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We introduce a residual-based stabilized formulation for incompressible Navier-Stokes
flow that maintains discrete (and, for divergence-conforming methods, strong) mass
conservation for inf-sup stable spaces with H'!-conforming pressure approximation,
while providing optimal convergence in the diffusive regime, robustness in the advective
regime, and energetic stability. The method is formally derived using the variational
multiscale (VMS) concept, but with a discrete fine-scale pressure field which is solved
for alongside the coarse-scale unknowns such that the coarse and fine scale velocities
separately satisfy discrete mass conservation. We show energetic stability for the full
Navier-Stokes problem, and we prove convergence and robustness for a linearized

model (Oseen flow), under the assumption of a divergence-conforming discretization.
Numerical results indicate that all properties extend to the fully nonlinear case and that
the proposed formulation can serve to model unresolved turbulence.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades, a substantial amount of evidence has been published to suggest that residual-based
stabilized formulations for incompressible flow are effective as implicit large-eddy simulation (LES) models, both in
fundamental turbulence studies [1-3] and industrial-scale applications [4-6]. The connection between residual-based
stabilization and LES was illuminated by variational multiscale (VMS) theory [7-10], in which unresolved fine-scale
solution components are driven by the residual from introducing the resolved coarse-scale solution into the partial
differential equation (PDE) system.

A shortcoming of residual-based stabilized formulations is that they typically disrupt the discrete continuity equation:
the velocity divergence integrated against an arbitrary member of some pressure test space is no longer guaranteed to
be zero, as it would be in Galerkin’s method. This is true, for instance, of the popular streamline upwind Petrov-Galerkin
(SUPG)/pressure-stabilized Petrov-Galerkin (PSPG) [11,12] method, the Galerkin Least Squares (GLS) method [13], and
the residual-based VMS formulation of Bazilevs et al. [2]. In discretizations for which the pressure test space contains
the divergence of every velocity trial solution, i.e., divergence-conforming discretizations, discrete mass conservation
implies strong (pointwise) mass conservation [14]. Although loss of exact discrete and/or strong mass conservation is
inconsequential for many applications, as demonstrated by our literature review, it is potentially-catastrophic in certain
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scenarios. For instance, mass conservation is considered to be of prime importance for coupled flow-transport [15] and
“high pressure, low flow” problems [16]. Moreover, residual-based stabilization methods resembling the PSPG approach
can fail spectacularly in conjunction with immersed boundary methods, especially when there is a large pressure jump
across the immersed boundary [17, Section 4.4.1]. The loss of mass conservation leads to a substantial effective leakage
of fluid through boundaries, severely disrupting even the qualitative solution features. This pathology can be avoided by
using Galerkin's method with divergence-conforming function spaces [18,19], but at the cost of losing stability for high
Reynolds numbers, leading [18] to resort to a low-order artificial diffusion in realistic problems.

To recover discrete mass conservation in existing residual-based stabilized formulations, it is possible to ignore
pressure stabilization terms. This is popular in practice when inf-sup stable velocity/pressure pairs are employed.
However, this usually comes with a loss of stability. For instance, the reduced SUPG method which results from ignoring
PSPG terms in the SUPG/PSPG method is not coercive with respect to an SUPG/PSPG-like norm. As a consequence, an
error analysis which shows robustness in the advection-dominated limit is missing for the reduced SUPG method [20].
One can also improve mass conservation by employing grad-div stabilization with a large stabilization parameter, but this
commonly results in locking of the velocity field and pressure oscillations except in specialized situations [21].

The present paper introduces a novel residual-based stabilization that can maintain discrete (and, for divergence-
conforming methods, strong) mass conservation for inf-sup stable spaces with H'-conforming pressure approximation,
while providing optimal convergence in the diffusive regime, robustness in the advective regime, and energetic stability.
The gist of this method is to apply the VMS formalism using a Stokes projector for scale separation, as was recently
suggested in [22]. This yields a nonlinear algebraic system in which a discrete fine-scale pressure field must be solved
for alongside the coarse-scale unknowns, such that the coarse- and fine-scale velocities separately satisfy discrete
mass conservation. Section 2 develops this VMS-based formulation for the Navier-Stokes problem and shows the
formulation is energetically stable. Section 3 proves the convergence of the method, when applied to the linearized
Navier-Stokes (Oseen) equations, assuming divergence-conforming discrete spaces. Section 4 demonstrates numerically
that the convergence analysis can be extrapolated to the full Navier-Stokes problem and shows some initial results
indicating that the proposed VMS-based formulation is effective as an LES methodology for turbulent incompressible
flow. We summarize our findings and outline future extensions of this work in Section 5.

2. Formulation for the incompressible Navier-Stokes problem

We begin by deriving our VMS-based formulation for the incompressible Navier-Stokes problem and showing that it
is energetically stable. We then show how to implement our method by statically condensing out the fine-scale velocity
field after time discretization, and we present a simplified version of our method based on the concept of quasi-static
subscales.

2.1. Problem and notation

The strong form of the incompressible Navier-Stokes problem with homogeneous Dirichlet boundary conditions and
a Newtonian viscosity law is:

Findu: 2 x [0,T] - R?and p : £2 x (0, T) = R such that

out+u-Vu—V.2vVw)+Vp = f in 2 x(0,T)

(S) V.u = 0 in 2 x(0,T)
u = 0 ondf2x(0,T)

U= = U in 2,

Above, v > 0 is the kinematic viscosity, V* is the symmetrized gradient, and f : £ x (0, T) — R? is a source term. To
facilitate the development of variational numerical approaches, we reformulate this problem in variational form. Let

V= (Hi2)" o

Q= L(Z)(Q) ) 2

X =VxQ, o
and

vri={ve (0, TV) : avel’((0,T;V)}, o

Qr =L%((0,T); £2), o

Xr=Vr X Qr. (6)
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We refer to V as the velocity space and Q as the pressure space. The variational problem corresponding to Problem (S)
is then:

Find (u, p) € At such that u(0) = uy and, for a.e. t € (0, T),
(Bru(t), V) 2y + c(u(t), u(t), v) + k(u(t), v) — b(v, p(t)) + b(u(t), q) = (£(£), Vj2(e)

for all (v, q) € X, where
c(vi,va,v3) = / (vi-Vvy)-v3ds2,
2

k(vy, vp) = / 20V Vi, d§2
o)

b(v,q):/ V.vqds2 .
fe)

In the sequel, when there is no risk of confusion with tuple notation, we may drop the subscript “L*($2)” from the L*(£2)
inner product, and likewise for its induced norm.

2.2. Variational multiscale analysis

Let V' C v, Q" C Q be an inf-sup stable velocity-pressure pair [23-25]. We refer to V" as the coarse-scale velocity
space and Q" as the coarse-scale pressure space, and we assume that both V" and Q" are finite-dimensional. We further
assume throughout that " is H'-conforming, i.e., Q" C H'(£2). Let X" := V! x o"". We define the action of the Stokes
projector Py : X — X" as: Given X = (w, r) € &, find PxX = (W', r") € A" such that

k(w", v") — b(v", ") + b(w", ") + (zcV - W, V - V1)

= k(w, V") — b(v", 1) + b(w, ¢") + (zcV -w, V -¥v") V(v g") e &, (7)
where the parameter 7 > 0 penalizes divergence of w". Let us decompose the solution of Problem (V) at time t into
(u(t), p(t)) = (u'(r), p"(£)) + (W'(), p'(1)) , (8)
where
(u(t), p(6)) = P(u(t), p(t)) € X" . (9)

Then we can decompose Problem (V) into coarse-scale and fine-scale problems. The coarse-scale problem is

(3u"(£), v") + c(u"(£), u"(£), v") + k(u"(£), v") — b(v", p"(£)) + b(u"(t), ¢")

+ c(u(6), W), V') + c(u'(6), u'(6), v') + c(u'(6), w'(t), v") + (eu' (1), V")

+ (zcV -ul(t), V-V = (f(6), V") vV gt e At (10)
and the fine-scale problem is

(0e/(£), V') + c(u(6), w'(£), V') + k(u'(t), V') — b(V', p(£)) + b(u'(t), q)

+ c(u'(6), u'(6), V) + c(u'(6), w(t), V) + bu'(e), ') = —(ru(t), V) V(V.q) e, (11)
where ry; is the residual of the momentum balance equation from Problem (S),

ry=ou"+u" vu' — V. (20V'u") + Vp" —f, (12)
and A’ is the orthogonal complement of X" in X, with respect to the projector Px.
Remark 1. The requirement that the coarse-scale pressure space Q" be H'-conforming cannot be relaxed for the
VMS-based formulation presented in this paper, as we shall see later. Inf-sup stable finite element and isogeometric spaces
with continuous pressure approximation satisfy this requirement. Thus, the VMS-based formulation presented here may
be applied to the MINI element [26], Taylor-Hood element [27], isogeometric Taylor-Hood and sub-grid elements [28], and

isogeometric Nédélec and Raviart-Thomas elements [29]. [sogeometric Raviart-Thomas elements are commonly referred
to as divergence-conforming B-spline discretizations [30].

Remark 2. The use of a Stokes projector is key to ensuring discrete mass conservation. One can also enforce discrete mass
conservation by defining the velocity field using constrained optimization, as in [31], but this leads to a more complicated
formulation.
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Remark 3. The Stokes projector employed here is similar to the Stokes projector presented in [22]. However, the
projector here has an additional grad-div term. The appearance of grad-div stabilization in (10) follows from this grad-
div term, and it does not represent a model of the fine-scale pressure, as it does in some other VMS-derived numerical
approaches, e.g., [2]. Grad-div stabilization can improve solution accuracy for non-divergence-conforming discretizations
of incompressible Navier-Stokes flow [32,33], and it can also improve the condition number associated with the discrete
system obtained after discretization [34]. Grad-div stabilization vanishes for divergence-conforming discretizations.

Remark 4. For standard H'-conforming finite element velocity spaces V", the term V - (2vV*u") appearing in (12)
is not square-integrable, and hence the inner product (ry, V') appearing in (11) is not well-defined. To remedy this
situation, we replace the inner-product (ry, v') with a corresponding summation of inner-products over element interiors,
i.e, Y o (rm, V))ge. This is standard practice with stabilized and multiscale finite element methods [8]. To simplify
exposition, we overload the notation (ry;, V') to also mean this summation of inner-products over element interiors when
the momentum residual ry; is not square-integrable. One may alternatively globally reconstruct V- (ZvVSU"), which yields
improved accuracy in certain settings [35].

2.3. Treatment of convection terms

Foranyae Vwith V-a=0,

c(a, v, v2) = Ceons(@, V1, V2) = Cskew(, V1, V2) YV, V2 €V, (13)
where
Ccons(a7 Vi, VZ) = _/ V- (a . VVZ) a2 ’ (14)
2
1
Csl(ew(as Vi, VZ) = 5 (C(a, Vi, VZ) + CCOl‘lS(aa Vi, Vo )) . (15)

Thus, in (10), we can select
c(u(t) + u'(6), u(£), V') = Cyen(u(£) + W'(), u"(£), V"), (16)
c(u(t) + u'(6), W/ (t), V") = cons(u(t) + u'(0), w/(t), V") . (17)

These selections are critical for energy stability.
2.4. Modifying the fine-scale problem

To adapt (10)-(11) into a practical numerical method, we make the following modeling choices:

1. We assume that c(u'(t), u'(t), v') = 0, i.e., we ignore fine-scale nonlinearity in the fine-scale problem.

2. We assume that b(u(t), ¢') = 0, i.e., we ignore compressibility of the coarse-scale velocity field in the fine-scale
problem.

3. We introduce the model

c(ul(t), u'(t), V') + k(u'(t), V) = (ry W(E), V), (18)

where 1y is a stabilization parameter (whose value remains to be determined). This is inspired by analogy to
advection—diffusion, where the fine-scale Green’s function is localized in the case of an H& projector [36].

4. We replace &’ with surrogate fine-scale spaces V' x Q'. In particular, we select
Vo= (2(92) (19)
920" (20)
We further assume that Q' is finite-dimensional.

Note that since V' & H(div, £2), we must employ the divergence theorem to replace b(V/, p'(t)) and b(u'(t), q') by
—(Vp'(t),v) and —(Vq', u/(t)), respectively, in (11). This requires that Q' C H'(£2), and since Q" C ¢/, this also requires
ol ¢ H'(£2), which we have already assumed.

2.5. Semi-discrete formulation

Define
Vi = {ve 0, T V) : dv e L2((0, T); VM), 21)
Vi = {ve 0, TI:V) : avel*(0,T:V)} , (22)
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Qf =L%((0,T); Q") (23)
Qr =1*(0,T); Q). (24)
We may now define the following semi-discrete formulation:

Find (u", p") € VI x @l and (u', p') € V} x Q; satisfying u"(0) = ull, u'(0) = u, the coarse-scale

problem
(0eu"(£), V") + Caen(u(£), (1), V") + k(" (1), v") — b(v", p" (1)) + b(u"(t), ¢")
+ Ceons(u"(£), W(£), V") + Coren (W (£), W'(E), V") + Ceons(W' (1), W/(£), V") + (B (£), V")
v + (V- u'(E), V-V = (f(E), V")
for all (v, g") € X" and ae. t € (0, T), and the fine-scale problem
(o.u'(t), V') + (r&]u’(t), V) + c(u'(t), uf(t), V)
+ (VP'(6), V) = (Vg u'(1)) = —(ru(t), V)
forall (V,q')eV x @ and ae.t € (0,T).

Above, ug and ug are suitable initial conditions for the coarse-scale and fine-scale velocity fields which may be defined,
for instance, using the Stokes projector. We have the following trivial result for the semi-discrete formulation given by
Problem (V") since Q" € @'.

Lemma 1 (Discrete Mass Conservation). It holds that (q", V - u"(t)) = 0 and —(Vq",u/(t)) = 0 for all ¢" € Q" and ae.
t €(0,T)

Lemma 1 states both the coarse-scale and fine-scale velocity fields are discretely divergence-free, and hence the semi-
discrete formulation given by Problem (V") has not upset the underlying mass conservation properties of Galerkin’s
method. In particular, if the coarse-scale spaces V" and Q" are divergence-conforming, i.e, V - V* € Q" then the
formulation yields a pointwise divergence-free coarse-scale velocity field. This is due to the fact discretely divergence-free
coarse-scale velocity fields are pointwise divergence-free for divergence-conforming discretizations [37]. As discussed in
Section 1, this property is not shared by the residual-based VMS formulation of Bazilevs et al. [2].

Remark 5. The semi-discrete formulation given by Problem (V") is similar to the Galerkin/least-squares formulation
with dynamic divergence-free small-scales (GLSDD) presented in [22]. However, there are a few key differences. First of
all, GLSDD is of Galerkin/least-squares (GLS) type, while the formulation presented here is not. Second of all, the fine-
scale pressure space in GLSDD is taken to be identically the coarse-scale pressure space. Finally, GLSDD is specifically for
divergence-conforming discretizations.

2.6. Energetic stability

We proceed with an energetic analysis of the semi-discrete formulation given by Problem (V"). To do so, we make
a number of assumptions. We first assume that V" and Q" are (mapped) piecewise-polynomial or piecewise-rational
approximation spaces with respect to a mesh M. We denote each element of the mesh M as £2°, and we note that

2 = int (UZLQ") where ng; is the number of elements in the mesh. We next make two assumptions regarding the
velocity space V" and the stabilization parameter ;.

Assumption 1. For each element £2¢ € M, there exists a constant Cj,, > 0 independent of the diameter h, of £2¢ such
that

(V- vV, v (2uvsvh) ), < Chz (Vo) (25)
e
for all v € V.
Assumption 2. For each element £2° € M,
s e (26)
invV

where G,y is the constant associated with Assumption 1.

Assumption 1 holds for standard finite element and isogeometric spatial discretizations [38], while Assumption 2
holds for standard choices of the stabilization parameter [8]. With the above assumptions in hand, we have the following
energetic stability result for our formulation.
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Leflnma 2 (Energetic Stability). Provided that Assumptions 1 and 2 are satisfied, the kinetic energy associated with Problem
(V™) evolves as

d 1, _ ’o
o (f [u" +u| ) (f,u" +u)— fk(u“,uh) —(zcV-u', vV.uh) — 2(r,\,,1u u). (27)
In particular, the kinetic energy decays in time for a homogeneous source term f = 0
Proof. Let v! = u"(t), v/ = w/(t), ¢" = p"(t), ¢ = p/(t) in Problem (V"). Summing the coarse-scale and fine-scale problems
yields

(3 (u" +w')(), (u" + w' (1)) + Cew(u(2), u" (1), u'(1))

+ Cokew(W'(£), 0" (), u"(£)) + Ceons(u"(t), w/(t), u'(1))
+ c(u"(£), u"(t), () + Ceons(W (t),u/(t),u( )
)
(Vv

+ c(u'(6), u'(e), w(t)) + k(u'(£), u'(£)) + (zcV - u'(t), V - u'(©))
+ (g "W(8), u(t)) + (VP"(0), W(t)) = (V - RuVeu'(t)), w(t)) = (£, u"(t) + u/(1)). (28)
Note that
(el + w0, (o +w)0) = & (% Ju" + u/Uz> (©), (29)
Corew(U(1), WP(£), U"(£)) = Coeew(u'(t), w'(t), u' (1)) = (30)
Ceons(u" (), w/(£), " (1)) + c(u(t), u'(t), w/(t)) = 0, (31)
Ceons('(£), W(t), u(t)) + ( (). u"(t), u'(1)) =0, (32)
(Vp"(6), u'(t)) = (33)
Observe that (33) holds due to Lemma 1. Using (29)-(33) in (28), we get
%( Ju" + | ) (Fu' + )+ (V- 2vViu"), u)
— (k" u") + (zcV - u", vV u") + (o W) (34)
Using Young's inequality,
(V-(2vVviu"), u) < % (tuV - 2uVveut), Vv - 2uveuh) + % (ry'u' 0 . (35)
Since
2
™ < on £2°, (36)
invV
it holds that
(V- @vViu"), V. 2uviu") ,, < (vWu", V'), . (37)
Consequently we have
(V-(2vViu"), u) < %k(u", u") + ;(r;u/, u) (38)
and kinetic energy evolves as
%( [u" +u| ) f,u" +u)— %k(uh,uh)—(tcv-uh,v cuhy — %(r;u/,u/). (39)

This is the desired result. O

Remark 6. Note that Lemma 2 states that the total kinetic energy, that is, the kinetic energy associated with both the
coarse- and fine-scales, decays in time for a homogeneous source term. It does not state that the kinetic energy associated
with just the coarse-scales decays in time for such a setting. Indeed, we expect our VMS-based formulation to allow for
backscatter of energy from fine-scales to coarse-scales [39].

2.7. Time discretization and static condensation of the fine-scale velocity field
Problem (V") constitutes a set of differential-algebraic equations for the unknown coarse-scale and fine-scale velocity

and pressure fields, and thus it can be discretized in time using virtually any time discretization scheme for differential-
algebraic equations. Once Problem (V") is discretized in time with such a scheme, the fine-scale velocity field may be
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statically condensed from the system at each time-step, resulting in a nonlinear algebraic system for the coarse-scale
velocity field, coarse-scale pressure field, and fine-scale pressure field. To illustrate this, suppose that Problem (V") is
discretized in time using the backward Euler scheme. Then, we have the following problem at the nth time step t,: Given
(ul .ph yeVv'xgMhand(u, ,,p, )€V x <, find (ul, ph) € V? x " and (u}, p},) € V' x Q' satisfying the coarse-scale
problem

h h

u —u

(" o = vh) + Corew(ul, ult, V") ++ k(ul, v") — b(v", p2) + b(ul, ")
n

u, —u,_
+ Ccons(ugy ll;, Vh) + Cskew(u;, u27 Vh) + Ccons(u;» ll;.,, Vh) + ( : At st , Vh)
n
+ (V- ul, Vv = (f(t), V") (40)

for all (v, ') € X" and the fine-scale problem

u —u
<7“ ”Kv’)+(rM1u;,V’)+c(u,’1,uZ,V’)

Aty
+ (V. V) = (V4 wy) = —(rm(ty), V) (41)
for all (v*, ") € V' x Q" where At, =t, — t,_;. Setting (V/, ¢') = (V', 0) in (41) yields
u —u
(”At“ + 1y W, 4w - Vg o+ V), - r(t), v/) =0 (42)
n

for all v/ € V'. Since we have selected V' = (Lz(.Q))d, it follows that

At a
o = <<1 N TM")H Atnwg> (W, — Aty (VP + t(tr))) (43)

almost everywhere, where I is the identity matrix. Inserting (43) back into (40) and (41) then yields a nonlinear algebraic
system for the coarse-scale velocity field u',;, coarse-pressure pressure field p’;, and fine-scale pressure field p;,. Note in
particular that inserting (43) into (41) with (v, q') = (0, ¢) yields

(Vq, AtKVDp,) = — (Y, AtyKarw(ta)) + (V' Kout,_;) (44)

-1
where K, = 1+ %)I—i— Athu’g . Thus we see the fine-scale mass conservation constraint yields a Poisson-

like problem for the fine-scale pressure field after static condensation of the fine-scale velocity field. Alternative time
discretization schemes, including the popular generalized « scheme [40], yield similar Poisson-like problems for the
fine-scale pressure field.

2.8. Quasi-static subscales

The semi-discrete formulation given by Problem (V") is analogous to the method of dynamics subscales proposed by
Codina et al. [41]. By making other modeling choices, we can arrive at other methods. In particular, we can arrive at
an analogous model to the quasi-static subscale model of Bazilevs et al. [2], by omitting the fine-scale unsteadiness and
cross-stress terms from the fine-scale problem in Problem (V"), allowing us to solve for the fine-scale velocity directly:

u =—1y (Vp' +1u) . (45)

(Note that for full consistency with [2], one would also write every convection term in the coarse-scale problem in the
conservative form cqs.) The resulting model is not guaranteed to be energy-stable, but it has been successfully applied
in many turbulence studies and challenging engineering problems, e.g., [2,3,42-49].

3. Convergence analysis for the Oseen problem

We continue with a convergence analysis of our VMS-based formulation. To do so, we consider a simplified steady
linear problem - Oseen flow - with a fixed solenoidal advection velocity, a € V. In weak form, it is: Findu € Vandp € Q
such that, forallve vand q € Q,

c(a,u,v)+ k(u,v) — b(v, p) + b(u, q) = (f,v) . (46)

A discretization for (46) analogous to Problem (V") is: Find (u",p", w/,p’) € V' x 9" x V' x Q' such that, for all
(V" gh v, g)e Vi x Q' x V' x @,

A", p"u p), (V' ¢" V. q)) = (E. V" + V), (47)
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where
A", p" ', p), (v", " V. q))
= c(a, u", v") + k(u", v) — b(v", p") + b(u", ¢")
+ Ceons(@, W, V") + (zcV - u", V- V1) + (7,0, V)
— bV, p')+ b, q)+ (a- Vu', V)
— (V- (2uViu", V) + (Vp", V). (48)

The simplified treatment of advection relative to Problem (V") is a result of V -a = 0.
As in the alternative formulation of Section 2.8, we can formally eliminate u’ from the above formulation:

u=1y(f-a Vu"+V.(2uviu') - vp' - vp) . (49)

We can also replace the fine-scale pressure field p’ in the formulation with the total pressure p = p" + p' € @ where
0 = o" + Q'. Note that since Q" € @', & = ', but we elect to use the notation O in order to distinguish between total
pressure and fine-scale pressure. Finally, we can eliminate the coarse-scale pressure field p" by restricting the coarse-scale
velocity trial and test functions to the weakly divergence-free subspace

V= {vh e V" b(v", ¢") =0 for all ¢" € Q"}.

The aforementioned modifications result in the following reduced formulation: Find (u", p) € V" x & such that, for all
(V" g) eVt x 9,

Area (", B), (v", @) = (£, V") + (f, Tm(a - VW' + V) , (50)
where
Ared ((uhv f’)’ (Vh’ EI))
=c(a, u", V") + k(u", V") + (zcV - u", V-V + (- VU = V- 20Viu") + VD, ty(a - V' + VD)) .

While the coarse-scale and fine-scale pressure fields p" and p’ serve as Lagrange multipliers associated with the mass
conservation constraint in the full formulation given by (47), the total pressure field p is determined from momentum
conservation via a Poisson-like problem in the above reduced formulation.

To proceed forward, we make a fundamental assumption regarding the coarse-scale spaces V" and Q.

Assumption 3. The coarse-scale spaces V' and Q" are divergence-conforming, i.e, V - V' € o

Under the above assumption, discretely divergence-free coarse-scale velocity fields are pointwise divergence-free. That
is,
fihz{vhevh:v-vhzo}.

The following consistency result holds under such an assumption.

Lemma 3 (Consistency). Provided that Assumption 3 is satisfied and the exact solution (u, p) € V x Q to the Oseen problem
lies in (H%(£2))! x H'(£2), it holds that

Ared ((u—uh,p—f)), (Vh’?])) =0 (51)
for all (V", §) e V" x Q.

Proof. If the solution (u, p) € V x Q lies in (H2(£2))? x H'(£2), it holds that

Area (u, p), (v, q)) = (£, v) + (f, zv(a - VV + V(@) (52)
for all (v,q) € V x Q where V := {v e V: V- v = 0}. Since Assumption 3 is satisfied, V* c V¥, and hence

Area (. p), (V" @) = (£, V") + (£. tm(a - V" + V) (53)
for all (v", @) € V' x . By construction,

Area (0", D). (v, @) = (£. V") + (f. tm(a - V" + V) (54)

for all (v", ¢') € V" x Q'. The final result follows by subtracting (54) from (53). O

It should be noted that the above lemma does not hold if Assumption 3 is not satisfied. This is due to the fact that
V' ¢ V for a velocity—pressure pair that is not divergence-conforming.
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To continue, we introduce the norm
v, DI = k(v,v)+ (@- Vv + Vg, tu(a- Vv + Vq)) .

The following coercivity result then holds.

Lemma 4 (Coercivity). Provided that Assumptions 1 and 2 are satisfied, it holds that

- - 1 -
Area (V. 0. (V. 9) = SV, DI’

for all (W', @) e V" x &.

Proof. Let (V",§) € V' x Q. Expand

Ared (V" @), V", @) = c(a, V", V") + k(v" V") + (a- VV" — V- 2uVV") + VG, tw(a - VV' + V7)) .
It is easily shown that c(a, v, v") = 0, so it follows that

Area (V' @), V", @) = IV, DI — (V- 2vV*V"), 7@ W' + V)
Using Young's inequality,

(V-@uVvv"), ty(@a- W'+ V) < = (V- (2uVV"), tyV - 2uVV") +

(a- W'+ Vg, u(@- W'+ V7)) .

N =N =

Since Assumptions 1 and 2 are satisfied,
(V- 2uVv"), iy V - (20Vivh) < k(v" v,
thus
(V- @vVV'), @ W' 4 V) = W DI
The desired result immediately follows. O
Using the additional norm
v, @3 = v, QI” + (V- QuVPv), aV - (20V*V)) + (v, 7y 'v)

we can show the following continuity result.

Lemma 5 (Continuity). It holds that
Area (W, ), (V" @) < 3ll(w, D)l IV, @Il
forall (w,r) e (VNHA(2)) x (QNH(R)) and (v",q) € V" x &.

Proof. Let (w,r) e (VNHA(2)") x (N H'(£)) and (v, §) € V" x Q. Expand
Ared (W, ), (V", 9)) = c(a, w, V") + k(w, V") + (a- VW — V - (2uV*W) + Vr, 7y(a - V" + V)
=(a-vw, V") + (2vViw, Vsvh)
+ (a-VW+ Vr,my(@- W'+ V@)) — (V- (2vV°w), ty(a - W' + V7)) .
Since V-a =0 and w e V, it follows that
@-vw,vh) = —(w,a- W) +(V-w, §) = —(w,a- W' + V§).
Consequently,
Ared (W, 1), (V",3)) = — (w,a- V" + V) + (2vVw, V*V")
+ (@ - VW+ Vr,my(@- W'+ V) — (V- (2vViw), ty(a - W' + V7)) .
By the Cauchy-Schwarz inequality,
uViw, VV') + (@ VW + Vr, iy(@ - W' + V@) < [iw, DIV, DI < llew, DI ", I -
Moreover,

(w,a- V" + Vq) < [l(w, )l I, Il

2525
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and
(V- (2uV'w), (@ - W' + V) < li(w, )l v, @Il - (67)
The desired result immediately follows. O

Finally, using Lemmas 3-5, we can show the following result.

Theorem 1 (Error Estimate). Provided that Assumptions 1-3 are satisfied, it holds that

ltu—u",p—p)l <7 inf  Jl(a—w" p—7l, (68)
(wh.P)evhxQ

if the exact solution (u, p) € V x Q to the Oseen problem lies in (H*(£2))¢ x H'(£2).

Proof. Let (Wh, f) e V" x 4. By Lemma 4,

1 L o

f|||(u — W B = PI® < Area (" — W' B —7), (0" — W', p—F)) . (69)
By Lemma 3,

f|||(u W B — I < Area (0 — W' p—F), (0" — W' f— 7)) . (70)
By Lemma 5,

f|||(u —wh = PI” < 3lu—wh, p— Pl Nl —wh, p— Pl (71)
SO

li(u® — W, p — )l < 6ll(u—w", p—Fl, . (72)

By the triangle inequality,

h

lw—u", p—p)ll < ll(u" —w", p— 7l + ll(w—w", p = F)l| < 7lI(u—w", p—7)ll, . (73)

The desired result follows since (W", 7) € V" x & is arbitrary. O

The above result indicates that our VMS-based formulation is quasi-optimal with respect to an SUPG/PSPG-like norm
for divergence-conforming discretizations of the Oseen problem. Note that the above result also indicates that while
the velocity error depends on the approximation properties of the fine-scale pressure space, it does not depend on the
approximation properties of the coarse-scale pressure space. Thus any spurious influence of the pressure field on the
coarse-scale velocity field may be mitigated by refining just the fine-scale pressure space rather than both the coarse-scale
and fine-scale pressure spaces. This is an important observation as one can refine the fine-scale pressure space without
upsetting inf-sup stability while the same cannot be said for the coarse-scale pressure space.

In order to extract convergence rates for our VMS-based formulation, we must make additional assumptions regarding
the approximation power of the velocity and pressure spaces V" and O and the specific form of the stabilization parameter
T™-

Assumption 4. There exist integers k, and kg, interpolation operators Z, : V — V" and Iy:Q— 0, and an interpolation
constant Cineerp independent of the global mesh size h = max, h, such that, for every v e ¥ N (H**1(£2)) and integer
0<l<k,+1,

Ne|
Z |V - IU"'(ZHI(QE))d S CinterphZ(’@#»lil)|V|(2Hk,,+1(_@))d9 (74)
e=1

and, for every g € 9 N H%*1(£2) and integer 0 < I < kg + 1,

Ne|

D19 Zatli ey < Cinterh™ 0" 1121 (75)

e=1

We refer to k, and k; as the degrees of the coarse-scale velocity and fine-scale pressure spaces, respectively.

Assumption 5. For each element £2°¢ € M,

he
™ = mf(VeL (76)
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where
alhe
= 77
Ve o (77)
is the element Péclet number and f is a monotone function satisfying
4
f(ye) < min {1, e } , (78)
inv

where G,y is the constant associated with Assumption 1.

Assumption 5 holds for standard choices for the stabilization parameter [50], and Assumption 2 is automatically
satisfied if Assumption 5 is satisfied. Assumption 4, however, is a non-standard assumption. Satisfaction of Assumption 4
requires the existence of a divergence-conforming projection operator for the coarse-scale velocity space. Such projection
operators exist, for instance, for divergence-conforming B-spline discretizations [51] as well as a selection of divergence-
conforming finite element discretizations [52,53]. It should be noted, however, that divergence-conforming finite element
discretizations typically employ discontinuous pressure approximation. Provided a divergence-conforming projection
operator does exist, Assumption 4 typically holds for quasi-uniform meshes M. Equipped with the above assumptions,
we have the following result.

Theorem 2 (Rates of Convergence). Suppose that the advection velocity a and the kinematic viscosity v are constant, and
suppose that the mesh M is quasi-uniform. Provided that Assumptions 1-5 are satisfied, it holds that

’1h2kq+2|P|,2,kq+1(m) ) (79)

where Cypoung is a dimensionless constant independent of the global mesh size h = max. he, if the exact solution (u,p) € V x Q
to the Oseen problem lies in (H*+1(2))? x HX+1(£2).

~ 2
lI(w —u", p = B)I” < Coouna (max{|a|h, VI 1 g0 + Max{lalh, v)

Proof. By Theorem 1, we have
-
it —u",p—p)I" < 49ll(u — Z,u, p — ZP)IIZ. . (80)
However,
ll(a — Zyu, p — Zpp)II3. = k(u — Z,u, u — Z,u)

+@ Vu—-Z,u)+ V(p—Zp), @ vV (—Z,u) + V (p — 7,p)))
+ (V- @vV* (u—Z,w), yV - 20V’ (u — Z,u)))

+(u—Zu 7y (u-Zw) . (81)
Assumption 4 immediately gives
k(u — Z,u, u — Z,1) < Cinrerp V™ [U]7 100 - (82)
Assumptions 4 and 5 give
(V- @vV (u—z,w), yV - 2vV° (u — Z,w))) < %vhzh’ 0l 10210 (83)
and
(u—Z,u, 7" (W — Z,u)) < CinerpCrmesh Max{2, Giny} max{Jajh, v}h*® |“|<2Hkv+1(m>a , (84)

where Chpesn > 0 is a dimensionless constant that depends on the ratio max, h,/min, h, and the monotone function f
appearing in Assumption 5. The Cauchy-Schwarz and Young’s inequalities give

@ Vu—-Zw+V(p-1p), m@- Vu—-IZu+V(p-1p)) <
2(@ Vu-zu,va-Vua—-7zw) + (V(p—Zp), V(0 — Zp))) . (85)

and Assumptions 4 and 5 give

1
@ V@-7,0, wa- V(= Zw) < o Cnterplalh™ [0l g0
and
1 1 —1 1,2kq+2 1,412
(V(p—=24p) , tuV (P = Zgp)) < Cinterp max § =, —— pmax {[afh, v}~ h* T2 ply (87)
mv

The desired result follows from combining (80)-(87). O
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In the advection-dominated limit, Theorem 2 yields

1py2kg+1

h =\ 2ky+1)4,2 - 2
liw —u®, p = BI” ~ falh™*H uf? 1 0 + 2 P kg1 - (88)

The above equation suggests that one should select the coarse-scale velocity and fine-scale pressure spaces so that k, = kg
in order to balance the velocity and pressure contributions to the error. On the other hand, in the diffusion-dominated
limit, Theorem 2 yields

~ 2 —
I —u". p =PI ~ R G 4 g0 + 0T RHTRIDER (89)

The above equation suggests that one should select the coarse-scale velocity and fine-scale pressure spaces so that
k, = kq + 1 in order to balance the velocity and pressure contributions to the error. Since the advection-dominated
limit is of more practical interest than the diffusion-dominated limit, it is suggested to select the coarse-scale velocity
and fine-scale pressure spaces so that k, = k.

Theorems 1 and 2 suggest that, much like the classical SUPG/PSPG method [50], our VMS-based formulation is
robust with respect to both advection and diffusion. However, Theorems 1 and 2 only apply to divergence-conforming
discretizations. To prove analogous results for non-divergence-conforming discretizations requires the use of an inf-sup
stability analysis rather than a coercivity stability analysis. Such a study is relegated to future work.

4. Numerical results

We finish this paper by applying our VMS-based formulation to the numerical solution of the incompressible
Navier-Stokes problem. We first examine the convergence properties of our formulation using steady and unsteady
exact solutions before exploring the applicability of our VMS model as an implicit LES filter using the three-dimensional
Taylor-Green vortex problem. For all of our numerical studies, we employ divergence-conforming B-splines for spatial
discretization [54,55]. Isogeometric divergence-conforming discretizations yield pointwise divergence-free velocity fields,
so the convergence analysis of Section 3 directly applies to such discretizations.

4.1. Implementation using FEniCS and tIGAr

To implement the VMS-based formulation described in Section 2 in a transparent way, we employ finite element
automation software from the FEniCS Project [56], which allows symbolic specification of variational problems in Unified
Form Language (UFL) [57]. These specifications are then compiled [58] into efficient routines suitable for high-performance
simulations using the solver DOLFIN [59]. FEniCS can be used for isogeometric analysis (IGA) via the library tIGAr [60].
Some of the complicated variational forms generated by tIGAr benefit from the use of experimental support in FEniCS for
and advanced form compiler called TSFC [61].

We solve the saddle-point problem implied by Problem (V") using an iterative strategy based on the iterated penalty
method advocated by Morgan and Scott [62]. This is possible since the spatial discretization we consider is divergence-
conforming and hence the exact mass conservation constraint is recovered with our formulation. We extend the iterated
penalty method, as in [60], to perform penalty iterations in tandem with nonlinear iterations. It is also possible to use
the multigrid method proposed in [63] to solve the saddle point problem.

The use of FEniCS leads to concise and comprehensible implementations. Readers interested in the precise definitions
of stabilization parameters, solver configurations, computational performance, results for additional cases, etc. are
encouraged to examine, run, and/or modify the open-source code examples accompanying this paper [64].

4.2. Convergence tests

We first demonstrate numerically that the convergence analysis of Section 3 for the Oseen problem can be extrapolated
to the steady and unsteady incompressible Navier-Stokes problems.

4.2.1. Steady flow: The regularized lid-driven cavity

We begin our numerical tests with the simplest extension of the Oseen problem, namely, steady Navier-Stokes flow.
We test convergence with a variant of the manufactured solution called the regularized lid-driven cavity, as proposed
in [65] and studied also by [66]. In particular, we choose, a priori, the exact velocity solution from [65],

u(x) = (x] — 2x3 +x3) (45 — 2x2) @1 — 8 (4x] — 6x] + 2x1) (X3 —X3) €3, (90)
and the pressure!
p(X) = sin(rxq)sin(rxy) . (91)

1 This differs from [65], whose expression for p emerges from complicated manual manipulations. When manufacturing solutions automatically,
one can choose an arbitrary smooth scalar field.
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Fig. 1. Convergence of the H'-semi-norm of the velocity error for the regularized lid-driven cavity using divergence-conforming B-splines of degree
k'=1and kK =2.

The corresponding source term is generated automatically from the strong form of the problem, using UFL. The velocity
solution resembles the classic lid-driven cavity benchmark but without the corner singularities. We apply the exact
velocity solution as a Dirichlet boundary condition on the unit square domain. We take unit length and velocity scales,
and we present results for a Reynolds number of Re = 100.

We test our VMS-based formulation for this problem using divergence-conforming B-splines, selecting the fine-scale
pressure space to be equal to the coarse-scale pressure space. This selection results in the coarse-scale velocity and
fine-scale pressure spaces being complete up to the same polynomial degree. It should be noted that the fine-scale
pressure space can alternatively be chosen to be larger than the coarse-scale pressure space, but this comes at increased
computational cost without a corresponding increase in convergence order. The stabilization parameter is selected as

™ = (uh G-u" 4+ 216G G)_V2 , (92)

where Cj,y is selected to be (6k')? so that Assumption 1 is satisfied, G = %Tg—f( and g—f( is the inverse Jacobian of the
map between the parent element and the physical element. See [2] for more details. Fig. 1 shows the H!-semi-norm of
the velocity error for splines of degree k' = 1 and k' = 2. The notation “k’” is understood in the sense defined by [30],
i.e., the degree up to which the coarse-scale velocity approximation space is polynomially complete. Note that optimal

convergence rates are observed for both k¥ = 1 and k' = 2.

Remark 7. For our divergence-conforming B-spline computations, we differ from the formulation of [54] by applying
Dirichlet boundary conditions strongly in the tangential direction, via a divergence-free lifting of the boundary data
(computed, in this case, as an L? projection of the exact solution onto the solenoidal subspace of V). This is most
consistent with the formulation and convergence analysis in Sections 2 and 3, where strong enforcement has been
assumed for simplicity. However, in practice, we recommend the weak enforcement outlined by [54], which requires
much less boundary-layer resolution to obtain accurate solutions to realistic flow problems. In the setting of strongly
enforced tangential boundary conditions, an inf-sup stable discretization is attained by suitably constraining the coarse-
scale pressure field [29], but we avoid computation of the coarse-scale pressure field using the iterated penalty method,
as discussed in Section 4.1.

4.2.2. Unsteady flow: Two-dimensional taylor-green vortex flow

We continue our numerical tests with unsteady Navier-Stokes flow. We test convergence in the unsteady setting
using two-dimensional Taylor-Green vortex flow, whose full problem specification and exact solution are given in
[30, Section 9.10.1]. Two-dimensional Taylor-Green vortex flow describes the behavior of a two-dimensional vortex
who decays away in time due to viscous forces. We consider both time discretizations of the full semidiscrete unsteady
formulation given in Section 2.5 as well as its quasi-static-subscale variant described in Section 2.8. We discretize in time
using the second-order-accurate implicit midpoint rule and a time step size of At = (%) T where h is the mesh size,
L = 7 is the domain length, and T = 1 is the length of time.
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Fig. 2. Convergence of the H'-semi-norm of the velocity error at time T = 1 for two-dimensional Taylor-Green vortex flow using

divergence-conforming B-splines of degree k' = 1 and k' = 2 with the dynamic and quasi-static subgrid models.

We again test our VMS-based formulation using divergence-conforming B-splines, selecting the fine-scale pressure
space to be equal to the coarse-scale pressure space. For the dynamic subscale model, the stabilization parameter is
selected according to (92). For the quasi-static subscale model, the stabilization parameter is selected as

4 —1/2
™ = (P +u". G- u"4 2 %G c) , (93)

T .
where Ci, is again selected to be (6k')* so that Assumption 1 is satisfied, G = g—i g—f( % is the inverse Jacobian of the

map between the parent element and the physical element, and At is the time step size.

This is consistent with other VMS-based methods based on quasi-static models [2]. Fig. 2 shows the H!-semi-norm
of the velocity error at time T = 1 for splines of degree k' = 1 and k' = 2. Note that, as was the case for the steady
manufactured solution, optimal convergence rates are observed for both k' = 1 and k' = 2. Note additionally that the
dynamic and quasi-static subscale models yield virtually the same error for both k' = 1 and k' = 2.

4.3. Application to turbulent fluid flow

We finally examine the effectiveness of our VMS-based formulation as a residual-based LES methodology for turbulent
fluid flow. In particular, we apply our formulation to the numerical simulation of three-dimensional Taylor-Green vortex
flow at a Reynolds number of Re = 1600, one of the simplest systems exhibiting a transfer of energy to successively
smaller scales through vortex stretching [67]. The initial condition for this flow is

sin (x) cos () cos (z)
u (x,y,2) = |: — sin (x) sin (y) cos (z) :| . (94)

0

The flow is periodic in all three spatial directions in the domain £2 = (0, 27)3, but due to inherent symmetries in the
flow, it can be modeled within a smaller domain of £2" = (0, w)? with no-penetration and free-slip boundaries.

As with the previous two numerical tests, we test our VMS-based formulation using divergence-conforming B-splines,
selecting the fine-scale pressure space to be equal to the coarse-scale pressure space. We employ the quasi-static subscale
model, as quasi-static and dynamic subscale models typically return comparable results for VMS-based formulations
provided the time step size is not excessively small [68]. Also as before, we discretize in time using the second-order-
accurate implicit midpoint rule, and we employ a time step size of At = % (%) T where h is the mesh size, L = 7 is the
domain length, and T = 10 is the length of time. The stabilization parameter is selected according to (93). We consider
as a quantity of interest the time history of the kinetic energy dissipation rate,

dEy

e(t) = —— (). (95)
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Fig. 3. Total dissipation rate time history for three-dimensional Taylor-Green vortex flow at Re = 1600 using divergence-conforming B-splines of
degree k' =2 and h = ;. Comparison of classical LES subgrid models (no model, Static Smagorinsky, Dynamic Smagorinsky, Chollet) with DNS [67].
Source: Results adopted from [69].

where Ej is the kinetic energy,
1 t)-u(t
Ee(t) = 7/ Md(z. (96)
121 Je 2

For three-dimensional Taylor-Green vortex flow, the kinetic energy dissipation rate is equal to the viscous dissipation,
|Q| / 2vViu(t) : Viu(t)ds2. (97)

Application of (97) to the resolved velocity field results in the resolved dissipation rate. The difference of the total
dissipation and resolved dissipation rates gives the model dissipation rate, a measure of how much dissipation a given
subgrid scale model provides.

Before examining results obtained using our VMS-based formulation, we first examine results obtained using classical
LES subgrid models [69]. In Fig. 3, we examine the total dissipation rate time history for the case of no model, the
static Smagorinsky model [70], the dynamic Smagorinsky model [71], and the Chollet model [72], all for a divergence-
conforming discretization of degree k' = 2 and a mesh of 323 elements. For this mesh, the flow is moderately unresolved.
This is intentional, as we would like to examine the performance of the models in the unresolved setting. We compare
the results with Direct Numerical Simulation (DNS) [67]. Note the total dissipation rate time history is quite inaccurate
for each of the classical LES subgrid models. In fact, employing no model leads to better performance than either the
static Smagorinsky model, the dynamic Smagorinsky model, or the Chollet model. The poor performance of the static
Smagorinsky model is expected since it is active even at the beginning of the simulation when the solution is purely
laminar. The poor performance of the dynamic Smagorinsky model is more surprising as it was designed to improve upon
the static Smagorinsky model when the flow is transitional. The Chollet model dissipation rate time history matches the
DNS closely until a time of approximately t = 4, at which point the two time histories quickly diverge. This indicates the
model is appropriately “turned off” when the mesh is sufficiently fine to resolve the flow field.

We next examine results obtained using our VMS-based formulation. In Fig. 4(left), the total dissipation rate time
history is displayed for our VMS-based formulation, divergence-conforming discretizations of degrees k' = 1 and
k' = 2, and a mesh of 323 elements. From the figure, it is clear that the VMS-based formulation outperforms the static
Smagorinsky model, the dynamic Smagorinsky model, and the Chollet model, using both k¥ = 1 and k' = 2. The VMS-based
formulation also outperforms the case of no model. The VMS-based formulation departs from the DNS at roughly the same
point in time for both k' = 1 and k' = 2, indicating that the implicit subgrid model is appropriately “turned off” when the
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Fig. 4. Total dissipation rate time history for three-dimensional Taylor-Green vortex flow at Re = 1600 using divergence-conforming B-splines of

degree k' =1 and k' =2, h = 35 (left) and h = Z; (right), and our VMS-based formulation.

mesh is sufficiently fine to resolve the flow field. Like the Chollet model, the VMS-formulation model dissipation rate time
history begins to diverge from the DNS time history at a time of approximately t = 4, though the k' = 2 total dissipation
rate time history matches the DNS much more closer than the k' = 1 total dissipation rate time history to the time of
max dissipation rate.

In order to better understand how the VMS-based formulation responds to turbulence production and transition, we
examine the resolved and model dissipation rates. In Figs. 5(left) and 6(left), the resolved and model dissipation rate
time histories are displayed for our VMS-based formulation, divergence-conforming discretizations of degrees k' = 1 and
k' = 2, and a mesh of 323 elements. From these figures, it is clear that indeed the implicit subgrid model is “turned off”
until a time of approximately t = 4, as the model dissipation rate is nearly zero until this time. The model dissipation
rate then sharply increases for k' = 1, and it increases much more gradually for k' = 2. This is consistent with the typical
observation that high-order methods exhibit less numerical diffusion than low-order methods.

We next examine the impact of mesh refinement on our VMS-based formulation. In Figs. 4(right), 5(right), and 6(right),
the total, resolved, and model dissipation rate time histories are displayed for our VMS-based formulation, divergence-
conforming discretizations of degrees k' = 1 and k' = 2, and a mesh of 64> elements. For this mesh, the flow is marginally
unresolved. It is clear here that as the mesh is refined, the total dissipation rate for both k' = 1 and k' = 2 converges to the
DNS solution. This is accompanied by an appropriate increase in the resolved dissipation rate as well as a corresponding
decrease in the model dissipation rate.

Up to this point, we have compared simulation results directly with DNS data. However, for unresolved simulations,
such as the ones reported here for a mesh of 32° elements, the energy in the coarse-scale velocity field (as defined by
the projection of the exact velocity field into the coarse-scale space) is expected to be significantly less than the energy
in the total velocity field. As such, rather than compare the time history of the total dissipation rate for a given model
with that of a DNS, it is likely more appropriate to compare the time history of the resolved dissipation rate with that
associated with filtered or projected DNS data. With this in mind, the time histories of the resolved dissipation rate for
our VMS-based formulation for K = 1 and k' = 2 and a mesh size of h = £ are displayed in Fig. 7 alongside the
time history of the dissipation rate computed from filtered DNS data [73]. The filtered DNS data was obtained using a
sharp cut-off filter of size A = 3. From the figure, we see that the resolved dissipation rate time histories associated with
our VMS-based formulation closely match the resolved dissipation rate time history computed from the filtered DNS data.
This is evidence that our VMS-based formulation might be providing the correct amount of dissipation to yield the correct
coarse-scale velocity field. However, it should be noted that the filtered DNS data does not correspond to the projection
of the exact velocity field into the coarse-scale space for either k' = 1 or k' = 2 but rather the projection of the exact
velocity field into a space of Fourier modes, so no precise conclusions should be drawn.
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5. Conclusions

In this paper, we have introduced a novel residual-based stabilized formulation for inf-sup stable discretizations of
incompressible Navier-Stokes flow with H'-conforming pressure approximation. The method is formally derived using
the VMS formalism using a Stokes projector for scale separation. This yields a nonlinear algebraic system in which a
discrete fine-scale pressure field must be solved for alongside the coarse-scale unknowns, such that the coarse- and
fine-scale velocities are both discretely divergence-free. The new formulation is energetically stable provided a dynamic
subscale model is employed, and the formulation is quasi-optimal with respect to an SUPG/PSPG-like norm for divergence-
conforming discretizations of a linearized model problem (Oseen flow). Numerical results both support the analysis and
provide initial evidence that the new formulation is capable of modeling the influence of unresolved flow features. In the
future, we plan to conduct a more thorough investigation of the turbulence modeling capabilities of the formulation and
to study its interaction with weakly-enforced no-slip boundary conditions, on both conforming and immersed boundaries.
We also plan to extend the stability and convergence results presented here to non-divergence-conforming discretizations.

We have provided a transparent implementation of the proposed method, using FEniCS and tIGAr [64]. Just as
IGA unifies the geometry of a PDE problem’s domain with that of an approximate computational model, FEniCS’s UFL
exemplifies an analogous paradigm one might call “isomathematical analysis”, where a solver’s source code corresponds
directly to a traditional mathematical statement of a variational formulation. We encourage readers to explore the
properties of our method further by running and modifying the examples provided.

A limitation of the proposed stabilization is that it interferes with another desirable property of the Galerkin method
using divergence-conforming spaces: pressure-robustness [14]. Briefly, pressure-robustness means that the error in the
discrete velocity solution does not depend on the interpolation error of the pressure. Lack of pressure robustness often
manifests as poor mass conservation around large pressure gradients induced by irrotational source terms, such as those
corresponding to immersed boundaries [18,19]. However, if the main practical advantage of pressure robustness is its
prevention of un-physical mass loss, is it still an important property for divergence-conforming discretizations? Does
pressure interpolation error pollute velocity solutions in other important ways? We plan to study these questions in
future work, by applying the method of this paper in conjunction with immersed boundaries.

Finally, with the express goal of obtaining a residual-based stabilized formulation that maintains both strong mass
conservation and pressure robustness for divergence-conforming spaces, we plan to apply the formalism presented here
to the construction of VMS-based formulations yielding pointwise divergence-free coarse- and fine-scale velocities. While
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such formulations have been proposed in the past [66,69], an error analysis which shows robustness in the advection-
dominated limit is missing for these formulations. The formalism here, however, may yield pressure-robust methodologies
that are provably robust with respect to both advection and diffusion.

CRediT authorship contribution statement

John A. Evans: Conceptualization, Methodology, Formal analysis, Writing - original draft, Writing - review & editing.
David Kamensky: Software, Validation, Investigation, Writing - original draft, Writing - review & editing. Yuri Bazilevs:
Writing - original draft, Writing - review & editing, Supervision.

Acknowledgments

We thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC
resources that contributed to this research. FEniCS and tIGAr were run on TACC resources using Singularity [74] images
converted from Docker [75] containers [76]. We additionally thank the anonymous reviewers for their helpful comments
which helped improve the quality of this paper.

References

[1] J. Hoffman, C. Johnson, A new approach to computational turbulence modeling, Comput. Methods Appl. Mech. Engrg. 195 (23) (2006) 2865-2880.

[2] Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy
simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg. 197 (2007) 173-201.

[3] Y. Bazilevs, C. Michler, V.M. Calo, T.J.R. Hughes, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly
enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg. 199 (2010) 780-790.

[4] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T.E. Tezduyar, 3D simulation of wind turbine rotors at full
scale. Part I: Geometry modeling and aerodynamics, Internat. J. Numer. Methods Fluids 65 (2011) 207-235.

[5] Y. Bazilevs, M.-C. Hsu, ]J. Kiendl, R. Wiichner, K.-U. Bletzinger, 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure
interaction modeling with composite blades, Internat. J. Numer. Methods Fluids 65 (2011) 236-253.

[6] J. Hoffman, ]J. Jansson, C. Johnson, New theory of flight, J. Math. Fluid Mech. 18 (2) (2016) 219-241.

[7] TJ.R. Hughes, G.R. Feij6o, L. Mazzei, ].-B. Quincy, The variational multiscale method-A paradigm for computational mechanics, Comput. Methods

Appl. Mech. Engrg. 166 (1998) 3-24.

TJ.R. Hughes, G. Scovazzi, L.P. Franca, Multiscale and stabilized methods, in: E. Stein, R. de Borst, T.J.R. Hughes (Eds.), Encyclopedia of

Computational Mechanics, in: Fluids, vol. 3, John Wiley & Sons, 2004, chapter 2.

[9] A. Masud, R.A. Khurram, A multiscale finite element method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech.
Engrg. 195 (13-16) (2006) 1750-1777.

[10] TJ.R. Hughes, G. Sangalli, Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized
methods, SIAM J. Numer. Anal. 45 (2007) 539-557.

[11] A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the
incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1-3) (1982) 199-259.

[12] TJ.R. Hughes, L.P. Franca, M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the BabuSka-Brezzi
condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech.
Engrg. 59 (1986) 85-99.

[13] TJ.R. Hughes, L.P. Franca, G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares
method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg. 73 (2) (1989) 173-189.

[14] V. John, A. Linke, C. Merdon, M. Neilan, L. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows,
SIAM Rev. 59 (3) (2017) 492-544.

[15] G. Matthies, L. Tobiska, Mass conservation of finite element methods for coupled flow-transport problems, Int. J. Comput. Sci. Math. 1 (2007)
293-307.

[16] J. Gerbeau, C.L. Bris, M. Bercovier, Spurious velocities in the steady flow of an incompressible fluid subjected to external forces, Internat. J.
Numer. Methods Fluids 25 (1997) 679-695.

[17] D. Kamensky, M.-C. Hsu, D. Schillinger, ].A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, T.J.R. Hughes, An immersogeometric variational framework
for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg. 284 (2015) 1005-1053.

[18] D. Kamensky, M.-C. Hsu, Y. Yu, J.A. Evans, M.S. Sacks, T.J.R. Hughes, Immersogeometric cardiovascular fluid-structure interaction analysis with
divergence-conforming B-splines, Comput. Methods Appl. Mech. Engrg. 314 (2017) 408-472.

[19] H. Casquero, Y.J. Zhang, C. Bona-Casas, L. Dalcin, H. Gomez, Non-body-fitted fluid-structure interaction: Divergence-conforming B-splines,
fully-implicit dynamics, and variational formulation, J. Comput. Phys. 374 (2018) 625-653.

[20] T. Gelhard, G. Lube, M.A. Olshanskii, J.-H. Starcke, Stabilized finite element schemes with LBB-stable elements for incompressible flows, ].
Comput. Appl. Math. 177 (2) (2005) 243-267.

[21] E.W. Jenkins, V. John, A. Linke, L.G. Rebholz, On the parameter choice in grad-div stabilization for the Stokes equations, Adv. Comput. Math.
40 (2) (2014) 491-516.

[22] M.E.P. ten Eikelder, I. Akkerman, Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic
orthogonal small-scales and isogeometric analysis. II: The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 340
(2018) 1135-1154.

[23] I Babuska, Error-bounds for finite element method, Numer. Math. 16 (4) (1971) 322-333.

[24] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, ESAIM Math. Model.
Numer. Anal. 8 (R2) (1974) 129-151.

[25] D. Boffi, F. Brezzi, M. Fortin, Finite elements for the Stokes problem, in: D. Boffi, L. Gastaldi (Eds.), Mixed Finite Elements, Compatibility
Conditions, and Applications: Lectures Given At the C.I.M.E. Summer School Held in Cetraro, Italy June 26-JUly 1, 2006, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008, pp. 45-100.

[26] D.N. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (4) (1984) 337-344.

8


http://refhub.elsevier.com/S0898-1221(20)30115-2/sb1
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb2
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb2
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb2
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb3
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb3
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb3
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb4
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb4
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb4
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb5
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb5
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb5
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb6
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb7
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb7
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb7
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb8
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb8
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb8
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb9
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb9
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb9
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb10
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb10
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb10
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb11
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb11
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb11
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb12
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb13
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb13
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb13
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb14
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb14
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb14
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb15
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb15
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb15
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb16
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb16
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb16
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb17
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb17
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb17
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb18
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb18
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb18
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb19
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb19
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb19
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb20
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb20
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb20
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb21
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb21
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb21
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb22
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb22
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb22
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb22
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb22
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb23
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb24
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb24
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb24
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb25
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb25
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb25
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb25
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb25
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb26

2536

[27]
(28]
[29]
(30]
(31]
(32]
(33]

(34]
(35]

(36]
(37]
(38]
(39]
[40]
[41]
[42]
[43]
(44]
[45]
[46]
(47]
(48]

[49]
(50]

[51]
(52]

(53]
[54]

[55]

[56]
(571

(58]
[59]
(60]

[61]
(62]
(63]

[64]
[65]
(66]

(67]
(68]

JA. Evans, D. Kamensky and Y. Bazilevs /| Computers and Mathematics with Applications 80 (2020) 2517-2537

C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. & Fluids 1 (1) (1973)
73-100.

A. Bressan, G. Sangalli, Isogeometric discretizations of the Stokes problem: Stability analysis by the macroelement technique, IMA J. Numer.
Anal. 33 (2) (2013) 629-651.

A. Buffa, C. de Falco, G. Sangalli, Isogeometric analysis: Stable elements for the 2D Stokes equation, Internat. ]. Numer. Methods Fluids 65
(11-12) (2011) 1407-1422.

J.A. Evans, Divergence-Free B-Spline Discretizations for Viscous Incompressible Flows (Ph.D. thesis), University of Texas at Austin, Austin, Texas,
United States, 2011.

J.A. Evans, TJ.R. Hughes, G. Sangalli, Enforcement of constraints and maximum principles in the variational multiscale method, Comput. Methods
Appl. Mech. Engrg. 199 (1-4) (2009) 61-76.

W. Layton, C. Manica, M. Neda, M. Olshanskii, L. Rebholz, On the accuracy of the rotation form in simulations of the Navier-Stokes equations,
J. Comput. Phys. 228 (9) (2009) 3433-3447.

M. Case, V. Ervin, A. Linke, L. Rebholz, A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood FE approximations of the
Navier-Stokes equations, SIAM J. Numer. Anal. 49 (4) (2011) 1461-1481.

R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, volume 9, SIAM, 1989.

K.E. Jansen, S.S. S. Collis, CW. Christian, F. Shaki, A better consistency for low-order stabilized finite element methods, Comput. Methods Appl.
Mech. Engrg. 174 (1-2) (1999) 153-170.

T. Hughes, G. Sangalli, Variational multiscale analysis: The fine-scale Green’s function, projection, optimization, localization, and stabilized
methods, SIAM ]. Numer. Anal. 45 (2007) 539-557.

L.R. Scott, M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, ESAIM Math.
Model. Numer. Anal. 19 (1) (1985) 111-143.

Y. Bazilevs, L. Beirdo da Veiga, ]J.A. Cottrell, T.JR. Hughes, G. Sangalli, Isogeometric analysis: Approximation, stability and error estimates for
h-refined meshes, Math. Models Methods Appl. Sci. 16 (07) (2006) 1031-1090.

J. Principe, R. Codina, F. Henke, The dissipative structure of variational multiscale methods for incompressible flows, Comput. Methods Appl.
Mech. Engrg. 199 (13-16) (2010) 791-801.

K. Jansen, C.H. Whiting, G.M. Hulbert, A generalized-« method for integrating the filtered Navier-Stokes equations with a stabilized finite
element method, Comput. Methods Appl. Mech. Engrg. 190 (3) (2000) 305-319.

R. Codina, J. Principe, O. Guasch, S. Badia, Time dependent subscales in the stabilized finite element approximation of incompressible flow
problems, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2413-2430.

Y. Bazilevs, V.M. Calo, TJ.R. Hughes, Y. Zhang, Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech.
43 (2008) 3-37.

I. Akkerman, Y. Bazilevs, V.M. Calo, TJ.R. Hughes, S. Hulshoff, The role of continuity in residual-based variational multiscale modeling of
turbulence, Comput. Mech. 41 (2008) 371-378.

Y. Bazilevs, I. Akkerman, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational
multiscale method, ]. Comput. Phys. 229 (2010) 3402-3414.

K. Takizawa, Y. Bazilevs, T.E. Tezduyar, Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction
modeling, Arch. Comput. Methods Eng. 19 (2012) 171-225.

Y. Bazilevs, M.-C. Hsu, K. Takizawa, T.E. Tezduyar, ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics
and fluid-structure interaction, Math. Models Methods Appl. Sci. 22 (2012) 1230002.

Y. Bazilevs, M.-C. Hsu, M.A. Scott, Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with
application to wind turbines, Comput. Methods Appl. Mech. Engrg. 249-252 (2012) 28-41.

M.-C. Hsu, I. Akkerman, Y. Bazilevs, Wind turbine aerodynamics using ALE-VMS: Validation and the role of weakly enforced boundary conditions,
Comput. Mech. 50 (2012) 499-511.

A. Korobenko, M.-C. Hsu, I. Akkerman, Y. Bazilevs, Aerodynamic simulation of vertical-axis wind turbines, J. Appl. Mech. 81 (2014) 021011.
L.P. Franca, S.L. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg.
99 (2) (1992) 209-233.

A. Buffa, ]. Rivas, G. Sangalli, R. Vasquez, Isogeometric discrete differential forms in three dimensions, SIAM ]. Numer. Anal. 49 (2) (2011)
814-844.

L.R. Scott, M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, ESAIM Math.
Model. Numer. Anal. 19 (1) (1985) 111-143.

J. Guzman, M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp. 83 (285) (2014) 15-36.
J.A. Evans, TJ.R. Hughes, Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations, Math. Models Methods Appl.
Sci. 23 (08) (2013) 1421-1478.

J.A. Evans, TJ.R. Hughes, Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations, J. Comput. Phys. 241 (2013)
141-167.

A. Logg, K.-A. Mardal, G.N. Wells (Eds.), Automated Solution of Differential Equations By the Finite Element Method, Springer, 2012.

M.S. Alnas, A. Logg, K.B. @lgaard, M.E. Rognes, G.N. Wells, Unified form language: A domain-specific language for weak formulations of partial
differential equations, ACM Trans. Math. Software 40 (2) (2014) 9:1-9:37.

R.C. Kirby, A. Logg, A compiler for variational forms, ACM Trans. Math. Software 32 (3) (2006) 417-444.

A. Logg, G.N. Wells, DOLFIN: Automated finite element computing, ACM Trans. Math. Software 37 (2) (2010) 20:1-20:28.

D. Kamensky, Y. Bazilevs, tIGAr: Automating isogeometric analysis with FEniCS, Comput. Methods Appl. Mech. Engrg. 344 (2019) 477-498,
http://dx.doi.org/10.1016/j.cma.2018.10.002.

M. Homolya, L. Mitchell, F. Luporini, D. Ham, TSFC: A structure-preserving form compiler, SIAM ]. Sci. Comput. 40 (3) (2018) C401-C428.

H. Morgan, L.R. Scott, Towards a unified finite element method for the Stokes equations, SIAM ]. Sci. Comput. 40 (1) (2018) A130-A141.

C. Coley, J. Benzaken, J.A. Evans, A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen
problems, Numer. Linear Algebra Appl. 25 (3) (2018) e2145.

Repository of tIGAr-based code examples, https://github.com/david-kamensky/discretely-div-free-subscales.

T.M. Shih, CH. Tan, B.C. Hwang, Effects of grid staggering on numerical schemes, Internat. J. Numer. Methods Fluids 9 (2) (1989) 193-212.
T.M. van Opstal, J. Yan, C. Coley, J. Evans, T. Kvamsdal, Y. Bazilevs, Isogeometric divergence-conforming variational multiscale formulation of
incompressible turbulent flows, Comput. Methods Appl. Mech. Engrg. 316 (2017) 859-879, Special Issue on Isogeometric Analysis: Progress
and Challenges.

M. Brachet, D. Meiron, B. Nickel, R. Morf, Small-scale structure of the Taylor-Green vortex, J. Fluid Mech. 130 (1983) 411-452.

0. Colomés, S. Badia, R. Codina, J. Principe, Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible
flows, Comput. Methods Appl. Mech. Engrg. 285 (2015) 32-63.


http://refhub.elsevier.com/S0898-1221(20)30115-2/sb27
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb27
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb27
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb28
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb28
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb28
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb29
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb29
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb29
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb30
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb30
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb30
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb31
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb31
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb31
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb32
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb32
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb32
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb33
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb33
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb33
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb34
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb35
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb35
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb35
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb36
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb36
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb36
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb37
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb37
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb37
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb38
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb38
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb38
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb39
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb39
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb39
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb40
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb40
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb40
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb41
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb41
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb41
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb42
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb42
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb42
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb43
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb43
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb43
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb44
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb44
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb44
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb45
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb45
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb45
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb46
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb46
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb46
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb47
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb47
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb47
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb48
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb48
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb48
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb49
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb50
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb50
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb50
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb51
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb51
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb51
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb52
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb52
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb52
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb53
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb54
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb54
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb54
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb55
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb55
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb55
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb56
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb57
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb57
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb57
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb58
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb59
http://dx.doi.org/10.1016/j.cma.2018.10.002
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb61
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb62
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb63
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb63
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb63
https://github.com/david-kamensky/discretely-div-free-subscales
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb65
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb66
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb66
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb66
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb66
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb66
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb67
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb68
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb68
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb68

JA. Evans, D. Kamensky and Y. Bazilevs /| Computers and Mathematics with Applications 80 (2020) 2517-2537 2537

[69] J.A. Evans, C. Coley, RM. Aronson, C.L. Wetterer-Nelson, Y. Bazilevs, Residual-based large eddy simulation with isogeometric
divergence-conforming discretizations, in: Frontiers in Computational Fluid-Structure Interaction and Flow Simulation, Springer, 2018, pp.
91-130.

[70] J. Smagorinsky, General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev. 91 (3) (1963) 99-164.

[71] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids 3 (1991) 1760-1765.

[72] ].-P. Chollet, M. Lesieur, Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci. 38
(1981) 2747-2757.

[73] D. Fauconnier, Development of a Dynamic Finite Difference Method for Large-Eddy Simulation (Ph.D. thesis), Ghent University, 2008.

[74] G.M. Kurtzer, V. Sochat, M.W. Bauer, Singularity: Scientific containers for mobility of compute, PLoS One 12 (5) (2017) e0177459.

[75] D. Merkel, Docker: Lightweight Linux containers for consistent development and deployment, Linux J. 2014 (239) (2014).

[76] J.S. Hale, L. Li, C.N. Richardson, G.N. Wells, Containers for portable, productive, and performant scientific computing, Comput. Sci. Eng. 19 (6)
(2017) 40-50.


http://refhub.elsevier.com/S0898-1221(20)30115-2/sb69
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb69
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb69
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb69
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb69
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb70
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb71
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb72
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb72
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb72
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb73
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb74
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb75
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb76
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb76
http://refhub.elsevier.com/S0898-1221(20)30115-2/sb76

	Variational multiscale modeling with discretely divergence-free subscales
	Introduction
	Formulation for the incompressible Navier–Stokes problem
	Problem and notation
	Variational multiscale analysis
	Treatment of convection terms
	Modifying the fine-scale problem
	Semi-discrete formulation
	Energetic stability
	Time discretization and static condensation of the fine-scale velocity field
	Quasi-static subscales

	Convergence analysis for the Oseen problem
	Numerical results
	Implementation using FEniCS and tIGAr
	Convergence tests
	Steady flow: The regularized lid-driven cavity
	Unsteady flow: Two-dimensional taylor–green vortex flow

	Application to turbulent fluid flow

	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	References


