
The FAST Algorithm for Submodular Maximization

Adam Breuer 1 Eric Balkanski 1 Yaron Singer 1

Abstract

In this paper we describe a new parallel al-
gorithm called Fast Adaptive Sequencing Tech-
nique (FAST) for maximizing a monotone sub-
modular function under a cardinality constraint
k. This algorithm achieves the optimal 1 − 1/e
approximation guarantee and is orders of mag-
nitude faster than the state-of-the-art on a variety
of experiments over real-world data sets. Follow-
ing recent work by Balkanski & Singer (2018a),
there has been a great deal of research on algo-
rithms whose theoretical parallel runtime is ex-
ponentially faster than algorithms used for sub-
modular maximization over the past 40 years.
However, while these new algorithms are fast in
terms of asymptotic worst-case guarantees, it is
computationally infeasible to use them in prac-
tice even on small data sets because the num-
ber of rounds and queries they require depend on
large constants and high-degree polynomials in
terms of precision and confidence. The design
principles behind the FAST algorithm we present
here are a significant departure from those of re-
cent theoretically fast algorithms. Rather than
optimize for asymptotic theoretical guarantees,
the design of FAST introduces several new tech-
niques that achieve remarkable practical and the-
oretical parallel runtimes. The approximation
guarantee obtained by FAST is arbitrarily close
to 1 − 1/e, and its asymptotic parallel run-
time (adaptivity) is O(log(n) log2(log k)) using
O(n log log(k)) total queries. We show that
FAST is orders of magnitude faster than any algo-
rithm for submodular maximization we are aware
of, including hyper-optimized parallel versions
of state-of-the-art serial algorithms, by running
experiments on large data sets.

1Harvard University, Cambridge, MA. Correspon-
dence to: Adam Breuer <breuer@g.harvard.edu>,
Eric Balkanski <ebalkans@gmail.com>, Yaron Singer
<yaron@seas.harvard.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

1. Introduction
In this paper we describe a fast parallel algorithm for sub-
modular maximization.1 Informally, a function is submod-
ular if it exhibits a natural diminishing returns property. For
the canonical problem of maximizing a monotone submod-
ular function under a cardinality constraint, it is well known
that the greedy algorithm, which iteratively adds elements
whose marginal contribution is largest to the solution,
obtains a 1 − 1/e approximation guarantee (Nemhauser
et al., 1978) which is optimal for polynomial-time algo-
rithms (Nemhauser & Wolsey, 1978). The greedy algo-
rithm and other submodular maximization techniques are
heavily used in machine learning and data mining as many
fundamental objectives such as entropy, mutual informa-
tion, graphs cuts, diversity, and set cover are submodular.

In recent years there has been a great deal of progress on
fast algorithms for submodular maximization designed to
accelerate computation on large data sets. The first line
of work considers serial algorithms where queries can be
evaluated on a single processor (Leskovec et al., 2007;
Badanidiyuru & Vondrák, 2014; Mirzasoleiman et al.,
2015; 2016; Ene & Nguyen, 2019b;c). For serial algo-
rithms the state-of-the-art for maximization under a car-
dinality constraint is the lazier-than-lazy-greedy (LTLG)
algorithm which returns a solution that is in expectation ar-
bitrarily close to the optimal 1−1/e and does so in a linear
number of queries (Mirzasoleiman et al., 2015). This al-
gorithm is a stochastic greedy algorithm coupled with lazy
updates, which not only performs well in terms of the qual-
ity of the solution it returns, but is also very fast in practice.

Accelerating computation beyond linear runtime requires
parallelization. The parallel runtime of blackbox optimiza-
tion is measured by adaptivity, which is the number of se-
quential rounds an algorithm requires when polynomially-
many queries can be executed in parallel in every round.
For maximizing a submodular function defined over a
ground set of n elements under a cardinality constraint k,
the adaptivity of the naive greedy algorithm isO(k), which
in the worst case is O(n). Until recently no algorithm was
known to have better parallel runtime than that of greedy.

A very recent line of work initiated by Balkanski &

1Code is available from www.adambreuer.com/code.

The FAST Algorithm for Submodular Maximization

Algorithm rounds queries time (sec)
AMORTIZED-FILTERING 961 2124351 20.29
(Balkanski et al., 2019a)
BINARY-SEARCH-MAXIMIZATION 8744 2552028 24.64
(Fahrbach et al., 2019a)
RANDOMIZED-PARALLEL-GREEDY 92 148642 4.11
(Chekuri & Quanrud, 2019b)
PARALLEL-LTLG 200 856 0.15
(Mirzasoleiman et al., 2015)
FAST 9 1598 0.033

Singer (2018a) develops techniques for designing constant
approximation algorithms for submodular maximization
whose parallel runtime is logarithmic (Balkanski & Singer,
2018b; Balkanski et al., 2018; Ene & Nguyen, 2019a;
Fahrbach et al., 2019a;b; Kazemi et al., 2019; Chekuri &
Quanrud, 2019a;b; Balkanski et al., 2019a;b; Ene et al.,
2019; Chen et al., 2019; Esfandiari et al., 2019; Qian &
Singer, 2019). In particular, Balkanski & Singer (2018a)
describe a technique called adaptive sampling that obtains
in O(log n) rounds a 1/3 approximation for maximizing
a monotone submodular function under a cardinality con-
straint. This technique can be used to obtain an approxi-
mation arbitrarily close to the optimal 1− 1/e in O(log n)
rounds (Balkanski et al., 2019a; Ene & Nguyen, 2019a).

1.1. From theory to practice

The focus of the work on adaptivity described above has
largely been on conceptual and theoretical contributions:
achieving strong approximation guarantees under various
constraints with runtimes that are exponentially faster un-
der worst case theoretical analysis. From a practitioner’s
perspective however, even the state-of-the-art algorithms in
this genre are infeasible for large data sets. The logarithmic
parallel runtime of these algorithms carries extremely large
constants and polynomial dependencies on precision and
confidence parameters that are hidden in their asymptotic
analysis. In terms of sample complexity alone, obtaining
(for example) a 1−1/e−0.1 approximation with 95% con-
fidence for maximizing a submodular function under cardi-
nality constraint k requires evaluating at least 108 (Balka-
nski et al., 2019a) or 106 (Fahrbach et al., 2019a; Chekuri
& Quanrud, 2019b) samples of sets of size approximately

k
logn in every round. Even if one heuristically uses a single
sample in every round, other sources of inefficiencies that
we discuss throughout the paper prevent these algorithms
from being applied even on moderate-sized data sets. The
question is then whether the plethora of breakthrough tech-
niques in this line of work of exponentially faster algo-
rithms for submodular maximization can lead to algorithms
that are fast in practice for large problem instances.

1.2. Our contribution

In this paper we design a new algorithm called Fast Adap-
tive Sequencing Technique (FAST) for maximizing a mono-
tone submodular function under a cardinality constraint k.
FAST has an approximation ratio that is arbitrarily close to
1−1/e, isO(log(n) log2(log k)) adaptive, and uses a total
ofO(n log log(k)) queries. The main contribution is not in
the algorithm’s asymptotic guarantees, but in its design that
is extremely efficient both in terms of its non-asymptotic
worst case query complexity and number of rounds, and
in terms of its practical runtime. In terms of actual query
complexity and practical runtime, this algorithm outper-
forms all algorithms for submodular maximization we are
aware of, including hyper-optimized versions of LTLG. To
be more concrete, we give a brief experimental compari-
son in the table above for a movie recommendation objec-
tive on n = 500 movies against optimized implementations
of algorithms with the same adaptivity and approximation
(experiment details in Section 4).2

FAST achieves its speedup by thoughtful design that results
in frugal worst case query complexity as well as several
heuristics used for practical speedups. From a purely ana-
lytical perspective, FAST improves the ε dependency in the
linear term of the query complexity of at least Õ(ε−5n)
in Balkanski et al. (2019a) and Ene & Nguyen (2019a)
and Õ(ε−3n) in Fahrbach et al. (2019a) to Õ(ε−2n). We
provide the first non-asymptotic bounds on the query and
adaptive complexity of an algorithm with sublinear adap-
tivity, showing dependency on small constants. Our algo-
rithm uses adaptive sequencing (Balkanski et al., 2019b)
and multiple optimizations to improve the query complex-
ity and runtime.

1.3. Paper organization

We introduce the main ideas and decisions behind the de-
sign of FAST in Section 2. We describe and analyze guar-
antees in Section 3. We discuss experiments in Section 4.

2To obtain these values, we set all algorithms to guarantee a
1−1/e−0.1 approximation with probability 0.95 except LTLG,
which has this guarantee in expectation, and we set k = 200.

The FAST Algorithm for Submodular Maximization

2. FAST Overview
Before describing the algorithm, we give an overview of
the major ideas and discuss how they circumvent the bottle-
necks for practical implementation of existing logarithmic
adaptivity algorithms.

Adaptive sequencing vs. adaptive sampling. The large
majority of low-adaptivity algorithms use adaptive sam-
pling (Balkanski & Singer, 2018a; Ene & Nguyen, 2019a;
Fahrbach et al., 2019a;b; Balkanski et al., 2018; 2019a;
Kazemi et al., 2019), a technique introduced in Balkanski
& Singer (2018a). These algorithms sample a large num-
ber of sets of elements at every iteration to estimate (1) the
expected marginal contribution of a random set R to the
current solution S and (2) the expected marginal contribu-
tions of each element a to R ∪ S. These estimates, which
rely on concentration arguments, are then used to either add
a random set R to S or discard elements with low expected
marginal contribution to R ∪ S.

In contrast, the adaptive sequencing technique which was
recently introduced in Balkanski et al. (2019b) generates
at every iteration a single random sequence (a1, . . . , a|X|)
of the elements X not yet discarded. A prefix Ai⋆ =
(a1, . . . , ai⋆) of the sequence is then added to the solution
S, where i⋆ is the largest position i such that a large frac-
tion of the elements in X have high marginal contribution
to S ∪ Ai−1. Elements with low marginal contribution to
the new solution S are then discarded from X .

The first choice we made was to use an adaptive sequencing
technique rather than adaptive sampling.

• Dependence on large polynomials in ε. Adaptive
sampling algorithms crucially rely on sampling, and
as a result their query complexity has high polynomial
dependency on ε (e.g. at least O(ε−5n) in Balkanski
et al. (2019a) and Ene & Nguyen (2019a)). Due to
these ε dependencies, the query complexity blows up
with any reasonable value for ε. In contrast, adaptive
sequencing generates a single random sequence at ev-
ery iteration. Therefore, in the term that is linear in n
we can obtain an ε dependence that is only Õ(ε−2).

• Dependence on large constants. The asymptotic
query complexity of previous algorithms depends on
very large constants (e.g. at least 60000 in Balkan-
ski et al. (2019a) and Ene & Nguyen (2019a)) mak-
ing them impractical. As we tried to optimize con-
stants for adaptive sampling, we found that due to the
sampling and the requirement to maintain strong the-
oretical guarantees, the constants cascade and grow
through multiple parts of the analysis. In principle,
adaptive sequencing does not rely on sampling, which
dramatically reduces its dependency on constants.

Negotiating the adaptive complexity with the query
complexity. The vanilla version of our algorithm, whose
description and analysis are in Appendix A, has at most
ε−2 log n adaptive rounds and uses a total of ε−2nk queries
to obtain a 1− 1/e− 3

2ε approximation, without additional
dependence on constants or lower order terms. In our ac-
tual algorithm, we trade a small factor in adaptive complex-
ity for a substantial improvement in query complexity. We
do this in the following manner:

• Search for estimates of OPT. All algorithms with
logarithmic adaptivity require a good estimate of OPT,
which can be obtained by running ε−1 log k instances
of the algorithms with different guesses of OPT in par-
allel, so that one guess is guaranteed to be a good ap-
proximation to OPT.3 We accelerate this search by
binary searching over the guesses of OPT. A main
difficulty when using this binary search is that the ap-
proximation guarantee of the solution obtained with
each guess of OPT needs to hold with high probabil-
ity, instead of in expectation, to obtain any guarantee
for the global solution.

Even though the guarantees on the marginal contribu-
tions obtained from each element added to the solution
only hold in expectation for adaptive sequencing, we
obtain high probability guarantees for the global solu-
tion by generalizing the robust guarantees obtained in
Hassidim & Singer (2017) so that they also apply to
adaptive sequencing. In the practical speedups below,
we discuss how we often only need a single iteration
of this binary search in practice;

• Search for position i⋆. To find the position i⋆, which
is the largest position i ∈ [k] in the sequence such that
a large fraction of not-yet-discarded elements have
high marginal contribution to S ∪ Ai−1, the vanilla
adaptive sequencing technique queries the marginal
contribution of all elements in X at each of the k po-
sitions. This search for i⋆ causes the O(nk) query
complexity.

Instead, similarly to the search of OPT, we binary
search over a set of ε−1 log k geometrically increas-
ing values i that correspond to guesses of i⋆. This
improves the O(nk) dependency on n and k in the
query complexity to O(n log(log k)). Then, at any
step of the binary search over a position i, instead of
evaluating the marginal contribution of all elements
in X to S ∪ Ai−1, we only evaluate a small sample
of elements. In the practical speedups below, we dis-
cuss how we can often skip this binary search for i⋆ in
practice.

3Fahrbach et al. (2019a) do some preprocessing to estimate
OPT, but it is estimated within some very large constant.

The FAST Algorithm for Submodular Maximization

Practical speedups. We include several ideas which re-
sult in considerable speedups in practice without sacrificing
approximation, adaptivity, or query complexity guarantees:

• Preprocessing the sequence. At the outset of each it-
eration of the algorithm, before searching for a prefix
Ai⋆ to add to the solution S, we first use a prepro-
cessing step that adds high value elements from the
sequence to S. Specifically, we add to the solution S
all sequence elements ai that have high marginal con-
tribution to S ∪Ai−1.

After adding these high-value elements, we discard
surviving elements in X that have low marginal con-
tribution to the new solution S. In the case where this
step discards a large fraction of surviving elements
from X , we can also skip this iteration’s binary search
for i⋆ and continue to the next iteration without adding
a prefix to S;

• Number of elements added per iteration. An adap-
tive sampling algorithm which samples sets of size s
adds at most s elements to the current solution at each
iteration. In contrast, adaptive sequencing and the pre-
processing step described above often allow our algo-
rithm to add a very large number of elements to the
current solution at each iteration in practice;

• Single iteration of the binary search for OPT. Even
with binary search, running multiple instances of the
algorithm with different guesses of OPT is undesir-
able. We describe a technique that often needs only
a single guess of OPT. This guess is the sum v =
max|S|≤k

∑︁
a∈S f(a) of the k highest valued single-

tons, which is an upper bound on OPT. If the solu-
tion S obtained with that guess v has value f(S) ≥
(1 − 1/e)v, then, since v ≥ OPT, S is guaranteed
to obtain a 1 − 1/e approximation and the algorithm
does not need to continue the binary search. Note that
with a single guess of OPT, the robust guarantees for
the binary search are not needed, which improves the
sample complexity to m = 2+ε

ε2(1−3ε) log(2δ
−1);

• Lazy updates. There are many situations where
lazy evaluations of marginal contributions can be per-
formed (Minoux, 1978; Mirzasoleiman et al., 2015).
Since we never discard elements from the solution S,
the marginal contributions of elements a to S are non-
increasing at every iteration by submodularity. Ele-
ments with low marginal contribution c to the current
solution at some iteration are ignored until the thresh-
old t is lowered to t ≤ c. Lazy updates also accelerate
the binary search over i⋆.

3. The Algorithm
We describe the FAST-FULL algorithm (Algorithm 1). The
main part of the algorithm is the FAST subroutine (Algo-
rithm 2), which is instantiated with different guesses of
OPT. These guesses v ∈ V of OPT are geometrically in-
creasing from maxa∈N f(a) to max|S|≤k

∑︁
a∈S f(a) by a

(1 − ε)−1 factor, so V contains a value that is a 1 − ε ap-
proximation to OPT. The algorithm binary searches over
guesses for the largest guess v that obtains a solution S that
is a 1− 1/e approximation to v.

Algorithm 1 FAST-FULL: the full algorithm

input function f , cardinality constraint k, parameter ε
V ← GEOM(maxa f(a),max|S|≤k

∑︁
a∈S f(a), 1− ε)

v⋆ ← B-SEARCH(max{v ∈ V : f(Sv) ≥ (1− 1/e)v})
where Sv ← FAST(v)

return Sv⋆

FAST generates at every iteration a uniformly random se-
quence a1, . . . , a|X| of the elements X not yet discarded.
After the preprocessing step which adds to S elements
guaranteed to have high marginal contribution, the algo-
rithm identifies a position i⋆ in this sequence which deter-
mines the prefix Ai⋆−1 that is added to the current solution
S. Position i⋆ is defined as the largest position such that
there is a large fraction of elements in X with high con-
tribution to S ∪ Ai⋆−1. To find i⋆, we binary search over
geometrically increasing positions i ∈ I ⊆ [k]. At each
position i, we only evaluate the contributions of elements
a ∈ R , where R is a uniformly random subset of X of size
m, instead of all elements X .

Algorithm 2 FAST: the Fast Adaptive Sequencing Tech-
nique algorithm

input f , constraint k, guess v for OPT, parameter ε
S ← ∅
while |S| < k and number of iterations < ε−1 do

X ← N, t← (1− ε)(v − f(S))/k
while X ̸= ∅ and |S| < k do

a1, . . . , a|X| ← SEQUENCE(X, |X|)
Ai ← a1, . . . , ai
S ← S ∪ {ai : fS∪Ai−1(ai) ≥ t}
X0 ← {a ∈ X : fS(a) ≥ t}
if |X0| ≤ (1− ε)|X| then

X ← X0 and continue to next iteration
R← SAMPLE(X,m),
I ← GEOM(1, k − |S|, 1− ε)
Ri ←

{︁
a ∈ R : fS∪Ai−1(a) ≥ t

}︁
, for i ∈ I

i⋆ ← B-SEARCH(max{i : |Ri| ≥ (1− 2ε)|R|})
S ← S ∪Ai⋆

return S

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

0e+00

5e+01

1e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

● FAST
Am−Filtering
Rand−P−Greedy
Bin−Search−Max
Parallel−Greedy
Parallel−LTLG
Random

SBM Graph: n=515

●

●

●

●

●

●

●

0e+00

1e+02

2e+02

3e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

ER Graph: n=500

●

●

●

●

●

●

●

0.0e+00

5.0e+01

1.0e+02

1.5e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

WS Graph: n=500

●

●

●

●
●

●
●

0e+00

1e+02

2e+02

3e+02

10 20 30 40
k

ob
je

ct
iv

e
va

lu
e

BA Graph: n=500

● ●

●
● ● ●

●

0.1

0.5

1.0

10 20 30 40
k

tim
e

(s
ec

)

● ●
●

●
● ● ●

0.1

0.5

1.0

5.0

10.0
15.0
20.0

10 20 30 40
k

tim
e

(s
ec

)

●

● ● ●
●

●
●

0.1

0.5

1.0

10 20 30 40
k

tim
e

(s
ec

)

● ● ●
● ●

●
●

0.1

0.5

1.0

5.0

10.0
15.0
20.0

10 20 30 40
k

tim
e

(s
ec

)

Figure 1. Experiment Set 1.a: FAST (blue) vs. low-adaptivity algorithms and PARALLEL-LTLG on graphs (time axis log-scaled).

3.1. Analysis

We show that FAST obtains a 1 − 1/e − ε approximation
w.p. 1−δ and that it has Õ(ε−2 log n) adaptive complexity
and Õ(ε−2n+ ε−4 log(n) log(δ−1)) query complexity.

Theorem 1. Assume k ≥ 2 log(2δ−1ℓ)
ε2(1−5ε) and ε ∈ (0, 0.1),

where ℓ = log(log k
ε). Then, FAST with sample complexity

m = 2+ε
ε2(1−3ε) log(

4ℓ logn
δε2) has at most ε−2 log(n)ℓ2 adap-

tive rounds, 2ε−2ℓn+ε−4 log(n)ℓ2m queries, and achieves
a 1− 1

e − 4ε approximation with probability 1− δ.

We defer the analysis to Appendix B. The main part of it
is for the approximation guarantee, which consists of two
cases depending on the condition which breaks the outer-
loop. Lemma 3 shows that when there are ε−1 iterations
of the outer-loop, the set of elements added to S at every
iteration of the outer-loop contributes ε−1(OPT − f(S)).
Lemma 5 shows that for the case where |S| = k, the ex-
pected contribution of each element ai added to S is arbi-
trarily close to (OPT− f(S))/k. For each solution Sv , we
need the approximation guarantee to hold with high prob-
ability instead of in expectation to be able to binary search
over guesses for OPT, which we obtain in Lemma 7 by
generalizing the robust guarantees of Hassidim & Singer
(2017) in Lemma 6. The main observation to obtain the
adaptive complexity (Lemma 6) is that, by definition of
i⋆, at least an ε fraction of the surviving elements in X
are discarded at every iteration with high probability.4 For

4To obtain the adaptivity r with probability 1 and the approx-
imation guarantee w.p. 1− δ, the algorithm declares failure after
r rounds and accounts for this failure probability in δ.

the query complexity (Lemma 7), we note that there are
|X|+mℓ function evaluations per iteration.

4. Experiments
Our goal in this section is to show that in practice, FAST
finds solutions whose value meets or exceeds alternatives
in less parallel runtime than both state-of-the-art low-
adaptivity algorithms and LAZIER-THAN-LAZY-GREEDY
(LTLG). To accomplish this, we build optimized parallel
MPI implementations of FAST, other low-adaptivity algo-
rithms, and LTLG, which is widely regarded as the fastest
algorithm for submodular maximization in practice. We
then use 95 Intel Skylake-SP 3.1 GHz processors on AWS
to compare the algorithms’ runtime over a variety of objec-
tives defined on 8 real and synthetic datasets. We measure
runtime using a rigorous measure of parallel time (see Ap-
pendix C.8). Appendices C.1, C.4, C.9, and C.6 contain
detailed descriptions of the benchmarks, objectives, imple-
mentations, hardware, and experimental setup on AWS.5

We conduct two sets of experiments. The first set com-
pares FAST to previous low-adaptivity algorithms on 8 ob-
jectives. Since previous algorithms all have practically in-
tractable sample complexity, we grossly reduce their sam-
ple complexity to only 95 samples per iteration so that
each processor performs a single function evaluation per
iteration. This reduction, which we discuss in detail be-
low, gives these algorithms a large runtime advantage over
FAST, which computes its full theoretical sample complex-
ity in all experiments. This is practically feasible for FAST

5Code is available from www.adambreuer.com/code.

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

●

0.0e+00

3.0e+08

6.0e+08

9.0e+08

1.2e+09

40 80 120 160
k

ob
je

ct
iv

e
va

lu
e

● FAST
Am−Filtering
Rand−P−Greedy
Bin−Search−Max
Parallel−Greedy
Parallel−LTLG
Random

Traffic Network: n=525

●

●

●

●

●

●

●

●

0e+00

1e+05

2e+05

3e+05

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

Movie Recommendation: n=500

●

●

●

●

●

●

●
●

●
●

0e+00

1e+03

2e+03

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

YouTube: n=571

●

●

●

●

●

●

●

0e+00

1e+02

2e+02

3e+02

4e+02

100 200 300
k

ob
je

ct
iv

e
va

lu
e

Influence Max: n=769

●

●
● ●

● ● ● ●
0.1

0.5

1.0

10.0

40 80 120 160
k

tim
e

(s
ec

)

● ●

● ● ●
● ●

●

0.1

0.5

1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
● ● ●

● ●

● ● ● ●

0.1

0.5

1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
●

●
●

●
●

●
0.1

0.5

1.0

10.0

100.0

100 200 300
k

tim
e

(s
ec

)

Figure 2. Experiment Set 1.b: FAST (blue) vs. low-adaptivity algorithms and PARALLEL-LTLG on real data (time axis log-scaled).

because FAST samples elements, not sets of elements like
previous algorithms. Despite the large advantage this setup
gives to the previous low-adaptivity algorithms, FAST is
consistently one to three orders of magnitude faster.

The second set of experiments compares FAST to
PARALLEL-LAZIER-THAN-LAZY-GREEDY (PARALLEL-
LTLG) on large-scale data sets. We scale up the 8 objec-
tives to be defined on synthetic data with n = 100000 and
real data with up to n = 26000 and various k ranging from
k = 25 to k = 25000. We find that FAST is consistently
1.5 to 27 times faster than PARALLEL-LTLG, and its run-
time advantage increases in k. These fast relative runtimes
are a loose lower bound on FAST’s performance advantage,
as FAST can reap additional speedups by adding up to n
processors, whereas PARALLEL-LTLG performs at most
n log(ε−1)/k function evaluations per iteration, so using
over 95 processors often does not help. In Section 4.1, we
show that on many objectives FAST is faster even with only
a single processor.

4.1. Experiments set 1: FAST vs. low-adaptivity
algorithms

Our first set of experiments compares FAST to state-of-
the-art low-adaptivity algorithms. To accomplish this,
we built optimized parallel MPI versions of each of
the following algorithms: RANDOMIZED-PARALLEL-
GREEDY (Chekuri & Quanrud, 2019b), BINARY-
SEARCH-MAXIMIZATION (Fahrbach et al., 2019a), and
AMORTIZED-FILTERING (Balkanski et al., 2019a). For
any given ε > 0 all these algorithms achieve a 1− 1/e− ε
approximation in O(poly(ε−1) log n) rounds.

We also compare these low-adaptivity algorithms to an op-
timized parallel MPI implementation of LAZIER-THAN-
LAZY-GREEDY (LTLG) (Mirzasoleiman et al., 2015) (see
Appendix C.11). LTLG is widely regarded as the fastest
algorithm for submodular maximization in practice, and it
has a (1−1/e−ε) approximation guarantee in expectation.

For calibration, we also ran (1) PARALLEL-GREEDY, a
parallel version of the standard GREEDY algorithm, as a
heuristic upper bound for the objective value, as well as
(2) RANDOM, an algorithm that simply selects k elements
uniformly at random.

A fair comparison of the low-adaptivity algorithms’ paral-
lel runtimes and solution values is to run each algorithm
with parameters that yield the same guarantees, for exam-
ple a 1−1/e−ε approximation w.p. 1−δ with ε = 0.1 and
δ = 0.05. However, this is infeasible since the other low-
adaptivity algorithms all require a practically intractable
number of queries to achieve any reasonable guarantees,
e.g. every round of AMORTIZED-FILTERING would re-
quire at least 108 samples, even with n = 500.

Dealing with benchmarks’ practically intractable query
complexity. To run other low-adaptivity algorithms de-
spite their huge sample complexity we made two major
modifications:

1. Accelerating subroutines. We optimize each of the
three other low-adaptivity benchmarks by implement-
ing parallel binary search to replace brute-force search
and several other modifications that reduce unnecessary
queries (for a full description of these fast implementa-
tions, see Appendix C.10). These optimizations result in

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

0e+00

1e+04

2e+04

0 2500 5000 7500 10000
k

ob
je

ct
iv

e
va

lu
e

● FAST
Parallel−LTLG
Random

SBM Graph: n=48,000

●
●

●

●
●

●

●

●

●

●

●

●
●

0.0e+00

2.5e+04

5.0e+04

7.5e+04

1.0e+05

0 250 500 750 1000
k

ob
je

ct
iv

e
va

lu
e

ER Graph: n=100,000

●
●●

●

●

●

●

●

●

0e+00

2e+04

4e+04

6e+04

8e+04

0 5000 10000 15000 20000 25000
k

ob
je

ct
iv

e
va

lu
e

WS Graph: n=100,000

●

●

●

●

●

●

●

●

●

0e+00

2e+04

4e+04

6e+04

8e+04

0 2500 5000 7500 10000 12500
k

ob
je

ct
iv

e
va

lu
e

BA Graph: n=100,000

● ● ●
● ● ●

●

0

100

200

0 2500 5000 7500 10000
k

tim
e

(s
ec

)

●● ●
● ● ● ● ● ● ● ● ●

●

0

50

100

0 250 500 750 1000
k

tim
e

(s
ec

)

●●● ● ●

●
● ●

●

0

500

1,000

1,500

0 5000 10000 15000 20000 25000
k

tim
e

(s
ec

)

●
●

● ● ● ●

●

●

●

0

200

400

600

0 2500 5000 7500 10000 12500
k

tim
e

(s
ec

)

Figure 3. Experiment Set 2.a: FAST (blue) vs. PARALLEL-LTLG (red) on graphs.

speedups that reduce their runtimes by an order of mag-
nitude in practice, and our implementations are pub-
licly available in our code base. Despite this, it remains
practically infeasible to compute these algorithms’ high
number of samples in practice even on small problems
(e.g. n = 500 elements);

2. Using a single query per processor. Since our inter-
est is in comparing runtime and not quality of approxi-
mation, we dramatically lowered the number of queries
the three benchmark algorithms require to achieve their
guarantees. Specifically, we set the parameters ε and
δ for both FAST and the three low-adaptivity bench-
marks such that all algorithms guarantee the same 1 −
1/e− 0.1 approximation with probability 0.95 (see Ap-
pendix C.3). However, for the low-adaptivity bench-
marks, we reduce their theoretical sample complexity
in each round to have exactly one sample per proces-
sor (instead of their large sample complexity, e.g. 108

samples needed for AMORTIZED-FILTERING).

This reduction in the number of samples per round al-
lows the benchmarks to have each processor perform
a single function evaluation per round instead of e.g.
108/95 functions evaluations per processor per round,
which ‘unfairly’ accelerates their runtimes at the ex-
pense of their approximations. However, we do not per-
form this reduction for FAST. Instead, we require FAST
to compute the full count of samples for its guarantees.
This is feasible since FAST samples elements rather than
sets.

Data sets. Even with these modifications, for tractability
we could only use small data sets:

• Experiments 1.a: synthetic data sets (n ≈ 500). To
compare the algorithms’ runtimes under a range of condi-
tions, we solve max cover on synthetic graphs generated
via four different well-studied graph models: Stochastic
Block Model (SBM); Erdős Rényi (ER); Watts-Strogatz
(WS); and Barbási-Albert (BA). See Appendix C.4.1 for
additional details;

• Experiments 1.b: real data sets (n ≈ 500). To
compare the algorithms’ runtimes on real data, we op-
timize Sensor Placement on California roadway traffic
data; Movie Recommendation on MovieLens data; Rev-
enue Maximization on YouTube Network data; and In-
fluence Maximization on Facebook Network data. See
Appendix C.4.3 for additional details.

Results of experiment set 1. Figures 1 and 2 plot all al-
gorithms’ solution values and parallel runtimes for various
k on synthetic and real data (each point is the mean of 5 tri-
als with the corresponding k). In terms of solution values,
across all experiments, values obtained by FAST are nearly
indistinguishable from values obtained by GREEDY—the
heuristic upper bound. From this comparison, it is clear that
FAST does not compromise on the values of its solutions.
In terms of runtime, FAST is 36 to 1600 times faster than
BINARY-SEARCH-MAXIMIZATION; 7 to 120 times faster
than RANDOMIZED-PARALLEL-GREEDY; 4 to 2200 times
faster than AMORTIZED-FILTERING; and 1.1 to 7 times
faster than PARALLEL-LTLG on the 8 objectives and var-
ious k (the time axes of Figures 1 and 2 are log-scaled).
Appendix C.12 shows that FAST continues to outperform
all benchmarks even (1) when we turn off its lazy updates,
and (2) when we run all low-adaptivity benchmarks on just

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

●

●

●

0e+00

2e+09

4e+09

250 500 750
k

ob
je

ct
iv

e
va

lu
e

● FAST
Parallel−LTLG
Random

Traffic Network: n=1885

●

●

●

●

●

●

●

0.00e+00

2.50e+06

5.00e+06

7.50e+06

1.00e+07

1.25e+07

100 200 300 400 500
k

ob
je

ct
iv

e
va

lu
e

Movies: n=3706

●

●

●

●

●

●

●
●

●
●

0.0e+00

2.5e+04

5.0e+04

7.5e+04

250 500 750 1000
k

ob
je

ct
iv

e
va

lu
e

YouTube: n=17,432

●

●

●

●

●

●

●

●

●

●

●

●

0e+00

3e+03

6e+03

9e+03

0 2500 5000 7500 10000
k

ob
je

ct
iv

e
va

lu
e

Influence Max: n=26,588

● ● ●
● ● ● ●

●
● ●

0

10

20

30

40

50

250 500 750
k

tim
e

(s
ec

)

● ● ●

● ●

●
●0.25

0.50

0.75

1.00

100 200 300 400 500
k

tim
e

(s
ec

)

● ●
● ● ● ●

● ● ● ●

0

50

100

150

200

250

250 500 750 1000
k

tim
e

(s
ec

)

● ● ●
● ● ●

●
● ● ● ● ●

0

50

100

150

200

0 2500 5000 7500 10000
k

tim
e

(s
ec

)

Figure 4. Experiment Set 2.b: FAST (blue) vs. PARALLEL-LTLG (red) on real data.

a single ‘good’ guess for OPT. We emphasize that FAST’s
faster runtimes were obtained despite the fact that the three
other low-adaptivity algorithms were run with only a single
sample per processor each iteration, rather than the 108 or
106 samples required for their respective guarantees.

4.2. Experiment set 2: FAST vs.
Parallel-Lazier-than-Lazy-Greedy

Our second set of experiments compares FAST to the op-
timized parallel version of LAZIER-THAN-LAZY-GREEDY
(LTLG) (Mirzasoleiman et al., 2015) on large data sets.
Specifically, our optimized parallel MPI implementation
of LTLG allows us to scale up to random graphs with
n ≈ 100000, large real data with n up to 26000, and var-
ious k from 25 to 25000 (see Appendix C.11). For these
large experiments, running the parallel GREEDY algorithm
is impractical. LTLG has a (1 − 1/e − ε) approxima-
tion guarantee in expectation, so we likewise set both al-
gorithms’ parameters ε to guarantee a (1− 1/e− 0.1) ap-
proximation in expectation (see Appendix C.3).

Results of experiment set 2. Figures 3 and 4 plot so-
lution values and runtimes for various k on large experi-
ments with synthetic and real data (each point is the mean
of 5 trials). In terms of solution values, while the two algo-
rithms achieved similar solution values across all 8 exper-
iments, FAST obtained slightly higher solution values than
PARALLEL-LTLG on most objectives and values of k.

In terms of runtime, FAST was 1.5 to 32 times faster than
PARALLEL-LTLG on each of the 8 objectives and all k we
tried from k = 25 to 25000. More importantly, runtime
disparities between FAST and PARALLEL-LTLG increase

in larger k, so larger problems exhibit even greater runtime
advantages for FAST.

Furthermore, we emphasize that due to the fact that the
sample complexity of PARALLEL-LTLG is less than 95
for many experiments, it cannot achieve better runtimes by
using more processors, whereas FAST can leverage up to
n processors to achieve additional speedups. Therefore,
FAST’s fast relative runtimes are a loose lower bound for
what can be obtained on larger-scale hardware and prob-
lems. Figure 5 plots FAST’s parallel speedups versus the
number of processors we use.

● ● ● ● ●

● ●
●

0

500

1,000

1,500

100 200 300 400 500
k

tim
e

(s
ec

)

● FAST
Parallel−LTLG

1 Processor Runtime: YouTube

●

●

●

●

●

●

5

10

15

20

1 2 4 8 16 32
processors

Pa
ra

lle
l S

pe
ed

up
 (s

er
ia

l t
im

e/
pa

ra
lle

l t
im

e)

Parallel Speedup: YouTube

● ● ● ● ●

● ●
●

0

500

1,000

1,500

100 200 300 400 500
k

tim
e

(s
ec

)
● FAST

Parallel−LTLG

1 Processor Runtime: YouTube

●

●

●

●

●

●

5

10

15

20

1 2 4 8 16 32
processors

Pa
ra

lle
l S

pe
ed

up
 (s

er
ia

l t
im

e/
pa

ra
lle

l t
im

e)

Parallel Speedup: YouTube

Figure 5. Single processor runtimes for FAST and PARALLEL-
LTLG, and parallel speedups vs. number of processors for FAST

for the YouTube experiment. See Appendix C.14 for details.

Finally, we note that even on a single processor, FAST is
faster than LTLG for reasonable values of k on 7 of the 8
objectives due to the fact that FAST often uses fewer queries
(see Appendix C.13). For example, Figure 5 plots single
processor runtimes for the YouTube experiment.

The FAST Algorithm for Submodular Maximization

5. Acknowledgements
This research was supported by a Google PhD Fellowship,
NSF grant CAREER CCF-1452961, BSF grant 2014389,
NSF USICCS proposal 1540428, NSF Grant 164732, a
Google research award, and a Facebook research award.

References
Badanidiyuru, A. and Vondrák, J. Fast algorithms for max-

imizing submodular functions. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, Jan-
uary 5-7, 2014, pp. 1497–1514, 2014. doi: 10.1137/1.
9781611973402.110. URL https://doi.org/10.
1137/1.9781611973402.110.

Balkanski, E. and Singer, Y. The adaptive complexity of
maximizing a submodular function. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 1138–1151. ACM, 2018a.

Balkanski, E. and Singer, Y. Approximation guarantees
for adaptive sampling. In International Conference on
Machine Learning, pp. 393–402, 2018b.

Balkanski, E., Breuer, A., and Singer, Y. Non-monotone
submodular maximization in exponentially fewer itera-
tions. NIPS, 2018.

Balkanski, E., Rubinstein, A., and Singer, Y. An expo-
nential speedup in parallel running time for submodu-
lar maximization without loss in approximation. SODA,
2019a.

Balkanski, E., Rubinstein, A., and Singer, Y. An opti-
mal approximation for submodular maximization under
a matroid constraint in the adaptive complexity model.
STOC, 2019b.

CalTrans. Pems: California performance measuring sys-
tem. http://pems.dot.ca.gov/ [accessed: Au-
gust 1, 2019].

Chekuri, C. and Quanrud, K. Parallelizing greedy for sub-
modular set function maximization in matroids and be-
yond. STOC, 2019a.

Chekuri, C. and Quanrud, K. Submodular function
maximization in parallel via the multilinear relaxation.
SODA, 2019b.

Chen, L., Feldman, M., and Karbasi, A. Unconstrained
submodular maximization with constant adaptive com-
plexity. STOC, 2019.

Ene, A. and Nguyen, H. L. Submodular maximization with
nearly-optimal approximation and adaptivity in nearly-
linear time. SODA, 2019a.

Ene, A. and Nguyen, H. L. A nearly-linear time algo-
rithm for submodular maximization with a knapsack
constraint. ICALP, 2019b.

Ene, A. and Nguyen, H. L. Towards nearly-linear time al-
gorithms for submodular maximization with a matroid
constraint. ICALP, 2019c.

Ene, A., Nguyen, H. L., and Vladu, A. Submodular maxi-
mization with matroid and packing constraints in paral-
lel. STOC, 2019.

Esfandiari, H., Karbasi, A., and Mirrokni, V. Adap-
tivity in adaptive submodularity. arXiv preprint
arXiv:1911.03620, 2019.

Fahrbach, M., Mirrokni, V., and Zadimoghaddam, M.
Submodular maximization with optimal approximation,
adaptivity and query complexity. SODA, 2019a.

Fahrbach, M., Mirrokni, V. S., and Zadimoghaddam, M.
Non-monotone submodular maximization with nearly
optimal adaptivity and query complexity. ICML, 2019b.

Feldman, M., Harshaw, C., and Karbasi, A. Defining and
evaluating network communities based on ground-truth.
Knowledge and Information Systems 42, 1 (2015), 33
pages., 2015.

Harper, F. M. and Konstan., J. A. The movielens datasets:
History and context. ACM Transactions on Interactive
Intelligent Systems (TiiS) 5, 4, Article 19 (December
2015), 19 pages., 2015. doi: http://dx.doi.org/10.1145/
2827872.

Hassidim, A. and Singer, Y. Robust guarantees of stochas-
tic greedy algorithms. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70,
pp. 1424–1432. JMLR. org, 2017.

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi,
S., and Karbasi, A. Submodular streaming in all its
glory: Tight approximation, minimum memory and low
adaptive complexity. arXiv preprint arXiv:1905.00948,
2019.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Van-
Briesen, J. M., and Glance, N. S. Cost-effective out-
break detection in networks. In Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Jose, California, USA,
August 12-15, 2007, pp. 420–429, 2007. doi: 10.1145/
1281192.1281239. URL https://doi.org/10.
1145/1281192.1281239.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization techniques,
pp. 234–243. Springer, 1978.

https://doi.org/10.1137/1.9781611973402.110
https://doi.org/10.1137/1.9781611973402.110
http://pems.dot.ca.gov/
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1145/1281192.1281239

The FAST Algorithm for Submodular Maximization

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.,
Vondrák, J., and Krause, A. Lazier than lazy greedy.
In Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, 2015.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A.
Fast constrained submodular maximization: Personal-
ized data summarization. In ICML, pp. 1358–1367,
2016.

Nemhauser, G. L. and Wolsey, L. A. Best algorithms for
approximating the maximum of a submodular set func-
tion. Mathematics of operations research, 3(3):177–188,
1978.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions—i. Mathematical Programming, 14(1):
265–294, 1978.

Qian, S. and Singer, Y. Fast parallel algorithms for statis-
tical subset selection problems. In Advances in Neural
Information Processing Systems, pp. 5073–5082, 2019.

Rossi, R. A. and Ahmed, N. K. The network data
repository with interactive graph analytics and visual-
ization. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, 2015. URL http:
//networkrepository.com.

Traud, A. L., Mucha, P. J., and Porter, M. A. Social
structure of Facebook networks. Phys. A, 391(16):4165–
4180, Aug 2012.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P.,
Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.
Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

http://networkrepository.com
http://networkrepository.com

The FAST Algorithm for Submodular Maximization

Appendix

A. Vanilla ADAPTIVE-SEQUENCING

We begin by describing a simplified version of the algorithm. This algorithm is ε−2 log n adaptive (without additional
dependence on constants), uses a total of ε−2nk queries (again, no additional constants), and obtains a 1 − 1

e −
3
2ε

approximation in expectation. Importantly, it assumes the value of the optimal solution OPT is known. The full algorithm
is an optimized version which does not assume OPT is known and improves the query complexity.

A.1. Description of ADAPTIVE-SEQUENCING

ADAPTIVE-SEQUENCING, formally described below as Algorithm 3, generates at every iteration a random sequence
a1, . . . , ak of elements that is used to both add elements to the current solution and discard elements from further con-
sideration. More precisely, each element ai, for i ∈ [k], in SEQUENCE(X, k) is a uniformly random element from the
set of surviving elements X , which initially contains all elements. The algorithm identifies a position i⋆ in this sequence
which determines the elements a1, . . . , ai⋆−1 that are added to the current solution S, as well as the elements a ∈ X with
low contribution to S ∪ {a1, . . . , ai⋆−1} that are discarded from X . This position i⋆ is defined to be the smallest position
such that there is at least an ε fraction of elements in X with low contribution to S ∪ {a1, . . . , ai⋆−1}. By the minimality
of i⋆, we simultaneously obtain that (1) the elements added to S, which are the elements before position i⋆, are likely
to contribute high value to the solution and (2) at least an ε fraction of the surviving elements have low contribution to
S ∪ {a1, . . . , ai⋆−1} and are discarded.

The algorithm iterates until there are no surviving elements left in X . It then lowers the threshold t between high and low
contribution and reinitializes the surviving elements X to be all elements. The algorithm lowers the threshold at most ε−1

times and then returns the solution S obtained.

Algorithm 3 ADAPTIVE-SEQUENCING

input function f , cardinality constraint k, parameter ε, value of optimal solution OPT
S ← ∅
while |S| < k and number of iterations < ε−1 do

X ← N, t← (1− ε)(OPT− f(S))/k
while X ̸= ∅ and |S| < k do

a1, . . . , ak ← SEQUENCE(X, k)
i⋆ ← min{i ∈ {1, . . . , k} : |Xi| ≤ (1− ε)|X|}

with Xi ←
{︁
a ∈ X : fS∪{a1,...,ai−1}(a) ≥ t

}︁
S ← S ∪ {a1, . . . , ai⋆−1}
X ← Xi⋆

return S

A.2. Analysis of ADAPTIVE-SEQUENCING

A.2.1. THE ADAPTIVE COMPLEXITY AND QUERY COMPLEXITY

The main observation to bound the number of iterations of the algorithm is that, by definition of i⋆, at least an ε fraction
of the surviving elements in X are discarded at every iteration. Since the queries at every iteration of the inner-loop can be
evaluated in parallel, the adaptive complexity is the total number of iterations of this inner-loop. For the query complexity,
we note that there are |X|k function evaluations per iteration.

Lemma 2. The adaptive complexity of ADAPTIVE-SEQUENCING is at most ε−2 log n. Its query complexity is at most
ε−2nk.

Proof. We first analyze the adaptive complexity and then the query complexity.

The adaptive complexity. The algorithm consists of an outer-loop and an inner-loop. We first argue that at any iteration
of the outer-loop, there are at most ε−1 log n iterations of the inner loop. By definition of i⋆, we have that |Xi⋆ | ≤
(1 − ε)|X|. Thus there is at least an ε fraction of the elements in X that are discarded at every iteration. The inner-loop

The FAST Algorithm for Submodular Maximization

terminates when |X| = 0, which occurs at the latest at iteration i where (1− ε)in < 1. This implies that there are at most
ε−1 log n iterations of the inner loop. The function evaluations inside an iteration of the inner-loop are non-adaptive and
can be performed in parallel in one round. These are the only function evaluations performed by the algorithm.6 Since
there are at most ε−1 iterations of the outer-loop, there are at most ε−2 log n rounds of parallel function evaluations.

The query complexity. In the inner-loop, the algorithm evaluates the marginal contribution of each element a ∈ X to
S ∪ {a1, . . . , ai} for all i ∈ {0, . . . , k − 1}, so a total of k|X| function evaluations. Similarly as for Lemma 2, at any
iteration of the outer-loop, there are at most ε−1 log n iterations of the inner-loop and we have |X| ≤ (1− ε)jn at iteration

j. We conclude that the query complexity is 1
ε

∑︁ log n
ε

j=1 k(1− ε)jn < nk
ε2 .

A.2.2. THE APPROXIMATION GUARANTEE

There are two cases depending on the condition which breaks the outer-loop. The main lemma for the case where there are
ε−1 iterations of the outer-loop is that at every iteration, the elements added to S contribute an ε fraction of the remaining
value OPT− f(S).

Lemma 3. Let Si be the current solution S at the start of iteration i of the outer-loop of ADAPTIVE-SEQUENCING. For
any i, if |Si+1| < k, then fSi

(Si+1) ≥ ε(OPT− f(Si)).

Proof. Since |Si+1| < k, X = ∅ at the end of iteration i. This implies that for all elements a ∈ N , a is discarded from
X by the algorithm at some iteration where fS∪{a1,...,ai⋆−1}(a) < (1 − ε)(OPT − f(Si))/k for some Si ⊆ S ⊆ Si+1.
By submodularity, for any element a ∈ N , we get fSi+1

(a) ≤ (1 − ε)(OPT − f(Si))/k. Next, by monotonicity and
submodularity, OPT− f(Si+1) ≤ fSi+1

(O) ≤
∑︁

o∈O fSi+1
(o). Combining the two previous inequalities, we obtain

OPT− f(Si+1) ≤
∑︂
o∈O

fSi+1(o) ≤
∑︂
o∈O

(1− ε)(OPT− f(Si))/k = (1− ε)(OPT− f(Si)).

By rearranging the terms, we get the desired result.

The main lemma for the case where |S| = k is that the expected contribution of each element ai added to the current
solution S is arbitrarily close to a 1/k fraction of the remaining value OPT− f(S).

Lemma 4. At any iteration of the inner-loop of ADAPTIVE-SEQUENCING, for all i < i⋆, we have
Eai

[︁
fS∪{a1,...,ai−1}(ai)

]︁
≥ (1− ε)2(OPT− f(S))/k.

Proof. Since ai is a uniformly random element from X and |Xi| ≥ (1− ε)|X| for i < i⋆, we have

E
ai

[︁
fS∪{a1,...,ai−1}(ai)

]︁
≥ Pr

ai

[︁
fS∪{a1,...,ai−1}(ai) ≥ t

]︁
· t ≥ (1− ε) · (1− ε)(OPT− f(S))/k.

By standard greedy analysis, Lemmas 3 and 4 imply that the algorithm obtains a 1 − 1/e − O(ε) approximation in each
case. We emphasize the low constants and dependencies on ε in this result compared to previous results in the adaptive
complexity model.

Theorem 5. ADAPTIVE-SEQUENCING is an algorithm with at most ε−2 log n adaptive rounds and ε−2nk queries that
achieves a 1− 1/e− 3ε

2 ε approximation in expectation.

Proof. We first consider the case where there are ε−1 iterations of the outer-loop. Let S1, . . . , Sε−1 be the set S at
each of the ε−1 iterations of ADAPTIVE-SEQUENCING. The algorithm increases the value of the solution S by at least
ε (OPT− f(S)) at every iteration by Lemma 3. Thus,

f(Si) ≥ f(Si−1) + ε (OPT− f(Si−1)) .

Next, we show by induction on i that
f(Si) ≥

(︂
1− (1− ε)

i
)︂
OPT.

6The value of f(S) needed to compute t can be obtained using fS∪{a1,...,ai⋆−1}(ai⋆) that was computed in the previous iteration.

The FAST Algorithm for Submodular Maximization

Observe that

f(Si) ≥ f(Si−1) + ε (OPT− f(Si−1))

= εOPT+ (1− ε) f(Si−1)

≥ εOPT+ (1− ε)
(︂
1− (1− ε)

i−1
)︂
OPT

=
(︂
1− (1− ε)

i
)︂
OPT

Since 1− x ≤ e−x, we get
f(Sε−1) ≥

(︁
1− e−1

)︁
OPT.

Similarly, for the case where the solution S returned is such that |S| = k, by Lemma 4 and by induction we get that

f(S) ≥
(︂
1− e−(1−ε)2

)︂
OPT ≥

(︂
1− e−(1−2ε)

)︂
OPT ≥

(︁
1− e−1(1− 4ε)

)︁
OPT ≥ (1− e−1 − 3

2
ε)OPT.

B. Analysis of the Main Algorithm
We define ℓ = log(ε−1 log k) and m = 2+ε

ε2(1−3ε) log(4ℓε
−2 log(n)δ−1)

B.1. Adaptive Complexity and Query Complexity

The adaptivity of the main algorithm is slightly worse than for ADAPTIVE-SEQUENCING due to the binary searches over
V and I . To obtain the adaptive complexity with probability 1, if at any iteration of the outer while-loop there are at least
ε−1 log n iterations of the inner-loop, we declare failure. In Lemma 2, we show this happens with low probability.
Lemma 6. The adaptive complexity of FAST is at most ε−2 log(n) · log2(ε−1 log k).

Proof. The algorithm consists of four nested loops: a binary search over V , an outer while-loop, an inner while-loop, and
a binary search over I . For the binary searches, we have |V | ≤ ε−1 log k and |I| ≤ ε−1 log k. Thus, there are at most ℓ
iterations for each binary search.

Due to the termination condition of the while-loops, there are at most ε−1 and ε−1 log n iterations of each while-loop. The
function evaluations inside an iteration of the last nested loop are non-adaptive and can be performed in parallel in one
round. Thus the adaptive complexity of FAST is a most

ε−2 log(n) · log2(ε−1 log k).

Thanks to the binary search over I and the subsampling of R from X , the query complexity is improved from O(ε−2nk)
to Õ(ε−2n+ ε−4 log(n) log(δ−1))

Lemma 7. The query complexity of FAST is at most 2ε−2ℓn+ ℓ2ε−2 log(n)m.

Proof. There are n queries, f(a) for all a, needed to compute V . At each iteration of the binary search over I , there are m
queries needed for Ri to evaluate fS∪{a1,...,ai−1}(a) for a ∈ R. There are at most ℓε−2 log n instances of the binary search
over I , each with at most ℓ iterations. The total number of queries for this binary search is at most

ℓ2ε−2 log(n)m.

At each iteration i of the inner-while loop, there are at most |X| ≤ (1− ε)in queries to update X and at most |X| queries
to add elements ai to S. There are at most ℓε−1 instances of the inner while-loop each with at most ε−1 log n iterations.
The total number of queries for updating X and S is

ℓε−1

ε−1 logn∑︂
i=1

2(1− ε)in ≤ 2ε−2ℓn.

By combining the queries needed to compute V , Ri, X and S, we get the desired bound on the query complexity.

The FAST Algorithm for Submodular Maximization

B.2. The Approximation

B.2.1. FINDING i⋆

Similarly as for ADAPTIVE-SEQUENCING, we denote Xi = {a ∈ X : fS∪{a1,...,ai−1}(a) ≥ t} and Ri = {a ∈ R :
fS∪{a1,...,ai−1}(a) ≥ t}.
Lemma 1. Assume that m = 2+ε

ε2(1−3ε) log(4ℓε
−2 log(n)δ−1), then, with probability 1− δ/2, for all iterations of the inner

while-loop, we have that |X(1−ε)i⋆ | ≥ (1− 3ε)|X| and |Xi⋆ | ≤ (1− ε)|X|.

Proof. By the definition of i⋆ and I , we have that |R(1−ε)i⋆ | ≥ (1 − 2ε)|R| and |Ri⋆ | ≤ (1 − 2ε)|R|. We show by
contrapositive that, with probability 1 − δ/4 if |X(1−ε)i⋆ | ≤ (1 − 3ε)|X| then |R(1−ε)i⋆ | ≤ (1 − 2ε)|R| and that if
|Xi⋆ | ≥ (1− ε)|X| then |Ri⋆ | ≥ (1− 2ε)|R|.

Note that for all a ∈ R and i ∈ [k], we have

Pr
a

[︁
fS∪{a1,...,ai−1}(a) ≥ t

]︁
=
|Xi|
|X|

.

First, assume that |Xi⋆ | > (1− ε)|X|. Then by the Chernoff bound, with µ = m · |Xi⋆ |
|X| ≥ (1− ε)m,

Pr [|Ri⋆ | ≤ (1− 2ε)|R|] ≤ Pr
[︁
|Ri⋆ | ≤ (1− ε)2m

]︁
≤ e−ε2(1−ε)m/(2+ε) ≤ δ

4ℓε−2 log n
.

Next, assume that |Xi⋆ | < (1− 3ε)|X|. By the Chernoff bound with µ ≤ (1− 3ε)m,

Pr [|Ri⋆ | ≥ (1− 2ε)|R|] ≤ Pr [|Ri⋆ | ≥ (1 + ε)(1− 3ε)m] ≤ δ

4ℓε−2 log n
.

Thus, with m = 2+ε
ε2(1−3ε) log(4ℓε

−2 log(n)δ−1) and by contrapositive, we have that |X(1−ε)i⋆ | ≥ (1 − 3ε)|X| and
|Xi⋆ | ≤ (1− ε)|X| each with probability 1− δ/(4ℓε−2 log n). By a union bound, these both hold with probability 1− δ/2
for all ℓε−2 log n iterations of the inner while-loop.

Corollary 1. With probability 1− δ/2, for all iterations of the inner while-loop, we have

• |Xi| ≥ (1− 3ε)|X| for all i < (1− ε)i⋆, and

• |Xi| ≤ (1− ε)|X| for all i ≥ i⋆

Proof. Consider an iteration of the inner while-loop. We first note that, by submodularity, |Ri| is monotonically decreasing
as i increases. Thus we can perform a binary search over I to find i⋆. By Lemma 1, we have that with probability 1− δ/2,
we have that |X(1−ε)i⋆ | ≥ (1− 3ε)|X| and |Xi⋆ | ≤ (1− ε)|X|. We conclude the proof by noting that by submodularity,
|Xi| is also monotonically decreasing as i increases.

Lemma 2. With probability 1− δ/2, at every iteration of the outer while-loop, X = ∅ after at most ε−1 log n iterations of
the inner while-loop.

Proof. By Lemma 1, with probability 1 − δ/2, at every iteration of the inner while-loop, there is at least an ε fraction of
the elements in X that are discarded. We assume this is the case. After ε−1 log n iterations of discarding an ε fraction of
the elements in X , we have X = ∅.

B.2.2. IF NUMBER OF ITERATIONS OF OUTER WHILE-LOOP IS ε−1

The analysis defers depending on whether the number of iterations or the size of the solution caused the algorithm to
terminate. We first analyze the case where ADAPTIVE-SEQUENCING returned S s.t. |S| < k because the number of
iterations reached ε−1. The main lemma for this case is that at every iteration of ADAPTIVE-SEQUENCING, if v ≤ OPT,
the set T added to the current solution S contributes at least an ε fraction of the remaining value v − f(S).

The FAST Algorithm for Submodular Maximization

Lemma 3. Assume that v ≤ OPT and let Si be the set S at the start of iteration i of the outer while-loop of FAST. With
probability 1− δ/2, for all v ∈ V and all i ≤ ε−1, we have that if |Si+1| < k, then fSi(Si+1) ≥ ε(v − f(Si)).

Proof. By Lemma 2, with probability 1 − δ/2, at every iteration of the outer while-loop, X = ∅ after at most ε−1 log n
iterations of the inner while-loop. We assume this holds for the remaining of this proof.

Since |Si+1| < k, X = ∅ at the end of iteration i of the outer while-loop. This implies that for all elements a ∈ N , a is
discarded from X by the algorithm at some iteration where

fS∪{a1,...,ai⋆−1}(a) < (1− ε)(v − f(Si))/k

for some Si ⊆ S ⊆ Si+1. By submodularity, for any element a ∈ N , we get

fSi+1
(a) ≤ (1− ε)(v − f(Si))/k.

Next, since v ≤ OPT, by monotonicity, and by submodularity,

v − f(Si+1) ≤ OPT− f(Si+1) ≤ fSi+1(O) ≤
∑︂
o∈O

fSi+1(o).

Combining the previous inequalities, we obtain

v − f(Si+1) ≤
∑︂
o∈O

fSi+1
(o) ≤

∑︂
o∈O

(1− ε)(v − f(Si))/k = (1− ε)(v − f(Si)).

By rearranging the terms, we get the desired result.

By standard greedy analysis, similarly as for the proof of Theorem 5 we obtain that f(S) ≥ (1− 1/e)v.

Lemma 4. With probability 1 − δ/2, for all v ≤ OPT, after ε−1 iterations of the outer while-loop of FAST, f(S) ≥
(1− 1/e)v.

B.2.3. IF |S| = k

Next, we analyze the case where the outer-loop terminated because |S| = k. We show that each element added to S is, in
expectation, a good approximation to t1.

Lemma 5. With probability 1 − δ/2, at every iteration of the inner while-loop, we have that independently for each
i ≤ (1− ε)i⋆, with probability at least 1− 3ε,

fS∪{a1,...,ai−1}(ai) ≥ (1− ε)(v − f(S))/k.

Proof. By Corollary 1, we have that with probability 1− δ/2, for all iterations of the inner while-loop,⃓⃓
{a ∈ X : fS∪{a1,...,ai−1}(a) ≥ (1− ε)(v − f(S))/k}

⃓⃓
= |Xi| ≥ (1− 3ε)|X|

for all i ≤ (1 − ε)i⋆. We assume this is the case and consider an iteration of the inner while-loop. Since each ai is a
uniformly random element from X , we have that independently for each i ≤ (1− ε)i⋆,

Pr
ai

[︁
fS∪{a1,...,ai−1}(ai) ≥ (1− ε)(v − f(S))/k

]︁
≥ 1− 3ε.

B.2.4. GUESSING OPT

Lemma 6 (Extends (Hassidim & Singer, 2017)). Consider a set S = {a1, . . . , a|S|} and let Si = {a1, . . . , ai}. Assume
that, independently for each i ∈ [|S|], we have that with probability at least 1− δ,

fSi−1
(ai) ≥ µ · 1

k
(v − f(Si−1)),

The FAST Algorithm for Submodular Maximization

then, for any ε ∈ (0, 1) such that |S| ≥ 1
ε2(1−δ)µ ,

f(S) ≥
(︂
1− e−

|S|
k (1−δ)µ(1−ε)

)︂
v

with probability at least 1− e−|S|(1−δ)µε2/2.

Proof. The analysis is similar as in (Hassidim & Singer, 2017). Assume that fSi−1(ai) = ξi · 1
k (v − f(Si−1)) and let

µ̂ = 1
k

∑︁|S|
i=1 ξi. We first argue that f(S) ≥

(︁
1− e−µ̂

)︁
v. By induction, we have that

f(Si) ≥

⎛⎝1−
i∏︂

j=1

(︃
1− ξj

k

)︃⎞⎠ v.

Since 1− x ≤ e−x, we obtain

f(S) ≥

⎛⎝1−
|S|∏︂
j=1

(︃
1− ξj

k

)︃⎞⎠ v ≥
(︃
1− e−

∑︁|S|
j=1

ξj
k

)︃
v
(︁
1− e−µ̂

)︁
v.

Let S′ = {ai ∈ S : fSi−1
(ai) ≥ µ · 1k (v − f(Si−1)). By the Chernoff bound,

Pr [|S′| < (1− ε)(1− δ)|S|] ≤ e−
ε2(1−δ)|S|

2 .

Thus, with probability at least 1− e−
ε2(1−δ)|S|

2 , we get

µ̂ ≥ 1

k
|S′|µ ≥ |S|

k
(1− ε)(1− δ)µ.

Lemma 7. Assume k ≥ 2 log(2δ−1ℓ)
ε2(1−5ε) . With probability at least 1− δ, we have that for all v at some iteration of the binary

search over V such that v ≤ OPT,
f(S) ≥

(︂
1− e−(1−6ε)

)︂
v.

Proof. With probability 1− δ/2, Corollary 1, and consequently Lemma 4 and Lemma 5, hold for all iterations of the inner
while-loop and we assume this is the case for the remainder of this proof.

Consider v at some iteration of the binary search over V . If the outer while-loop terminated after ε−1 iterations, then by
Lemma 4, we have f(S) ≥ (1− 1/e) v.

Otherwise, the outer while-loop terminated with |S| = k. The algorithm adds elements to S that are of two types: those
added before the if condition and those in Ai⋆ added after. Let T ⊆ S be the set obtained by discarding from S the elements
a ∈ Ai⋆ that, at the iteration of the inner while-loop where a was added, had position i in the sequence a1, . . . , ak−|S| such
that (1− ε)i⋆ ≤ i ≤ i⋆. This set T is such that |T | ≥ (1− ε)|S| = (1− ε)k.

Consider ai ∈ S added before the if condition and let Si−1 be the set of elements in S added to S before ai. Since ai
was added to S, by submodularity, we have fSi−1

(ai) ≥ (1 − ε) 1k (v − fSi−1
) with probability 1. Consider an elements

ai ∈ T . By Lemma 5 and by definition of T , we have that independently for each ai ∈ T , with probability at least 1− 3ε,
fSi−1(ai) ≥ (1− ε) 1k (v − fSi−1) where Si−1 is the set of elements in T added to T before ai.

By Lemma 6 and since |T | ≥ (1 − ε)k, with δ = 3ε, µ = 1 − ε, and ε = ε, we have that f(T) ≥(︁
1− e−(1−ε)(1−ε)(1−3ε)(1−ε)

)︁
v ≥≥

(︁
1− e−(1−6ε)

)︁
v with probability at least 1 − δ/(2ℓ) if k ≥ 2 log(2δ−1ℓ)

ε2(1−ε)(1−ε)(1−3ε) ≥
2 log(2δ−1ℓ)
ε2(1−5ε) . By monotonicity, f(S) ≥ f(T).

By a union bound over all ℓ iterations of the binary search over V , for all v considered during this binary search, we have
that f(S) ≥

(︁
1− e−(1−6ε)

)︁
v with probability at least 1− δ/2.

The FAST Algorithm for Submodular Maximization

Theorem 1. Assume k ≥ 2 log(2δ−1ℓ)
ε2(1−5ε) and ε ∈ (0, 0.1), where ℓ = log(log k

ε). Then, FAST with sample complexity

m = 2+ε
ε2(1−3ε) log(

4ℓ logn
δε2) has at most ε−2 log(n)ℓ2 adaptive rounds, 2ε−2ℓn + ε−4 log(n)ℓ2m queries, and achieves a

1− 1
e − 4ε approximation with probability 1− δ.

Proof. By the definition of V and since maxa∈N f(a) ≤ OPT ≤ max|S|≤k

∑︁
a∈S f(a), there exists v′ ∈ V such that

v′ ∈ [(1− ε)OPT,OPT].

By Lemma 7, with probability at least 1− δ, we have that for all v at some iteration of the binary search over V such that
v ≤ OPT, f(S) ≥

(︁
1− e−(1−6ε)

)︁
v. Since v′ ≤ OPT, it must be the case that v⋆ ≥ v′ and we get(︂
1− e−(1−6ε)

)︂−1

f(Sv⋆) ≥ v⋆ ≥ v′ ≥ (1− ε)OPT.

For ε ∈ (0, 0.1), we have e6ε ≤ 1 + 9ε. We get

(1− ε)(1− e−(1−6ε) ≥ (1− ε)(1− e−1(1 + 9ε)) ≥ 1− e−1 − 4ε.

C. Additional Information for Experiments
C.1. Benchmark algorithms

Our first set of experiments compares FAST’s performance to three state-of-the-art low-adaptivity algorithms:

• Amortized-Filtering (Balkanski et al., 2019a). Given a guess for OPT, AMORTIZED-FILTERING proceeds as fol-
lows: At each round, AMORTIZED-FILTERING sets an adaptive value threshold based on the value of its current
solution. It uses this threshold to filter remaining elements into high-value and low-value groups. It then adds a ran-
domly chosen set of high-value elements to the solution and updates the threshold for the next round. AMORTIZED-
FILTERING achieves a (1− 1/e− ε) approximation in O(log(n)ε−3) rounds.

• Randomized-Parallel-Greedy (Chekuri & Quanrud, 2019b). Given a guess for OPT, RANDOMIZED-PARALLEL-
GREEDY proceeds as follows: At each round, RANDOMIZED-PARALLEL-GREEDY partitions elements into high-
value and low-value groups based on their marginal contributions. It then uses the multilinear extension to estimate the
maximum probability (‘step size’) with which it can randomly add elements from the high value group to the solution
while maintaining theoretical guarantees. This algorithm achieves a (1 − 1/e − ε)-approximation in O(log(n)ε−2)
parallel rounds.

• Binary-Search-Maximization (Fahrbach et al., 2019a). Given a guess for OPT, BINARY-SEARCH-
MAXIMIZATION begins by fixing a value threshold. It then iteratively partitions remaining elements into high-value
and low-value groups by determining whether each element’s average marginal contribution to a random set exceeds
the value threshold. It draws elements from the high-value group to form a candidate solution S. Finally, it lowers
the value threshold and repeats the process for several rounds, keeping track of the candidate solution with the highest
value. BINARY-SEARCH-MAXIMIZATION achieves a (1−1/e−ε)-approximation in O(log(n)ε−2) adaptive rounds.

We also compare FAST to a parallel version of LAZIER-THAN-LAZY-GREEDY (LTLG):

• Parallel-Lazier-than-Lazy-Greedy (Parallel-LTLG) (Mirzasoleiman et al., 2015). LTLG is widely regarded as
the fastest algorithm for submodular maximization in practice. At each round, it draws a small random sample of
elements. It then attempts a lazy update via a single query by testing whether the element in the sample with the
highest previously-computed marginal value has a current marginal value that exceeds the second-highest previously-
computed marginal value among the samples. If this is the case, it adds this best element to the solution. Otherwise, it
computes marginal contribution of all samples and adds the best element in the sample set to the solution. It achieves
a (1− 1/e− ε) approximation in k adaptive rounds.

The FAST Algorithm for Submodular Maximization

For calibration, we also ran (1) a parallel version of the standard GREEDY algorithm and (2) an algorithm that estimates
the value of a random solution:

• Parallel-Greedy. GREEDY iteratively adds the element with the highest marginal value to the solution set S for each
of k rounds. GREEDY achieves a 1 − 1/e approximation in k adaptive rounds, and its solution values are widely
regarded as an heuristic upper bound.

• Random. RANDOM returns the average value of a randomly chosen set S of k elements.

C.2. Choosing and optimizing benchmarks’ guesses for OPT

Low-adaptivity benchmarks also require guesses for OPT. We introduce optimizations to these guesses to accelerate the
benchmarks as described here. Note that in Appendix C.12, we also rerun the low-adaptivity experiments giving each low-
adaptivity benchmark just a single ‘good’ guess for OPT. We also introduce several other optimizations to the benchmark
algorithms—see Appendix C.9.

• Amortized-Filtering (Balkanski et al., 2019a). Recall that when OPT is unknown, the standard approach described
in Balkanski et al. (2019a) is to run AMORTIZED-FILTERING once for each guess of OPT. This requires ∼ 60 unique
runs of AMORTIZED-FILTERING to maintain the approximation guarantee even for relatively small k and ε = 0.1.
Therefore, to optimize this algorithm, we (1) implement binary search over these guesses of OPT. We also (2) intro-
duce the same stopping condition that we describe for FAST, such that whenever a run of AMORTIZED-FILTERING
with a particular guess of OPT finds a solution S with f(S) ≥ (1 − 1/e − 0.1)v, where v is an upper-bound guess
for OPT, then we return this solution. Finally, we (3) set the upper-bound guess v to v = max|S|≤k

∑︁
a∈S f(a)

of the k highest valued singletons (as in FAST), rather than the looser upper bound guess described in Balkanski
et al. (2019a). These optimizations reduce the value of AMORTIZED-FILTERING’s solutions in practice, but they
dramatically accelerate its runtimes to provide a more stringent runtime benchmark for FAST.

• Randomized-Parallel-Greedy (Chekuri & Quanrud, 2019b). The analysis in Chekuri & Quanrud (2019b) shows
that we can either use multiple guesses for OPT, or we can use a single guess that is an upper bound for OPT. We use
the latter option, as using a single guess is the fastest approach, so this choice is consistent with our goal of providing
the most difficult speed benchmarks for FAST. Specifically, we guess OPT to be the sum v = max|S|≤k

∑︁
a∈S f(a)

of the k highest valued singletons, which is an upper bound on OPT (and the same guess used by FAST). We note that
this is a tighter upper bound on the value of the true OPT than commonly used alternatives (e.g. k times the value of
the top singleton), so by choosing this guess, we further accelerate our runs of RANDOMIZED-PARALLEL-GREEDY.
We also note that using a single guess for OPT achieves this greater speed by sacrificing some solution value, which is
why in our experiments RANDOMIZED-PARALLEL-GREEDY sometimes finds solutions that have lower values than
other benchmarks.

• Binary-Search-Maximization (Fahrbach et al., 2019a). BINARY-SEARCH-MAXIMIZATION already includes a
clever processing scheme that efficiently searches for tighter upper-bound and lower-bound guesses for OPT, so we
implement this approach exactly as described in Fahrbach et al. (2019a).

C.3. Choosing parameters ε and δ

For Experiment set 1, we choose all algorithms’ δ and ε such that each guarantees a (1−1/e−0.1) approximation with prob-
ability 0.95. We therefore choose δ = 0.95 for all algorithms and set ε to 0.025 for FAST; 0.1 for AMORTIZED-FILTERING;
0.1 for for BINARY-SEARCH-MAXIMIZATION; and 0.048 for RANDOMIZED-PARALLEL-GREEDY. For Experiment set 2,
the (1 − 1/e − ε) approximation guarantee of LTLG holds in expectation, so we set ε = 0.1 for PARALLEL-LTLG and
ε = 0.025 for FAST, which gives the same (1− 1/e− 0.1) approximation in expectation (see Theorem 1).

C.4. Objective functions and data sets

C.4.1. MAX COVER ON RANDOM GRAPHS

Recall the max cover objective: given a graph G, the cover function f(S) measures the count of nodes with at least one
neighbor in S. This is a canonical monotone submodular function. To compare the algorithms’ runtimes under a range of
conditions, we solve max cover on synthetic graphs generated via four different well-studied graph models:

The FAST Algorithm for Submodular Maximization

• Erdős Rényi. We generate G(n, p) graphs with a p = 0.01 probability of each edge. Since many nodes have similar
degree in this model and each node’s edges are spread randomly across the graph, a random set of nodes often achieves
good coverage.

• Stochastic block model. We generate SBM graphs with a p = 0.1 probability of an edge between each pair of nodes
in the same cluster. Here, we expect that a good solution will cover nodes in all clusters.

• Watts-Strogatz. We generate WS graphs initialized as ring lattices with 2 edges per node and a p = 0.1 probability
of rewiring edges. In these ‘small-world’ graphs, many nodes have identical degree, so good solutions contain nodes
chosen to minimize coverage overlaps.

• Barbási-Albert. We generate BA graphs with m = 1 edges added per iteration. BA graphs exhibit scale-free
structure and tend to have a small set of high-degree nodes. Therefore, it is often possible to obtain high coverage in
these graphs by choosing the highest degree nodes.

C.4.2. RANDOM GRAPHS: EXPERIMENT SIZE

For ER, WS, and BA graphs, we set n = 500 in our small experiments and n = 100, 000 in our large experiments. For
SBM graphs, we fix parameters to approximately match these sizes in expectation, as the actual size of an SBM graph is a
draw from a random process. Specifically, for small SBM experiments we draw 10 clusters of 10 to 100 nodes each, and
for large experiments we draw 50 clusters of 100 to 5000 nodes each.

C.4.3. REAL DATA

• Traffic speeding sensor placement. In this application, we select a set of locations to install traffic speeding sensors
on a highway network, and our objective is to choose locations to maximize the traffic that the sensors observe. Simi-
larly to (Balkanski et al., 2018), we conduct this experiment using data from the CalTrans PeMS system (CalTrans),
which allows us to reconstruct the directed network where nodes are locations on each California highway (40, 000
locations) and directed edges are the total count of vehicles that passed between adjacent locations in April, 2018.
We use the directed, weighted max cover function to measure the total count of traffic observed at a set of sensor
locations. For a given set S of sensor locations, this objective function returns the sum of edge weights (traffic counts
along roadway sections) for which at least one endpoint is in S. For our small experiments, we follow (Balkanski
et al., 2018) and restrict the network to the 521 locations within a 10 miles of the Los Angeles city center. For our
large experiments, we expand this to all of the ∼ 2000 locations in the region.

• Movie recommendation. In movie recommendation, the objective is to recommend a small, diverse, and highly-rated
set of movies based on a data set of users’ movie ratings. We use the objective function and dataset from (Balkanski
& Singer, 2018b), which sums the ratings of movies in the set S and includes a diversity term that captures how well
the chosen set of movies covers the set of movie genres in the data. A good set of movies includes movies that have
high overall ratings, but it also should appeal to users’ different tastes by including at least one film that each user
rates very highly. Therefore, we also include a diversity term that counts the number of users who would give a high
rating to at least one film in the set of movies S. We obtain the following objective:

f(S) =
∑︂
i∈U

∑︂
j∈S

ri,j + αC(S) + βD(S) (1)

where U is the set of users i, ri,j is user i’s predicted rating of movie j; C(S) is a coverage function that counts the
number of different genres covered by S; D(S) is a coverage function that counts the number of users with at least one
highly rated film in S; and parameters α ≥ 0 and β ≥ 0 control the relative weight that the objective function places
on highly rated movies versus diversity. Note that eqn. 1 is a monotone submodular function. As in (Balkanski &
Singer, 2018b), we predict missing ratings for the user-movie ratings matrix using the standard approach of low-rank
matrix completion via the iterative low-rank SVD decomposition algorithm SVDIMPUTE analyzed in (Troyanskaya
et al., 2001). We set α = 0.5maxj(

∑︁
i rj) and β = 1, and we define a high rating as rj > 4.5 (which corresponds

to 1% of the ratings). For our small experiments, we randomly select 500 movies and users from the MovieLens 1m
data set of 6000 users’ ratings of 4000 movies (Harper & Konstan., 2015). For our larger experiments, we use the
entire data set.

The FAST Algorithm for Submodular Maximization

• Revenue maximization on YouTube. In the revenue maximization experiment, we choose a set of YouTube users
who will each advertise a different product to their network neighbors, and the objective is to maximize product
revenue. We adopt an objective function and dataset based on (Mirzasoleiman et al., 2016). Specifically, the expected
revenue from each user is a function V (S) of the sum of influences (edge weights) of her neighbors who are in S:

f(S) =
∑︂
i∈X

V
(︂∑︂
j∈S

wi,j

)︂
(2)

V (y) = yα (3)

where X is the set of all users (nodes) in the network and wi,j is the network edge weight between users i and j,
and α : 0 < α < 1 is a parameter that determines the rate of diminishing returns on increased cover. Note that
eqn. 2 is a monotone submodular function. We conduct our small experiments on the social network of 50 randomly
selected communities (∼ 500 nodes) from the 5000 largest communities in the YouTube social network (Feldman
et al., 2015). For our larger experiments, we increase this to 2000 communities (∼ 18000 nodes). We set α = 0.9 for
all experiments, and we draw the weights of edges in this network from the uniform distribution U(1, 2).

• Influence maximization on a social network. In this application, we select a set of social network ‘influencers’
to post about a topic we wish to promote, and our objective is to select the set that achieves the greatest aggregate
influence. We adopt the following random cover function: an arbitrary social network user has a small independent
probability of being influenced by each influencer to whom she is connected, so we maximize the expected count of
users who will be influenced by at least one influencer. The probability that a single user i will be influenced is:{︄

fi(S) = 1 for i ∈ S

fi(S) = 1− (1− p)|NS(i)| for i ̸∈ S

where |NS(i)| is node i’s count of neighbors who are in S. We set p = 0.01. We conduct our small experiments on
the CalTech Facebook Network data set (Traud et al., 2012) of 769 Facebook users & 17000 edges, and we conduct
our larger experiments on the Epinions data set of 27000 users and 100000 edges (Rossi & Ahmed, 2015).

C.5. Parallelization

We parallelize all algorithms via Message Passing Interface (MPI). We make this selection both because it is the industry
standard, and also because it allows precise control over the architecture of parallel communication between processors
as well as exactly what information is communicated between processors. This allows us to build efficient parallel archi-
tectures that minimize communication, such that our implementations are CPU-bound (i.e. query-bound). This property
both permits fast implementations also aligns with the theoretical view of adaptive sampling algorithms, which assume that
computation time is a function of rounds of queries rather than communication, data copying, etc. In contrast, simpler-
to-use parallel libraries (e.g. JobLib) often communicate copies of all data to all processors at each communicative step,
which may render implementations based on these simpler libraries both slower and also communication-bound.

C.6. AWS Hardware

While our MPI implementations of the algorithms are scalable to thousands of cores, we conduct all experiments on an
m5d.24xlarge instance with 96 cores—the largest single instance currently available on AWS (computing on more cores
requires launching an AWS cluster). This instance features Intel Xeon Platinum 8000 series (Skylake-SP) processors with
sustained all core Turbo CPU clock speed of up to 3.1 GHz.

We select this hardware to ensure both the internal validity and external validity of our experiments. Specifically, with
regard to internal validity, we note that if we instead had scaled up to a cluster of multiple instances, then communication
times between cores in the same instance vs. across instances may differ to a greater extent. Because different algorithms
require different amounts and structures of communication between processors, this might bias runtimes in unpredictable
ways.

Second and more importantly, our goal in this paper is not to show that FAST is the fastest practical algorithm only on
large scale state-of-the-art hardware (though larger-scale hardware would further improve the runtime advantage of FAST

The FAST Algorithm for Submodular Maximization

over alternatives—see Section 4.1). Instead, our goal is to show that FAST is faster than alternatives even with modest
hardware that is widely accessible to researchers, and these fast runtimes can be further improved on larger scale hardware.
Specifically, we note that this m5d.24xlarge instance has far fewer cores than the n processors necessary to unlock the full
speed potential of FAST, whereas adding more processors cannot accelerate PARALLEL-LTLG for most experiments due
to the fact that PARALLEL-LTLG has sample complexity less than 95 for many values of k we tried.

C.7. Instance setup

We initialize the m5d.24xlarge instance with Amazon’s Deep Learning AMI (Amazon Linux) Version 24.0. We install the
Open-MPI MPI library on our AWS instance and run all experiments via ssh using mpirun to launch and execute the
experiments.

C.8. Measuring parallel runtimes.

We measure true parallel time in the following manner. First, before we start the runtime clock, all processors are initialized
with a copy of the objective function and dataset for the experiment, which is followed by a call to a blocking parallel barrier
(comm.barrier()). This forces the condition that no processor begins computations—and the clock does not start—until
all processors are initialized. Runtime is then measured via MPI’s parallel clock, MPI.Wtime(), from the moment this
barrier is completed and the algorithm function is called. Upon the algorithm’s completion, we use a blocking parallel
barrier (comm.barrier()) call to all processors followed by a call to the parallel clock MPI.Wtime(). This ensures that
a case where one processor finishes its part of the computations early does not result in an erroneously reported lower
runtime.

We run all experiments on 95 cores of the 96-core instance. We deliberately leave one core free during all experiments so
that the 95 cores conducting the experiment are not simultaneously scheduled to run a background task, which may result
in a slowdown that would endanger the integrity of measured runtimes.

C.9. Overview of fast parallel implementations

For all algorithms, we implement several generally applicable and algorithm-specific optimizations. The intuition behind
our generally applicable optimizations is to ensure that (1) implementations are optimized and vectorized such that all
operations besides queries take negligible time (such that the algorithms are effectively query-bound); (2) communicative
architectures between processors are designed to avoid superfluous communication; (3) we implement parallel reduces
where possible to leverage these parallel architectures to further reduce computation; and (4) no algorithm ever queries
the marginal value of an element when this marginal value is known to be 0, i.e. fT (x), x ∈ T . Algorithm-specific
optimizations are discussed below.

C.10. Fast parallel implementation of low-adaptivity algorithms

• Amortized-Filtering. The key optimizations we introduce to AMORTIZED-FILTERING are the binary search over
OPT guesses, the tighter upper-bound guess for OPT, and the stopping condition described in Appendix C.2 above.

• Binary-Search-Maximization. BINARY-SEARCH-MAXIMIZATION tends to run significantly more loop iterations
than other benchmarks, so optimizations that reduce these loop iterations result in significant speedup. We note that
two loops of this algorithm loop over indices, where indices are calculated as elements of a geometric sequence then
rounded to integers. This process results in the algorithm looping over numerous redundant indices, as many unique
floating point numbers from these sequences round to the same whole numbers. We therefore achieve large speedups
by precomputing these sequences and looping only over unique indices. In addition to this optimization, we also note
that the REDUCED-MEAN subroutine (which is responsible for the vast majority of computation time) requires the
processors to parallel-compute a fraction of elements that exceed a threshold. A naive approach would be to computing
marginal values in parallel, gather or allgather all of these values (i.e. each processor communicates its share of
values to all other processors), and then compute this fraction locally. However, our optimized approach uses a fast
parallel reduction where each processor computes its local fraction, then a fast parallel reduce using MPI.Sum()
such that (1) processors need only communicate this fraction (float) instead of the entire vector of elements, and (2) the
global fraction is then rapidly computed via a parallel reduce. More advanced MPI architectures such as these result
in meaningfully lower runtimes in practice, particularly when using relatively fast-to-compute objective functions.

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

●

0.0e+00

3.0e+08

6.0e+08

9.0e+08

1.2e+09

40 80 120 160
k

ob
je

ct
iv

e
va

lu
e

● FAST
Am−Filtering
Rand−P−Greedy
Bin−Search−Max
Parallel−Greedy
Parallel−LTLG
Random
FAST0

Traffic Network: n=525

●

●

●

●

●

●

●

●

0e+00

1e+05

2e+05

3e+05

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

Movie Recommendation: n=500

●

●

●

●

●

●

●
●

●
●

0e+00

1e+03

2e+03

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

YouTube: n=571

●

●

●

●

●

●

●

0e+00

1e+02

2e+02

3e+02

4e+02

100 200 300
k

ob
je

ct
iv

e
va

lu
e

Influence Max: n=769

●

●
● ●

● ● ● ●
0.1

0.5

1.0

10.0

40 80 120 160
k

tim
e

(s
ec

)

● ●

● ● ●
● ●

●

0.1

0.5

1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
● ● ●

● ●

● ● ● ●

0.1

0.5

1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
●

●
●

●
●

●
0.1

0.5

1.0

10.0

100.0

100 200 300
k

tim
e

(s
ec

)

Figure 6. FAST0 (light blue) vs. low-adaptivity algorithms.

• Randomized-Parallel-Greedy. The key decision when implementing RANDOMIZED-PARALLEL-GREEDY is how
to choose guesses for the step size δ, which is the probability with which we randomly add high-value elements to
the solution. This is important because the majority of RANDOMIZED-PARALLEL-GREEDY’s runtime is taken up
by calls to the multilinear extension that are made in order to choose δ. Specifically, recall that in each iteration,
RANDOMIZED-PARALLEL-GREEDY calls the multilinear extension to search for the maximum δ that obeys certain
conditions. Here, if we implement RANDOMIZED-PARALLEL-GREEDY such that it tests more guesses (i.e. more
closely spaced) guesses for δ, then we may find a δ that is closer to the true maximum δ, but this uses additional
calls to the multilinear extension that slow runtimes. We therefore precompute just n guesses for δ as [1/n, 2/n, . . .],
iterate over each of these, and set δ to the rightmost value that does not violate the conditions. Based on this choice, the
minimum value we attempt for δ will increase |S| by one element in expectation when all elements are high-valued.
By using this relatively large 1/n stepsize between subsequent guesses for δ, we reduce solution values in practice,
but we accelerate the algorithm (thus providing a more difficult runtime benchmark for FAST). Before making this
choice, we also experimented with geometrically-spaced guesses for δ, but found that this resulted in a significant
further reduction in performance and also that it caused the algorithm to attempt many very small options for δ that
were unlikely to result in adding a single element.

C.11. Fast parallel implementation of LAZIER THAN LAZY GREEDY

• Parallel-LTLG. Designing a fast implementation of PARALLEL-LTLG is nontrivial because at each iteration, we
want to attempt a lazy update (which requires a single query), but in the event that this lazy update fails, we do not
want to complete the iteration any slower than if we had not attempted the lazy update. Put differently, the lazy update
attempted at each iteration should result in a speedup when it succeeds, but never in a slowdown when it fails, such
that PARALLEL-LTLG is strictly faster than STOCHASTIC-GREEDY.

To accomplish this, we adopt the following optimized parallel architecture for PARALLEL-LTLG. At each of k rounds,
the root processor draws a set R of sample elements from remaining elements in the ground set X\S. The root process
broadcasts these sample elements to the other processors. Then, all processors simultaneously make a single query:
the root process queries the marginal value of the best element according to previous (lazy) marginal values, and
remaining processors each query a single other element from the sample. If the root process succeeds in finding a lazy
update with its single query, it communicates this to all processors, and all processors add this element to S and move
to the next iteration. If the lazy update fails, then the c processors have already completed c marginal value queries
of the samples (so no time is lost). They then simply each compute 1/c of the (|R| − c) remaining samples’ marginal

The FAST Algorithm for Submodular Maximization

●

●

●

●

●

●

●

●

0.0e+00

3.0e+08

6.0e+08

9.0e+08

1.2e+09

40 80 120 160
k

ob
je

ct
iv

e
va

lu
e

● FAST
Am−Filtering
Rand−P−Greedy
Bin−Search−Max
Parallel−Greedy
Parallel−LTLG
Random
FAST0

Traffic Network: n=525

●

●

●

●

●

●

●

●

0e+00

1e+05

2e+05

3e+05

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

Movie Recommendation: n=500

●

●

●

●

●

●

●
●

●
●

0e+00

1e+03

2e+03

50 100 150 200
k

ob
je

ct
iv

e
va

lu
e

YouTube: n=571

●

●

●

●

●

●

●

0e+00

1e+02

2e+02

3e+02

4e+02

100 200 300
k

ob
je

ct
iv

e
va

lu
e

Influence Max: n=769

●

●

●
●

● ● ●
●

0.1

0.5

1.0

40 80 120 160
k

tim
e

(s
ec

)

● ●

● ● ●
● ●

●

0.1

0.5

1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
● ● ●

● ●

● ● ● ●

0.1

0.5

1.0

10.0

50 100 150 200
k

tim
e

(s
ec

)

●
●

●
●

●
●

●
0.1

0.5

1.0

10.0

100 200 300
k

tim
e

(s
ec

)

Figure 7. FAST (blue) & FAST0 (light blue) vs. low-adaptivity algorithms run on a single guess for OPT.

values, communicate them, add the best element to S, and move to the next iteration.

C.12. Experiment set 1 results: additional discussion

Our goal in this section is to show that FAST still achieves faster runtimes than benchmarks (1) even when we turn off
its lazy updates and (2) even when we run each low-adaptivity benchmark on just a single ‘good’ guess for OPT. Figure
6 plots all real data experiments from Section 4.1, but with an added line for FAST0 (light blue). FAST0 is identical
to FAST, but without lazy updates. Across all of these experiments, FAST0 was 50 to 500 times faster than BINARY-
SEARCH-MAXIMIZATION, 5 to 50 times faster than RANDOMIZED-PARALLEL-GREEDY, and 2 to 700 times faster than
AMORTIZED-FILTERING.

We note that across these experiments, FAST0 (without lazy updates) also achieved lower runtimes than PARALLEL-LTLG
on nearly all objectives and values of k.

We also compare FAST and FAST0 to low-adaptivity benchmarks when each of the latter is run on just a single guess for
OPT. Specifically, we again rerun all real data experiments from Section 4.1, but for each low-adaptivity benchmark, we
set a single guess of OPT to v = max|S|≤k

∑︁
a∈S f(a) of the k highest valued singletons (the upper-bound guess used in

FAST). Figure 7 plots solution values and runtimes for these experiments. FAST was 3 to 66 times faster than BINARY-
SEARCH-MAXIMIZATION, 11 to 127 times faster than RANDOMIZED-PARALLEL-GREEDY, and 5 to 2200 times faster
than AMORTIZED-FILTERING.

Finally, we note that across all of the low-adaptivity experiments (Experiments Set 1), the non-linearities in the time plots
of benchmark algorithms are due to the thresholding techniques used by the algorithms as k increases, and not to the
variance of the randomized algorithms. While for each objective and each value of k, the figures report the mean objective
value and runtime of 5 independent trials of each algorithm, we note that algorithms’ runtimes tend to be quite consistent
over multiple trials for a given value of k.

C.13. Experiment set 2 results: additional discussion

Figure 8 plots queries used by FAST and PARALLEL-LTLG for the 8 objectives in Experiment set 2 (each point is the mean
of 5 trials). When counting queries for PARALLEL-LTLG, we count rounds where a lazy update succeeded as single query
rounds despite the fact that in this case PARALLEL-LTLG uses max[c, s] queries where c is the number of processors and s
is its sample complexity per round. This choice allows us to compare the queries used by FAST vs. PARALLEL-LTLG for
any k and determine whether FAST used fewer queries than serial LTLG would use. Note that this occurs for various k in

The FAST Algorithm for Submodular Maximization

●

●

●

●
●

●

●

50000

100000

150000

200000

0 2500 5000 7500 10000
k

qu
er

ie
s

● FAST
Parallel−LTLG

SBM Graph: n=48,000

●

● ●

● ● ● ●
● ● ●

● ● ●

100000

150000

200000

0 250 500 750 1000
k

qu
er

ie
s

ER Graph: n=100,000

●

●

●

●
●

●

●

●

●

2e+05

3e+05

4e+05

0 5000 10000 15000 20000 25000
k

qu
er

ie
s

WS Graph: n=100,000

●

●

● ●

●
●

●

●

●

100000

150000

200000

250000

300000

0 2500 5000 7500 10000 12500
k

qu
er

ie
s

BA Graph: n=100,000

●

●

●

●
●

●

●

●
●

●

4000

6000

8000

250 500 750
k

qu
er

ie
s

Traffic Network: n=1885

●
●

●

●

●

●

●

7500

10000

12500

100 200 300 400 500
k

qu
er

ie
s

Movies: n=3706

● ●

●

● ● ●

●
● ● ●

20000

25000

30000

35000

40000

250 500 750 1000
k

qu
er

ie
s

YouTube Graph: n=17,432

●

● ●

●

●

●

●

●

●

●

●

●

25000

50000

75000

100000

125000

0 2500 5000 7500 10000
k

qu
er

ie
s

Influence Max: n=26,588

Figure 8. Experiment Set 2: Queries used by FAST (blue) vs. PARALLEL-LTLG (red).

7 of the 8 experiments. We also note that in practice, serial LTLG is often slower than FAST even when both perform the
same number of queries due to the fact that FAST performs more queries at a time (i.e. more per round for fewer rounds),
which is often computationally faster.

C.14. Additional discussion of parallel runtime & speedup plots (Fig. 5

We note that in Fig. 5 left (1 Processor Runtime of LTLG vs. FAST), the runtime of LTLG increases linearly with k.
The reason is that, for certain objectives, the runtime of computing f(S) increases in |S|. For this objective, f(S) entails
summing over |S| rows in a network adjacency matrix and this causes the runtime of the algorithms to increase in k. For
some other objectives we could avoid this time increase with optimizations. An additional advantage of FAST in objectives
with this time increase is that, even with lazy updates, LTLG’s queries-per-round are (roughly) constant, but FAST typically
does most of its queries in early rounds when |S| is still small, then avoids later queries with its speedups, so it can be
faster than LTLG on 1 processor even when it uses more queries. For example, in Fig. 5 left, FAST used 75% of its total
queries by round 2 of 11.

