), we show the predicted response function of
the end-to-end distance in the presence of prestress. While the
projected length fluctuations in the absence of prestress have
been studied [9–11], there has not been an explicit discussion
of the problem with prestress [42].

We leave details of the evaluation of λ0(t ) to Appendix B,
and here discuss the results. In the long-time limit, λ0(t ) must
approach its equilibrium configuration, a constant λ0. Writing
λ0(t ) = Dkλ0, we find λ0 obeys the self-consistent equation
(restoring kBT for the moment for ease of comparison)

λ0 = kBT

2

∑
p

1

κ p2 + τ + kλ0
, (46)

which can be interpreted as a renormalization of the tension
τ → τ + k〈��〉. In terms of the dimensionless tension φ

[see Eq. (32a)], this is expressed as the shift φ → φ + �φ,
where �φ satisfies the MFT equation in Eq. (34). The MFT
dynamics of a filament attached to a longitudinal spring in
equilibrium are thus the same as for a semiflexible filament
under tension, provided we renormalize tension.

The time-dependent λ0(t ) solution is determined by its
initial condition. We consider the case where the filament is
initially in equilibrium with the longitudinal spring, and then
at t = 0 we apply a small additional tension δ f (t ) to an al-
ready tensed filament with tension τ 
 δ f (t ). In Appendix B,
we derive the general solution for this situation. We define the
change in the projected length from its equilibrium value:

δλ0(t ) = λ0(t ) − λ0. (47)

At t = 0, δλ0(t ) vanishes, and at t = ∞ it must plateau to a
constant as the system again reaches a new equilibrium. The
Laplace transform δλ0(z) obeys the equation

δλ0(z) = − M̃(z)

1 + kM̃(z)/z
δF (z), (48)

where the kernel M̃(z) is defined in Eq. (B16). The function
δF (z) is the Laplace transform of the time-integrated applied
tension defined in Eq. (B9). The negative sign arises because
putting a filament under tension causes it to extend, thereby
increasing total projected length, and thus decreasing ��.

We now examine two cases:

δ f (t ) =
{
oscillating: f sinωt
constant: f

, (49)

corresponding to oscillatory and constant applied tensions,
respectively. These lead to the Laplace-transformed integrated
tensions

δF (z) =
{
oscillating: f (z/ω)/(z2 + ω2)
constant: f /z2

. (50)

The Laplace transform of the MFT longitudinal linear re-
sponse is trivially related to δλ0(z):

χ��(z) = δλ0(z)/ f . (51)

The remaining step is to take the inverse Laplace transforma-
tion in both cases.

We first discuss the oscillatory solution. In the long-time
limit, only residues corresponding to the purely imaginary
poles will remain. The only contributing poles are due to
δF (z), which occur at z = ±iω. We can thus substitute
χ��(z → −iω) to obtain the long-time oscillatory solution.
An alternative derivation is presented later in Sec. IVB us-
ing the MSRJD formalism. Comparing M̃(−iω) with �+(ω)
[defined later in Eq. (61)], and χ��(z) with the later MSRJD
result in Eq. (39), we observe that the MFT Langevin equation
exactly reproduces the more rigorous MSRJD analysis. We
thus postulate (but do not prove in this paper) that the MFT
Langevin equation is capable of providing the exact correla-
tions 〈��(t1) . . . ��(tN )〉 for any product of N λ0(t ) fields.

The p summation appearing in the kernel M̃(z) [Eq. (B16)]
can be performed, but is unwieldy. It is easily performed nu-
merically. We use that numerical summation to plot δ〈��〉/δ f
in Fig. 7. Analytically, we look at the long- and short-time
limits, and then comment on the transition between the two.
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FIG. 7. MFT longitudinal linear response normalized by the
plateau value χ 0

�� = χ��(t̄ = ∞, k̄ = 0) of the spring-free filament.
t̄ = t�4ξ⊥/κπ 4. At early times, there is t̄3/4 growth, but the func-
tion does not exhibit power-law behavior. The longitudinal spring
decreases the relaxation time, roughly proportional to k̄4/3.

Long and short times correspond to small and large z, re-
spectively. At long times, M̃(z → 0) ∼ z, while at short times
M̃(z → ∞) ∼ z1/4. The long-time limit leads to a constant
value λ0, which is determined by the self-consistent Eq. (46)
with τ replaced by τ + f .

At short times, z is large, and so the factor of kM̃(z)/z ∼
z−3/4 is negligible compared to 1. We find the simpler expres-
sion

χ��(z 
 1) = −M̃(z)

z2
. (52)

The inverse Laplace transform yields

χ��(t � 1) = kBT

2

∑
p

e−2Dp2t (κ p2+τ ) − 1

(κ p2 + τ )2
. (53)

This is precisely the spring-free result for the longitudinal
linear response of a tensed filament.

To extract the short-time behavior, we replace the sum-
mation with an integration, extend the limits of integration
from zero to ∞, and make the variable substitution p →
p(2Dκt )1/4. At small t , the p4 bending terms in the exponent
are dominant, leading to

χ��(t � 1) ≈ kBT �

2πκ2
(2Dκt )3/4

∫ ∞

0

e−z4 − 1

z4
dz. (54)

The integral is �(1/4)/3. From this we find the final result

χ��(t � 1) ≈ kBT ��(1/4)

3π21/4κ5/4ξ
3/4
⊥

t3/4. (55)

The short-time power-law growth t3/4 is the same as for
flexible filaments [2]. However, this is only the leading term
at short time. Due to the presence of τ , the filament breaks
self-similarity and the function does not obey a power law.

The short-time longitudinal response is bending domi-
nated, and independent of the spring. From Eq. (48), we
expect the longitudinal spring to become important when
kM̃(z)/z > 1. As k → ∞, the M̃(z)/z in the numerator and
denominator cancel out, leaving the inverse Laplace transform

of − f /zk, which gives a constant. Thus, the spring shortens
the relaxation time. Since, in the short-time limit M̃(z) ∼ z1/4,
this suggests that the relaxation time to equilibrium decreases
with increasing spring constant like k−4/3.

In Fig. 7, we plot the response function by performing a nu-
merical inverse Laplace transform of Eq. (51) using Eq. (B17),
for several values of k. It exhibits the predicted t3/4 spring-free
growth. Increasing k shortens the equilibration time.

To conclude the section, we consider how the decay rates
of normal modes are altered in the MFT. From Eq. (B2),
specifying up(0) and then averaging over the noise suggests
that normal modes obey a time-dependent decay rate, τdecay,
given by

τ−1
decay(t ) = ξ−1

⊥

[
κ p4 + τ p2 + kt−1

∫ t

0
λ0(t

′)dt ′
]
. (56)

At short times, λ0(t ) ∼ t3/4, which implies an additional
stretched exponential prefactor 〈up(t )〉 ∼ e−kt7/4/ξ⊥ [again, the
average is over noise and up(0) is specified]. Since at small
times t > t7/4, we expect this effect to be difficult to observe
in experiment.

B. Fluctuations and random phase approximation

The saddle-point approximation, while accurately calculat-
ing 〈��(t )〉, does not address multipoint correlations of��(t ).
This prevents us from understanding how the spring-induced
nonlinearity affects dynamic fluctuations of ��(t ). We define
the longitudinal correlator

Cδ�(t, t
′) = 〈��(t )��(t ′)〉 − 〈��(t )〉〈��(t ′)〉 (57)

to be the correlation functions of the end-to-end distance. This
quantity is related to the dynamic shear modulus [8,9] and
informs frequency-dependent activity microscopy [12,13].

We account for fluctuations by expanding the trace-log
term Tr lnG−1(λ0 + δλ, δλ̄) of the action [Eq. (40a)] in pow-
ers of δλ and δλ̄, about the saddle point. In principle, one
may carry out the expansion to arbitrary order. We stop at the
quadratic terms. This truncation is a valid approximation for
stiff filaments, where the equilibrium end-to-end contraction
is small compared to contour length.

Since we are considering fluctuations about equilibrium,
time-translation invariance allows us to Fourier transform to
the frequency domain. In frequency and wave-number space,
the propagators and correlators appearing in the expansion
refer to the saddle-point and MFT values:

Ḡ+
p (ω) = 2/�

−iω + Dp2(κ p2 + τ + kλ0)
, (58a)

C̄p(ω) = 4D/�

ω2 + [Dp2(κ p2 + τ + kλ0)]2
. (58b)

In Appendix C, we carry out the trace-log expansion to
quadratic order, yielding the Gaussian approximation to the
action at the saddle point:

Aeff[δλ̄, δλ] = 1

2

∫
dω

2π
δλT

ωM
−1
ω δλ−ω, (59)

where the matrix M−1
ω is defined in Eq. (C7). This is our

final expression for the effective action Aeff. We are primarily
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FIG. 8. Ratio of the longitudinal correlator to its spring-free
value. φ = 1. At high frequency, individual modes have not relaxed
to a new equilibrium that accounts for the longitudinal spring, so the
ratio flattens to 1. As frequency decreases, we approach the static
result of Eq. (46), whereby we find a reduced amplitude, with zero
slope. The inset shows that, for a fixed frequency (ω̄ = 10) and zero
tension φ = 0, the ratio decays as k̄−2 after passing a frequency-
dependent crossover spring constant k∗.

concerned with the inverse Mω. It is related to fluctuations in
the projected length, and its linear response to applied tension.
We compute

Mω =
(

0 1
1+k�−

ω

1
1+k�+

ω

�0
ω

|1+k�+
ω |2

)
, (60)

where the polarization functions, �±
ω and �0

ω, are defined as

�±(ω) =
∑
p

Dp4

γp(∓iω + 2Dγp)
, (61)

�0(ω) =
∑
p

2Dp4

γp
(
ω2 + 4D2γ 2

p

) . (62)

The �0 function is precisely the Fourier transform of the
spring-free correlator [9]. The± functions are complex conju-
gates of one another, i.e., �+ = (�−)∗. They can be related to
�0 via a fluctuation-dissipation-like relation [Eq. (C8)]. Using
Eq. (39), we relate the �+ function to the longitudinal linear
response via

χ��(ω) = �+(ω)

1 + k�+(ω)
. (63)

Comparison of the correlation function with χ�� confirms that
the fluctuation-dissipation theorem is satisfied.

The ratio

Cδ�(ω)

Cfree
δ� (ω)

= 1

|1 + k�+(ω)|2 , (64)

of projected length fluctuations in the presence or absence
of a longitudinal spring, makes the effect of the spring more
transparent. That ratio is plotted in Fig. 8. We first analyze
the k dependence of the ratio. If we slowly increase k, we see
that, below |k�+(ω)| = 1, there is little deviation from the
spring-free result. When k is large enough to exceed the bound

|k�+(ω)| = 1, then the end-to-end fluctuations diminish as
k−2. This is supported numerically (see the inset of Fig. 8).

It is interesting that below a certain frequency the effect
of the longitudinal spring on the end-to-end distance fluc-
tuations is screened in time. To make the connection with
screening more concrete, consider the low-frequency limit of
�+(ω) ∼ iω, and then inverse Fourier transform Eq. (64).
We obtain an exponential decay (in time) for the ratio of the
spring-connected filament end-to-end fluctuations to those of
the spring-free case. This screening effect shows that the lon-
gitudinal spring changes the filament’s dynamics in a way that
cannot be simply captured by tension renormalization. This
new complexity arises because the filament lengths, stored in
the various normal modes, interact through the spring.

The value k∗ beyond which screening breaks down is,
itself, frequency dependent. Specifically, k∗ ≈ |�+(ω)|−1.
Since �+(ω) is decreasing with ω, screening breaks down
at smaller values k∗ as ω decreases, bottoming out in
the static limit (ω = 0) with a minimum value k̄∗

min =
[
∑∞

n=1(n
2 + φ)−2]−1. Below this spring constant k̄∗

min, screen-
ing occurs at all frequencies.

The frequency dependence of the ratio of the correlators
with and without the spring can be understood similarly. At
ω = 0, if k > k∗

min, then the longitudinal spring shifts the
longitudinal correlator to its mean-field result. In the opposite
limit where ω → ∞, screening becomes perfectly effective,
and there is no deviation from the spring-free result. In the
main panel of Fig. 8, we see that the longitudinal correlator
transitions from the spring-dominant, mean-field result to the
spring-free result across a range of frequencies that increases
with k.

By examining the saddle-point analysis, we obtain further
insight into which of the perturbative corrections we have
taken into account in this approach. Examining the action
in Eq. (59), we claim that it is a renormalization of the
dashed line propagators of the original (ū, u) theory. Since
all dashed-line renormalizations are necessarily bubble type
diagrams, M contains the contributions from all two-bubbles
(the general n-bubble subdiagram is a solid line loop with
exactly n outgoing dashed lines). Taking higher-order terms
in the expansion of the trace log will result in bubbles with
n > 2 external dashed lines, which are exactly the n-bubbles.
The fluctuation expansion is not just a k expansion, but a
systematic inclusion of higher number bubbles.

We can estimate the relative importance of successive
terms. The one-bubble returns just the static change in
projected length ��0. The two-bubble, ≈∑

p G
2
p(ω = 0) ∼

∂τ 〈��0〉, is proportional to the static susceptibility χ��, with
each higher order gaining another derivative of the projected
length with respect to ∂τ . Since each derivative lowers the
summand by p−2, successive terms quickly become small.

Classifying the diagrams in Fig. 3 of the perturbation
series, to O(k2) they can be divided into one-bubbles, two-
bubbles, and the rest. Per the saddle-point analysis, the one-
and two-bubbles are the leading and subleading terms, cor-
responding to renormalization of the effective tension and
spring constant. This is consistent with our analysis in Sec. III,
where our grouping of diagrams into dominant and subdomi-
nant classes was in fact a grouping into n-bubbles.
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FIG. 9. Random phase approximation for computing the renor-
malized interaction vertex. When used in a diagram, the directed
dashed lines must join to external solid lines according to Fig. 6.
Mi j refers to the matrix elements of M. M21 = 〈λλ̄〉 is directed from
a vertex with two incoming lines, to one with an incoming and an
outgoing line.

Returning to our analysis of the effective action, we
observe that the resummation of bubble diagrams is an ap-
proximation known as the RPA [34]. The RPA applies only to
the dashed line, which in any actual diagram must be attached
to two solid lines according to the rules in Fig. 6. The two-
bubble renormalized vertex is given by the diagrams in Fig. 9,
which yield the equations

M21(ω) = 1 − kD�2

4

∑
p

∫
dω′

2π
p4C̄p(ω

′ − ω)Ḡ+
p (ω

′),

(65a)

M22(ω) = |M21(ω)|2
∑
p

∫
dω′

2π

p4�2

4
C̄p(ω − ω′)C̄p(ω

′).

(65b)

Solving these reproduces Eq. (60), thus confirming our claim.
Since the dashed lines appear only in combination with k, the
RPA amounts to a renormalization of k.M21 andM22 represent
effective vertices, the lowest-order terms of which reproduce
diagrams B1 and B2 and diagram B3, respectively in Fig. 3.

Finally, we consider the longitudinal response function
given in Eq. (63). This provides an estimate for the high-
frequency behavior of the dynamic shear modulus of semi-
flexible networks [40,41], via the relation G̃(ω) = 1

15ρ�χ−1
ω −

iωη [9], where ρ denotes the density of filaments. Note that
the dynamic shear modulus, G̃(ω), must be distinguished from
our earlier definitions of propagators. Ignoring the viscous
term, in Fig. 10 we plot both J (ω) and G̃(ω) for both k̄ = 0
and 104. G̃(ω) possesses three distinct scaling regimes, re-
gardless of the longitudinal spring: a low-frequency regime
≈ω, an intermediate-frequency regime ≈ω1/2, and a high-
frequency bending regime ≈ω3/4. The spring does not affect
this scaling, but shifts the transition region to higher ω as k
increases, which is consistent with our assertion that tension
renormalization is the spring’s main effect.

V. CONCLUSION

We have extended the static analysis of Ref. [13] to include
the dynamics of the fluctuations of a filament in a network,
the linear compliance of which is modeled as a Hookean
spring attached to the boundary. The principal motive behind
these calculations is to provide a precise prediction for the
dynamical fluctuations of filaments based on κ , τ , and k, that
can then be used to perform local activity microscopy.

FIG. 10. Real (solid lines) and imaginary (dashed lines) parts of
the shear modulus G̃(ω) and network compliance J (ω) for k̄ = 0
(black) and for k̄ = 104 (blue). φ = 102. G̃ and J are normalized by
their spring-free plateau values. The transition of G̃(ω) from ω1/2

to ω3/4 scaling signals the shift from tension- to bending-dominated
behavior [10,38]. The longitudinal spring does not alter the power-
law dependence, but shifts the crossover between them to higher
frequencies.

The addition of the spring boundary condition introduces a
nonlinearity into the problem, which is peculiar in the sense
that it is nonlocal in space but local in time. It depends at
each instant on the projected length of the whole filament.
The peculiarity stems from our assumption of instantaneous
tension propagation. The strength of the nonlinearity can be
externally governed via the spring constant k.

For a filament bound to a larger network, the spring con-
stant k approximates the compliance of the entire surrounding
network. To get an estimate for experimentally relevant values
of parameters, we use as an example an F-actin network with
shear modulus G ≈ 100 Pa, and mesh spacing ξ ≈ 0.5 μm,
which we assume is comparable to the mean distance be-
tween consecutive cross links along the same filament. Using
the relation G ∼ k/ξ [26], we estimate a spring constant of
0.05 pN/nm [13]. We further assume a persistence length �p =
κ/kBT that is approximately an order of magnitude greater
than the filament segment length, and kBT ≈ 4 pN nm. These
suggest k̄ ∼ 103. In these dimensionless units, a tension of 1
pN corresponds to φ ∼ 102.

The most direct and quantitatively precise experimental
test of this analysis is directly examining the dynamics of a
single filament tethered to a bead in an optical (or magnetic)
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trap. In that case, one can independently control both the mean
tension in the filament and the effective spring constant k
by varying the position of the optical trap and its intensity,
respectively. In this setup, one may imagine two distinct types
of measurements. One could observe the end-to-end length
fluctuations by tracking the bead in the trap with high spatial
and temporal resolution. Or, one could observe the undu-
lations of the filament directly, which would allow one to
measure the u correlation functions computed here. In both of
these cases, one might also measure the response functions by
observing the response of either u or the end-to-end distance
of the filament to changes in the trap’s center.

We find the main effect of the spring is to renormalize
tension. Even for untensed filaments, once a spring is added,
the filament behaves as if it were under tension τR ≈ k〈��〉0.
Perhaps, this blending of spring effects into an effective ten-
sion explains the success of previous theories, which have
neglected nonlinearities introduced by a longitudinal bound-
ary spring [2,26]. We have shown that an increasing spring
constant decreases the relaxation times of all the fluctuating
degrees of freedom of the filament. Given a fixed external
tension τ , there is a scale k∗ ≈ 12 κτ/kBT �2 of the external
spring constant, above which the dominant contribution to
tension comes from the spring and not the bare applied ten-
sion. Using this crossover, we estimate the minimum spring
constant the effect of which on filament dynamics should
be observable. For typical filaments on the order of microns
(with persistence lengths greater than their contour length)
and tensions ≈10 pN, we expect this transition to occur at
k ≈ 1(pN/nm). This is achievable near the upper limit of
optical trap strength (≈100 pN/100 nm), or by alternatively
using a magnetic trap that can achieve higher k values. Optical
traps also induce a (weaker) transverse spring at the filament’s
end point since the beads in the trap are harmonically con-
strained to the focal plane [43]. This additional constraint on
the filament’s end points can be handled by switching from
the sinusoidal normal modes used here to the ones appropriate
for a transverse force-balance condition on the filament’s end
points (see Ref. [13] and the discussion in Appendix D). A
full calculation of the dynamics in this configuration remains
to be done.

One could alternatively use optical tweezers to exert lo-
calized forces within a network of filaments, putting some
of them under tension τ . We predict that increasing τ will
not affect fluctuations up until a transition tension τ ∗ ≈
kkBT �2/12κ , after which the amplitude of fluctuations will
decrease as τ−2. In the absence of the network compli-
ance (the spring in our model), the transition occurs at a
lower tension, which is frequency dependent. One may also
look for nontrivial changes in filament tension and fluctu-
ations as a function of network stiffness. Since the change
in tension due to the spring is �τ ∼ k��, for sufficiently
stiff networks where the effective spring constant k > k∗,
the change in tension switches from a linear k dependence
to a weaker one ≈k2/3, due to the shortening of ��. This
leads to a k−4/3 decrease in the amplitude of transverse
fluctuations.

We also considered fluctuations of the end-to-end projected
length of the filament, and its response to an applied ten-
sion. We found that including the external longitudinal spring

does not affect the short-time longitudinal, linear response
of projected length to an abrupt change in applied tension.
The change in projected length grows initially like t3/4, but
does not exhibit a power law at longer times. The longitudinal
spring, does, however, shorten the relaxation time of the end-
to-end length by a factor ≈k−4/3. From the response function
of the end-to-end distance of a single filament to oscillatory
forcing, we can predict the collective dynamic shear modu-
lus of the network using now standard arguments. We find
that the spring shifts the transition from tension dominated,
G(ω) ∼ ω1/2, to bending dominated, G(ω) ∼ ω3/4, to higher
frequencies.

Finally, there is an additional frequency-dependent effect
that can be observed from fluctuations in the end-to-end
projected length, which arises as a result of the nonlinear
interaction the spring induces on normal modes. In the static,
ω → 0 limit, the amplitude of end-to-end fluctuations will
be lower than that for a filament not attached to a longitu-
dinal boundary spring. As frequency increases, however, the
effect of the spring diminishes, approaching the spring-free
result as ω → ∞. At high frequencies the normal modes
adjust so as to screen the effect of the longitudinal spring.
We report a minimum value k̄∗

min, below which the longitu-
dinal spring is screened at all frequencies. This occurs when
k̄∗
min = [

∑
n(n

2 + φ)−2]−1. This minimal spring stiffness nec-
essary for complete screening grows with applied tension
as ≈τ 3/2.

Future directions for this work include a first-principles
calculation of the effective spring constant k representing
the network. At least, one may imagine pursuing a type
of self-consistent analysis by demanding that the force ex-
tension relation of the filament coupled to the spring is
identical to those of the network filaments, the collective
elasticity of which is represented by that spring. Secondly,
one may consider how the transverse undulations of a
filament in the network (represented by external springs
coupled to the end of that filament) behave in response to
nonequilibrium driving, such as would be experienced by
the filament in a network driven by endogenous molecular
motors.
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APPENDIX A: DIAGRAMMATIC PERTURBATION
THEORY TOO(k2 )

We compute the adjusted self-energy given in Eq. (25) to
O(k2). For readability, in this section we drop the zero su-
perscript, with γp referring to γ 0

p . When we refer to diagrams
appearing in Fig. 3, we are including not only the diagram, but
also its combinatorial factor for contracting the legs. We also
include a factor of (−Dk�2/8)n/n! at O(kn). Diagram B1 has
combinatorial factor 2, A1 has 1, all C and D diagrams have
23, B2 has 22, B3 has 23, and A2 has 22.
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We calculate for the O(k) diagrams:

A1 = −1

2
kp2

∑
q

q2

γq
(A1)

and

B1 = −k
p4

γp
. (A2)

For the D diagrams, D1 and D2 vanish due to a closed re-
sponse loop. D3 and D4 give identical contributions, leading
us to write the D contribution as

D3 + D4 = k2p8

γ 3
p

. (A3)

All three of the C diagrams give the same contribution. Sum-
ming these gives

C1 + C2 + C3 = k2
3Dp8

γ 2
p (−iω + 3Dγp)

. (A4)

Lastly, for the B diagrams,

B2 = k2
p4

γp

∑
q

Dq4

γq(−iω + 2Dγq + Dγp)
(A5)

and

B3 = k2p4
∑
q

Dq4

2γ 2
q (−iω + 2Dγq + Dγp)

. (A6)

Taking the sum, we simplify to

B2 + B3 = k2p4

2γp

∑
q

q4

γ 2
q

(
1 − −iω

−iω + D(2γq + γp)

)
.

(A7)

The last diagram is

A2 = k2p2
(∑

q

q2

2γq

)(∑
q

q4

2γ 2
q

)
. (A8)

The adjusted self-energy is simply the sum of these contribu-
tions. Altogether we find

�̃p(ω) = −k

(
p4

γp
+ p2

2

∑
q

q2

γq

)
+ k2

[
p8

γ 2
p

(
1

γp
+ 3D

−iω + 3Dγp

)
+ p4

2γp

∑
q

q4

γ 2
q

(
1 − −iω

−iω + D(2γq + γp)

)

+ 1

4
p2
(∑

q

q2

γq

)(∑
q

q4

γ 2
q

)]
+ O(k3). (A9)

We may rewrite this in terms of the dimensionless tension, φ = τ�2

π2κ
, and dimensionless frequency, ω̄ = ω�4/(Dκπ4), as

�̃n(ω) = −kkBT

κ

(
n2

n2 + φ
+ n2

2

∑
m

1

m2 + φ

)
+ k2�4k2BT

2

κ3π4

[
n2

(n2 + φ)3
+ 3n4

−iω̄ + 3n2(n2 + φ)

+ 1

2

n2

n2 + φ

∑
m

1

(m2 + φ)2

(
1 − −iω̄

−iω̄ + 2m2(m2 + φ) + n2(n2 + φ)

)
+ n2

4

∑
m,m′

1

(m2 + φ)(m′2 + φ)2

]
, (A10)

where m, m′, and n are positive integers, and we have restored factors of kBT .

Rewriting �̃p(ω) in terms of the dimensionless wave num-
ber p̄ = p

√
κ/τ instead leads to Eq. (26). We can categorize

several of the diagrams in terms of the n-bubble expansion.
Diagrams of type A contain one-bubbles, and generate a shift
in the effective tension. Diagrams of type B contain two-
bubbles, and generate a shift in the effective spring constant
k. The remaining diagrams are single line topologies.

APPENDIX B: MEAN-FIELD THEORY SOLUTION IN THE
TIME DOMAIN

Our starting point is Eq. (45). We begin by defining the
integrated projected length

�(t ) =
∫ t

λ0(t
′)dt ′, (B1)

as the antiderivative of λ0(t ). The differential equations of
motion [Eq. (45a)] governing the normal modes can be solved

in terms of λ0(t ). We find

up(t ) = up(0)χ̃p(t, 0) +
∫ t

0
dt ′χ̃p(t, t

′)ζp(t ′), (B2)

where we defined

χ̃q(t, t
′) = e−D(κq4+τq2 )(t−t ′ )−Dkq2[�(t )−�(t ′ )], (B3)

in agreement with the notation of Refs. [40,41]. The initial
condition up(0) may either be specified or treated as a random
variable. Using Eq. (45b), we can eliminate the normal modes
in favor of a single PIDE governing λ0(t ). We obtain

d�

dt
= �

4

∑
q

q2
{
χ2
q (t, 0)

〈
u2q(0)

〉+ 4D

�

∫ t

0
χ2
q (t, t

′)dt ′
}
.

(B4)
The brackets around up(0) indicate an average over these ini-
tial amplitudes. Since the average over the initial amplitudes
(u2q) may be taken with respect to any ensemble, this equation
can describe the relaxation of a nonequilibrium state. In this
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FIG. 11. Growth of additive tension renormalization �φ as a
function of the dimensionless spring constant k̄. φ = 100. At k =
τ/��0, we can no longer approximate �� as being k independent. It
decays like k−1/3, leading to the shift to k̄2/3 growth in �φ.

paper, however, we will be concerned with the case where
up(0) is sampled from the equilibrium ensemble.

We begin our analysis with the long-time or equilibrium
limit. We implement the long-time limit by removing the
initial condition and setting the lower limit of integration to
−∞. This gives the long-time limit PIDE

d�

dt
= D�

∑
p

p2
∫ t

−∞
e−2Dγ 0

p (t−t ′ )−2Dkp2[�(t )−�(t ′ )]dt ′. (B5)

In the long-time limit, we expect the system to reach equilib-
rium. Accordingly, we seek a solution of the form �(t ) = λ0t ,
i.e., constant λ0(t ). χq(t, t ′) then depends only on the time
difference (t − t ′), and we are free to Fourier transform. The
right hand side of the PIDE can be viewed as the Fourier
transform of χ̃2

q (t, 0)�(t ) evaluated at zero frequency, which
leads us immediately to Eq. (46).

As expected, this reproduces the equilibrium mean-field
theory equation of Ref. [13]. While, the sum can be performed
in closed form, we approximate the summation by an integra-
tion in order to understand its k dependence. Since deviations
in λ0 from the spring-free result occur at larger values of
k, the distinction between the summation and integration is
immaterial. In terms of the k-independent change in projected
length λfree

0 [found by setting k = 0 in Eq. (46)], we find the
equation

λ0

λfree
0

=
[
1 + kλfree

0

τ

(
λ0

λfree
0

)]−1/2

. (B6)

The most interesting result is found at high k, where the solu-
tion to this equation demands λ0/λ

free
0 ∼ k−1/3. Consequently,

the effective tension kλ0 ∼ k2/3. The transition occurs when
kλ0/τ ≈ 1. These results are confirmed by Fig. 11.

We now consider the short-time limit, where the behavior
is dependent on the initial condition. We treat the case where
up(0) is averaged over the k �= 0 equilibrium ensemble, and at
t = 0 a small, additional time-dependent tension

τ (t ) = τ + δ f (t )�(t ) (B7)

is applied. For reference, in equilibrium

〈
u2p(0)

〉
eq = 2kBT/�

κ p2(p2 + τ + kλ0)
, (B8)

which can be inferred from the long-time MFT solution. δ f (t )
has magnitude f , and is superimposed on top of a prestress τ .
In analogy with defining the time-integrated projected length,
we find it useful to introduce the time-integrated applied ten-
sion:

δF (t ) =
∫ t

0
δ f (t ′)dt ′. (B9)

Upon turning on the additional tension δ f (t ), the pro-
jected length will change by an amount δ〈��(t )〉 = 〈��(t ) −
��(0)〉, and the integrated projected length will change by
an amount �(t ) = �0 + δ�(t ), where �0 = λ∞

0 t is the long-
time constant solution. Comparing the two, we can identify

∂tδ� = δ〈��〉. (B10)

This relates δ� to the projected length response (which is not
necessarily linear). Decomposing � = �0 + δ�, we redefine

χ̃q(t, t
′) = e−Dq2(κq2+τ+kλ0 )(t−t ′ )e−Dq2[δA(t )+δA(t ′ )], (B11)

where we have grouped the two perturbations δ�(t ) and δF (t )
into a single function:

δA(t ) = kδ�(t ) + δF (t ). (B12)

This can similarly be accomplished by setting τ → τ + kλ0 +
δ f (t ) and replacing �(t ) → δ�(t ) in Eq. (B3). Substituting
and averaging over the initial condition yields the PIDE

dδ�

dt
= kBT

2

∑
q

{
χ̃2
q (t, 0) − 1

κq2 + τ + kλ0
+ 2q2

ξ⊥

∫ t

0
χ̃2
q (t, t

′)dt ′
}
.

(B13)
We are interested in the short-time solution to this equa-

tion. Since the projected length must be finite at t = 0, this
implies that, at short times, δ�(t ) ∼ tη for some η > 1. The
prestress ensures that δF (t ) can be made small (by reducing
the amplitude of applied tension) relative to τ at all values q,
allowing one to expand δF (t ) in the exponential of χ̃q(t, t ′) as
t → 0 [41]. Consequently, the change δ�(t ) will be small as
well, since it vanishes at f = 0. These considerations suggest
that we can expand χ̃q(t, t ′) in a power series about δ�(t ) and
δF (t ). Doing so, we find

dδ�

dt
= −

∫ t

0
M(t − t ′)[kδ�(t ′) + δF (t ′)]dt ′, (B14)

where we have defined the kernel

M(t ) =
∑
p

[
Dp2δ(t )

κ p2 + τ + kλ0
− 2D2p4e−2Dp2(κ p2+τ+kλ0 )t

]
.

(B15)
This may be solved by Laplace transformation. The Laplace
transform of the kernel is

M̃(z) =
∑
p

zDp2

(κ p2 + τ + kλ0)[z + 2Dp2(κ p2 + τ + kλ0)]
.

(B16)
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In terms of the dimensionless tension φ, the shift �φ de-
fined in Eq. (34), k̄, and the dimensionless Laplace variable
z̄ = z�4/Dκπ4, we can equivalently write this as

M̃(z̄) =
∞∑
n=1

Dn2z̄/κ

(n2 + φ + �φ)[z̄ + 2n2(n2 + φ + �φ)]
.

(B17)
Solving, the transformed change in projected length δ�(z) is

δ�(z) = − M̃(z)/z

1 + kM̃(z)/z
δF (z). (B18)

Since F (z) is proportional to f , we may divide both sides by
f , then use Eq. (B10) to obtain the Laplace transform of the
projected length linear response:

χ��(z) = −z
M̃(z)/z

1 + kM̃(z)/z

δF (z)

f
. (B19)

APPENDIX C: POLARIZATION FUNCTION
CALCULATION

It is computationally easier to begin by working in the time
domain. We decompose M−1(t, t ′) in terms of its k = 0 and
k �= 0 pieces via

M−1(t, t ′) = σ + Dk�(t, t ′), (C1)

where σ represents the 2 × 2 block matrix with zeros along
the diagonal, and identity matrices on the off diagonal. We call
the additional contribution, �(t, t ′), the polarization matrix,
in analogy to electron screening in metals [34]. It encodes
fluctuation corrections, and is determined by the trace log.
Specifically, it is given by the second-order term in the Taylor
expansion of Tr ln(1 + Dkp2Ĝδ̂λ) about the small matrix

δ̂λ(t ) =
(

0 δλ(t )
δλ(t ) −δλ(t )

)
. (C2)

Ĝ is the saddle-point, matrix-valued Green’s function

Ĝ(t, t ′) =
(

0 Ḡ−
p (t − t ′)

Ḡ+
p (t − t ′) C̄p(t − t ′)

)
, (C3)

with components given by the time representation of
Eq. (58a),

Ḡ±
p (t ) = �(±t )e∓Dγpt , (C4)

and Eq. (58b),

C̄p(t, t
′) = 2D

∫
dτG+(t − τ )G−(τ − t ′). (C5)

The modified function γp = γ 0
p + kp2λ0 includes the

saddle-point value λ0. The logarithm of matrices is defined via
its Taylor series, the quadratic term of which is −1

2 TrĜδ̂λĜδ̂λ.
The factor of 1/2 can be factored out, per the definition of �.
Products of the form Ĝ±(t )Ĝ±(−t ) have vanishing support
due to the θ functions and are zero. Carrying out the matrix
products, we find that �(t, t ′) = �(t − t ′) is a function only
of the time difference, with the result

�(t ) =
∑
p

p4
( −C2

p (t ) 2G+
p (t )Cp(t )

2G−
p (t )Cp(t ) 0

)
. (C6)

Since each of the operators depends on only the time differ-
ence t − t ′, we may Fourier transform to frequency space.
Including the σ contribution we find the effective functional
matrix

M−1
ω =

( −�0
ω �+

ω + 1
�−

ω + 1 0

)
. (C7)

The individual components are given by Eqs. (61) and (62).
We have chosen the ± notation to emphasize the similarity
of �± to Green’s functions, and �0 to the spring-free cor-
relator. Indeed, �+ = (�−)∗, and, as a consequence of the
fluctuation-dissipation, the � functions obey the relationship

Im�+
ω = ω

2kBT
�0

ω. (C8)

We thus need only compute �+ to fully specify the polariza-
tion matrix.

APPENDIX D: TRANSVERSE SPRING ONLY

For completeness, we report the solution of the problem for
a purely transverse spring attached at the end point (i.e., no
longitudinal component). To incorporate both the longitudinal
and transverse springs simultaneously, we simply replace the
decay rates below with those calculated in the main text in
the presence of a longitudinal spring. We follow the method
of Ref. [13] for dealing with inhomogeneous boundary condi-
tions in Fourier space. In this section, primes refer to spatial
derivatives.

The homogeneous boundary conditions are pinned, with
zero torque at both end points: u(xS ) = u′′(xS ) = 0 and xS =
0, �. Wave numbers are set to pn = nπ/�, for n a positive
integer. The transverse spring replaces the pinned boundary
condition u(�) = 0 with the new condition

−κu′′′′(�) + τu′′(�) = −k⊥u(�). (D1)

In the bulk, we still have the linear Langevin equation

∂t u + Dκu′′′′ − Dτu′′ = ζ (x, t ), (D2)

subject to the aforementioned boundary conditions. In order
to implement the boundary condition, we add an additional
force operator that is nondiagonal in wave number and regu-
lated by a parameter ε that we take to zero at the end of the
calculation [13]. We write[

δnm
(
∂t + Dκ p4n + Dτ p2n

)+ 1

4ε
ψnψm

]
um = δnmξm, (D3)

where we have defined the infinite dimensional vector

ψn = (−1)n
(

γn

pn
+ 1

2
k⊥ sin 2nπ

)
. (D4)

This is solved by the method of Green’s functions. We replace
ζ on the right side with a δ function in time and a Kronecker
delta δnk , and um(t ) by the Green’s function χ⊥

mk (t − t ′). The
response is still given by a sum over sines:

χ⊥(x, x′; t ) =
∞∑

m,n=1

χ⊥
mn(t ) sin(pnx) sin(pmx

′). (D5)

Next, we Laplace transform the χ version of Eq. (D3), take
the inverse of the left side, and finally take the ε → 0 limit to
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find

χ⊥
mk (s) = χD

mk (s) + χBC
mk (s), (D6)

which has decomposed into a homogeneous part plus bound-
ary term. The homogeneous part is

χD
nm(s) = χ0

n (s)δnm = δnm

s + γn
, (D7)

where for this section we have defined

γn = Dκ p4n + Dτ p2n. (D8)

The boundary term is given by

χBC
mk (t ) = −(χ0

nψn
)2∑∞

n=1 ψnχ0
nψn

. (D9)

The numerator is

numerator = − (−1)n+m

pnpm

[
γnγm

(s + γn)(s + γm)

]
. (D10)

The denominator is a divergent sum. It has two main pieces:

∞∑
n=1

{
γ 2
n

p2n(s + γn)
+ k⊥

γn sin 2πn

pn(s + γn)
+ convergent

}
. (D11)

The third piece is a convergent sum proportional to sin 2π , and
can be safely set to zero. We rewrite the series by subtracting

out the divergent pieces as
∞∑
n=1

{ −sγn
p2n(s + γn)

+ γn

p2n
+ −s sin 2πn

pn(s + γn)
+ k⊥ sin 2πn

pn

}
.

(D12)

The first and third are now convergent, so the third can
immediately be set to zero. The second and fourth need
regularization. These sums were computed previously [13],
with the results −τ/2 and −k⊥�/2, respectively. We then
have

denominator = −1

2
(τ + k⊥�) −

∞∑
n=1

s
(
κ p2n + τ

)
s + κ p4n + τ p2n

.

(D13)

Combining, we find the boundary response

χBC
mn (s) = 2(−1)n+mγnγm

pnpm(τ + k⊥� + F (s))(s + γn)(s + γm)
, (D14)

where

F (s) = 2
∞∑
n=1

s
(
κ p2n + τ

)
s + κ p4n + τ p2n

. (D15)

The sum of Eqs. (D7) and (D14) gives the final result for the
Laplace-transformed response function for a purely transverse
spring at the boundary. To obtain the space-time domain solu-
tion, one can numerically perform the inverse transform and
sum over modes according to Eq. (D5).
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