

1 This is the accepted manuscript version of the final work appeared in *Water Research* that has gone
2 through peer-reviewed and technical editing. To access the final edited and published work, please see
3 <https://doi.org/10.1016/j.watres.2020.116255>

4 **Modeling the Transport of Neutral Disinfection Byproducts in
5 Forward Osmosis: Roles of Reverse Salt Flux**

6
7
8
9 Jiale Xu¹, Thien Ngoc Tran², Haiqing Lin², Ning Dai^{1*}

10
11
12 ¹Department of Civil, Structural and Environmental Engineering

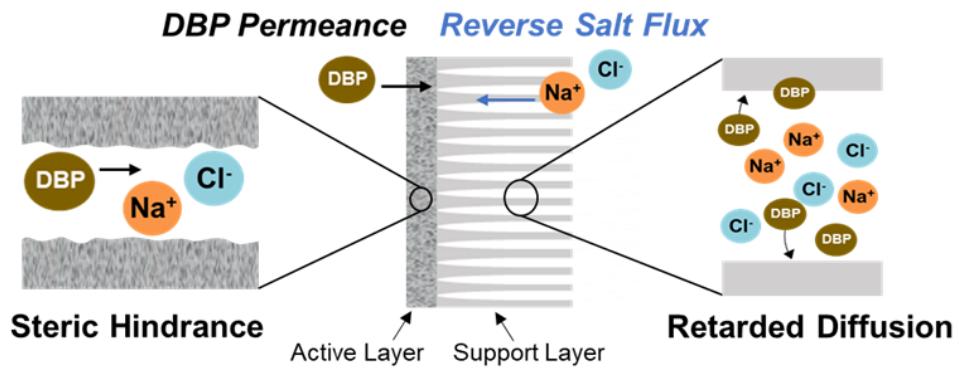
13 University at Buffalo, The State University of New York, Buffalo, NY, 14260

14
15 ²Department of Chemical and Biological Engineering

16 University at Buffalo, The State University of New York, Buffalo, NY, 14260

17
18 *Corresponding author: Post address: 231 Jarvis Hall, Buffalo, NY 14260

19 Phone: (716) 645-4015; Fax: (716) 645-3667


20 Email: ningdai@buffalo.edu

21 **Abstract**

22 The rejection of disinfection byproducts (DBPs) is an important consideration for the
23 application of forward osmosis (FO) in wastewater recycling. However, the transport of organic
24 compounds in FO is not well predicted by existing models, partially because these models have
25 not incorporated the effect of reverse salt flux, a phenomenon previously shown to influence the
26 transport of pharmaceutical compounds. In this study, we investigated the effects of reverse salt
27 flux on DBP transport in FO and the corresponding mechanisms. We used a commercial
28 Aquaporin membrane and tested sixteen DBPs relevant to wastewater recycling. Using draw
29 solutions constituted by NaCl, MgSO₄, or glucose in a bench-scale FO system, we first confirmed
30 that higher reverse salt flux resulted in lower DBP permeance. By integrating results from the
31 bench-scale FO system and those from diffusion cell tests, we showed that two mechanisms
32 contributed to the hindered DBP transport: the steric hindrance in the active layer caused by the
33 presence of the draw solute and the retarded diffusion of DBPs in the support layer via a “salting-
34 out” effect. Lastly, we developed a modified solution-diffusion model incorporating these two
35 mechanisms by accounting for the free volume occupied by draw solute molecules in the active
36 layer and by introducing the Setschenow constant, respectively. The modified model significantly
37 improved the prediction of permeance for halogenated DBPs, and revealed the relative importance
38 of steric hindrance (dominant for large DBPs) and retarded diffusion (dominant for hydrophobic
39 DBPs). The modified model did not accurately predict the permeance of nitrosamines, attributable
40 to their extremely high hydrophilicity or large size.

41

42 **Keywords:** Forward osmosis; Disinfection byproducts; Reverse salt flux; Steric hindrance;
43 Retarded diffusion; Modified solution-diffusion model.

46 **Highlights:**

47 • Reverse salt flux hinders DBP transport through FO membranes.

48 • Steric hindrance caused by reverse salt flux is stronger on larger DBPs.

49 • DBP diffusion in the support layer is retarded via a salting-out effect.

50 • Modified solution-diffusion model improves halogenated DBP permeance prediction.

51 Nomenclature

A (m ³ ·m ⁻² ·s ⁻¹ ·bar ⁻¹)	Water permeance
A_M (m ²)	Contact area of membranes in diffusion cell
$\pi_{D,b}$ (bar)	Osmotic pressure of the bulk draw solution
J_w (m ³ ·m ⁻² ·s ⁻¹)	Water flux
J_S (mol·m ⁻² ·s ⁻¹)	Reverse salt flux
J_{DBP} (μg·m ⁻² ·s ⁻¹)	DBP flux
$J_{DBP,convection}$ (μg·m ⁻² ·s ⁻¹)	DBP flux contributed by convection
R_{DBP} (%)	DBP rejection
B_{FO} (m·s ⁻¹)	DBP permeance determined in FO experiments
V_F^t (m ³)	Volume of feed solution at time t (s) in diffusion cell
V_D^t (m ³)	Volume of draw solution at time t (s) in diffusion cell
C_F^t (μg·L ⁻¹)	DBP concentration of feed solution at time t (s) in diffusion cell
C_D^t (μg·L ⁻¹)	DBP concentration of draw solution at time t (s) in diffusion cell
C_F^0 (μg·L ⁻¹)	DBP concentration of feed solution at the beginning of the experiments in diffusion cell
C_D^0 (μg·L ⁻¹)	DBP concentration of draw solution at the beginning of the experiments in diffusion cell

C^S (M)	Salt concentration in the support layer
C_z^S (M)	Salt concentration in the support layer at position z
C_i^S (M)	Salt concentration at the interface between the support and active layers (i.e., $z = 0$)
C_D^S (M)	Salt concentration at the interface between the support layer and draw reservoir (i.e., $z = 1$)
$B_{\text{diffusion cell}}$ (m·s ⁻¹)	DBP permeance through the entire membrane in diffusion cell
$B_{\text{diffusion cell,DI}}$ (m·s ⁻¹)	DBP permeance through the entire membrane in diffusion cell in Milli-Q water
B_{SD} (m·s ⁻¹)	Modeled DBP permeance through the entire membrane using the conventional solution-diffusion (SD) model
B_{M-SD} (m·s ⁻¹)	Modeled DBP permeance through the entire membrane using the modified solution-diffusion (M-SD) model
B_{AL} (m·s ⁻¹)	DBP permeance through the active layer
B_{AL}^{DI} (m·s ⁻¹)	DBP permeance through the active layer in the absence of reverse salt flux
B_{AL}^S (m·s ⁻¹)	DBP permeance through the active layer in the presence of reverse salt flux
R_r (-)	Retardation factor in the support layer
S (m)	Structure parameter
D_{DBP} (m ² ·s ⁻¹)	Diffusion coefficient of a DBP in Milli-Q water

D_S (m ² ·s ⁻¹)	Diffusion coefficient of the draw solute
r_{DBP} (nm)	Molecular radius of a DBP
r_p (nm)	Effective average pore radius in the active layer
r_p^{DI} (nm)	Effective average pore radius in the absence of the salt in the active layer
r_p^S (nm)	Effective average pore radius in the presence of the salt in the active layer
ε (%)	Porosity of the support layer
K_{DBP}^{MSL} (-)	Thickness-averaged partitioning coefficient for a DBP between the support layer and the aqueous solution
$K_{DBP,Salt}^{MSL}$ (-)	Partitioning coefficient for a DBP between the support layer and the saline solution
$K_{DBP,DI}^{MSL}$ (-)	Partitioning coefficient for a DBP between the support layer and Milli-Q water
K_{DI}^{MSL} (-)	Partitioning coefficient for an organic compound between the support layer and Milli-Q water
k_{DBP}^{Salt} (M ⁻¹)	Setschenow constant of a DBP in saline solutions
$\Delta G_{DBP,j}^{MSL}$ (J)	Free interaction energy between a DBP molecule in the aqueous solution and the membrane support layer
A_{DBP} (m ²)	Contact area between a DBP molecule and the membrane
k (J·K ⁻¹)	Boltzmann constant (i.e., 1.38×10^{-23} J·K ⁻¹)

$\theta (-)$	Contact angle
$\gamma_j^{LW} (\text{J}\cdot\text{m}^{-2})$	Apolar surface tension component
$\gamma_j^+ (\text{J}\cdot\text{m}^{-2})$	Polar electron-accepting surface tension component
$\gamma_j^- (\text{J}\cdot\text{m}^{-2})$	Polar electron-donating surface tension component
$T (\text{K})$	Temperature
$MW (\text{g}\cdot\text{mol}^{-1})$	Molecular weight
$MV (\text{\AA}^3)$	Molecular volume
$\rho (\text{g}\cdot\text{L}^{-1})$	Density
$K_{ow} (-)$	Octanol/water partitioning coefficient of a DBP or a reference organic compound
$\varepsilon_{HOMO} (\text{eV})$	Energy level of the highest occupied molecular orbital
$\varepsilon_{LUMO} (\text{eV})$	Energy level of the lowest unoccupied molecular orbital
$Q^- (\text{a.u.})$	Most negative charge on any non-hydrogen atom
$Q^+ (\text{a.u.})$	Most positive charge on any hydrogen atom

53 **1. Introduction**

54 Forward osmosis (FO) is an alternative or supplement membrane technology to reverse
55 osmosis (RO) for wastewater recycling (Linares et al. 2014, Lutchmiah et al. 2014, Qin and He
56 2014, Yuan et al. 2015, Zou and He 2016). Unlike RO that applies hydraulic pressure to drive
57 water transport, FO utilizes a draw solution with higher osmotic pressure than the feed stream (Lin
58 2016). Accordingly, FO features lower energy costs (Shaffer et al. 2012, Xiang et al. 2017,
59 Yangali-Quintanilla et al. 2011, Zou et al. 2016) and less irreversible membrane fouling (Jang et
60 al. 2016, Mi and Elimelech 2010, Shaffer et al. 2015) than RO.

61 Transport of small organic molecules such as disinfection byproducts (DBPs) and
62 pharmaceuticals and personal care products (PPCPs) is an important consideration for wastewater
63 recycling. In FO with sodium chloride (NaCl) or seawater as draw solutions, the transport of
64 PPCPs was slow for large and charged compounds but fast for small and neutral compounds
65 (Alturki et al. 2013, Coday et al. 2014, Xie et al. 2014). DBPs are compounds formed in the
66 reactions between disinfectants and wastewater constituents. Many of the organic DBPs are neutral,
67 halogenated, and/or nitrogenous compounds with lower molecular weight than most PPCPs
68 (Coday et al. 2014, Zeng et al. 2016). DBPs such as trihalomethanes, haloacetonitriles, and *N*-
69 nitrosamines have been detected at 0.01–20 $\mu\text{g}\cdot\text{L}^{-1}$ levels along the treatment train in full-scale
70 wastewater recycling plants employing RO (Dai et al. 2015, Zeng et al. 2016). The U.S.
71 Environmental Protection Agency (EPA) regulates eleven DBPs for drinking water, including 4
72 trihalomethanes (EPA 2010), but recent research shows that the unregulated haloacetonitriles and
73 nitrosamines exhibit much higher toxicity than the regulated trihalomethanes and haloacetic acids
74 (Wagner and Plewa 2017), and account for the majority of cytotoxicity after integrating the
75 concentration and toxicity of different DBP classes (Lau et al. 2020, Zeng et al. 2016). For potable

76 reuse, DBPs can pose greater risks to human health than PPCPs (NRC 2012). Our previous study
77 showed that FO can exhibit slightly better rejection than RO for four groups of DBPs
78 (trihalomethanes, haloacetonitriles, haloketones, and nitrosamines) (Xu et al. 2018).

79 Reverse salt flux, the diffusion of draw solute molecules through the FO membrane to the
80 feed solution (Ferby et al. 2020, Zou et al. 2019, Zheng et al. 2019), has been shown to hinder the
81 forward transport of PPCPs through cellulose triacetate and Aquaporin membranes (Alturki et al.
82 2013, Kim et al. 2012, Xie et al. 2018, Xie et al. 2012). This phenomenon was attributed to the
83 steric hindrance introduced by the draw solute molecules (e.g., NaCl) present in the membrane
84 matrix, considering that the hydrated radii of sodium and chloride ions were comparable to the
85 radii of the PPCPs investigated as well as the membrane pore radius (Xie et al. 2012). However, a
86 recent study (Sauchelli et al. 2018) using diffusion cells (i.e., without salt gradient across the
87 membrane) found that the permeance of three neutral PPCPs was not affected by the amount of
88 salt present in the membrane. Consistent with the latter, Kim et al. did not observe the hindered
89 forward transport for three relatively hydrophilic PPCPs ($\text{Log } K_{ow} < 2.6$) (Kim et al. 2017). These
90 conflicting results suggest that there are additional mechanisms contributing to the hindered
91 forward transport of organic molecules in FO. The difference observed for PPCPs with different
92 degrees of hydrophobicity suggests that the partition of organic compounds into the organic
93 polymeric membrane may have affected the transport process (i.e., retarded diffusion). Moreover,
94 unlike that in RO, the membrane support layer in FO interfaces with solutions of high salinity (i.e.,
95 the draw solution); the presence of salt is known to promote the sorption of hydrophobic organic
96 compounds, i.e., the “salting-out” effect (Burant et al. 2017, Ni and Yalkowsky 2003). The salting-
97 out effect has been reported for polysulfone (Cheong et al. 2013), a common material for the
98 support layer of FO membranes (Han et al. 2012, Luo et al. 2018, Qi et al. 2016). A recent study

99 (D'Haese 2020) also proposed that the sorption of feed organic solutes can play an important role
100 in affecting their transport.

101 To date, most solute transport models for FO are built upon models originally developed
102 for nanofiltration (NF) and RO (Heo et al. 2013, Jin et al. 2011, Kong et al. 2018, Kong et al. 2014,
103 Kong et al. 2015, Madsen et al. 2015, Xie et al. 2018, Xie et al. 2012, 2014, Xu et al. 2018). These
104 models have not been able to accurately predict the forward transport of organic compounds,
105 presumably because the effects of reverse salt flux have not been incorporated. For example, a
106 pore hindrance model overestimated the rejection of hydrophobic organic compounds ($\text{Log } K_{ow} >$
107 3.2 at pH 8) whereas underestimated the rejection of small compounds ($\text{MW} < 180 \text{ g}\cdot\text{mol}^{-1}$) (Xie
108 et al. 2018). Similarly, the solution-diffusion model exhibited good prediction for the charged
109 haloacetic acids (Kong et al. 2014) and pharmaceuticals (Kong et al. 2015), but poorly predicted
110 the transport of the neutral molecules chloroform and bromoform (Xu et al. 2018) as well as boron
111 (Kim et al. 2012).

112 The goal of this study is to explore the mechanisms behind the hindered forward transport
113 of organic compounds by the reverse salt flux in FO, with a specific focus on DBPs due to their
114 importance in wastewater recycling. A total of sixteen neutral DBPs were selected as model
115 compounds, including four trihalomethanes, three haloacetonitriles, two haloketones, and seven
116 nitrosamines. DBP permeance was first measured in a bench-scale FO setup with a commercial
117 Aquaporin membrane and different draw solutions, and then in a diffusion cell without cross-
118 membrane salt gradient. Correlations between the change in DBP permeance due to the reverse
119 salt flux and the molecular size or hydrophobicity of DBPs were assessed to show the relative
120 importance of steric hindrance and sorption effects on DBP transport. Lastly, the conventional

121 solution-diffusion model was modified to incorporate the effects of steric hindrance and sorption–
122 induced retarded diffusion to predict DBP transport.

123 **2. Materials and Methods**

124 **2.1. Chemicals and Membranes**

125 EPA 521 nitrosamine mix (2000 $\mu\text{g}\cdot\text{mL}^{-1}$ of each nitrosamine in methylene chloride), EPA
126 501/601 trihalomethanes calibration mix (2000 $\mu\text{g}\cdot\text{mL}^{-1}$ of each trihalomethanes in methanol),
127 EPA 551B halogenated volatiles mix (2000 $\mu\text{g}\cdot\text{mL}^{-1}$ of each DBP in acetone), *tert*-butyl methyl
128 ether (MtBE, > 99.8%), *N*-nitrosodimethylamine-d6 (d6-NDMA, $\geq 98\%$), polysulfone beads (M_n
129 $\sim 22,000$), and 1,2-dibromopropane (97%) were purchased from Sigma-Aldrich. Methylene
130 chloride (DCM, $\geq 99.9\%$), acetonitrile (HPLC grade, 99.9%), sodium chloride ($\geq 99.0\%$), and
131 glycerol ($\geq 99.5\%$) were purchased from Fisher Chemical. Sodium sulfate ($\geq 99.0\%$) was obtained
132 from Macron. Dichloroacetonitrile (DCAN, > 98%), glucose (99%), magnesium sulfate (MgSO_4 , >
133 99.5%), and diiodomethane (99%) were obtained from Alfa Aesar. *N*-nitrosodimethylamine
134 (NDMA, 99.5%) was purchased from Chem Service. All chemicals were used as received. DBP
135 substocks (5 $\text{mg}\cdot\text{L}^{-1}$) were prepared in acetonitrile. All aqueous solutions were prepared using
136 Milli-Q water.

137 A commercial FO membrane, Aquaporin membrane (A/S, Lyngby, Denmark), was used
138 in this study. Aquaporin membrane is a thin-film composite membrane with aquaporin protein
139 embedded in the polyamide active layer. It exhibits higher water permeability and lower reverse
140 salt flux than the conventional cellulose triacetate membrane for FO (Xu et al. 2018). The
141 performance of this membrane in rejecting organic molecules has been tested for PPCPs
142 (Engelhardt et al. 2018, Madsen et al. 2015, Xie et al. 2018) and DBPs (Xu et al. 2018). A previous
143 study has reported that the transport of organic contaminants was dominantly through the

144 polyamide matrix rather than the aquaporin protein (Xie et al. 2018). The characteristics of the
145 Aquaporin membrane are shown in Table S1. The water flux of the flat-sheet Aquaporin membrane
146 used in this study is consistent with that previously reported for the same membrane (Madsen et
147 al. 2015, Xia et al. 2017).

148 **2.2. Bench-Scale Forward Osmosis Experiments**

149 A bench-scale cross-flow system (Figure S1) was used. It is comprised of a modified
150 permeation cell (SEPA CF II, Sterlitech Corporation) with countercurrent flow for the feed and
151 draw solutions, pressure valves, flow meters, feed and draw solution reservoirs, and two gear
152 pumps (Cole Parmer), as previously described (Xu et al. 2018). The permeation cell holds a
153 membrane with an effective area of 140 cm² and features 2 mm channel height on each side. The
154 active and support layers face feed and draw reservoirs, respectively.

155 Aquaporin membranes were immersed in Milli-Q water for 24 h before the experiments.
156 The draw and feed reservoirs initially contained 2.0 L of draw solution and 1.5 L Milli-Q water,
157 respectively. The draw solutions tested were 1.0 M MgSO₄, 1.5 M glucose, 0.5 M NaCl, 1 M NaCl,
158 and 0.2 M NaCl. Crossflow velocity was set at 0.048 m·s⁻¹. After a constant water flux was reached
159 (approximately 15 min), DBPs were spiked into the feed reservoir to make up an initial
160 concentration of 20 µg·L⁻¹ for each halogenated DBP or 10 µg·L⁻¹ for each nitrosamine. The feed
161 and draw reservoirs were sampled periodically (every 1–2 h) by 5 mL and 15 mL, respectively, for
162 DBP analysis. The molecular properties of all DBPs tested in this study are shown in Table S2.
163 The volume of feed and draw solutions was recorded continuously based on the weight of the
164 reservoirs. Feed solutions were monitored for the change in conductivity (when NaCl or MgSO₄
165 was used as the draw solute) or total organic carbon concentration (when glucose was used as the
166 draw solute) for the calculation of reverse salt flux. Further details on the calculation of water flux,

167 DBP rejection, DBP permeance, and reverse salt flux are described in Text S1. The external
168 concentration polarization factor of each DBP in the feed solution was considered when calculating
169 DBP permeance. The values of concentration polarization factor are shown in Table S3.

170 **2.3. Diffusion Cell Experiments**

171 A diffusion cell was used to determine DBP permeance in the absence of the reverse salt
172 flux. A membrane coupon (contact area 0.79 cm²) was sandwiched between two silicone gaskets.
173 The chambers facing the active layer (hereafter referred to as the “feed reservoir”) and support
174 layer (“draw reservoir”) of the membranes contained 40 mL of the same solution (Milli-Q water,
175 0.5 M NaCl, or 1.0 M NaCl; i.e., there was no salt gradient across the membrane). Both feed and
176 draw reservoirs were continuously mixed by magnetic stirring at a rate of 200 rpm, to minimize
177 concentration polarization. DBP transport was driven by the DBP concentration difference in the
178 two chambers, with initial concentrations 2 mg·L⁻¹ and 50 µg·L⁻¹ in the feed and draw reservoirs,
179 respectively. Aquaporin membrane coupons were pre-soaked for 24 h in the same solution as that
180 used in the subsequent diffusion test. Over the course of 20 h of the diffusion test, 0.6 mL and 0.1
181 mL samples were periodically withdrawn from the draw and feed reservoirs, respectively, for DBP
182 analysis. The volume of the samples withdrawn for DBP analysis was accounted for during data
183 processing. The DBP permeance was calculated by:

$$\frac{V_F^t \cdot V_D^t}{A_M \cdot (V_F^t + V_D^t)} \ln \left(\frac{C_F^0 - C_D^0}{C_F^t - C_D^t} \right) = B_{\text{diffusion cell}} \cdot t \quad (1)$$

184 where $B_{\text{diffusion cell}}$ (m·s⁻¹) is the DBP permeance through the membrane in diffusion cell; A_M (m²)
185 is the contact membrane area; V_F^t (m³) and V_D^t (m³) are the volume of feed and draw solutions at
186 time t (s), respectively; C_F^t (µg·L⁻¹) and C_D^t (µg·L⁻¹) are the DBP concentration of feed and draw
187 solutions at time t , respectively; and C_F^0 (µg·L⁻¹) and C_D^0 (µg·L⁻¹) are the DBP concentration of

188 feed and draw solutions at the beginning of the experiments, respectively. The DBP permeance
189 ($B_{\text{diffusion cell}}$) was determined using linear regression of equation 1 as a function of t . Duplicate
190 experiments were conducted. The results for the experiment using pure water are shown in Figure
191 S2 as an example.

192 To evaluate the mechanisms of the effects of reverse salt flux on DBP transport, Pearson's
193 and Spearman's tests were conducted using Minitab 19. These tests examined the correlation
194 between the change of DBP permeance by reverse salt flux, quantified by the ratio between DBP
195 permeance in FO experiments and that in diffusion cell test using Milli-Q water ($B_{\text{FO}}/B_{\text{diffusion cell,DI}}$),
196 and the molecular size (molecular volume) or hydrophobicity ($\text{Log } K_{\text{ow}}$) of the DBPs. Pearson's r
197 measures the linear relationship between two variables, while Spearman's ρ is a nonparametric
198 (monotonic) measure of rank correlation between two variables. The significance level α was set
199 at 0.05. When p value from these tests are less than 0.05, a significant positive (r or $\rho > 0$) or
200 negative (r or $\rho < 0$) correlation is present.

201 **2.4. DBP Sorption Test**

202 Batch experiments were conducted to evaluate the sorption of halogenated DBPs to
203 Aquaporin membrane and polysulfone beads (the material of the Aquaporin support layer). An
204 Aquaporin membrane coupon (0.255 g, 35 cm²) or 2 g polysulfone beads were added to 20 mL
205 solutions containing 50 $\mu\text{g}\cdot\text{L}^{-1}$ of each halogenated DBP. To test the “salting-out” effect, sorption
206 tests were conducted in Milli-Q water or 1 M NaCl. Controls were set up with the same DBP
207 concentration and water matrix but without membrane or polysulfone beads. Aqueous samples
208 were collected at 17, 24, and 41 h and analyzed for DBP concentrations. DBP sorption was
209 calculated based on a mass balance approach, with details shown in Text S2.

210 **2.5. DBP Analysis**

211 Samples were raised to 30 mL using Milli-Q water prior to solvent extraction for DBP
212 analysis. For the analysis of halogenated DBPs, the 30 mL-samples were spiked with the internal
213 standard 1,2-dibromopropane (10 $\mu\text{g}\cdot\text{L}^{-1}$) and mixed with 2 mL MtBE and 10 g sodium sulfate.
214 The extracts were analyzed by gas chromatography-electron capture detector (GC-ECD, Agilent
215 7890B-63Ni ECD) with an HP-5 column using a previously reported method (Xu et al. 2020). For
216 the analysis of nitrosamines, the 30 mL-samples were spiked with deuterated d6-NDMA as an
217 internal standard and extracted using 2 mL DCM. The extracts were analyzed using gas
218 chromatography-mass spectrometry (Agilent 7890B GC-240 Ion Trap MS) with a VF-5 ms
219 column using a previously reported method (Xu et al. 2018).

220 **3. Modified Solution-Diffusion Model**

221 In the conventional solution-diffusion (SD) model, DBP permeance through membranes
222 can be calculated using the equation 2 (Kong et al. 2015):

$$\frac{1}{B_{SD}} = \frac{1}{B_{AL}^{DI}} + \frac{S}{D_{DBP}} \quad (2)$$

223 where B_{SD} ($\text{m}\cdot\text{s}^{-1}$) is the DBP permeance predicted using the SD model; B_{AL}^{DI} ($\text{m}\cdot\text{s}^{-1}$) is the DBP
224 permeance through the active layer in the absence of reverse salt flux (superscript “DI” refers to
225 Milli-Q water); S (m) is the structure parameter of the membrane; and D_{DBP} ($\text{m}^2\cdot\text{s}^{-1}$) is the diffusion
226 coefficient of an individual DBP in Milli-Q water. The detailed derivation is described in Text S3.

227 To improve the prediction of DBP transport in FO, steric hindrance in the active layer and
228 sorption in the support layer were incorporated into the SD model to account for the effects of
229 reverse salt flux. Through the derivation described in Text S3, equation 3 can be obtained for a
230 modified solution-diffusion (M-SD) model:

$$\frac{1}{B_{M-SD}} = \frac{1}{B_{AL}^S} + \frac{S \cdot R_r}{D_{DBP}} \quad (3)$$

231 where B_{M-SD} ($\text{m} \cdot \text{s}^{-1}$) is the DBP permeance through FO membrane predicted using the M-SD model;
 232 B_{AL}^S ($\text{m} \cdot \text{s}^{-1}$) is the DBP permeance through the active layer with the superscript “S” indicating the
 233 consideration of the free volume occupied by draw solutes; and R_r (dimensionless) is the
 234 retardation factor resulted from DBP sorption in the support layer. The modeling in this study
 235 focuses on NaCl as the draw solute, for which both steric hindrance and sorption exert effects on
 236 DBP transport (discussion in section 4.2 below). The model error that refers to the relative
 237 difference between the permeance predicted by the M-SD or SD model and the experimental value
 238 was calculated using equation 4:

$$Error = \frac{Modeled\ Value - Experimental\ Value}{Experimental\ Value} \times 100\% \quad (4)$$

239 The structure parameter S was obtained by solving the water flux equation in FO
 240 experiments (Phillip et al. 2010):

$$J_w = A\pi_{D,b} \exp\left(-\frac{J_w S}{D_s}\right) \quad (5)$$

241 where J_w ($\text{m}^3 \cdot \text{m}^{-2} \cdot \text{s}^{-1}$) is the water flux; A ($\text{m}^3 \cdot \text{m}^{-2} \cdot \text{s}^{-1} \cdot \text{bar}^{-1}$) is the water permeance of the
 242 membrane; $\pi_{D,b}$ (bar) is the osmotic pressure of the bulk draw solution; and D_s ($\text{m}^2 \cdot \text{s}^{-1}$) is the binary
 243 diffusion coefficient of the draw solute (for NaCl, $D_s = 1.61 \times 10^{-9} \text{ m}^2 \cdot \text{s}^{-1}$ (Phillip et al. 2010)). D_s
 244 values of the three draw solutes are shown in Table S4. The external concentration polarization factor
 245 NaCl was not considered in this equation because the external concentration polarization factor
 246 was close to 1 in our experiments ($\beta = 0.997\text{--}0.999$; calculated as described in our previous study
 247 (Xu et al. 2018)). By solving equation 5 using the results from FO experiments with different draw

248 NaCl concentrations, S was calculated to be 179 μm for the Aquaporin membrane used in this
249 study.

250 The diffusion coefficient of each DBP, D_{DBP} ($\text{m}^2\cdot\text{s}^{-1}$), was predicted using the U.S. EPA's
251 WATER9 software (EPA 2001):

$$D_{DBP} = 1.518 \left(\frac{T}{298.16} \right) \left(\frac{MW}{\rho} \right)^{-0.6} \times 10^{-8} \quad (6)$$

252 where T (K) is the temperature (293.16 K in this study); MW ($\text{g}\cdot\text{mol}^{-1}$) is the molecular weight of
253 the DBP; and ρ ($\text{g}\cdot\text{L}^{-1}$) is the density of the DBP. Table S2 shows the diffusion coefficient of all
254 DBPs. The values of B_{AL}^S and R_r were calculated or experimentally determined as described in the
255 following sections.

256 **3.1. Determination of B_{AL}^S**

257 The SD model considers the polyamide active layer as "nonporous," but recent studies
258 showed that this dense layer contains interconnected pore-like "microvoids," (Wang et al. 2014,
259 Xie et al. 2018) and that the permeance of DBP through the active layer can be influenced by the
260 effective average pore radius (r_p , nm) in the Aquaporin membrane (Xu et al. 2018):

$$B_{AL} \sim \left(1 - \frac{r_{DBP}}{r_p} \right)^2 \quad (7)$$

261 where r_{DBP} (nm) is the molecular radius of the DBP (see Table S2); and B_{AL} ($\text{m}\cdot\text{s}^{-1}$) is the DBP
262 permeance through the active layer. Hence, DBP permeance through the active layer under a given
263 reverse salt flux can be calculated as:

$$\frac{B_{AL}^S}{B_{AL}^{DI}} = \left(\frac{1 - \frac{r_{DBP}^S}{r_p^S}}{1 - \frac{r_{DBP}^{DI}}{r_p^{DI}}} \right)^2 \quad (8)$$

264 where r_p^S (nm) and r_p^{DI} (nm) are the effective average pore radii in the presence and absence of the
 265 salt, respectively, with the calculation described in Text S4. The prediction was not conducted for
 266 three nitrosamines, *N*-nitrosopiperidine, *N*-nitrosodipropylamine, and *N*-nitrosodibutylamine,
 267 because their molecular radii ($r_{DBP} = 0.300\text{--}0.346$ nm; see Table S2) are larger than the r_p^S (0.297
 268 nm (Xu et al. 2018)) in the presence of the salt with 1 M NaCl as the draw solution.

269 The B_{AL}^{DI} of DBPs was determined using the diffusion cell test in Milli-Q water and an
 270 equation derived from equation 3:

$$\frac{1}{B_{AL}^{DI}} = \frac{1}{B_{\text{diffusion cell,DI}}} - \frac{S \cdot R_r}{D_{DBP}} \quad (9)$$

271 where $B_{\text{diffusion cell,DI}}$ is DBP permeance through the entire membrane in diffusion cell in Milli-Q
 272 water as defined in equation.

273 3.2. Determination of R_r

274 The retardation factor for DBP diffusion in the support layer was calculated using equation
 275 10 that was developed for a porous ultrafiltration membrane (Clark and Lucas 1998):

$$R_r = \varepsilon + K_{DBP}^{MSL} \quad (10)$$

276 where ε is the porosity of the support layer (65% for the Aquaporin membrane used in this study
 277 (Sahebi et al. 2019)); and K_{DBP}^{MSL} (dimensionless) is the thickness-averaged partitioning coefficient
 278 for a DBP between the support layer and the aqueous solution, with superscript MSL denoting
 279 membrane support layer.

280 The salting-out effect, the enhancement of DBP sorption in the support layer via
 281 hydrophobic interaction, can be described using equation 11 (Burant et al. 2017):

$$\text{Log} \frac{K_{DBP,Salt}^{MSL}}{K_{DBP,DI}^{MSL}} = k_{DBP}^{Salt} \cdot C^S \quad (11)$$

282 where $K_{DBP,Salt}^{MSL}$ and $K_{DBP,DI}^{MSL}$ are the partitioning coefficients (dimensionless) of DBPs, defined as
 283 the ratio of the equilibrium DBP concentration in the support layer to that in a saline solution and
 284 Milli-Q water, respectively; k_{DBP}^{Salt} (M^{-1}) is the Setschenow constant; and C^S (M) is the
 285 corresponding salt concentration of the saline solution. Within the support layer, the extent of the
 286 salting-out effect is influenced by the salt concentration profile (Figure S3), and therefore K_{DBP}^{MSL} in
 287 equation 10 for FO is a thickness-averaged partitioning coefficient.

288 **3.2.1. Draw Solute Concentration Profile in Support Layer**

289 The salt concentration at a particular position within the support layer and that at the
 290 interface between the support and active layers can be calculated using the equations developed in
 291 a previous study (Phillip et al. 2010):

$$C_z^S = \frac{\exp(\frac{J_w S}{D_s} z) \cdot (C_D^S - C_i^S) + \exp(\frac{J_w S}{D_s}) \cdot C_i^S - C_D^S}{\exp(\frac{J_w S}{D_s}) - 1} \quad (12)$$

$$C_i^S = \frac{J_s \left[\exp(\frac{J_w S}{D_s}) - 1 \right] + J_w \cdot C_D^S}{J_w \exp(\frac{J_w S}{D_s})} \quad (13)$$

292 where C_z^S , C_i^S , and C_D^S (M) are the salt concentrations in the support layer at position z , at the
 293 interface between the support and active layers (i.e., $z = 0$), at the interface between the support
 294 layer and draw reservoir (i.e., $z = 1$), respectively; and J_s ($\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$) is the reverse salt flux. The

295 values of C_D^S (M) are 0.19, 0.45, or 0.85 M after accounting for the dilution of draw reservoir in
 296 our FO experiments with initial NaCl concentrations of 0.2, 0.5, or 1 M, respectively. The
 297 thickness-averaged K_{DBP}^{MSL} can be calculated using the following equation:

$$K_{DBP}^{MSL} = \int_0^1 \left(K_{DBP,DI}^{MSL} \cdot 10^{k_{DBP}^{Salt} \cdot C^S(z)} \right) dz \quad (14)$$

298 **3.2.2. Determination of $K_{DBP,DI}^{MSL}$ and k_{DBP}^{Salt} by Contact Angle Measurement**

299 The $K_{DBP,DI}^{MSL}$ and $K_{DBP,Salt}^{MSL}$ were calculated based on the DBP-membrane interaction in
 300 Milli-Q water and saline solutions, respectively:

$$K_{DBP,j}^{MSL} = \exp \left[- \left(\frac{\Delta G_{DBP,j}^{MSL}}{k \cdot T} \right) \right] \quad (15)$$

301 where $\Delta G_{DBP,j}^{MSL}$ (J) is the free energy of the interaction between a DBP molecule in the solution and
 302 the membrane support layer, with subscript $j = DI$ or $Salt$ to denote Milli-Q water or saline solution,
 303 respectively; and k is the Boltzmann constant ($1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$). $\Delta G_{DBP,j}^{MSL}$ was estimated using
 304 the surface tension components of the membrane support layer, water, and DBP (van Oss 2007):

$$\Delta G_{DBP,j}^{MSL} = 2A_{DBP} \left[\begin{array}{l} \sqrt{\gamma_{DBP}^{LW} \gamma_j^{LW}} + \sqrt{\gamma_{MSL}^{LW} \gamma_j^{LW}} - \sqrt{\gamma_{MSL}^{LW} \gamma_{DBP}^{LW}} - \gamma_j^{LW} \\ + \sqrt{\gamma_j^+} (\sqrt{\gamma_{DBP}^-} + \sqrt{\gamma_{MSL}^-} - \sqrt{\gamma_j^-}) \\ + \sqrt{\gamma_j^-} (\sqrt{\gamma_{DBP}^+} + \sqrt{\gamma_{MSL}^+} - \sqrt{\gamma_j^+}) - \sqrt{\gamma_{DBP}^+ \gamma_{MSL}^-} - \sqrt{\gamma_{DBP}^- \gamma_{MSL}^+} \end{array} \right] \quad (16)$$

305 where A_{DBP} (m^2) is the contact area between a DBP molecule and the membrane and was calculated
 306 using $\pi r_{DBP}^2/2$ (Bhattacharjee et al. 1996), where r_{DBP} (m) is the molecular radius of the DBP
 307 molecule; γ_j^{LW} ($\text{J} \cdot \text{m}^{-2}$) is the apolar (Lifshitz-van der Waals) surface tension component; and γ_j^+
 308 ($\text{J} \cdot \text{m}^{-2}$) and γ_j^- ($\text{J} \cdot \text{m}^{-2}$) are the polar (Lewis acid-base) electron-accepting and electron-donating

309 surface tension components, respectively. The subscripts “DBP” and “MSL” represent DBP and
310 the membrane support layer, respectively.

311 The specific surface tension components of the membrane and DBP liquid are linked to the
312 contact angle (θ) of liquid droplets (L) on a solid surface (S) via the Young-Dupré equation (van
313 Oss 2007):

$$(1 + \cos \theta) \left(\gamma_L^{LW} + 2\sqrt{\gamma_L^+ \gamma_L^-} \right) = 2 \left(\sqrt{\gamma_S^{LW} \gamma_L^{LW}} + \sqrt{\gamma_S^+ \gamma_L^-} + \sqrt{\gamma_S^- \gamma_L^+} \right) \quad (17)$$

314 The γ_S^{LW} , γ_S^+ , and γ_S^- values for the membrane support layer (i.e., γ_{MSL}^{LW} , γ_{MSL}^+ , and γ_{MSL}^-) were
315 obtained by solving equation 17 using the contact angles of a nonpolar solvent (diiodomethane)
316 and two polar solvents (glycerol and water) on the support layer (Van Oss 2006). Similarly, the
317 γ_{DBP}^{LW} , γ_{DBP}^+ , and γ_{DBP}^- values for two DBPs, NDMA and DCAN, were determined using the contact
318 angles of the respective pure liquid on three reference surfaces polytetrafluoroethylene (PTFE),
319 quartz, and cross-linked poly(ethylene glycol). Pure NDMA and DCAN are acutely toxic,
320 flammable, and carcinogenic, and hence should be handled carefully following instructions on the
321 safety data sheet. The γ_{DBP}^{LW} , γ_{DBP}^+ , and γ_{DBP}^- values for chloroform (TCM) (Van Oss 2006) and
322 bromoform (TBM) (Janczuk et al. 1993) are available from the literature. The γ_j^{LW} , γ_j^+ , and γ_j^-
323 values for the support layer of the Aquaporin membrane and the four DBPs are summarized in
324 Table 1. For these four DBPs, $K_{DBP,DI}^{MSL}$ values were calculated using equations 15 and 16.

325 In order to obtain the Setschenow constants k_{DBP}^{Salt} for these four DBPs, the surface tension
326 components of 8 NaCl solutions (0.1–3 M) were determined using their contact angles on the three
327 reference surfaces. The $\Delta G_{DBP,Salt}^{MSL}$ values for the interaction energy between DBP and the
328 membrane support layer in these NaCl solutions were calculated using equation 16, and the
329 $K_{DBP,Salt}^{MSL}$ values in the corresponding NaCl solutions were calculated using equation 15. The slope

330 of the linear regression of $\text{Log}(K_{DBP,Salt}^{MSL}/K_{DBP,DI}^{MSL})$ to C^S gives the Setschenow constant k_{DBP}^{Salt} for
331 each DBP (equation 11), as shown in Figure 1.

332 **3.2.3. $K_{DBP,DI}^{MSL}$ and k_{DBP}^{Salt} Values for Other DBPs**

333 The method to derive $K_{DBP,DI}^{MSL}$ and k_{DBP}^{Salt} described in 3.2.2 is limited to the availability of
334 pure compounds and involves the handling of highly toxic substances. To expand the application
335 of M-SD model to the other 9 DBPs investigated in this study, their partitioning coefficient and
336 Setschenow constants were estimated using methods based on their molecular properties (Ni and
337 Yalkowsky 2003, Vaes et al. 1998). Vaes et al. (1998) used a regression method to establish the
338 relationship between the partitioning coefficients of organic compounds and their molecular
339 properties including MV (the molecular volume, \AA^3), K_{ow} (the octanol/water partitioning
340 coefficient, dimensionless), ε_{HOMO} (the energy level of the highest occupied molecular orbital, eV),
341 ε_{LUMO} (the energy level of the lowest unoccupied molecular orbital, eV), Q^- (the most negative
342 charge on any non-hydrogen atom, a.u.), and Q^+ (the most positive charge on any hydrogen atom,
343 a.u.). To adapt this method to predict the partitioning coefficient $K_{DBP,DI}^{MSL}$, we first selected 22
344 reference organic compounds with available surface tension components in the literature (Botton
345 et al. 2012, De Ridder et al. 2013, Van Oss 2006) (Table S5) and calculated their K_{DI}^{MSL}
346 (dimensionless) values for the support layer of the Aquaporin membrane using equations 15 and
347 16. Subsequently, a multivariate regression model describing the relationship between the
348 molecular properties of the 22 organic compounds and their $\text{Log } K_{DI}^{MSL}$ for the support layer of the
349 Aquaporin membrane was obtained:

$$\begin{aligned} \text{Log } K_{DI}^{MSL} = & 0.516 + 0.0147\varepsilon_{HOMO} - 0.0538\varepsilon_{LUMO} - 0.207Q^- \\ & - 1.350Q^+ + 0.000295MV + 0.1767\text{Log } K_{ow} \quad R^2 = 0.94 \end{aligned} \quad (18)$$

350 where K_{DI}^{MSL} (dimensionless) is the partitioning coefficient of an organic compound between the
351 support layer of the Aquaporin membrane and Milli-Q water. The $K_{DBP,DI}^{MSL}$ of DBPs, similar to the
352 K_{DI}^{MSL} of the reference compounds, was then calculated using equation 18 based on the molecular
353 properties of DBPs. The values of ε_{HOMO} , ε_{LUMO} , Q^- , and Q^+ for all 22 reference compounds and
354 13 DBPs were estimated using PM6 method through the semi-empirical quantum chemistry
355 program MOPAC2016 (Stewart 2016). The values of MV and $\text{Log } K_{ow}$ were obtained from
356 PubChem database (Kim et al. 2016).

357 The Setschenow constant of all DBPs in NaCl solutions was predicted using equation 19,
358 an empirical equation initially developed for 101 organic compounds (Ni and Yalkowsky 2003):

$$k_{DBP}^{Salt} = 0.04\text{Log } K_{ow} + 0.114 \quad (19)$$

359 The $K_{DBP,DI}^{MSL}$ and k_{DBP}^{Salt} values for TCM, TBM, DCAN, and NDMA determined from these
360 regression models (equations 18 and 19, respectively) are similar to those obtained using contact
361 angle measurement (Table 2), validating them for estimating the $K_{DBP,DI}^{MSL}$ and k_{DBP}^{Salt} values of the
362 other 9 DBPs investigated in this study.

363 **4. Results and Discussion**

364 **4.1. Effects of Reverse Salt Flux on DBP Rejection and Permeance**

365 Over the course of the FO experiment, the rejection of all DBPs by Aquaporin membrane
366 exhibited a small initial decline and then stabilized after 150–600 mL of water permeated through
367 the membrane (Figure S4 for four DBPs as examples). The stabilized rejection is used in the
368 discussion for the rest of the manuscript. Figure 2a shows the rejection of the sixteen DBPs under
369 a water flux of 3.0–4.0 $\text{L} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$ with three different compounds NaCl, MgSO₄, and glucose as
370 draw solutes. For halogenated DBPs, the rejection was highest when NaCl was used as the draw
371 solute, followed by glucose and then MgSO₄. Two of the trihalomethanes TCM and DCBM even

372 exhibited negative rejection with MgSO_4 as the draw solute. Based on the solution-diffusion
373 mechanism (Xie et al. 2018), DBP transport in FO is mainly governed by diffusion and is
374 independent on water flux. In cases where water flux was low (e.g., $3.0 \text{ L}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ with 1 M MgSO_4
375 as the draw solution), the faster transport of DBP than water would lead to a DBP to water flux
376 ratio (equations S1 and S2) greater than the average DBP concentration in the feed solution,
377 resulting in a negative rejection (equation S3). The dependence of the rejection of halogenated
378 DBPs on draw solutes is similar to that previously reported for PPCPs, i.e., NaCl provided the
379 highest PPCP rejection, followed by glucose and MgSO_4 (Xie et al. 2018). Because the three draw
380 solutions imposed a range of reverse salt flux ($6.8\text{--}35.8 \text{ mmol}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$), our results further support
381 the previous observation that reverse salt flux is an important factor influencing the forward
382 transport of organic solutes (Xie et al. 2012). In contrast, most nitrosamines, except the smallest
383 compound NDMA, did not show a substantial difference in rejection when different draw solutes
384 were used (Figure 2a).

385 DBP permeance from the above experiments, as well as those from experiments using
386 NaCl solutions of different concentrations (rejection values shown in Figure 2b), was calculated
387 to further assess the effects of reverse salt flux on DBP transport (Figure 3). The five different
388 draw solutions resulted in a range of reverse salt flux ($6.8\text{--}60.3 \text{ mmol}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, Table S4). The
389 permeance of halogenated DBPs (Figures 3a and 3b) decreased with the increase of reverse salt
390 flux. For example, the permeance of TCM and DCAN decreased from $1.00 \text{ }\mu\text{m}\cdot\text{s}^{-1}$ to $0.81 \text{ }\mu\text{m}\cdot\text{s}^{-1}$
391 and from $0.76 \text{ }\mu\text{m}\cdot\text{s}^{-1}$ to $0.66 \text{ }\mu\text{m}\cdot\text{s}^{-1}$, respectively, when reverse salt flux increased from 6.8 to
392 $60.3 \text{ mmol}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$. In contrast, such a trend was not observed for nitrosamines, the permeance of
393 which remained approximately constant across the range of reverse salt flux tested (Figure 3c).
394 Previous studies hypothesized that the effect of reverse salt flux can be attributed to the steric

395 hindrance introduced by the draw solute molecules on the forward transport of organic molecules
396 (Xie et al. 2012). In other words, one would expect that organic molecules of similar sizes to be
397 impacted by reserve salt flux similarly. This, however, does not apply to our DBP results. For
398 example, DCAN and NDMA feature similar molecular radii around 0.259 nm, but only DCAN
399 showed a decrease in permeance with increasing reverse salt flux. The different effects of reverse
400 salt flux on the rejection and permeance between halogenated DBPs and nitrosamines, despite their
401 similar molecular size, suggest that mechanisms beyond the hindrance effect are at play.

402 It should be mentioned that convection can also play a role in the transport of organic
403 contaminants (Xie et al. 2014), which can generate confounding factors for the effect of reverse
404 salt flux, because varying reverse salt flux is often accompanied with different water fluxes.
405 However, as shown in Table S10, even at the highest water flux ($8.1 \text{ L} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$) tested in this study
406 (i.e., maximal convection), convection only accounted for less than 10% of total flux for all DBPs,
407 indicating that its role was overall minor in this study.

408 **4.2. Mechanistic Investigation of the Reverse Salt Flux Effects**

409 **4.2.1. Steric Hindrance**

410 The steric hindrance for the forward transport of organic molecules can result from the
411 countermovement of draw solute molecules or simply from their presence in the membrane active
412 layer. To differentiate these two possibilities, experiments were conducted in diffusion cells, where
413 there is no movement of draw solute molecules. As shown in Figure 4, DBP permeance was much
414 lower in NaCl solutions than that in pure water; the higher the NaCl concentration, the lower the
415 DBP permeance. These results indicate that the presence of NaCl in the membrane (i.e., without
416 movement) already hinders DBP transport.

417 According to the steric hindrance theory, draw solutes with similar radii as the membrane
418 effective pore radius could occupy the free space in the membrane active layer and thereby hinder
419 the transport of organic molecules with similar molecular radii (Scheme S1a). In other words, for
420 organic molecules smaller than the draw solutes, their transport should be less hindered (Scheme
421 S1b). This hypothesis was tested by examining the relationship between the drop in DBP
422 permeance in the presence of draw solutes and the size of DBPs (Figure 5). The decrease in DBP
423 permeance is represented as the ratio of the DBP permeance in FO experiments with various draw
424 solutes to the DBP permeance in diffusion cell experiments with pure water. Pearson's (linear,
425 parametric) and Spearman's (monotonic, non-parametric) correlation tests show that the drop in
426 DBP permeance in the presence of draw solutes MgSO_4 or glucose inversely correlated with the
427 molecular volume of DBPs, but such a correlation was not observed for NaCl . These results
428 indicate that the steric hindrance by the larger draw solutes MgSO_4 or glucose plays an important
429 role in hindering the forward DBP transport in FO, but other physicochemical processes may
430 contribute to the hindered DBP transport by the smaller draw solute NaCl .

431 **4.2.2. Retardation of DBP Diffusion in the Support Layer**

432 The role of the support layer in the presence of draw solutes on DBP transport has not been
433 previously examined. Compared with the active layer, the support layer has an open structure and
434 hence is not likely to restrict the movement of DBP molecules. However, it can serve as a sorption
435 media for organic compounds. Accordingly, the relationship between the drop in DBP permeance
436 in the presence of draw solutes and the hydrophobicity of DBPs ($\text{Log } K_{ow}$) was analyzed (Figure
437 6). In contrast to the results observed for molecular volume (Figure 5), Figure 6 shows that the
438 drop in DBP permeance due to the presence of NaCl inversely correlated with the $\text{Log } K_{ow}$ of
439 DBPs, but such a correlation was not observed for MgSO_4 or glucose. This can be rationalized by

440 the larger size of MgSO_4 and glucose than NaCl , which results in a dominating steric hindrance
441 effect in the active layer, and, in the case of glucose, the lack of ionic charge to induce the “salting-
442 out” effect in the support layer.

443 The wastewater-relevant, low DBP concentrations ($10\text{--}20 \mu\text{g}\cdot\text{L}^{-1}$) used in the feed for the
444 FO experiments render it challenging to quantify the amount of DBP in the Aquaporin membrane
445 using desorption tests. Accordingly, we conducted sorption experiments in batch systems using
446 Aquaporin membrane coupons or polysulfone beads (the material of the support layer) in Milli-Q
447 water or 1 M NaCl solution for halogenated DBPs (Figure S5). In the presence of Aquaporin
448 membrane or polysulfone beads, DBP concentrations in the aqueous phase declined initially, and
449 then reached a plateau by 41 h, by when 70%–98% and 11%–52% of the total DBP mass
450 partitioned into the Aquaporin membrane coupon and polysulfone beads, respectively. Higher
451 sorption occurred in 1 M NaCl solution than in Milli-Q water. Among different DBPs, the extent
452 of sorption on Aquaporin membrane or polysulfone beads (in Milli-Q water) correlated with the
453 partitioning coefficient $K_{DBP,DI}^{MSL}$ value of the DBPs (Figures S6a and S6b). Additionally, the
454 enhancement of sorption in 1 M NaCl solution compared with that in Milli-Q water correlated with
455 the Setschenow constant k_{DBP}^{Salt} of the DBPs (Figures S6c and S6d), supporting the “salting-out”
456 effects. Overall, these results support that sorption of DBPs in the support layer, especially in the
457 presence of the high concentration of salts, can contribute to the retardation of DBP transport in
458 FO.

459 **4.3. Modelling DBP Transport in FO**

460 **4.3.1. Steric Hindrance in the Active Layer**

461 The effective pore radius r_p^S and the associated DBP permeance through the active layer
462 B_{AL}^S are shown in Table 3 for four representative DBPs. As reverse NaCl flux increased, both r_p^S

463 and B_{AL}^S decreased. When reverse NaCl flux increased from 0 to 60.3 $\text{mmoL}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, r_p^S decreased
464 from 0.305 to 0.297 nm; this seemingly small change in r_p^S (<3% decrease) resulted in a substantial
465 decrease in B_{AL}^S by 26%–38%. Additionally, the decrease in B_{AL}^S is more pronounced for larger
466 DBPs: TBM ($r_{DBP} = 0.271$ nm) exhibited a greater decrease (38%) in B_{AL}^S than the other three
467 DBPs ($r_{DBP} = 0.256$ –0.259 nm) (26%–29% decrease). Figure 7 simulates the change in B_{AL}^S due to
468 the presence of NaCl as a function of DBP size, showing that the presence of salt has a stronger
469 effect on suppressing the permeance of larger DBPs through the active layer. Beyond DBPs, this
470 trend may be applicable to other neutral organic molecules with radii smaller than the effective
471 pore radius of the membrane in the presence of draw solutes.

472 **4.3.2. Retarded Diffusion in the Support Layer**

473 The values of the retardation factor R_r for all DBPs are shown in Table 4. For all DBPs, the
474 higher the reverse NaCl flux, the greater the value of R_r , indicating a stronger retardation effect in
475 the support layer. Additionally, the increase in R_r accompanied by increasing reverse NaCl flux is
476 greater for DBPs with higher hydrophobicity. For example, R_r of TBM ($\text{Log } K_{ow} = 2.40$) increased
477 by 42% when reverse NaCl flux increased from 0 to 60.3 $\text{mmoL}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, while NDMA ($\text{Log } K_{ow}$
478 = -0.64) featured only 7% increase in R_r . This dependence is consistent with the results observed
479 in Figure 6, where a stronger effect of reverse NaCl flux was observed on the permeance of DBPs
480 with higher hydrophobicity.

481 **4.3.3. Predicting DBP Permeance with the Modified Solution-Diffusion Model**

482 The DBP permeance and rejection determined from FO experiments were compared with
483 those predicted using the conventional solution-diffusion (SD) model or the modified solution-
484 diffusion (M-SD) model. As shown in Figure 8, for all halogenated DBPs (trihalomethanes,
485 haloacetonitriles, haloketones), the M-SD model more accurately predicted DBP permeance and

486 rejection than the SD model, and the improved accuracy of the M-SD model is more pronounced
487 at higher reverse salt flux. The model error calculated by equation 4 was compared between the
488 M-SD and SD models. For trihalomethanes, a group of DBPs regulated by U.S. EPA, the M-SD
489 model predicted their permeance with error of 3%–20% at the low reverse NaCl flux of 20.9
490 $\text{mmol}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$ (Figure 8a), better than the SD model (9%–30% error). At the high reverse NaCl
491 flux of 60.3 $\text{mmol}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$, the errors of the M-SD and SD models in predicting trihalomethanes
492 permeance were -2%–121% and 28%–238% (Figure 8b), respectively. For haloacetonitriles, a
493 group of DBPs recently shown to contribute to the majority of the toxicity in recycled wastewater
494 (Lau et al. 2020, Zeng et al. 2016), the M-SD model provided accurate prediction for their
495 permeance (2%–13% and -10%–25% errors at low and high reverse NaCl flux, respectively), a
496 significant improvement from the SD model (10%–22% and 20%–91% errors). For haloketones,
497 the M-SD and SD model predicted the permeance with errors of -89%–35% and 10%–150%,
498 respectively, at the high reverse NaCl flux.

499 In contrast, for the four nitrosamines, the M-SD model underestimated their permeance. At
500 the high reverse NaCl flux, the error of the M-SD model in predicting permeance was -26% for
501 NDMA and -37%–94% for the other three nitrosamines (Figure 8b), whereas the error of the SD
502 model was -1%–33% for these nitrosamines. NDMA, the smallest nitrosamine with high
503 hydrophilicity ($\text{Log } K_{ow} = -0.64$), can possibly be transported through convection, but the low
504 contribution of convection to total NDMA flux in our experiments (< 3%, Table S10) suggests
505 that the prediction error of the M-SD model for NDMA is attributed to other factors. As for the
506 other three nitrosamines, the poor performance of the M-SD model may be attributed to the large
507 size of these compounds, with radius (0.278–0.295 nm) close to the effective pore radius r_p^S of the
508 active layer in the presence of salt. As shown in Figure 7, the effect of steric hindrance, reflected

509 by the ratio of B_{AL}^S to B_{AL}^{DI} , is extremely sensitive to DBP radii as they approach r_p^S . In reality, rather
510 than a uniform pore size (r_p^S), the effective pores in the active layer likely feature a range of sizes
511 (Fang et al. 2014), with larger “pores” available for the transport of large DBPs. This pore size
512 distribution is not considered in either the M-SD or SD model, but M-SD model is more affected
513 due to the consideration of pore restriction by draw salt in the active layer.

514 For halogenated DBPs, the relative importance of steric hindrance versus retarded diffusion
515 in contributing to the effects of reverse salt flux on DBP permeance is shown in Figure 9 for three
516 representative compounds. Between TCM and DCAN with similar molecular sizes ($r_{DBP} = 0.256$ –
517 0.259 nm), the more hydrophobic TCM ($\text{Log } K_{ow} = 1.97$) is more affected by retarded diffusion in
518 the support layer than by steric hindrance in the active layer, while the less hydrophobic DCAN
519 ($\text{Log } K_{ow} = 0.29$) is more affected by steric hindrance. For dibromochloromethane (DBCM), a
520 relatively large and hydrophobic DBP, steric hindrance and retarded diffusion contributed
521 similarly.

522 **4.3.4. Model Limitations**

523 Although the M-SD model significantly improved the prediction of the permeance of
524 halogenated DBPs, a few limitations should be acknowledged. First, the pore size distribution of
525 the active layer is not captured by the use of effective pore radius r_p^S in the model. As a result, the
526 M-SD model cannot predict the permeance of DBPs with radii larger than r_p^S , such as *N*-
527 nitrosopiperidine, *N*-nitrosodipropylamine, and *N*-nitrosodibutylamine (Tables 3 and S2). Even for
528 DBPs with radii smaller than, but close to, r_p^S , the M-SD model significantly underestimated the
529 permeance, such as for *N*-nitrosodiethylamine ($r_{DBP} = 0.295$ nm) (Figure S7). This limitation,
530 however, may not be critical for application in wastewater recycling, because these large DBPs
531 generally have high rejection (e.g., > 85% with 1 M NaCl as the draw solution, Figure 2) and have

532 been shown to contribute to relatively low health risks in full-scale wastewater recycling operation
533 (Zeng et al. 2016). Second, the M-SD model does not consider the convection process. Although
534 convection contributed to less than 10% of the total DBP flux across experiments conducted in
535 this study (Table S10), its role can be substantial at higher water fluxes, warranting further
536 consideration in future studies. Third, further improvement of the M-SD model may consider the
537 depth heterogeneity of the support layer when determining the effect of retarded diffusion on
538 hydrophobic compounds. The polysulfone layer is usually heterogeneous in depth (Breitbach et al.
539 1991), suggesting that the partitioning coefficient determined from the surface of the support layer
540 may not fully represent the partitioning in the entire support layer. Because retarded diffusion is
541 particularly important for the more hydrophobic compounds, accurate determination of their
542 partitioning coefficients with the support layer is critical for predicting their permeance in the
543 presence of reverse salt flux. For example, the only three halogenated DBPs (i.e.,
544 dichlorobromomethane, dibromochloromethane, and bromoform), whose permeance values were
545 not accurately predicted by the M-SD model (see Figure 8), had the highest hydrophobicity among
546 the halogenated DBPs tested ($\text{Log } K_{ow} > 2$). Lastly, the M-SD model has not incorporated the
547 effects of organic fouling. Organic fouling can hinder the diffusion of draw solutes from the active
548 layer to the feed solution and therefore elevate draw solute concentrations in the active layer (Lee
549 et al. 2010). As a result, the steric hindrance caused by reverse salt flux on DBP transport is
550 expected to be enhanced by the organic fouling. Future research is needed to systematically
551 evaluate the varying effects of the different types of organic fouling that are relevant to wastewater
552 recycling on the transport of organic contaminants and to incorporate them into transport models.

553 **5. Conclusion**

554 This study evaluated the effects of reverse salt flux on the forward transport of 16 neutral
555 DBPs in FO, including 9 halogenated DBPs (4 trihalomethanes, 3 haloacetonitriles, and 2
556 haloketones) and 7 nitrosamines. Using three draw solutes NaCl, MgSO₄, and glucose, we
557 observed that the higher the reverse salt flux, the lower the DBP permeance and hence the higher
558 the DBP rejection by the Aquaporin membrane. This effect of reverse salt flux was stronger for
559 halogenated DBPs than for nitrosamines. Correlation analysis combining results from FO and
560 diffusion cell experiments showed that the steric hindrance in the active layer contributed to the
561 effects of reverse salt flux for MgSO₄ and glucose, while the retarded diffusion in the support layer
562 played a major role for NaCl.

563 This study is one of the first attempts to incorporate the effects of reverse salt flux for the
564 forward transport of organic compounds in FO transport models. We modified the conventional
565 solution-diffusion (SD) model by incorporating both steric hindrance and retarded diffusion to
566 predict the DBP permeance under low and high reverse salt fluxes. The steric hindrance in the
567 active layer was reflected by the effective pore radius (r_p^S) after accounting for the free volumes
568 occupied by draw solutes. The retardation factor in the support layer was estimated using the
569 partitioning coefficient of DBPs between the support layer and water ($K_{DBP,DI}^{MSL}$) as well as the
570 Setschenow constant representing the salting-out effect (k_{DBP}^{Salt}). Our modified SD (M-SD) model
571 predicted the permeance of halogenated DBPs better than the conventional SD model. Specifically,
572 the permeance of haloacetonitriles, a group of high-priority DBPs in wastewater recycling, was
573 predicted by the M-SD model with less than 25% error from the experimental observation. Steric
574 hindrance is the dominant mechanism for the reverse salt flux effect for large DBPs, while retarded
575 diffusion contributed more for hydrophobic DBPs. The M-SD model underestimated the
576 permeance of nitrosamines, presumably due to the limitation that the M-SD model did not consider

577 convection as a transport mechanism (for hydrophilic compound) or the effective pore size
578 distribution of the membrane active layer.

579 **Acknowledgment**

580 The research was supported by the National Science Foundation (1652412). There is no
581 conflict of interest to declare.

582 **Appendix A. Supplementary material**

583 **References**

584 Alturki, A.A., McDonald, J.A., Khan, S.J., Price, W.E., Nghiem, L.D., Elimelech, M., 2013.
585 Removal of trace organic contaminants by the forward osmosis process. *Sep. Purif. Technol.* 103, 258-266.

587 Bhattacharjee, S., Sharma, A., Bhattacharya, P.K., 1996. Estimation and influence of long range
588 solute. *Membrane interactions in ultrafiltration. Ind. Eng. Chem. Res.* 35, 3108-3121.

589 Botton, S., Verliefde, A.R., Quach, N.T., Cornelissen, E.R., 2012. Influence of biofouling on
590 pharmaceuticals rejection in nf membrane filtration. *Water Res.* 46, 5848-5860.

591 Breitbach, L., Hinke, E., Staude, E., 1991. Heterogeneous functionalizing of polysulfone
592 membranes. *Die Angewandte Makromolekulare Chemie: Applied Macromolecular
593 Chemistry and Physics* 184, 183-196.

594 Burant, A., Lowry, G.V., Karamalidis, A.K., 2017. Measurement and modeling of setschenow
595 constants for selected hydrophilic compounds in NaCl and CaCl₂ simulated carbon storage
596 brines. *Accounts Chem. Res.* 50, 1332-1341.

597 Cheong, S.I., Kim, B., Lee, H., Rhim, J.W., 2013. Physical adsorption of water-soluble polymers
598 on hydrophobic polymeric membrane surfaces via salting-out effect. *Macromol. Res.* 21,
599 629-635.

600 Clark, M.M., Lucas, P., 1998. Diffusion and partitioning of humic acid in a porous ultrafiltration
601 membrane. *J. Membrane Sci.* 143, 13-25.

602 Coday, B.D., Yaffe, B.G.M., Xu, P., Cath, T.Y., 2014. Rejection of trace organic compounds by
603 forward osmosis membranes: A literature review. *Environ. Sci. Technol.* 48, 3612-3624.

604 D'Haese, A.K.H., 2020. Interactions between feed solutes and inorganic electrolytic draw solutes
605 in forward osmosis. *J. Membrane Sci.* 597, 117636.

606 Dai, N., Zeng, T., Mitch, W.A., 2015. Predicting n-nitrosamines: N-nitrosodiethanolamine as a
607 significant component of total n-nitrosamines in recycled wastewater. *Environ. Sci. Tech.*
608 Let. 2, 54-58.

609 De Ridder, D.J., Verliefde, A.R., Schoutteten, K., Van Der Linden, B., Heijman, S.G., Beurroies,
610 I., Denoyel, R., Amy, G.L., Van Dijk, J.C., 2013. Relation between interfacial energy and
611 adsorption of organic micropollutants onto activated carbon. *Carbon* 53, 153-160.

612 Engelhardt, S., Sadek, A., Duirk, S., 2018. Rejection of trace organic water contaminants by an
613 aquaporin-based biomimetic hollow fiber membrane. *Sep. Purif. Technol.* 197, 170-177.

614 Fang, Y., Bian, L., Bi, Q., Li, Q., Wang, X., 2014. Evaluation of the pore size distribution of a
615 forward osmosis membrane in three different ways. *J. Membrane Sci.* 454, 390-397.

616 Ferby, M., Zou, S., He, Z., 2020. Reduction of reverse solute flux induced solute buildup in the
617 feed solution of forward osmosis. *Environ. Sci.-Wat. Res.*

618 Han, G., Zhang, S., Li, X., Widjojo, N., Chung, T.-S., 2012. Thin film composite forward osmosis
619 membranes based on polydopamine modified polysulfone substrates with enhancements in
620 both water flux and salt rejection. *Chem. Eng. Sci.* 80, 219-231.

621 Heo, J., Boateng, L.K., Flora, J.R.V., Lee, H., Her, N., Park, Y.G., Yoon, Y., 2013. Comparison
622 of flux behavior and synthetic organic compound removal by forward osmosis and reverse
623 osmosis membranes. *J. Membrane Sci.* 443, 69-82.

624 Janczuk, B., Chibowski, E., Bruque, J., Kerkeb, M., Caballero, F.G., 1993. On the consistency of
625 surface free energy components as calculated from contact angles of different liquids: An
626 application to the cholesterol surface. *J. Colloid Interf. Sci.* 159, 421-428.

627 Jang, Y., Cho, H., Shin, Y., Choi, Y., Lee, S., Koo, J., 2016. Comparison of fouling propensity
628 and physical cleaning effect in forward osmosis, reverse osmosis, and membrane
629 distillation. *Desalin. Water Treat.* 57, 24532-24541.

630 Jin, X., Tang, C.Y., Gu, Y.S., She, Q.H., Qi, S.R., 2011. Boric acid permeation in forward osmosis
631 membrane processes: Modeling, experiments, and implications. *Environ. Sci. Technol.* 45,
632 2323-2330.

633 Kim, C., Lee, S., Shon, H.K., Elimelech, M., Hong, S., 2012. Boron transport in forward osmosis:
634 Measurements, mechanisms, and comparison with reverse osmosis. *J. Membrane Sci.* 419-
635 420, 42-48.

636 Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S.,
637 Shoemaker, B.A., 2016. Pubchem substance and compound databases. *Nucleic Acids Res.*
638 44, D1202-D1213.

639 Kim, Y., Li, S., Chekli, L., Woo, Y.C., Wei, C.-H., Phuntsho, S., Ghaffour, N., Leiknes, T., Shon,
640 H.K., 2017. Assessing the removal of organic micro-pollutants from anaerobic membrane
641 bioreactor effluent by fertilizer-drawn forward osmosis. *J. Membrane Sci.* 533, 84-95.

642 Kong, F.X., Dong, L.Q., Zhang, T., Chen, J.F., Guo, C.M., 2018. Effect of reverse permeation of
643 draw solute on the rejection of ionic nitrogen inorganics in forward osmosis: Comparison,
644 prediction and implications. *Desalination* 437, 144-153.

645 Kong, F.X., Yang, H.W., Wang, X.M., Xie, Y.F.F., 2014. Rejection of nine haloacetic acids and
646 coupled reverse draw solute permeation in forward osmosis. *Desalination* 341, 1-9.

647 Kong, F.X., Yang, H.W., Wu, Y.Q., Wang, X.M., Xie, Y.F.F., 2015. Rejection of pharmaceuticals
648 during forward osmosis and prediction by using the solution-diffusion model. *J. Membrane
649 Sci.* 476, 410-420.

650 Lau, S.S., Wei, X., Bokenkamp, K., Wagner, E.D., Plewa, M.J., Mitch, W.A., 2020. Assessing
651 additivity of cytotoxicity associated with disinfection byproducts in potable reuse and
652 conventional drinking waters. *Environ. Sci. Technol.* 54, 5729-5736.

653 Lee, S., Boo, C., Elimelech, M., Hong, S., 2010. Comparison of fouling behavior in forward
654 osmosis (FO) and reverse osmosis (RO). *J. Membrane Sci.* 365, 34-39.

655 Lin, S., 2016. Mass transfer in forward osmosis with hollow fiber membranes. *J. Membrane Sci.*
656 514, 176-185.

657 Linares, R.V., Li, Z., Sarp, S., Bucs, S.S., Amy, G., Vrouwenvelder, J.S., 2014. Forward osmosis
658 niches in seawater desalination and wastewater reuse. *Water Res.* 66, 122-139.

659 Luo, W., Xie, M., Song, X., Guo, W., Ngo, H.H., Zhou, J.L., Nghiem, L.D., 2018. Biomimetic
660 aquaporin membranes for osmotic membrane bioreactors: Membrane performance and
661 contaminant removal. *Bioresource Technol.* 249, 62-68.

662 Lutchmiah, K., Verliefde, A.R.D., Roest, K., Rietveld, L.C., Cornelissen, E.R., 2014. Forward
663 osmosis for application in wastewater treatment: A review. *Water Res.* 58, 179-197.

664 Madsen, H.T., Bajraktari, N., Helix-Nielsen, C., Van der Bruggen, B., Sogaard, E.G., 2015. Use
665 of biomimetic forward osmosis membrane for trace organics removal. *J. Membrane Sci.*
666 476, 469-474.

667 Mi, B., Elimelech, M., 2010. Organic fouling of forward osmosis membranes: Fouling reversibility
668 and cleaning without chemical reagents. *J. Membrane Sci.* 348, 337-345.

669 Ni, N., Yalkowsky, S.H., 2003. Prediction of setschenow constants. *Int. J. Pharmaceut.* 254, 167-
670 172.

671 NRC, 2012. Water reuse: Potential for expanding the nation's water supply through reuse of
672 municipal wastewater, The National Academies Press, Washington, DC.

673 Phillip, W.A., Yong, J.S., Elimelech, M., 2010. Reverse draw solute permeation in forward
674 osmosis: Modeling and experiments. *Environ. Sci. Technol.* 44, 5170-5176.

675 Qi, S., Wang, R., Chaitra, G.K.M., Torres, J., Hu, X., Fane, A.G., 2016. Aquaporin-based
676 biomimetic reverse osmosis membranes: Stability and long term performance. *J.*
677 *Membrane Sci.* 508, 94-103.

678 Qin, M., He, Z., 2014. Self-supplied ammonium bicarbonate draw solute for achieving wastewater
679 treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system.
680 *Environ. Sci. Tech. Let.* 1, 437-441.

681 Sahebi, S., Sheikhi, M., Ramavandi, B., 2019. A new biomimetic aquaporin thin film composite
682 membrane for forward osmosis: Characterization and performance assessment. *Desalin.*
683 *Water Treat.* 148, 42-50.

684 Sauchelli, M., Pellegrino, G., D'Haese, A., Rodriguez-Roda, I., Gernjak, W., 2018. Transport of
685 trace organic compounds through novel forward osmosis membranes: Role of membrane
686 properties and the draw solution. *Water Res.* 141, 65-73.

687 Shaffer, D.L., Werber, J.R., Jaramillo, H., Lin, S., Elimelech, M., 2015. Forward osmosis: Where
688 are we now? *Desalination* 356, 271-284.

689 Shaffer, D.L., Yip, N.Y., Gilron, J., Elimelech, M., 2012. Seawater desalination for agriculture by
690 integrated forward and reverse osmosis: Improved product water quality for potentially
691 less energy. *J. Membrane Sci.* 415, 1-8.

692 Stewart, J., 2016. Mopac2016, Stewart Computational Chemistry, Colorado Springs, CO.

693 U.S. EPA, 2001. User's guide for water9 software, US Environmental Protection Agency, Office
694 of Air Quality Planning and Standards.

695 U.S. EPA, 2010. National primary drinking water regulations, U.S. Government Printing Office,
696 Washington, DC.

697 Vaes, W.H.J., Urrestarazu Ramos, E., Verhaar, H.J.M., Cramer, C.J., Hermens, J.L.M., 1998.
698 Understanding and estimating membrane/water partition coefficients: Approaches to
699 derive quantitative structure property relationships. *Chem. Res. Toxicol.* 11, 847-854.

700 Van Oss, C.J., 2006. *Interfacial forces in aqueous media*, CRC press.

701 Van Oss, C.J., 2007. Development and applications of the interfacial tension between water and
702 organic or biological surfaces. *Colloid. Surface. B* 54, 2-9.

703 Wagner, E.D., Plewa, M.J., 2017. Cho cell cytotoxicity and genotoxicity analyses of disinfection
704 by-products: An updated review. *J. Environ. Sci.-China* 58, 64-76.

705 Wang, J., Mo, Y., Mahendra, S., Hoek, E.M.V., 2014. Effects of water chemistry on structure and
706 performance of polyamide composite membranes. *J. Membrane Sci.* 452, 415-425.

707 Xia, L., Andersen, M.F., Hélix-Nielsen, C., McCutcheon, J.R., 2017. Novel commercial aquaporin
708 flat-sheet membrane for forward osmosis. *Ind. Eng. Chem. Res.* 56, 11919-11925.

709 Xiang, X., Zou, S., He, Z., 2017. Energy consumption of water recovery from wastewater in a
710 submerged forward osmosis system using commercial liquid fertilizer as a draw solute.
711 *Sep. Purif. Technol.* 174, 432-438.

712 Xie, M., Luo, W.H., Guo, H., Nghiem, L.D., Tang, C.Y., Gray, S.R., 2018. Trace organic
713 contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms
714 and membrane stability. *Water Res.* 132, 90-98.

715 Xie, M., Nghiem, L.D., Price, W.E., Elimelech, M., 2012. Comparison of the removal of
716 hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. *Water
717 Res.* 46, 2683-2692.

718 Xie, M., Nghiem, L.D., Price, W.E., Elimelech, M., 2014. Relating rejection of trace organic
719 contaminants to membrane properties in forward osmosis: Measurements, modelling and
720 implications. *Water Res.* 49, 265-274.

721 Xu, J., Kralles, Z.T., Hart, C.H., Dai, N., 2020. Effects of sunlight on the formation potential of
722 dichloroacetonitrile and bromochloroacetonitrile from wastewater effluents. *Environ. Sci.*
723 *Technol.* 54, 3245-3255.

724 Xu, J., Tran, T.N., Lin, H., Dai, N., 2018. Removal of disinfection byproducts in forward osmosis
725 for wastewater recycling. *J. Membrane Sci.* 564, 352-360.

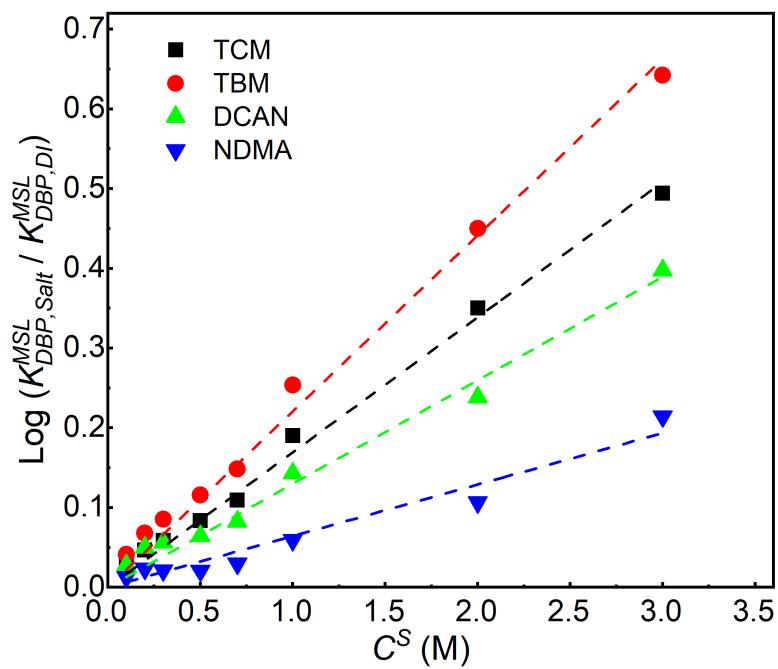
726 Yangali-Quintanilla, V., Li, Z.Y., Valladares, R., Li, Q.Y., Amy, G., 2011. Indirect desalination
727 of red sea water with forward osmosis and low pressure reverse osmosis for water reuse.
728 *Desalination* 280, 160-166.

729 Yuan, H., Abu-Reesh, I.M., He, Z., 2015. Enhancing desalination and wastewater treatment by
730 coupling microbial desalination cells with forward osmosis. *Chem. Eng. J.* 270, 437-443.

731 Zeng, T., Plewa, M.J., Mitch, W.A., 2016. N-nitrosamines and halogenated disinfection
732 byproducts in u.S. Full advanced treatment trains for potable reuse. *Water Res.* 101, 176-
733 186.

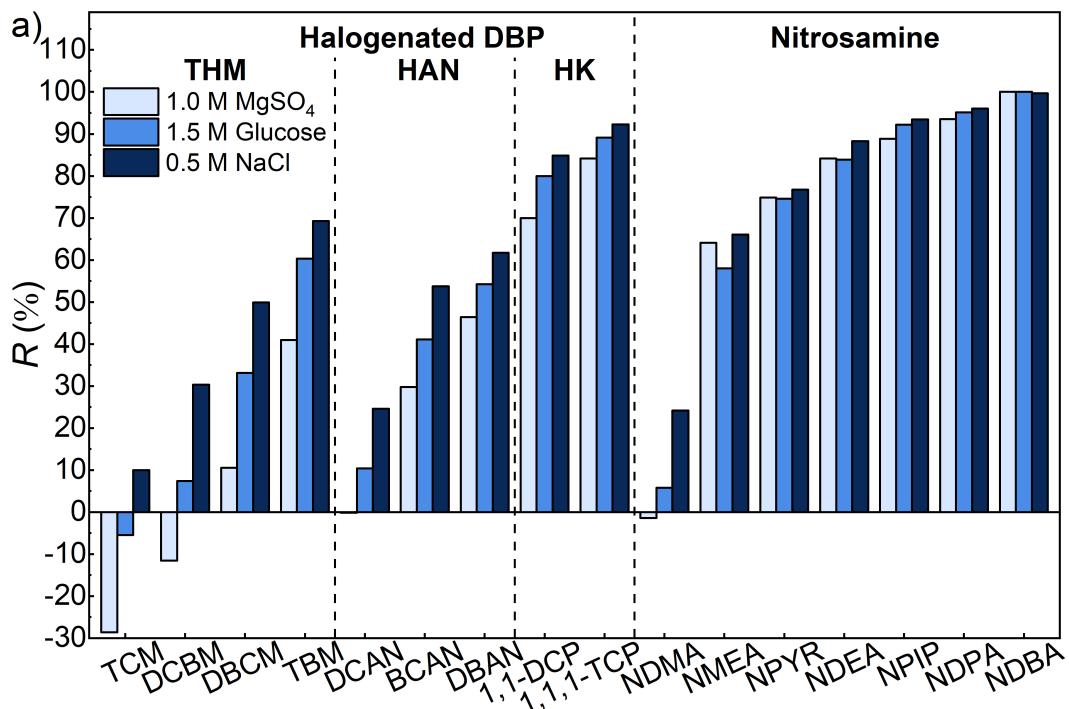
734 Zheng, L., Price, W.E., McDonald, J., Khan, S.J., Fujioka, T., Nghiem, L.D., 2019. New insights
735 into the relationship between draw solution chemistry and trace organic rejection by
736 forward osmosis. *J. Membrane Sci.* 587, 117184.

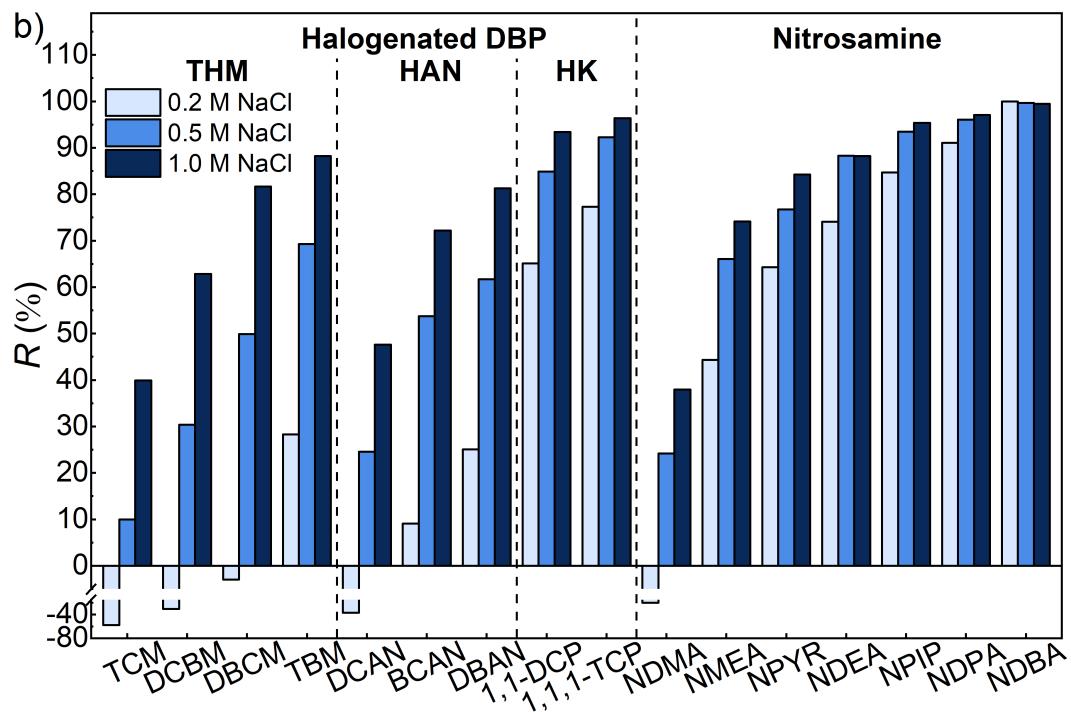
737 Zou, S., He, Z., 2016. Enhancing wastewater reuse by forward osmosis with self-diluted
738 commercial fertilizers as draw solutes. *Water Res.* 99, 235-243.

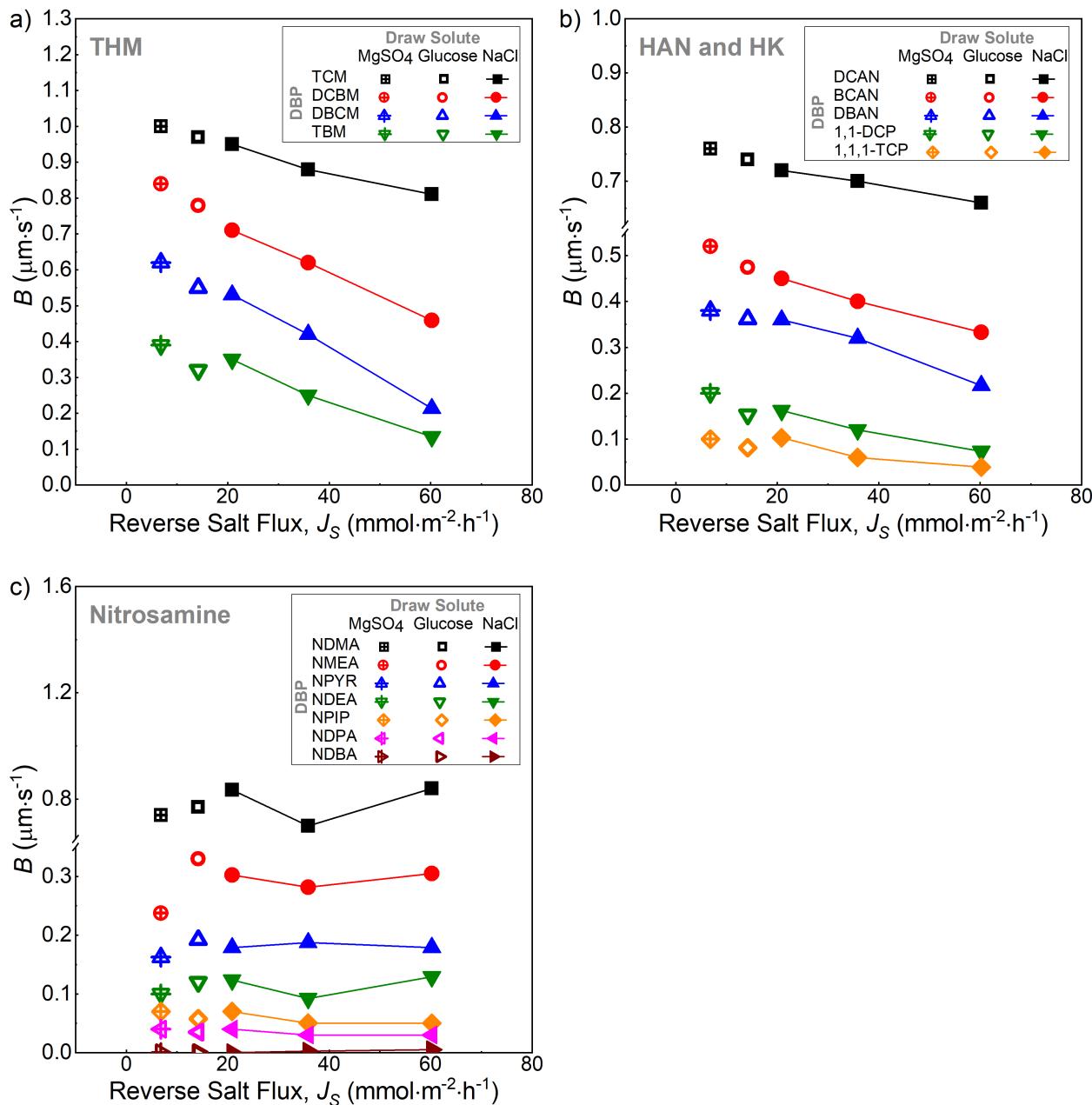

739 Zou, S., Qin, M., He, Z., 2019. Tackle reverse solute flux in forward osmosis towards sustainable
740 water recovery: Reduction and perspectives. *Water Res.* 149, 362-374.

741 Zou, S., Yuan, H., Childress, A., He, Z., 2016. Energy consumption by recirculation: A missing
742 parameter when evaluating forward osmosis. Environ. Sci. Technol. 50, 6827-6829.

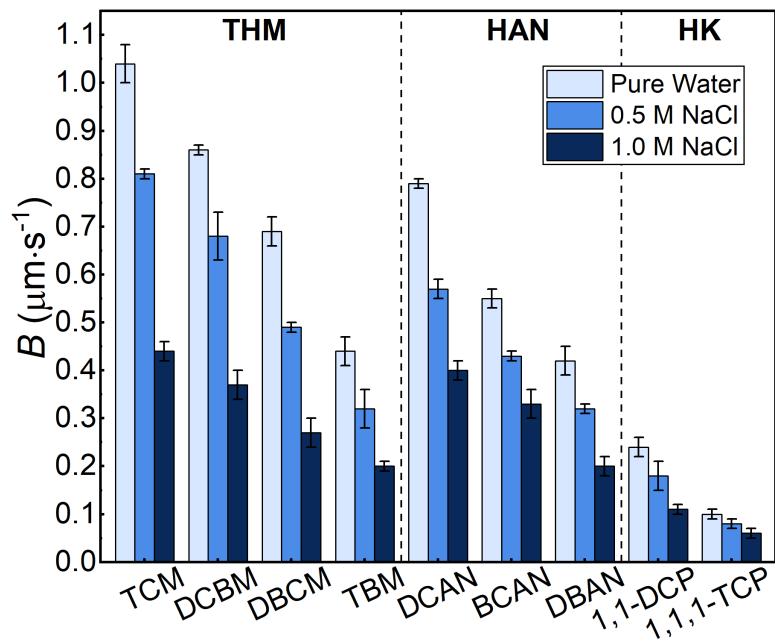
743 **Figure 1.** Linear regression of $\text{Log} (K_{DBP,Salt}^{MSL} / K_{DBP,DI}^{MSL})$ as a function of NaCl concentration C^S (M).


744 The slope of the curve is the Setschenow constant (k_{DBP}^{Salt} , M^{-1}). Abbreviations of DBPs are shown

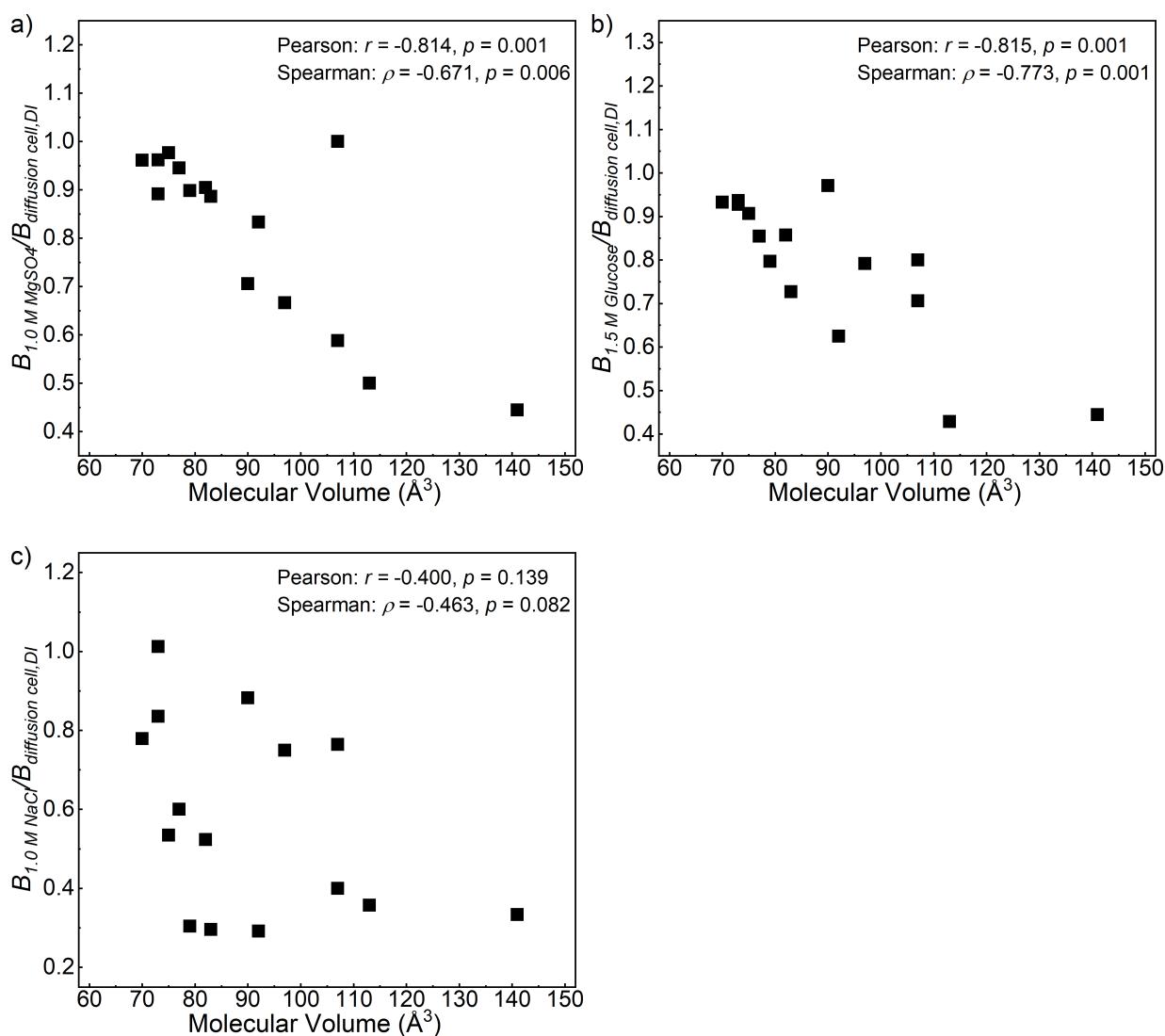

745 in Table S2.


746

747 **Figure 2.** DBP rejection by Aquaporin membrane using (a) varying draw solute species and (b)
 748 varying NaCl concentrations. R = stabilized rejection. The water fluxes of the experiments are
 749 shown in Table S4. Initial concentrations of nitrosamines and halogenated DBPs in the feed were
 750 10 and 20 $\mu\text{g}\cdot\text{L}^{-1}$, respectively. Feed solution pH was 6.5-7.5 unbuffered. Room temperature at 20
 751 °C. The rejection values are shown in Table S6. Abbreviations: THM, trihalomethane; HAN,
 752 haloacetonitrile; HK, haloketone. Abbreviation of individual DBP is shown in Table S2.

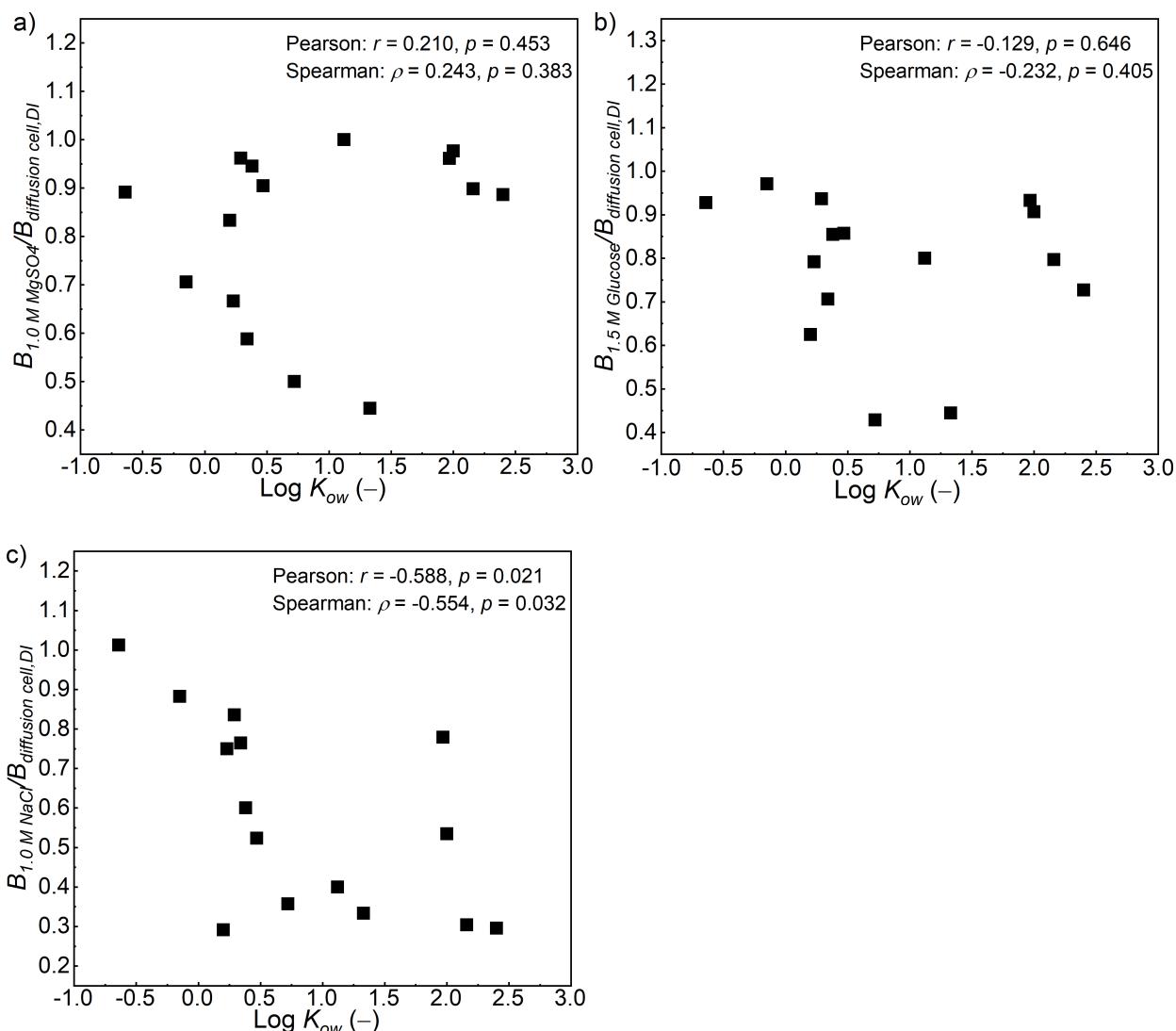


755 **Figure 3.** Relationship between DBP permeance in bench-scale FO experiments and reverse salt
 756 flux for (a) trihalomethanes, (b) haloacetonitriles and haloketones, and (c) nitrosamines. Draw
 757 solute was introduced in the legend. The reverse salt flux and water flux of the experiments are
 758 shown in Table S4. The DBP permeance values are shown in Table S7. Abbreviations of DBPs
 759 are shown in Table S2.



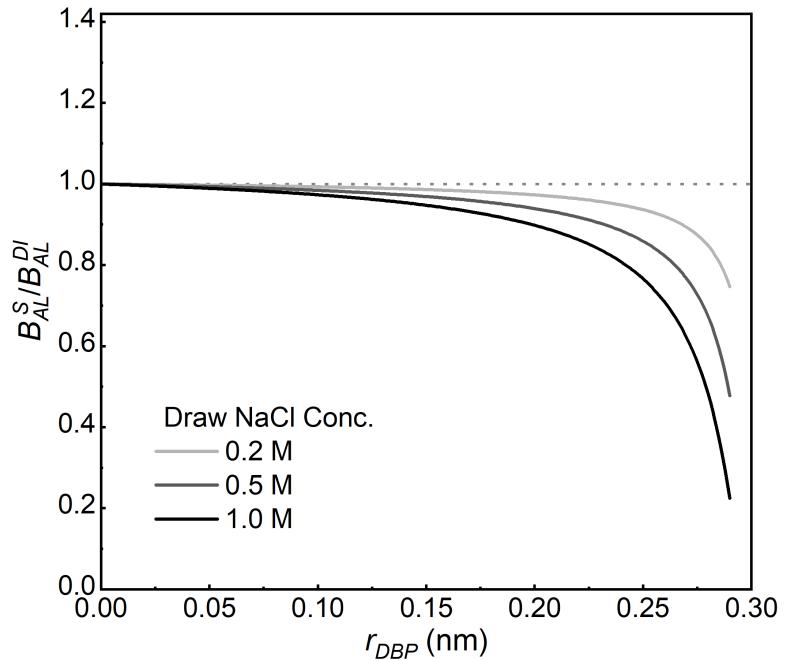
762 **Figure 4.** Permeance of halogenated DBPs in the diffusion cell test. Details of the experimental
763 protocol are shown in section 2.3. The initial concentrations of DBPs in the feed and the draw
764 sides were 2 mg·L⁻¹ and 50 µg·L⁻¹, respectively. The DBP permeance values are shown in Table
765 S8. Error bars represent the range from duplicate experiments.

766

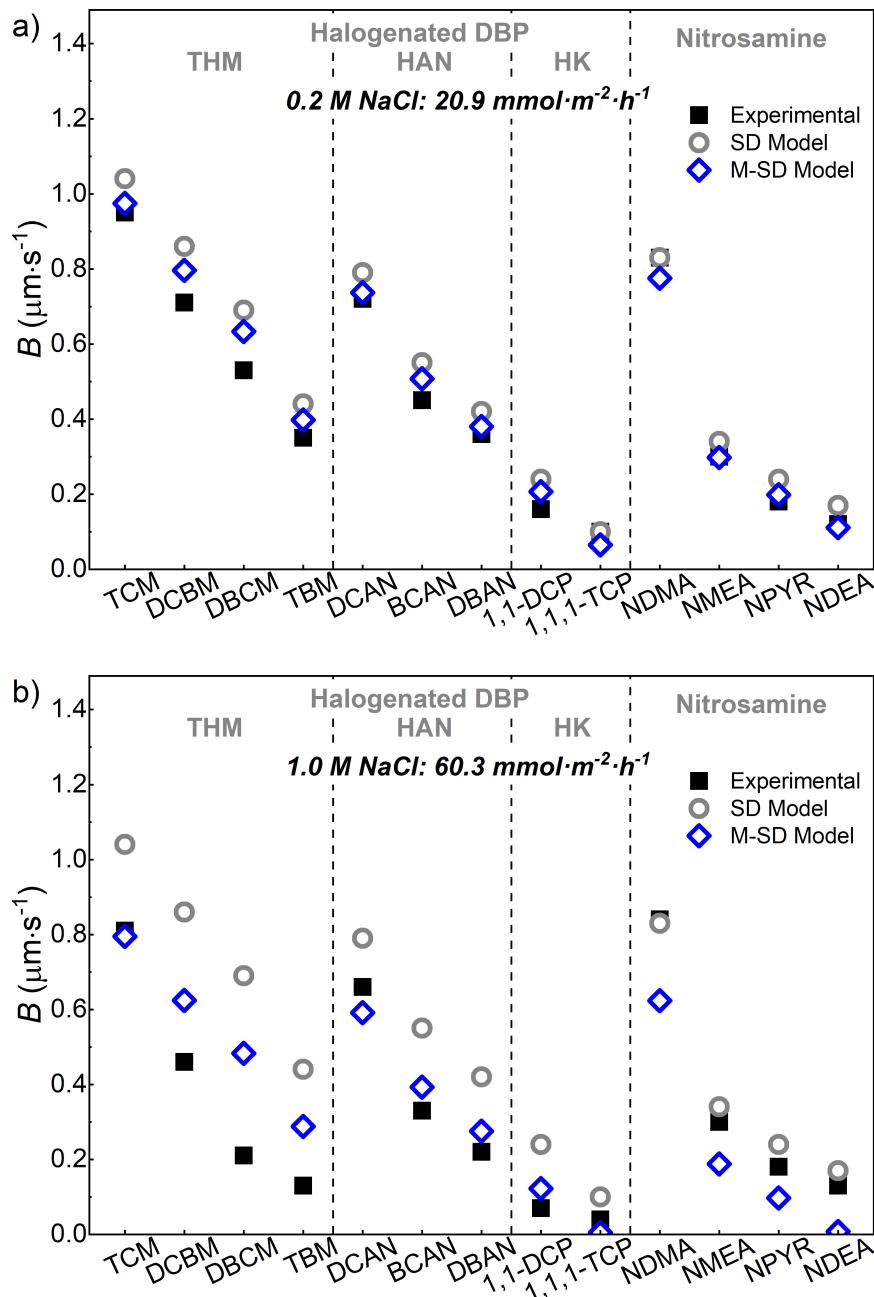

767 **Figure 5.** Relationship between the change in DBP permeance in the presence of draw solutes
 768 with respect to the molecular volume of DBPs. DBP permeance determined in FO experiments
 769 using (a) 1.0 M MgSO_4 , (b) 1.5 M glucose, or (c) 1.0 M NaCl as the draw solution was normalized
 770 by the DBP permeance determined in diffusion cell experiments with pure water. Pearson's (linear)
 771 and Spearman's (monotonic) correlation tests were performed, and the significance level α was set
 772 at 0.05. The molecular volume of DBPs is shown in Table S2.

773

774

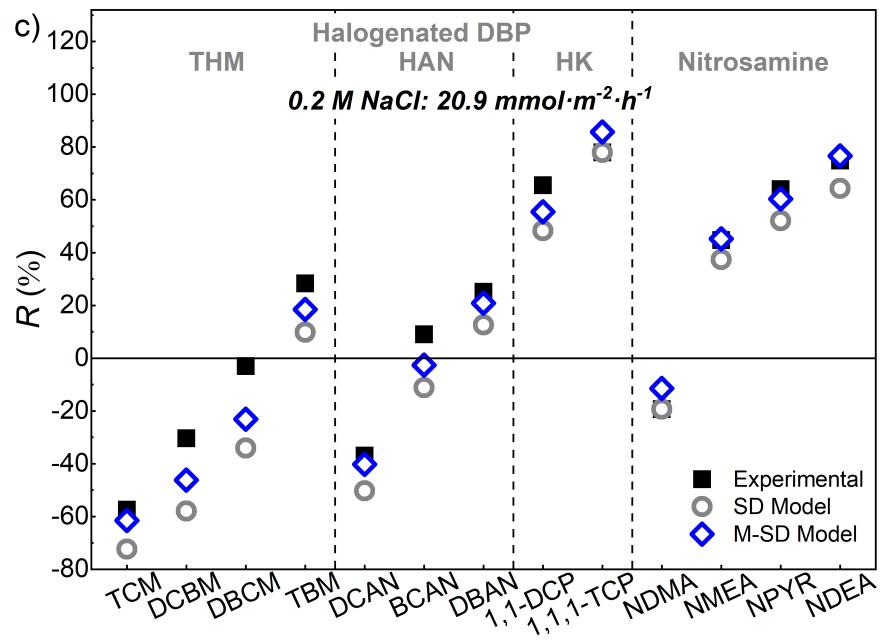

775 **Figure 6.** Relationship between the change in DBP permeance in the presence of draw solutes
 776 with respect to the $\text{Log } K_{ow}$ of DBPs. DBP permeance determined in FO experiments using (a) 1.0
 777 M MgSO_4 , (b) 1.5 M glucose, or (c) 1.0 M NaCl as the draw solution was normalized by the DBP
 778 permeance determined in diffusion cell experiments with pure water. Pearson's (linear) and
 779 Spearman's (monotonic) correlation tests were performed, and the significance level α was set at
 780 0.05. The $\text{Log } K_{ow}$ values of DBPs are shown in Table S2.

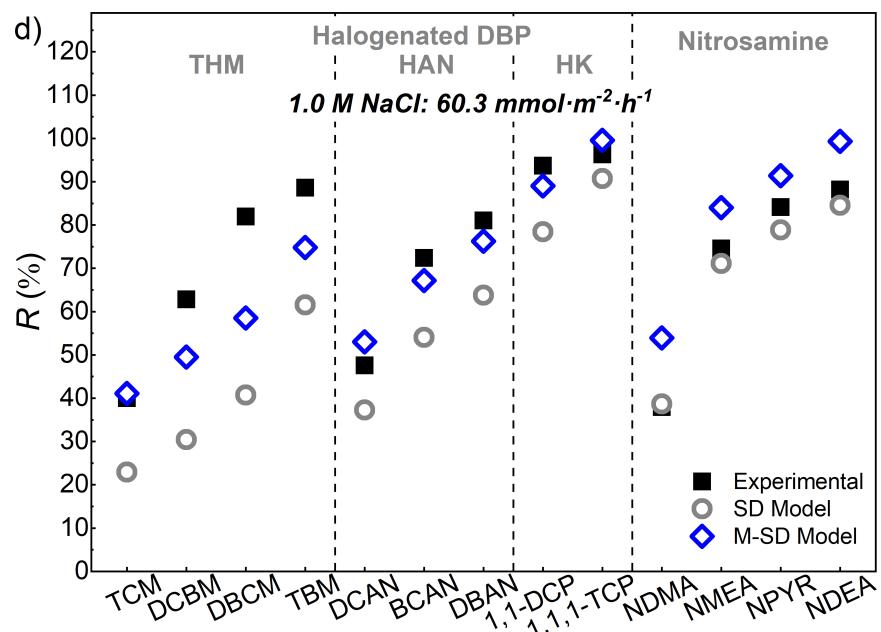
781


782

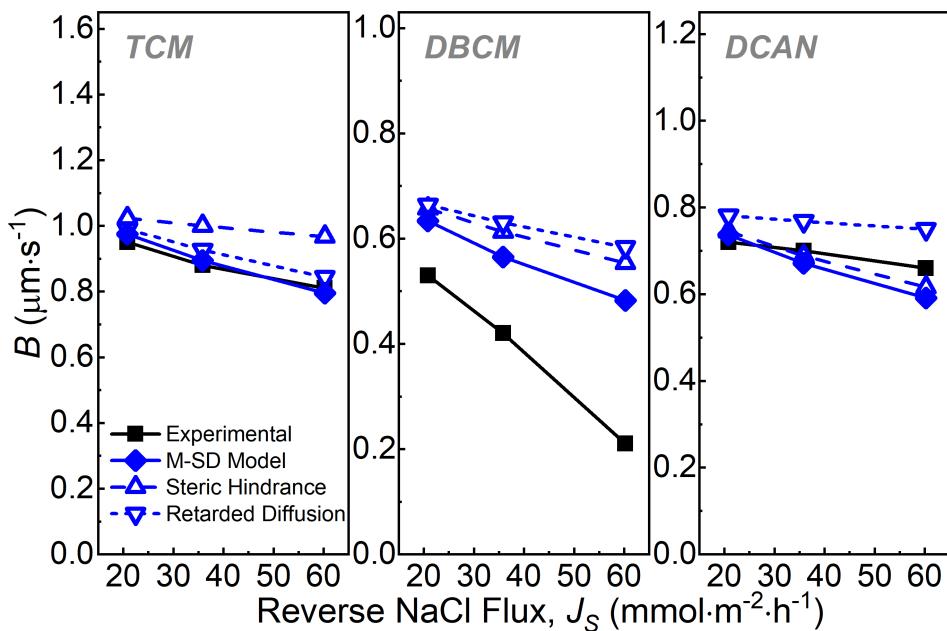
783 **Figure 7.** The ratio of B_{AL}^S to B_{AL}^{DI} as a function of NaCl concentration in the draw solution.

784


785 **Figure 8.** Comparison of (a–b) DBP permeance and (c–d) DBP rejection determined in bench-
 786 scale FO experiments with those predicted by the conventional solution-diffusion (SD) model or
 787 the modified SD (M-SD) model. Initial NaCl concentrations in draw reservoir were (a, c) 0.2 M
 788 and (b, d) 1.0 M. DBP permeance values are shown in Tables S7 and S11, and DBP rejection
 789 values are shown in Tables S6 and S12. Abbreviations of DBPs are shown in Table S2.


790

791


792

793

794 **Figure 9.** Comparison of the contribution of steric hindrance and retarded diffusion in the M-SD
795 model. The DBP permeance determined from experiments and models is shown in Tables S7 and
796 S11, respectively. Abbreviations of DBPs are shown in Table S2.

797

Table 1. Surface tension components of the support layer of Aquaporin membrane and DBPs tested in this study.

Membrane or DBPs		Surface Tension Components (mJ·m ⁻²)			
		γ^{LW}	γ^+	γ^-	
DBP	Aquaporin Membrane	Support Layer ^a	43.7	0.0	24.4
		TCM ^b	27.2	1.5	0.0
		TBM ^c	41.5	1.7	0.0
		DCAN ^a	61.2	0.0	20.8
		NDMA ^a	36.5	0.0	32.6

^aDetermined in this study.

^b(Van Oss 2006).

^c(Janczuk et al. 1993).

Table 2. Partitioning coefficients of DBPs between the membrane support layer and Milli-Q water as well as Setschenow constants of DBPs.

DBPs	Partitioning Coefficient,		Setschenow Constant,	
	$K_{DBP,DI}^{MSL} (-)$		$k_{DBP}^{Salt} (M^{-1})$	
	Contact Angle	Regression Model	Contact Angle	Regression Model
	Method ^a	Method ^b	Method ^a	Method ^b
TCM	3.926	3.369	0.170	0.193
DCBM	—	3.640	—	0.194
DBCM	—	3.711	—	0.200
TBM	5.296	4.249	0.221	0.210
DCAN	1.612	1.711	0.130	0.126
BCAN	—	1.978	—	0.129
DBAN	—	2.034	—	0.133
1,1-DCP	—	2.176	—	0.122
1,1,1-TCP	—	3.287	—	0.159
NDMA	0.992	1.221	0.065	0.088
NMEA	—	2.023	—	0.108
NPYR	—	2.572	—	0.123
NDEA	—	2.461	—	0.128

^aCalculated using surface tension components as described in section 3.2.2.

^bEstimated based on equations 18 and 19 for $K_{DBP,DI}^{MSL}$ and k_{DBP}^{Salt} , respectively.

Table 3. Effective pore radius of the active layer (r_p^S , nm) and DBP permeance through the active layer when different NaCl solutions were used as the draw solution (B_{AL}^S , $\mu\text{m}\cdot\text{s}^{-1}$).

Test Mode	Initial NaCl		Effective Pore Radius, r_p^S (nm)	DBP Permeance through Active Layer, B_{AL}^S ($\mu\text{m}\cdot\text{s}^{-1}$)			
	Concentration in the Draw Reservoir, C_{D^S} (M)	Reverse NaCl Flux, J_S ($\text{mmol}\cdot\text{m}^{-2}\cdot\text{h}^{-1}$)		TCM	TBM	DCAN	NDMA
Diffusion Cell	0	0	0.305	4.96	0.81	1.13	1.06
FO	0.2	20.9	0.303	4.60	0.73	1.04	0.97
	0.5	35.8	0.300	4.17	0.62	0.93	0.87
	1.0	60.3	0.297	3.65	0.50	0.80	0.75

800

Table 4. Retardation factor of the support layer for each DBP (R_r , dimensionless).

DBPs	Retardation Factor, R_r (-)								
	Contact Angle Method ^a				Regression Model Method ^a				
	0 M ^b	0.2 M ^c	0.5 M ^c	1.0 M ^c	0 M ^b	0.2 M ^c	0.5 M ^c	1.0 M ^c	
	(0) ^d	(20.9)	(35.8)	(60.3)	(0)	(20.9)	(35.8)	(60.3)	
TCM	4.576	4.870	5.285	5.923	4.019	4.306	4.717	5.360	
DCBM				—		4.290	4.603	5.049	5.747
DBCM				—		4.361	4.690	5.161	5.901
TBM	5.946	6.467	7.221	8.423	4.899	5.295	5.866	6.768	
DCAN	2.262	2.354	2.480	2.670	2.361	2.455	2.585	2.779	
BCAN				—		2.628	2.739	2.893	3.125
DBAN				—		2.684	2.802	2.966	3.212
1,1-DCP				—		2.826	2.942	3.101	3.339
1,1,1-TCP				—		3.937	4.167	4.489	4.982
NDMA	1.642	1.670	1.707	1.760	1.871	1.918	1.981	2.072	
NMEA				—		2.673	2.768	2.898	3.090
NPYR				—		3.222	3.360	3.550	3.834
NDEA				—		3.111	3.248	3.439	3.723

^aCalculated using $K_{DBP,DI}^{MSL}$ and k_{DBP}^{Salt} determined in section 3.2 of the main text.

^bDiffusion cell test using Milli-Q water.

^cInitial NaCl concentration of draw reservoir in FO test.

^dThe value in the parenthesis is the reverse NaCl flux with the unit of $\text{mmol} \cdot \text{m}^{-2} \cdot \text{h}^{-1}$.