

1 **Effects of Peracetic Acid on Aromatic Polyamide Nanofiltration Membranes:**

2 **A Comparative Study with Chlorine**

4 Mohsen Ghafari¹, Tashfia M. Mohona¹, Lei Su¹, Haiqing Lin², Desiree L. Plata³,

5 Boya Xiong^{3,4*}, Ning Dai^{1*}

7 ¹Department of Civil, Structural and Environmental Engineering, University at Buffalo, The
8 State University of New York, Buffalo, NY 14260

9 ²Department of Chemical and Biological Engineering, University at Buffalo, The State
10 University of New York, Buffalo, NY 14260

11 ³Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
12 Cambridge, MA 02139

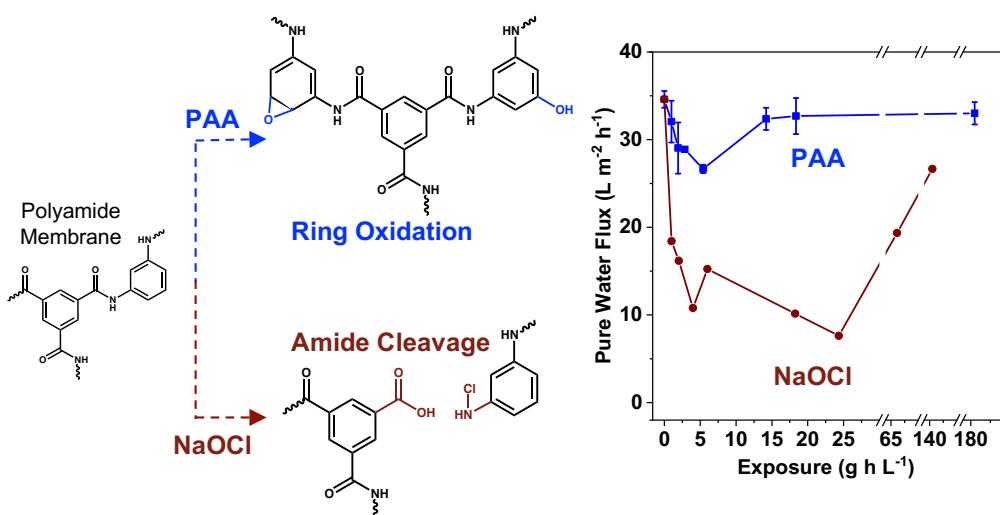
13 ⁴Department of Civil, Environmental and Geo- Engineering, University of Minnesota,
14 Minneapolis, MN 55455

15

16

17 * Corresponding authors:

18 Ning Dai: Email: ningdai@buffalo.edu. Phone: 716-645-4015. Address: 231 Jarvis Hall,
19 Buffalo, NY 14260, USA.


20 Boya Xiong: Email: bxiong@umn.edu. Address: 500 Pillsbury Dr. SE, Minneapolis, MN
21 55455, USA.

22

23 **Abstract**

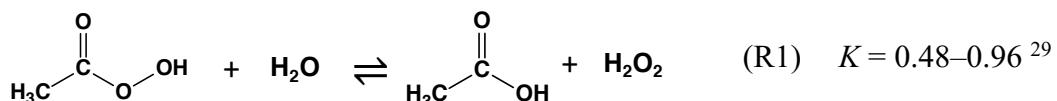
24 Peracetic acid (PAA) is being considered as a disinfectant in membrane-based wastewater
25 reuse systems, but its compatibility with polyamide membranes has not been thoroughly
26 investigated. In this work, we showed that PAA induced much less change in the performance
27 and material characteristics of NF90 membranes than the traditional disinfectant free chlorine
28 (NaOCl). The change in membrane water flux and the rejection of salt and neutral organic
29 compounds after PAA exposure (1–180 g h L⁻¹) is significantly less than that resulted from
30 NaOCl exposure at levels as low as 1 g h L⁻¹. The presence of two wastewater constituents,
31 chloride or Fe(II), did not have significantly impact membrane performance upon exposure to
32 PAA. Surface characterization showed that oxygen was incorporated into polyamide by PAA,
33 some of which was attributed to the formation of carboxylic acid groups. Experiments using a
34 model aromatic amide, benzanilide, indicated an unexpected role of PAA in protecting
35 membrane from radicals formed by Fe(II) and the H₂O₂ present in commercial PAA
36 formulations. Furthermore, product identification suggests that both amide bond breakage and
37 ring oxidation are possible reaction mechanisms for PAA. Our findings support that PAA is a
38 viable disinfectant candidate for wastewater reuse and warrants further evaluation.

39

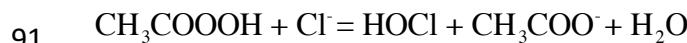
41

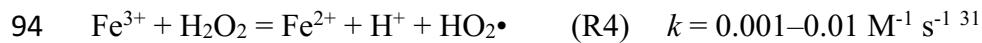
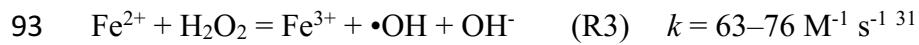
42

43 Keywords


44 Polyamide membrane, Membrane stability, Peracetic acid, Benzanilide, Wastewater reuse

45 **1 Introduction**


46 Aromatic polyamide thin-film composite membranes are widely used in reverse
47 osmosis (RO) and nanofiltration (NF) in advanced treatment systems for potable reuse of
48 wastewater.^{1, 2} Biofouling remains one of the biggest operational challenges for these
49 membrane systems.³ The conventional disinfectant free chlorine (i.e., hypochlorous acid and
50 hypochlorite) is effective in suppressing microbial growth, but it also degrades the crosslinked
51 polyamide active layer, in a process initiated by *N*-chlorination followed by hydrolysis or ring
52 chlorination via Orton rearrangement.^{4, 5} In fact, most commercial polyamide membranes have
53 a strict free chlorine tolerance limit as low as 0.1 mg L⁻¹.⁶ As a result, many membrane-based
54 potable reuse systems use the weaker disinfectant chloramine in RO pretreatment.⁷⁻⁹
55 Additionally, concerns have been raised for the carcinogenic disinfection byproducts formed
56 by the reactions between free/combined chlorine and wastewater organic matter, many of
57 which are poorly rejected by RO membranes.^{9, 10} To date, most research efforts focus on
58 modifying membrane surfaces to prevent biofouling or modifying the synthesis procedures of
59 polyamide membranes to increase their chlorine tolerance.¹¹⁻¹⁴ In comparison, less effort has
60 been made to explore alternative disinfectants that are capable of controlling biofouling without
61 damaging the polyamide active layer. Hydrogen peroxide (H₂O₂), despite being commonly
62 used for membrane cleaning and exhibiting good polyamide compatibility,¹⁵⁻¹⁷ is a weak
63 disinfectant.¹⁸ The other alternative disinfectants that have been investigated are primarily
64 organic chloramines.^{19, 20}



65 Peracetic acid (PAA) is an organic peroxide disinfectant being considered for
66 wastewater disinfection. Commercial PAA mixtures contain PAA, H₂O₂, and acetic acid,
67 where the latter two are present to minimize PAA hydrolysis (reaction 1). The mass ratio of
68 PAA to H₂O₂ varies among commercial formulations, but 1:1.5 is common.²¹ Laboratory- and
69 pilot-scale wastewater disinfection studies showed that PAA can achieve inactivation of

70 suspended indicator bacteria similar to chlorine.^{18, 22-25} Moreover, biofilm studies showed that
71 PAA was comparable with or better than chlorine at reducing the viable cell counts of
72 *Staphylococcus aureus* and *Pseudomonas aeruginosa* in their respective biofilms²⁶ and
73 preventing the regrowth of planktonic and biofilm cells of *P. aeruginosa* and *Bacillus* sp. in
74 the presence of organic matter.²⁷ PAA forms aldehydes as disinfection byproducts, but it forms
75 much less carcinogenic halogenated byproducts than chlorine.²⁸ The presence of H₂O₂ in
76 commercial PAA formulations can further minimize the formation of halogenated disinfection
77 byproducts.²⁹

78 PAA is an approved membrane cleaning reagent⁶ and has been demonstrated to prevent
79 biofouling in industrial RO systems,³⁰ but its reaction with polyamide has not been thoroughly
80 investigated under conditions relevant to wastewater reuse systems. The potential interaction
81 between PAA and wastewater constituents, such as chloride ion and iron species, needs to be
82 considered. Chloride can react with PAA to form hypochlorous acid (HOCl; i.e., free chlorine;
83 reaction 2),²⁹ thereby inducing damage to polyamide membranes. Iron species, either as
84 dissolved/colloidal species or as iron oxide particulates/scales, can react with H₂O₂ present in
85 commercial PAA products to generate hydroxyl radicals (•OH) via Fenton reaction (reactions
86 3-4).³¹ The reaction between H₂O₂ and Fe has been shown to result in the loss of polyamide
87 membrane performance.^{17, 32} More importantly, ferrous iron (Fe(II)) can react with PAA to
88 generate Fe(IV) and carbon-centered radicals that were shown to be much more reactive than
89 •OH.³³ Although Fe(II) concentration is typically low in wastewater, the high oxidative
90 reactivity of PAA/Fe(II) warrants examination.

95 The overall goal of this work is to assess the performance stability of a commercial
96 polyamide nanofiltration membrane (NF90) upon exposure to PAA and free chlorine. The
97 specific objectives are to (1) compare the membrane performance of NF90 after exposure to
98 PAA with those exposed to sodium hypochlorite (NaOCl); (2) examine the effect of two
99 wastewater constituents, chloride and Fe(II), on membrane performance and characteristics
100 upon NaOCl and PAA exposure; (3) explore reaction mechanisms between polyamide and
101 PAA/NaOCl. The last objective was pursued via surface characterization techniques that can
102 detect changes in membrane surface functional groups, as well as oxidation experiments using
103 a model aromatic amide compound benzanilide.

104

105 **2 Materials and Methods**

106 **2.1 Membrane and Chemicals**

107 A commercial flat-sheet, fully aromatic polyamide nanofiltration membrane (NF90,
108 FilmTecTM, Dow, Minneapolis, MN, USA) was used in this study. The PAA stock solution
109 (Sigma-Aldrich, St Louis, MO) contains 32% PAA and 5.4% H₂O₂ (PAA to H₂O₂ mass ratio
110 1:0.17, molar ratio 1:0.38). All chemicals were used as received. Text S1 provides further
111 details of the source and purity of the chemicals and a short summary of the composition of
112 typical commercial PAA products.

113 **2.2 Membrane Oxidant Exposure Experiments**

114 As-received membrane sheets were hydrated in Milli-Q water for 24 h and washed three
115 times before use. After wash, circular membrane coupons (43 mm in diameter) were fully
116 immersed in glass Petri dishes containing 50 ml aqueous solutions of PAA, NaOCl, or H₂O₂
117 and sealed with parafilm. After a set period of time, membrane coupons were removed from

118 the oxidant solutions, rinsed with deionized water, and tested for performance in a dead-end
119 filtration cell (section 2.3) or subjected to surface characterization (section 2.4). The membrane
120 oxidant exposure protocol is adopted from previous studies of polyamide degradation by free
121 chlorine^{4, 5, 34, 35} or chloramine³⁶. Although this protocol does not apply hydraulic pressure
122 during oxidant exposure, rendering it not possible to capture the compounding effects of
123 physical processes such as membrane compaction and oxidant diffusion,³⁷ it allows us to focus
124 on the chemical reactions between polyamide and oxidants and to compare the PAA results
125 with those from previous chlorine studies^{4, 5, 34, 35} to assess the feasibility of PAA as a
126 membrane disinfecting agent.

127 Relatively high initial oxidant concentrations (100 and 1000 mg L⁻¹) were used to allow
128 observation of polyamide degradation within a reasonable experimental timeframe. These
129 concentrations were selected to be within the range used in previous chlorine and H₂O₂
130 studies.^{4, 5, 16, 17, 34, 38} Oxidant concentrations were monitored over the course of the experiments
131 using methods described in Text S2 (example oxidant decay curves shown in Figures S1). The
132 oxidant exposure was calculated using the product of concentration and contact time (i.e., C•t).
133 To account for oxidant decay during the experiments, area under the oxidant concentration–
134 time curves (e.g., Figure S1) was integrated using the midpoint Riemann sum (rectangle) rule.
135 PAA decayed approximately 25% over 24 h (Figure S1a); therefore, PAA solutions were
136 refreshed every 24 h during membrane exposure. NaOCl decayed relatively slowly (reaching
137 45% decay after 180 h), so the solutions were not refreshed, but the decay was taken into
138 consideration in the calculation of exposure. H₂O₂ did not show appreciable decay over the
139 course of the experiment (180 h). The initial pH of the oxidant solutions was adjusted to 6.5
140 using 2 N NaOH (for PAA) or 2 N HCl (for NaOCl). No pH adjustment was needed for H₂O₂.
141 The oxidant solutions were not buffered to avoid de-swelling of the polymer network under
142 the high ionic strength needed for the buffer capacity (Figure S2).³⁹⁻⁴¹ Over the course of the

143 experiments, the pH of the PAA solutions dropped slightly (< 0.9 pH unit) within the first 12
144 h and then leveled off (Figure S3); the pH of the NaOCl and H₂O₂ solutions remained stable.

145 When considering the effect of chloride, membrane coupons were exposed to solutions
146 containing oxidant(s) and varying concentrations of sodium chloride (NaCl; 0, 300 and 1200
147 mg L⁻¹ of Cl⁻). Three oxidant combinations were evaluated: PAA (100 mg L⁻¹, with 17 mg L⁻¹
148 H₂O₂ from the commercial stock), a mixture of PAA (100 mg L⁻¹) and H₂O₂ (217 mg L⁻¹), and
149 NaOCl (100 mg L⁻¹). The mass ratio of H₂O₂ to PAA in the mixture represents the higher end
150 of those found in commercial formulations.²¹ Initial solution pH was adjusted to 6.5 using HCl
151 or NaOH. Membrane performance was evaluated after 24 h of oxidant exposure. To study the
152 effects of Fe(II) on oxidant-induced polyamide degradation, ferrous sulfate (FeSO₄; 0, 1, and
153 10 mg L⁻¹ of Fe(II)) was added to the oxidant solutions for membrane exposure. The three
154 oxidant combinations evaluated were the same as those for chloride experiments. The high
155 Fe(II) concentrations were used to represent a challenging case, especially to capture the fast
156 kinetics reported for PAA/Fe(II) systems.^{33, 42}

157 **2.3 Membrane Performance Test**

158 The performance of pristine and oxidant-exposed membranes, including their pure
159 water flux and rejection of salt (NaCl) and small organic compounds, was tested. After
160 exposure to the oxidant solutions for a set period of time, the membrane coupons were removed
161 from the glass Petri dishes, rinsed with Milli-Q water, and placed in a 70 mL polycarbonate
162 dead-end stirred cell (UHP 43 70 mL Stirred Cell, Sterlitech Corporation, WA, USA). The
163 stirring rate was set at ~700 rpm. The effective membrane area was 11.3 cm². The operating
164 pressure was supplied by N₂ gas and set at 4 bar. Feed volume of 50 mL was used for both pure
165 water flux and solute rejection tests. For pure water flux measurement, Milli-Q water was used
166 as the feed; the permeate was collected on a balance, the weight change of which was recorded
167 every 5 s. The pure water flux was recorded when a stable rate of weight change was obtained

168 (< 5% variation between two consecutive readings). Subsequently, the feed was switched to a
169 2000 mg L⁻¹ NaCl solution for salt rejection measurement. The conductivity of every 10 mL
170 permeate was measured using a conductivity meter (Vernier Software & Technology, OR,
171 USA), and then the permeate was returned to the remaining feed in the cell. Permeate NaCl
172 concentration was calculated based on the conductivity using a calibration curve. This process
173 was repeated until a stable permeate conductivity was obtained (< 5% change between two
174 measurements). Salt rejection and average salt flux were calculated using Equation 1 and 2,
175 respectively. To measure the rejection of organic compounds, 5500 mg L⁻¹ solutions of
176 ethylene glycol (EG), glycerol, or polyethylene glycol 200 (PEG 200) were used as the feed.
177 The first 10 mL permeate was returned to the cell to minimize the effect of adsorption and the
178 permeate of the second run was collected for analysis. Both permeate and feed solutions were
179 analyzed using a total organic carbon (TOC) analyzer (Shimadzu Corporation, Japan). The
180 rejection and average flux were calculated using Equation 1 and 2, respectively.

181
$$R (\%) = (1 - \frac{C_p}{C_F}) \times 100 \quad (\text{Equation 1})$$

182
$$J_s = C_p \times J_w \quad (\text{Equation 2})$$

183 where R is the rejection of NaCl or organic compounds (%); C_p and C_F are the concentrations
184 of NaCl or organic compounds (g L⁻¹) in the permeate and feed, respectively; J_s is the flux of
185 NaCl or organic compounds (g m⁻² h⁻¹); and J_w is the water flux (L m⁻² h⁻¹) with solutions of
186 NaCl or organic compounds as feed (i.e., not the pure water flux).

187 2.4 Membrane Surface Characterization

188 All membrane samples were rinsed with Milli-Q water and air-dried prior to surface
189 characterization. Static water contact angle was determined by a goniometer (Model 190,
190 Rame-Hart Instrument Co.) using a sessile drop method (5 μ L) with Milli-Q water as the
191 probing liquid. The reported water contact angle after PAA or NaOCl exposure was the average

192 of two independently exposed membranes, with 10 different locations measured for each
193 membrane (i.e., a total of 20 measurements).

194 Spectra from Fourier-transform infrared spectroscopy (FTIR) were collected from a
195 Perkin-Elmer Spectrum Two Spectrometer equipped with a diamond crystal attenuated total
196 reflection accessory. Spectra were collected from 400–4000 cm⁻¹ with 4 cm⁻¹ resolution against
197 an air background. In order to quantify the change in the abundance of free carboxylic acid
198 functional group, the FTIR feature from 1600 to 1800 cm⁻¹ (amide I) was deconvoluted with
199 four fitted peaks to represent C=C aromatic ring vibration (1608 cm⁻¹), H-bonded amide C=O
200 (1650 cm⁻¹), free amide C=O (1677 cm⁻¹), and free carboxylic acid C=O (1720 cm⁻¹). These
201 peak positions have been developed and confirmed with density functional theory calculation
202 and were applied to polyamide membrane analysis.⁴³ The fitting parameters (i.e., peak position,
203 width at half maximum, and peak shape) were held constant when fitting for different samples.
204 Peak fitting was performed with Peak Analyzer in OriginPro 8.1®. The ratio of the carboxylic
205 acid C=O peak area to the sum of the peak areas for the two amide C=O groups (H-bonded
206 C=O and free amide C=O) was calculated as an indicator of the amount of carboxylic acid
207 group. Only the spectra of pristine and PAA-exposed membrane were processed, as the NaOCl-
208 exposed membranes had a significant shift at the amide I region.

209 An X-ray photoelectron spectroscopy (XPS) instrument (PHI Versaprobe II) with a
210 monochromated Al K-alpha X-ray source was used. The X-ray source has a spot size of 200
211 μm and beam power of 50 W at a vacuum pressure of 0.8×10^{-9} to 2×10^{-8} Torr with a take-off
212 angle of 45 degrees. Survey spectra were first acquired using an analyzer pass energy of 187.8
213 eV with a step size of 0.8 eV, and high energy resolution spectra were then acquired using an
214 analyzer pass energy of 23.5 eV with a step size of 0.1 eV.

215 Membrane surface roughness was determined using atomic force microscopy (AFM,
216 Dimension Icon, Bruker Corporation, USA). Imaging was done in tapping mode using a Si

217 cantilever (TESPA-V2) with a spring constant of 42 N/m. After scanning, the images were
218 corrected for curvature and slope, and the root-mean-squared roughness (R_{rms}) was calculated.
219 For each membrane sample, scan areas of $10 \mu\text{m} \times 10 \mu\text{m}$ were imaged at 5 different positions,
220 and the average R_{rms} was reported. A field emission scanning electron microscope (FESEM,
221 Hitachi S4000, Japan) was used to provide micrographs showing the surface morphology of
222 the membranes.

223 **2.5 Benzanilide Experiments and Analysis**

224 Benzanilide is an aromatic amide that has been used as a model compound to
225 investigate the reaction mechanisms between polyamide and free chlorine.⁴⁴ The primary goals
226 of the benzanilide experiments are to examine the reactivity of PAA/Fe(II) mixture towards
227 aromatic amide and to explore the oxygen functional group formed in PAA reactions that may
228 not be captured by membrane surface characterization. Accordingly, most experiments were
229 conducted at pH 3, where the reactivity of PAA or PAA/Fe(II) is enhanced. The initial
230 benzanilide concentrations were within the range of 25–30 μM , allowing comparison between
231 peroxide oxidants within a timescale comparable to the membrane exposure experiments.

232 Two sets of experiments were conducted. In the first set, high peroxide concentrations
233 ($1000\text{--}2000 \text{ mg L}^{-1}$; i.e., 13.2–64 mM) were used, and the solution conditions are summarized
234 in Table S1. After benzanilide (stock solution 50.7 mM in acetonitrile) was spiked into 10 mL
235 of PAA, H_2O_2 , or PAA+ H_2O_2 solutions, the solution pH was adjusted to pH 3 with H_2SO_4
236 (without buffer). For experiments with Fe(II) (10 mg L^{-1} ; i.e., 0.179 mM), freshly prepared
237 FeSO_4 stock solution was added after pH adjustment. A second set of experiments were
238 conducted using lower concentrations of PAA (0.1 mM) and Fe(II) (0.1 mM), matching the
239 conditions where high PAA/Fe(II) reactivity towards micropollutants was reported.³³ The
240 solution conditions are summarized in Table S2. For this set of experiments, solutions
241 containing benzanilide and FeSO_4 were pH adjusted to pH 3 (without buffer) and then spiked

242 with peroxides to initiate the reaction. Lastly, additional experiments at pH 6.5 were conducted
243 for product analysis. All experiments were conducted at room temperature (23 ± 2 °C).

244 After a set period of time, residual oxidants were quenched by sodium thiosulfate and
245 the samples were processed immediately. Samples from the Fe(II) experiments were filtered
246 by 0.45 μ m glass fiber syringe filters after thiosulfate quenching to remove potential iron
247 precipitates. Time zero samples were processed similarly as those from later time points (i.e.,
248 quenched, filtered, and analyzed as described below) to ensure that the fast initial kinetics,^{33, 42}
249 if present, would be captured. Samples were analyzed by high-performance liquid
250 chromatography (HPLC) with a diode array detector for benzanilide concentrations (detection
251 limit 0.5 μ M). The analysis and exploration of benzanilide transformation products were
252 conducted using a liquid chromatography - triple quadrupole mass spectrometer (LC-QQQ,
253 Agilent 6470). Benzoic acid, a possible degradation product of benzanilide, was quantified
254 against an authentic standard. Full scan of the mass spectra was employed to search for other
255 possible oxidation products. Further details on the analytical methods are provided in Text S3.

256

257 **3 Results and Discussion**

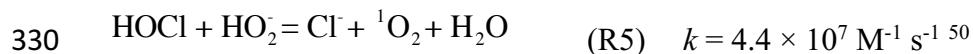
258 **3.1 Effects of PAA and NaOCl Exposure on Membrane Performance**

259 As shown in Figure 1, PAA exposure had much less impact on the performance of
260 NF90 membrane than NaOCl exposure. For membranes exposed to PAA, the pure water flux
261 (Figure 1a) initially declined by 20%, from 34.6 to 26.7 $\text{L m}^{-2} \text{ h}^{-1}$, as PAA exposure increased
262 from 0 to 5.4 g h L^{-1} ; however, as PAA exposure increased to 14.2 g h L^{-1} , the pure water flux
263 recovered to the original value, and remained stable with PAA exposure up to 180 g h L^{-1} . In
264 contrast, the pure water flux of NaOCl-exposed membranes decreased by 47%, from 34.6 to
265 18.4 $\text{L m}^{-2} \text{ h}^{-1}$, after only 1.0 g h L^{-1} exposure. With NaOCl exposure between 2.0 and 24 g h
266 L^{-1} , the membrane water flux remained low, ranging from 7.6 to 16.2 $\text{L m}^{-2} \text{ h}^{-1}$. Further increase

267 in NaOCl exposure (up to 140 g h L⁻¹) increased the pure water flux, but this can be explained
268 by polyamide damage, as supported by the change in salt rejection (Figure 1b) and surface
269 chemistry (section 3.3) described below. The changes in membrane pure water flux as a
270 function of NaOCl exposure observed in our experiments are consistent with previous
271 findings.^{4, 37, 45, 46} As a common component of commercial PAA formulation, H₂O₂ was
272 examined for its compatibility with polyamide. Exposure of H₂O₂ at 180 g h L⁻¹ exhibited
273 negligible change in the pure water flux of NF90, consistent with the previously reported H₂O₂
274 tolerance for polyamide RO membranes (> 744 g h L⁻¹).^{15, 16}

275 The salt (NaCl) rejection (Figure 1b) of PAA-exposed membranes increased from 77%
276 to 92% as exposure increased from 0 to 14 g h L⁻¹, and remained constant with further increase
277 in exposure up to 180 g h L⁻¹. For NaOCl-exposed membranes, NaCl rejection first increased
278 sharply to 97% after 2 g h L⁻¹ exposure, and then decreased at exposure past 24 g h L⁻¹ to reach
279 65% at 140 g h L⁻¹ exposure, indicating the loss of polyamide selectivity. H₂O₂ exposure of
280 180 g h L⁻¹ did not affect NaCl rejection.

281 The effects of oxidant exposure on membrane performance were also evaluated with a
282 lower initial PAA or NaOCl concentration (100 mg L⁻¹) (Figure S5). The change in pure water
283 flux, NaCl rejection, and NaCl flux followed trends similar to those observed with the 1000
284 mg L⁻¹ initial oxidant concentration. For PAA-exposed membranes, the pure water flux
285 declined from 35 to 29 L m⁻² h⁻¹ as the exposure increased from 0 to 0.50 g h L⁻¹ exposure, but
286 then fully recovered at 0.97 g h L⁻¹ exposure, and remained constant as exposure further
287 increased to 2.2 g h L⁻¹.


288 For the ability of membranes to reject organic compounds, PAA exposure again
289 exhibited much less effect than NaOCl (Figure 1c). The three organic compounds, ethylene
290 glycol (EG), glycerol, and PEG 200, were used as models for the neutral, hydrophilic, and low
291 molecular weight compounds in groups of trace organic contaminants such as pharmaceuticals,

292 industrial chemicals, and disinfection byproducts that are particularly problematic in
293 wastewater potable reuse.^{9, 47-49} For the smallest compound, EG (MW 62 g mol⁻¹), the rejection
294 was almost unchanged after PAA exposure of 5.4 and 180 g h L⁻¹ (26% and 32%, respectively)
295 compared with the pristine membrane (33%). In contrast, the rejection of EG after NaOCl
296 exposure drastically changed to 45% and 19% after 1 and 140 g h L⁻¹ exposure, respectively.
297 For glycerol (92 g mol⁻¹) and PEG 200 (200 g mol⁻¹), the rejection after PAA exposure (180 g
298 h L⁻¹) was within 10% of that of the pristine membrane; whereas the rejection after 140 g h L⁻¹
299 ¹ NaOCl exposure decreased dramatically (from 77% to 29% for glycerol and from 93% to 36%
300 for PEG 200). The performance loss in rejecting organic compounds upon NaOCl exposure
301 indicates severe damage to the polyamide active layer, consistent with the NaCl rejection
302 results.

303 **3.2 Effects of Chloride and Fe(II) on Oxidative Membrane Damage**

304 To investigate the effects of the two common wastewater constituents chloride and
305 Fe(II) on PAA/H₂O₂ chemistry and its reaction with polyamide, similar exposure tests were
306 performed with a 24 h exposure time. Two chloride concentrations (300 and 1200 mg L⁻¹)
307 covering the range of typical wastewater were tested (Figure 2a and 2b). Compared with
308 membranes exposed to PAA alone (with small amount of H₂O₂, Table S3), the presence of
309 chloride during PAA exposure resulted in only a slightly lower pure water flux (< 10%
310 difference), and did not affect salt rejection. Similarly, chloride did not affect the performance
311 of the membranes exposed to a mixture of PAA+H₂O₂ (mass ratio 1:2.17) or NaOCl. Although
312 the reaction between PAA and chloride is known to form free chlorine (i.e., hypochlorous acid
313 HOCl; reaction 2),²⁹ results from our membrane experiments suggest that the generation of
314 HOCl was likely insufficient to cause measurable membrane damage. Indeed, using the
315 second-order rate constant of reaction 2,²⁹ calculation shows that the amount of HOCl formed
316 would be small (2.4–5.6 mg L⁻¹ as Cl₂) after 24 h exposure to 100 mg L⁻¹ PAA and 1200 mg

317 L⁻¹ chloride. Similar calculation further predicts that HOCl generation (< 0.03 mg L⁻¹ as Cl₂)
318 would be below the typical free chlorine tolerance level of polyamide membrane (e.g., 0.1 mg
319 L⁻¹)⁶ under conditions relevant to PAA disinfection for membrane pretreatment in wastewater
320 reuse systems (e.g., PAA dose of 1–6 mg L⁻¹ and contact time of 0.5–2 h).²¹ Furthermore, H₂O₂,
321 present in all commercial PAA products, is capable of quenching HOCl (reaction 5), and hence
322 is likely to further ameliorate any HOCl effect. The presence of H₂O₂ has been shown to
323 suppress the chlorination of organic compounds in mixtures of PAA and chloride.²⁹ The
324 reactive oxygen species singlet oxygen (¹O₂) has been reported as a product of reaction 5,⁵⁰ but
325 it was shown to be much less damaging to polyamide materials than free chlorine.⁵¹ Overall,
326 our results suggest that the PAA-chloride reaction is not expected to exert a significant impact
327 on the PAA-polyamide compatibility. It should be noted that this conclusion only applies to
328 chloride levels relevant to wastewater; for high chloride feed streams (e.g., seawater),
329 significant damage to the polyamide membrane can occur (Text S4).

Regarding the effects of Fe(II), we initially hypothesized that Fe (II) would cause additional damage to polyamide membranes during PAA exposure via two mechanisms: (1) the reactive species generated by PAA/Fe(II) can degrade polyamide, based on the extremely high oxidative reactivity of the PAA/Fe(II) mixture towards micropollutants reported previously;^{33, 42} (2) the •OH generated by the reaction between Fe(II) and the H₂O₂ present in the PAA formulation (i.e., Fenton reaction) can also degrade polyamide membranes.^{17, 32} Two Fe(II) concentrations (1 and 10 mg L⁻¹) higher than those typically encountered in wastewater were tested to present worst-case scenarios. Unexpectedly, the presence of Fe(II) during membrane exposure to PAA, PAA+H₂O₂, or NaOCl did not exert additional impacts on the membrane water flux compared with oxidant exposure alone (Figure 2c). NaCl rejection values (Figure 2d) were not affected by the presence of Fe(II) during oxidant exposure; the only

exception was the membranes exposed to PAA+H₂O₂ in the presence of 10 mg L⁻¹ Fe(II), which exhibited slightly lower NaCl rejection (83%) than those exposed to PAA+ H₂O₂ alone (89%). In the presence of Fe(II), PAA decayed rapidly (Figure S7) in a similar fashion as reported in the literature,³³ resulting in low PAA exposure in the 24 h experiments (Table S3). However, this does not invalidate the stability of polyamide membrane upon exposure to PAA/Fe(II), because the high reactivity of PAA/Fe(II) in degrading organic compounds was observed within the initial 10 min of the experiments.^{33, 42} Previous studies also showed that when H₂O₂ alone was the oxidant, iron species, either generated from all-steel apparatus³² or dosed as goethite, ferric oxide, or FeSO₄,¹⁷ exhibited catalytic effect towards the deterioration of membrane performance, which was attributed to the •OH generated via Fenton reaction (reactions 3–4).^{17, 32} Considering that H₂O₂ was present in all of our PAA experiments, these early findings contrast our observation that Fe(II) had little or no effect, even in the PAA+H₂O₂ mixture with high concentrations of Fe(II). This may be rationalized by the quenching of •OH by PAA, which is further discussed in section 3.4. Lastly, we did not observe catalytic effect of Fe(II) on NaOCl-induced polyamide degradation, which may be attributed to the relatively low NaOCl exposure in our experiments (< 1.8 g h L⁻¹). A measurable catalytic effect was previously shown for NaOCl exposure level > 4 g h L⁻¹⁵² or in long-term (~300 h) pilot-scale testing⁵³.

3.3 Mechanism of Polyamide Degradation: Membrane Surface Characterization

The chemical changes on membrane surfaces induced by PAA or NaOCl were characterized using FTIR, XPS, contact angle measurement, and AFM. The results collectively showed that PAA induced less change to the polyamide membrane surface than NaOCl.

Figure 3a compares the FTIR spectra of the pristine membrane with those after exposure to PAA or NaOCl. The most prominent change in the FTIR spectra of the NaOCl-exposed membranes is the disappearance of the peaks at 1541 cm⁻¹ (amide II band, N-H in-

367 plane bending) and 1609 cm⁻¹ (N-H deformation vibration or C=C stretching vibration of
368 aromatic rings), suggesting severe amide bond change at NaOCl exposure as low as 1 g h L⁻¹.
369 This is consistent with the previous chlorine studies.^{4, 37, 54} In contrast, such change was not
370 observed in the FTIR spectrum of the membrane with PAA exposure up to 180 g h L⁻¹. In order
371 to reveal potential PAA-polyamide reaction products, the spectra of PAA-exposed and pristine
372 membranes were further analyzed to quantify carboxylic acid groups following a reported
373 method.⁴³ The peak deconvolution for the amide I region of the FTIR spectra is shown in Figure
374 3b and 3c, with the peak fitting parameters summarized in Table 1. As an indicative of the
375 relative content of carboxylic acids, the ratio of the carboxylic acid C=O peak area to the sum
376 of the peak areas for the two amide C=O groups (H-bonded C=O and free amide C=O) (Table
377 1) increased from 0.130 for the pristine membrane to 0.149 for the PAA-exposed membrane,
378 suggesting the generation of carboxylic acid groups from the cleavage of the amide bond.
379 Furthermore, no other oxygen functional groups (e.g. hydroxyl group) were observed on the
380 FTIR spectra.

381 XPS analysis (Table 2) corroborated the findings from FTIR. Both PAA and NaOCl
382 increased oxygen functional groups on the membrane, as suggested by the change in O/N ratios,
383 but the increase was smaller after PAA exposure than after NaOCl exposure. The O/N ratios
384 of the pristine, PAA-exposed (180 g h L⁻¹), and NaOCl-exposed (140 g h L⁻¹) membranes were
385 1.02, 1.43, and 2.08, respectively. The new oxygen functional groups formed upon PAA
386 exposure likely included carboxylic acid, as suggested by the FTIR analysis, but the formation
387 of other oxygen-containing functional groups (e.g., hydroxyl group) cannot be excluded if their
388 abundance was too low to be detected by FTIR (further discussion in section 3.4). In addition
389 to serving as evidence of direct oxygen incorporation, the O/N ratio can also be used to estimate
390 the degree of cross-linking in polyamide, with 1:1 ratio representing fully cross-linked
391 polyamide layer and 2:1 ratio representing a linear polyamide.⁵⁵ Accordingly, our results

392 suggest that NaOCl resulted in a greater loss in polyamide cross-linking than PAA. The XPS
393 results also suggest rapid chlorine incorporation into membranes during NaOCl exposure. The
394 Cl/N ratio rapidly increased from 0 to 0.64 after 1 g h L⁻¹ NaOCl exposure, and further
395 increased to 0.98 after 140 g h L⁻¹ exposure. This is consistent with the chlorine-polyamide
396 reaction mechanism proposed in previous studies,^{5, 56, 57} which involves facile *N*-chlorination
397 on the amide bond followed by amide bond hydrolysis and/or ring chlorination via Orton
398 rearrangement.

399 To uncover the changes induced by chloride and Fe(II) during PAA exposure that may
400 not be captured by membrane performance tests, the membrane samples were examined by
401 XPS (Table 1). The presence of 1200 mg L⁻¹ chloride during PAA exposure (1.8 g h L⁻¹)
402 introduced a small amount of chlorine (Cl/N 0.03) and enhanced oxygen incorporation (O/N
403 ratio increased from 1.25 to 1.34), consistent with the estimate in section 3.2 that a small
404 amount of HOCl was generated. The presence of Fe(II) during PAA exposure also led to a
405 higher O/N ratio of 1.36 despite the low PAA exposure (0.26 g h L⁻¹), which may be attributed
406 to the reactive species formed by PAA/H₂O₂/Fe(II) (further discussion in section 3.4).

407 Contact angle and surface roughness of the PAA- and NaOCl-exposed membranes were
408 measured to provide additional surface characteristics with implications on both fouling
409 potential and reaction mechanisms. PAA-exposed membranes have greater hydrophilicity and
410 lower surface roughness than NaOCl-exposed membranes (Figure 4). The water contact angle
411 of the membranes dropped from 63° to 46° after 180 g h L⁻¹ PAA exposure (Figure 4a). In
412 comparison, NaOCl exposure yielded an increase in the water contact angle to 76° at low
413 exposure (1 g h L⁻¹) and then decreased to 58° with high exposure (140 g h L⁻¹). The changes
414 in surface hydrophilicity is consistent with the formation of oxygen-containing functional
415 groups such as carboxylic acids upon PAA exposure; in contrast, NaOCl exposure increased
416 hydrophobicity as a result of *N*-chlorination, which is followed by amide bond cleavage that

417 results in an increase in hydrophilicity. PAA exposure did not result in a notable change in R_{rms} ,
418 but NaOCl exposure increased R_{rms} by 35% with exposure as low as 1 g h L⁻¹ (Figure 4b). The
419 latter is consistent with previous findings.^{58, 59} The lower roughness and greater hydrophilicity
420 of PAA-exposed membranes when compared with NaOCl-exposed membranes is promising,
421 as these membrane characteristics are generally associated with lower fouling potential.⁶⁰⁻⁶³
422 Future research is warranted to examine the fouling behavior of PAA-exposed membranes.

423 **3.4 Reactions between Peroxides and Model Aromatic Amide Benzanilide**

424 To complement surface characterization tools, the reactions between peroxides (PAA
425 and H₂O₂) and benzanilide, a simple aromatic amide,⁴⁴ were examined for two purposes: (1) to
426 verify the unexpected stability of aromatic amide upon exposure to PAA in the presence of
427 Fe(II), as indicated by the membrane performance tests and (2) to explore the PAA-amide
428 reaction products, especially with regard to the formation of oxygen functional groups that may
429 not be captured by membrane surface characterization. Although different from polyamide
430 molecules and network, benzanilide can provide molecular insights into the reaction
431 mechanism that is challenging to be explored by other techniques.

432 **3.4.1 Benzanilide Degradation by Peroxide Oxidants**

433 To examine benzanilide reactivity in the presence of Fe(II) and PAA or H₂O₂, results
434 from PAA or PAA+Fe(II) experiments were compared with those from experiments with
435 additional H₂O₂ (i.e., PAA+H₂O₂+Fe(II)) or without PAA (i.e., H₂O₂+Fe(II)) (Table S1 and
436 S2). Benzanilide degradation experiments were conducted at pH 3 in order to capture worst-
437 case scenarios based on the following considerations: (1) the reported oxidative reactivity of
438 PAA/Fe(II) towards micropollutants was higher at low pH, with rate constants increased by
439 3.5–10 times as pH decreased from 8.2 to 3;³³ (2) Fenton reaction (i.e., H₂O₂/Fe(II)) involving
440 the H₂O₂ present in the PAA stock solution is favored at acidic pH, where precipitation of
441 Fe(III) species is minimized;⁶⁴ (3) in the absence of Fe(II), the protonated form of PAA (pK_a

442 8.2⁶⁵) is a stronger oxidant (reduction potential 1.748 V vs. standard hydrogen electrode (SHE))
443 than its deprotonated form (1.005 V vs. SHE);⁶⁶ (4) PAA stability is higher (i.e., slower
444 spontaneous decomposition and hydrolysis) at lower pH;⁶⁷ and (5) benzanilide does not have
445 active acid-base functional groups affecting its reactivity between pH 3 and neutral pH.

446 Figure 5a shows the decay time profile of benzanilide with high initial concentrations
447 of peroxides (13–64 mM), with the corresponding pseudo first-order rate constants shown in
448 Table S6. Notably, PAA, H₂O₂, and PAA+Fe(II) degraded benzanilide similarly and slowly,
449 reaching only 40% decay after 120 h. In comparison, H₂O₂+Fe(II) degraded benzanilide much
450 more rapidly, achieving more than 98% decay within 6 h; the pseudo first-order decay rate
451 constant increased by 1.6 times when H₂O₂ concentration doubled. Interestingly, the
452 PAA+H₂O₂+Fe(II) solution exhibited intermediate reactivity, with a decay rate constant 10
453 times faster than that of PAA and PAA+Fe(II), but 10 times slower than that of H₂O₂+Fe(II).
454 The reactivity of benzanilide found here supports the polyamide membrane performance after
455 exposure to these oxidants (Figures 1 and 2). These results, however, contrast the extremely
456 rapid degradation of micropollutants methylene blue, naproxen, and bisphenol-A by
457 PAA/Fe(II).³³ To verify that our observation was not an artifact of the self-quenching of
458 reactive intermediates by PAA, additional experiments were conducted using lower PAA (100
459 μM) and Fe(II) concentrations that matched those in the micropollutant study.³³ As shown in
460 Figure 5b, benzanilide was stable in PAA solution over 24 h, and degraded by less than 10%
461 in PAA+Fe(II) solution. In contrast, H₂O₂(38 μM)+Fe(II), containing the equivalent amount
462 of H₂O₂ in PAA+Fe(II), degraded 25% of benzanilide within 1 h. H₂O₂(238 μM)+Fe(II), with
463 6 times higher concentration of H₂O₂, degraded 70% of benzanilide within 1 h. The mixture of
464 PAA+H₂O₂(238 μM)+Fe(II) also degraded benzanilide rapidly, but at a slower rate than that
465 of H₂O₂(238 μM)+Fe(II).

466 In summary, the results from the benzanilide experiments suggest that •OH generated
467 by the H₂O₂/Fe(II) Fenton reactions is a major contributor to benzanilide degradation. The
468 presence of PAA slowed down benzanilide degradation by H₂O₂/Fe(II), which may be
469 attributed to the more rapid quenching of •OH by PAA than by H₂O₂^{68, 69} and the rapid
470 consumption of Fe(II) by PAA.³³ Such reactivity is unique to benzanilide and potentially
471 polyamide, compared to the previously studied micropollutants such as methylene blue,
472 naproxene, and bisphenol-A.^{33, 42} We note that the reaction of other reactive species including
473 Fe(IV) and carbon-centered radicals (e.g., acetylperoxy radical) with benzanilide cannot be
474 completely ruled out, especially since they have been reported to degrade micropollutants with
475 aromatic and amide moieties, such as acetaminophen, sulfamethoxazole, and indomethacine.⁷⁰⁻
476 ⁷² Overall, the results of the benzanilide degradation experiments support the compatibility of
477 polyamide membrane with PAA in the presence of iron, especially for PAA formulas using
478 high PAA to H₂O₂ ratios.

479 **3.4.2 Benzanilide Oxidation Products**

480 The analysis of benzanilide oxidation products using LC-QQQ suggests that both amide
481 bond breakage and ring oxidation occurred. Benzoic acid, a product from amide bond breakage,
482 was detected in all PAA and H₂O₂ samples after reaction at pH 6.5 and pH 3 (Table S7),
483 consistent with the detection of free carboxylic acids on polyamide membrane after PAA
484 exposure by FTIR. However, the amount of benzoic acid formed accounted for only 1.8–17%
485 of the amount of benzanilide degraded (Table S7), suggesting that there were other oxidation
486 products. Three product peaks with an M/z ratio of 212 (i.e., 16 M/z higher than parent
487 benzanilide; electrospray ionization in the negative ion mode) were detected in the pH 3 PAA
488 120 h samples (Table S8). Two of the peaks have retention times (15.1 and 17.0 min,
489 respectively) longer than the parent benzanilide (14.4 min) on a gradient elution, while the third
490 peak (14.1 min) elutes slightly earlier than benzanilide. We postulate that the faster eluting

491 peak represents a ring hydroxylation product that is more hydrophilic than the parent
492 benzanimide, while the other two peaks represent two epoxide products. Peroxy acids are known
493 to react with polycyclic aromatic hydrocarbons and form epoxide from alkenes.⁷³⁻⁷⁵ These ring-
494 oxidation products may be partially responsible for the oxygen incorporation of PAA-exposed
495 membranes (XPS) and enhanced surface hydrophilicity (contact angle).

496

497 4 Conclusion

498 This study utilized multiple approaches, including membrane performance tests,
499 surface characterization, and experiments with a model aromatic amide, to demonstrate the
500 stability of NF90 polyamide membrane upon exposure to PAA. PAA exposure up to 180 g h
501 L⁻¹ resulted in less than 22% change in the pure water flux and salt (NaCl) rejection, and did
502 not significantly influence the rejection of neutral hydrophilic organic compounds (MW 62–
503 200 g mol⁻¹). In comparison, NaOCl induced severe change in pure water flux and NaCl
504 rejection at much lower exposure. The change in membrane performance after PAA or NaOCl
505 exposure was supported by membrane surface characterization. Results from FTIR, XPS,
506 contact angle measurement, and AFM analyses collectively show that PAA induced much less
507 chemical change to membrane surface than NaOCl. PAA exposure (180 g h L⁻¹) formed free
508 carboxylic acid groups on the membrane, but the majority of the amide bond remained intact.
509 In contrast, NaOCl severely altered the amide bonds in the polyamide network at exposure as
510 low as 1 g h L⁻¹.

511 The presence of chloride and Fe(II) during PAA exposure did not accelerate the
512 deterioration of membrane performance. Experiments using the model compound benzanimide
513 confirmed that PAA/Fe(II) has a similar reactivity towards aromatic amide with PAA alone.
514 The greater the H₂O₂ content in the PAA/Fe(II) mixture, the greater the reactivity. The
515 H₂O₂/Fe(II) binary mixture had the highest reactivity. These results suggest that, rather than

516 damaging polyamide membranes, PAA may play a protective role by quenching the $\cdot\text{OH}$
517 generated from the $\text{H}_2\text{O}_2/\text{Fe(II)}$ Fenton reactions. Thus we suggest that PAA formulas with a
518 high PAA to H_2O_2 ratio are preferred for membrane disinfection when iron is concerned.
519 Product analysis of benzanilide oxidation suggests that amide bond breakage (forming
520 carboxylic acid) as well as ring oxidation (forming hydroxyl-substituted or epoxide products)
521 are possible mechanisms for the reaction between PAA and aromatic amide, complementing
522 the findings from FTIR and XPS analyses.

523 Overall, our results suggest that PAA can be a potential disinfectant with low impacts
524 on the long-term performance of polyamide membranes for wastewater reuse in the presence
525 of Fe(II) and chloride. Future research is warranted to continue exploring the reaction
526 mechanisms between PAA and polyamide, to simultaneously examine membrane stability and
527 fouling inhibition in cross-flow systems, and to consider other factors that would influence the
528 implementation of PAA disinfection such as cost and residual management.

529

530 **Acknowledgement**

531 This research was partially supported by the National Science Foundation (#1652412)
532 and the Bureau of Reclamation (R17AC00147). The authors thank Libby Shaw at MIT Center
533 for Materials Science and Engineering for assisting with XPS analysis.

534

535 **Competing Interests Statement**

536 The authors have no competing interests to declare.

537

538 Reference:

- 539 1. J. R. Werber, C. O. Osuji and M. Elimelech, Materials for next-generation
540 desalination and water purification membranes, *Nature Reviews Materials*, 2016, **1**.
- 541 2. D. M. Warsinger, S. Chakraborty, E. W. Tow, M. H. Plumlee, C. Bellona, S.
542 Loutatidou, L. Karimi, A. M. Mikelonis, A. Achilli, A. Ghassemi, L. P. Padhye, S. A.
543 Snyder, S. Curcio, C. D. Vecitis, H. A. Arafat and J. H. Lienhard, A review of
544 polymeric membranes and processes for potable water reuse, *Progress in Polymer
545 Science*, 2018, **81**, 209-237.
- 546 3. N. Misdan, W. J. Lau and A. F. Ismail, Seawater Reverse Osmosis (SWRO)
547 desalination by thin-film composite membrane-Current development, challenges and
548 future prospects, *Desalination*, 2012, **287**, 228-237.
- 549 4. V. T. Do, C. Y. Tang, M. Reinhard and J. O. Leckie, Degradation of Polyamide
550 Nanofiltration and Reverse Osmosis Membranes by Hypochlorite, *Environmental
551 Science & Technology*, 2012, **46**, 852-859.
- 552 5. V. T. Do, C. Y. Tang, M. Reinhard and J. O. Leckie, Effects of chlorine exposure
553 conditions on physiochemical properties and performance of a polyamide membrane--
554 mechanisms and implications, *Environ Sci Technol*, 2012, **46**, 13184-13192.
- 555 6. Dow Water & Process Solutions. FILMTEC™ Reverse Osmosis Membranes.
556 Technical Manual, Form No.609-00071-1009 2011. 181 pp.
- 557 7. M. Dasilva, I. Tessaro and K. Wada, Investigation of oxidative degradation of
558 polyamide reverse osmosis membranes by monochloramine solutions, *Journal of
559 Membrane Science*, 2006, **282**, 375-382.
- 560 8. U.S. Environmental Protection Agency, Office of Water. Guidance Manual for
561 Compliance with the Filtration and Disinfection Requirements for Public Water
562 Systems Using Surface Water Sources. Washington, DC, 1989.
- 563 9. T. Zeng, M. J. Plewa and W. A. Mitch, N-Nitrosamines and halogenated disinfection
564 byproducts in U.S. Full Advanced Treatment trains for potable reuse, *Water Res.*,
565 2016, **101**, 176-186.
- 566 10. S. S. Lau, X. Wei, K. Bokenkamp, E. D. Wagner, M. J. Plewa and W. A. Mitch,
567 Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in
568 Potable Reuse and Conventional Drinking Waters, *Environmental Science &
569 Technology*, 2020, **54**, 5729-5736.
- 570 11. T. Shintani, H. Matsuyama and N. Kurata, Development of a chlorine-resistant
571 polyamide reverse osmosis membrane, *Desalination*, 2007, **207**, 340-348.
- 572 12. D. H. Shin, N. Kim and Y. T. Lee, Modification to the polyamide TFC RO
573 membranes for improvement of chlorine-resistance, *Journal of Membrane Science*,
574 2011, **376**, 302-311.
- 575 13. S. Azari and L. Zou, Using zwitterionic amino acid l-DOPA to modify the surface of
576 thin film composite polyamide reverse osmosis membranes to increase their fouling
577 resistance, *J. Membrane Sci.*, 2012, **401-402**, 68-75.
- 578 14. E. M. Van Wagner, A. C. Sagle, M. M. Sharma, Y.-H. La and B. D. Freeman, Surface
579 modification of commercial polyamide desalination membranes using poly(ethylene
580 glycol) diglycidyl ether to enhance membrane fouling resistance, *J. Membrane Sci.*,
581 2011, **367**, 273-287.
- 582 15. R. Abejon, A. Garea and A. Irabien, Effective Lifetime Study of Commercial Reverse
583 Osmosis Membranes for Optimal Hydrogen Peroxide Ultrapurification Processes,
584 *Industrial & Engineering Chemistry Research*, 2013, **52**, 17270-17284.

585 16. R. Ling, L. Yu, T. P. T. Pham, J. H. Shao, J. P. Chen and M. Reinhard, The tolerance
586 of a thin-film composite polyamide reverse osmosis membrane to hydrogen peroxide
587 exposure, *Journal of Membrane Science*, 2017, **524**, 529-536.

588 17. L. Yu, R. Ling, J. P. Chen and M. Reinhard, Quantitative assessment of the iron-
589 catalyzed degradation of a polyamide nanofiltration membrane by hydrogen peroxide,
590 *Journal of Membrane Science*, 2019, **588**, 117154.

591 18. M. Kitis, Disinfection of wastewater with peracetic acid: a review, *Environment
592 International*, 2004, **30**, 47-55.

593 19. J. Yu, Y. Baek, H. Yoon and J. Yoon, New disinfectant to control biofouling of
594 polyamide reverse osmosis membrane, *Journal of Membrane Science*, 2013, **427**, 30-
595 36.

596 20. J. Yu, G.-A. Shin, B. S. Oh, J.-I. Kye and J. Yoon, N-chlorosuccinimide as a novel
597 agent for biofouling control in the polyamide reverse osmosis membrane process,
598 *Desalination*, 2015, **357**, 1-7.

599 21. Water Environment Association of Texas, Peracetic Acid for Disinfection of
600 Municipal Wastewater Effluent, 2017.
ftp://weat.org/Presentations/2017_Peracetic_Acid_Slides.pdf Accessed Oct. 1, 2020

601 22. A. H. Hassaballah, T. Bhatt, J. Nyitrai, N. Dai and L. Sassoubre, Inactivation of *E.*
602 *coli*, *Enterococcus* spp., somatic coliphage, and *Cryptosporidium parvum* in
603 wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-
604 ultraviolet disinfection, *Environmental Science: Water Research & Technology*, 2020,
605 **6**, 197-209.

606 23. A. H. Hassaballah, J. Nyitrai, C. H. Hart, N. Dai and L. M. Sassoubre, A pilot-scale
607 study of peracetic acid and ultraviolet light for wastewater disinfection,
608 *Environmental Science: Water Research & Technology*, 2019, **5**, 1453-1463.

609 24. E. Veschetti, D. Cutilli, L. Bonadonna, R. Briancesco, C. Martini, G. Cecchini, P.
610 Anastasi and M. Ottaviani, Pilot-plant comparative study of peracetic acid and sodium
611 hypochlorite wastewater disinfection, *Water Research*, 2003, **37**, 78-94.

612 25. J. Koivunen and H. Heinonen-Tanski, Inactivation of enteric microorganisms with
613 chemical disinfectants, UV irradiation and combined chemical/UV treatments, *Water
614 Research*, 2005, **39**, 1519-1526.

615 26. K. Toté, T. Horemans, D. V. Berghe, L. Maes and P. Cos, Inhibitory Effect of
616 Biocides on the Viable Masses and Matrices of Staphylococcus
617 aureus and Pseudomonas aeruginosa Biofilms,
618 *Applied and Environmental Microbiology*, 2010, **76**, 3135.

619 27. C. Zhang, P. J. B. Brown, R. J. Miles, T. A. White, D. G. Grant, D. Stalla and Z. Hu,
620 Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid
621 disinfection, *Water Research*, 2019, **149**, 640-649.

622 28. L. Domínguez Henao, A. Turolla and M. Antonelli, Disinfection by-products
623 formation and ecotoxicological effects of effluents treated with peracetic acid: A
624 review, *Chemosphere*, 2018, **213**, 25-40.

625 29. A. D. Shah, Z. Q. Liu, E. Salhi, T. Hofer and U. von Gunten, Peracetic acid oxidation
626 of saline waters in the absence and presence of H_2O_2 : secondary oxidant and
627 disinfection byproduct formation, *Environ Sci Technol*, 2015, **49**, 1698-1705.

628 30. W. B. P. van den Broek, M. J. Boorsma, H. Huiting, M. G. Dusamos and S. van
629 Agtmaal, Prevention of Biofouling in Industrial RO Systems: Experiences with
630 Peracetic Acid, *Water Practice and Technology*, 2010, **5**.

631 31. A. D. Bokare and W. Choi, Review of iron-free Fenton-like systems for activating
632 H_2O_2 in advanced oxidation processes, *Journal of Hazardous Materials*, 2014, **275**,
633 121-135.

634

635 32. R. Ling, L. Yu, T. P. T. Pham, J. Shao, J. P. Chen and M. Reinhard, Catalytic effect
636 of iron on the tolerance of thin-film composite polyamide reverse osmosis membranes
637 to hydrogen peroxide, *Journal of Membrane Science*, 2018, **548**, 91-98.

638 33. J. Kim, T. Zhang, W. Liu, P. Du, J. T. Dobson and C.-H. Huang, Advanced Oxidation
639 Process with Peracetic Acid and Fe(II) for Contaminant Degradation, *Environmental
640 Science & Technology*, 2019, **53**, 13312-13322.

641 34. A. Ettori, E. Gaudichet-Maurin, J. C. Schrotter, P. Aimar and C. Causserand,
642 Permeability and chemical analysis of aromatic polyamide based membranes exposed
643 to sodium hypochlorite, *Journal of Membrane Science*, 2011, **375**, 220-230.

644 35. Y.-N. Kwon, S. Hong, H. Choi and T. Tak, Surface modification of a polyamide
645 reverse osmosis membrane for chlorine resistance improvement, *Journal of
646 Membrane Science*, 2012, **415-416**, 192-198.

647 36. M. J. Cran, S. W. Bigger and S. R. Gray, Degradation of polyamide reverse osmosis
648 membranes in the presence of chloramine, *Desalination*, 2011, **283**, 58-63.

649 37. J. E. Gu, B. M. Jun and Y. N. Kwon, Effect of chlorination condition and
650 permeability of chlorine species on the chlorination of a polyamide membrane, *Water
651 Res*, 2012, **46**, 5389-5400.

652 38. Y. Kwon and J. Leckie, Hypochlorite degradation of crosslinked polyamide
653 membranesII. Changes in hydrogen bonding behavior and performance, *Journal of
654 Membrane Science*, 2006, **282**, 456-464.

655 39. A. Braghetta, F. A. DiGiano and W. P. Ball, Nanofiltration of Natural Organic
656 Matter: pH and Ionic Strength Effects, *Journal of Environmental Engineering*, 1997,
657 **123**, 628-641.

658 40. V. Freger, Swelling and morphology of the skin layer of polyamide composite
659 membranes: an atomic force microscopy study, *Environ. Sci. Technol.*, 2004, **38**,
660 3168-3175.

661 41. A. Escoda, P. Fievet, S. Lakard, A. Szymczyk and S. Déon, Influence of salts on the
662 rejection of polyethyleneglycol by an NF organic membrane: Pore swelling and
663 salting-out effects, *J. Membrane Sci.*, 2010, **347**, 174-182.

664 42. T. Luukkonen, T. Heyninck, J. Rämö and U. Lassi, Comparison of organic peracids in
665 wastewater treatment: Disinfection, oxidation and corrosion, *Water Research*, 2015,
666 **85**, 275-285.

667 43. T. J. Zimudzi, K. E. Feldman, J. F. Sturnfield, A. Roy, M. A. Hickner and C. M.
668 Stafford, Quantifying Carboxylic Acid Concentration in Model Polyamide
669 Desalination Membranes via Fourier Transform Infrared Spectroscopy,
670 *Macromolecules*, 2018, **51**, 6623-6629.

671 44. K. Huang, K. P. Reber, M. D. Toomey, H. Haflich, J. A. Howarter and A. D. Shah,
672 Reactivity of the Polyamide Membrane Monomer with Free Chlorine: Reaction
673 Kinetics, Mechanisms, and the Role of Chloride, *Environmental Science &
674 Technology*, 2019, **53**, 8167-8176.

675 45. S. Hong, I.-C. Kim, T. Tak and Y.-N. Kwon, Interfacially synthesized chlorine-
676 resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes,
677 *Desalination*, 2013, **309**, 18-26.

678 46. H. Li, P. Yu, H. G. Li and Y. B. Luo, The Chlorination and Chlorine Resistance
679 Modification of Composite Polyamide Membrane, *Journal of Applied Polymer
680 Science*, 2015, **132**.

681 47. L. N. Breitner, K. J. Howe and D. Minakata, Effect of Functional Chemistry on the
682 Rejection of Low-Molecular Weight Neutral Organics through Reverse Osmosis
683 Membranes for Potable Reuse, *Environmental Science & Technology*, 2019, **53**,
684 11401-11409.

685 48. C. Bellona, J. E. Drewes, P. Xu and G. Amy, Factors affecting the rejection of organic
686 solutes during NF/RO treatment—a literature review, *Water Research*, 2004, **38**,
687 2795-2809.

688 49. J. Xu, T. N. Tran, H. Lin and N. Dai, Removal of disinfection byproducts in forward
689 osmosis for wastewater recycling, *Journal of Membrane Science*, 2018, **564**, 352-360.

690 50. A. M. Held, D. J. Halko and J. K. Hurst, Mechanisms of chlorine oxidation of
691 hydrogen peroxide, *Journal of the American Chemical Society*, 1978, **100**, 5732-5740.

692 51. N. Dam and P. R. Ogilby, On the Mechanism of Polyamide Degradation in
693 Chlorinated Water, *Helvetica Chimica Acta*, 2001, **84**, 2540-2549.

694 52. R. Ling, J. Shao, J. P. Chen and M. Reinhard, Iron catalyzed degradation of an
695 aromatic polyamide reverse osmosis membrane by free chlorine, *Journal of*
696 *Membrane Science*, 2019, **577**, 205-211.

697 53. C. J. Gabelich, J. C. Franklin, F. W. Gerringer, K. P. Ishida and I. H. Suffet, Enhanced
698 oxidation of polyamide membranes using monochloramine and ferrous iron, *Journal*
699 *of Membrane Science*, 2005, **258**, 64-70.

700 54. C. Y. Tang, Y.-N. Kwon and J. O. Leckie, Effect of membrane chemistry and coating
701 layer on physiochemical properties of thin film composite polyamide RO and NF
702 membranes: I. FTIR and XPS characterization of polyamide and coating layer
703 chemistry, *Desalination*, 2009, **242**, 149-167.

704 55. R. Verbeke, V. Gómez and I. F. J. Vankelecom, Chlorine-resistance of reverse
705 osmosis (RO) polyamide membranes, *Progress in Polymer Science*, 2017, **72**, 1-15.

706 56. J. Xu, Z. Wang, X. Wei, S. Yang, J. Wang and S. Wang, The chlorination process of
707 crosslinked aromatic polyamide reverse osmosis membrane: New insights from the
708 study of self-made membrane, *Desalination*, 2013, **313**, 145-155.

709 57. J. Powell, J. Luh and O. Coronell, Amide Link Scission in the Polyamide Active
710 Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine:
711 Kinetics and Mechanisms, *Environ. Sci. Technol.*, 2015, **49**, 12136-12144.

712 58. H. H. Rana, N. K. Saha, S. K. Jewrajka and A. V. R. Reddy, Low fouling and
713 improved chlorine resistant thin film composite reverse osmosis membranes by
714 cerium(IV)/polyvinyl alcohol mediated surface modification, *Desalination*, 2015,
715 **357**, 93-103.

716 59. B. C. Donose, S. Sukumar, M. Pidou, Y. Poussade, J. Keller and W. Gernjak, Effect
717 of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite,
718 *Desalination*, 2013, **309**, 97-105.

719 60. S. H. Maruf, L. Wang, A. R. Greenberg, J. Pellegrino and Y. Ding, Use of
720 nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration
721 membranes, *Journal of Membrane Science*, 2013, **428**, 598-607.

722 61. M. Elimelech, Z. Xiaohua, A. E. Childress and H. Seungkwan, Role of membrane
723 surface morphology in colloidal fouling of cellulose acetate and composite aromatic
724 polyamide reverse osmosis membranes, *Journal of Membrane Science*, 1997, **127**,
725 101-109.

726 62. T. Tran, X. Chen, S. Doshi, C. M. Stafford and H. Lin, Grafting polysiloxane onto
727 ultrafiltration membranes to optimize surface energy and mitigate fouling, *Soft*
728 *Matter*, 2020, **16**, 5044-5053.

729 63. N. Shahkaramipour, A. Jafari, T. Tran, C. M. Stafford, C. Cheng and H. Lin,
730 Maximizing the grafting of zwitterions onto the surface of ultrafiltration membranes
731 to improve antifouling properties, *Journal of Membrane Science*, 2020, **601**, 117909.

732 64. A. Babuponnusami and K. Muthukumar, A review on Fenton and improvements to
733 the Fenton process for wastewater treatment, *Journal of Environmental Chemical
734 Engineering*, 2014, **2**, 557-572.

735 65. National Center for Biotechnology Information. PubChem Compound Summary for
736 CID 6585, Peracetic acid. <https://pubchem.ncbi.nlm.nih.gov/compound/Peracetic-acid>. Accessed Oct. 5, 2020.

738 66. C. Zhang, P. J. B. Brown and Z. Hu, Thermodynamic properties of an emerging
739 chemical disinfectant, peracetic acid, *Science of The Total Environment*, 2018, **621**,
740 948-959.

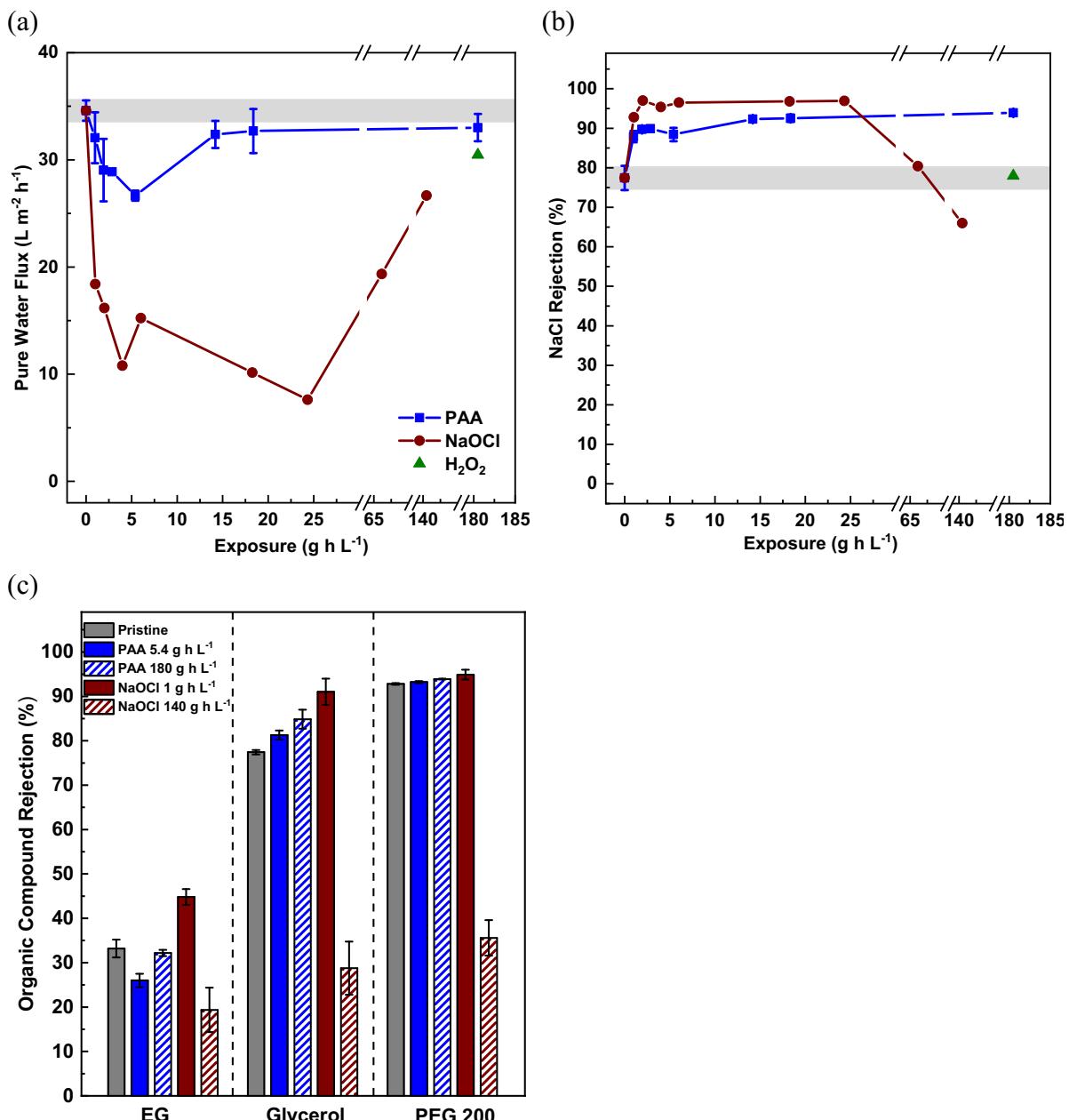
741 67. Z. Yuan, Y. Ni and A. R. P. Van Heiningen, Kinetics of the peracetic acid
742 decomposition: Part II: pH effect and alkaline hydrolysis, *The Canadian Journal of
743 Chemical Engineering*, 1997, **75**, 42-47.

744 68. M. Cai, P. Sun, L. Zhang and C.-H. Huang, UV/Peracetic Acid for Degradation of
745 Pharmaceuticals and Reactive Species Evaluation, *Environmental Science &
746 Technology*, 2017, **51**, 14217-14224.

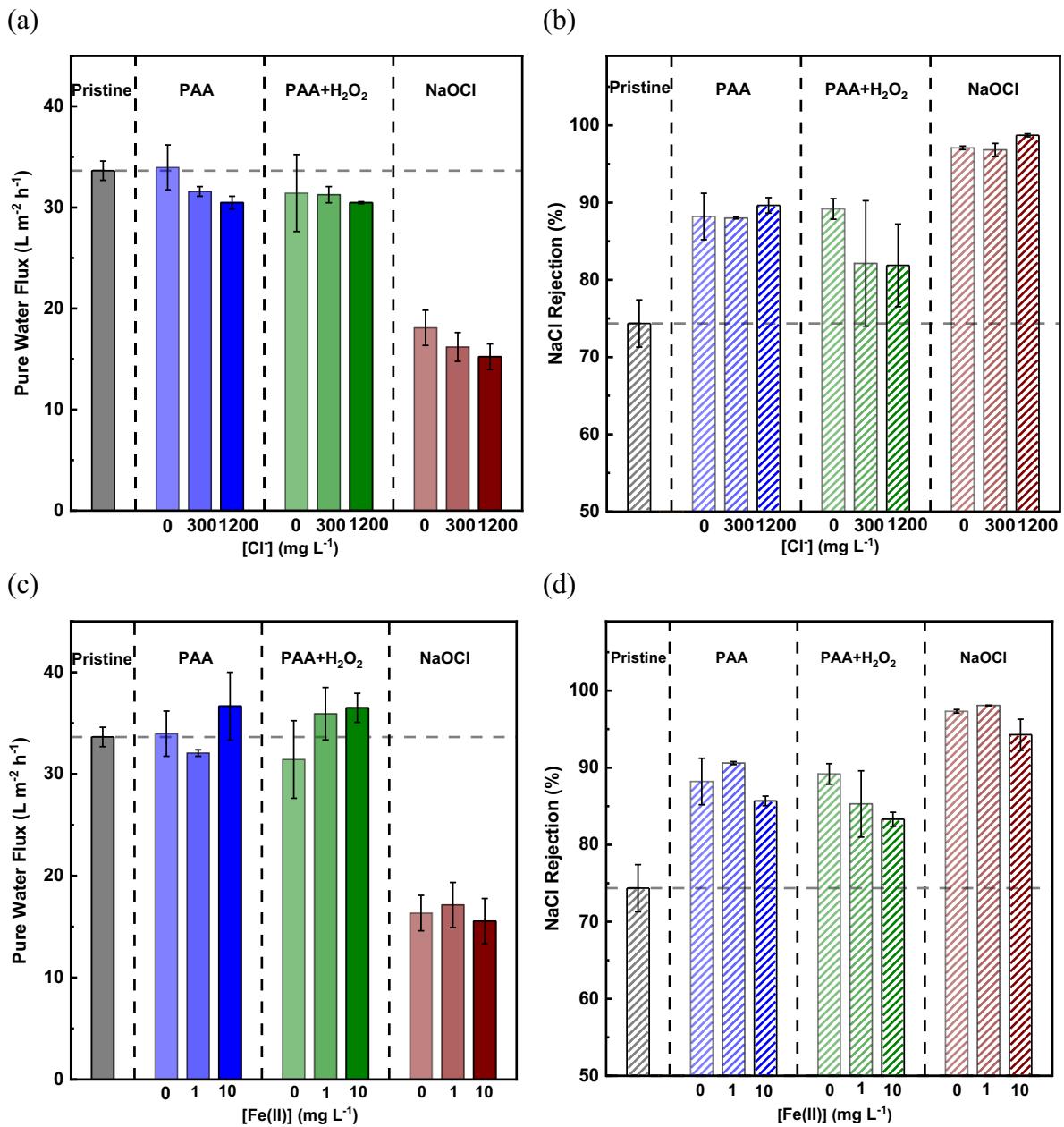
747 69. T. Zhang and C.-H. Huang, Modeling the Kinetics of UV/Peracetic Acid Advanced
748 Oxidation Process, *Environmental Science & Technology*, 2020, **54**, 7579-7590.

749 70. J. Kim, P. Du, W. Liu, C. Luo, H. Zhao and C.-H. Huang, Cobalt/Peracetic Acid:
750 Advanced Oxidation of Aromatic Organic Compounds by Acetylperoxyl Radicals,
751 *Environmental Science & Technology*, 2020, **54**, 5268-5278.

752 71. Z. Wang, J. Wang, B. Xiong, F. Bai, S. Wang, Y. Wan, L. Zhang, P. Xie and M. R.
753 Wiesner, Application of Cobalt/Peracetic Acid to Degrade Sulfamethoxazole at
754 Neutral Condition: Efficiency and Mechanisms, *Environmental Science &
755 Technology*, 2020, **54**, 464-475.

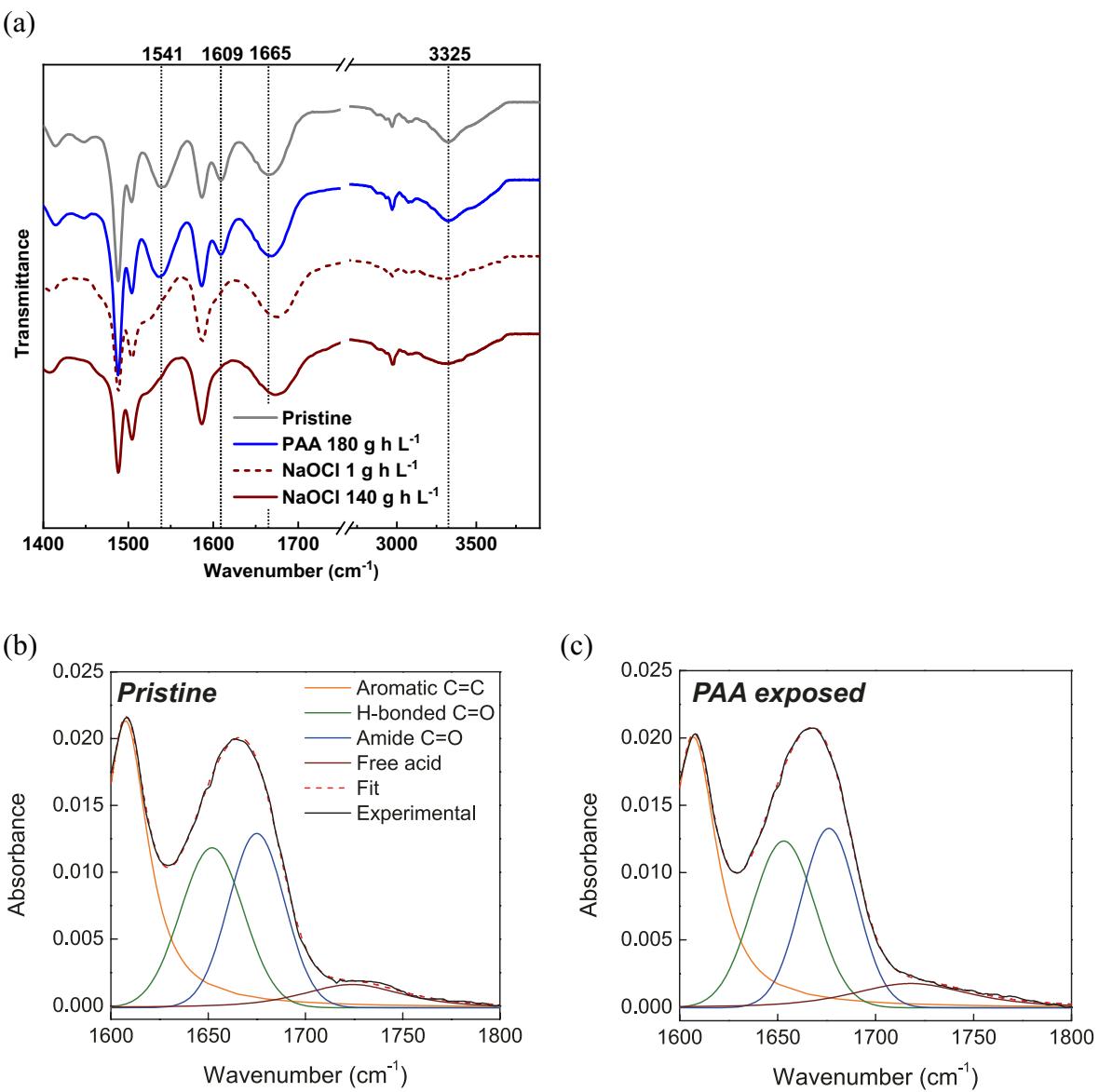

756 72. H. Chen, T. Lin, W. Chen, H. Xu and H. Tao, Significant role of high-valent iron-oxo
757 species in the degradation and detoxification of indomethacin, *Chemosphere*, 2020,
758 **251**, 126451.

759 73. J. M. Shoulder, N. S. Alderman, C. M. Breneman and M. C. Nyman, Polycyclic
760 aromatic hydrocarbon reaction rates with peroxy-acid treatment: prediction of
761 reactivity using local ionization potential, *SAR and QSAR in Environmental Research*,
762 2013, **24**, 611-624.

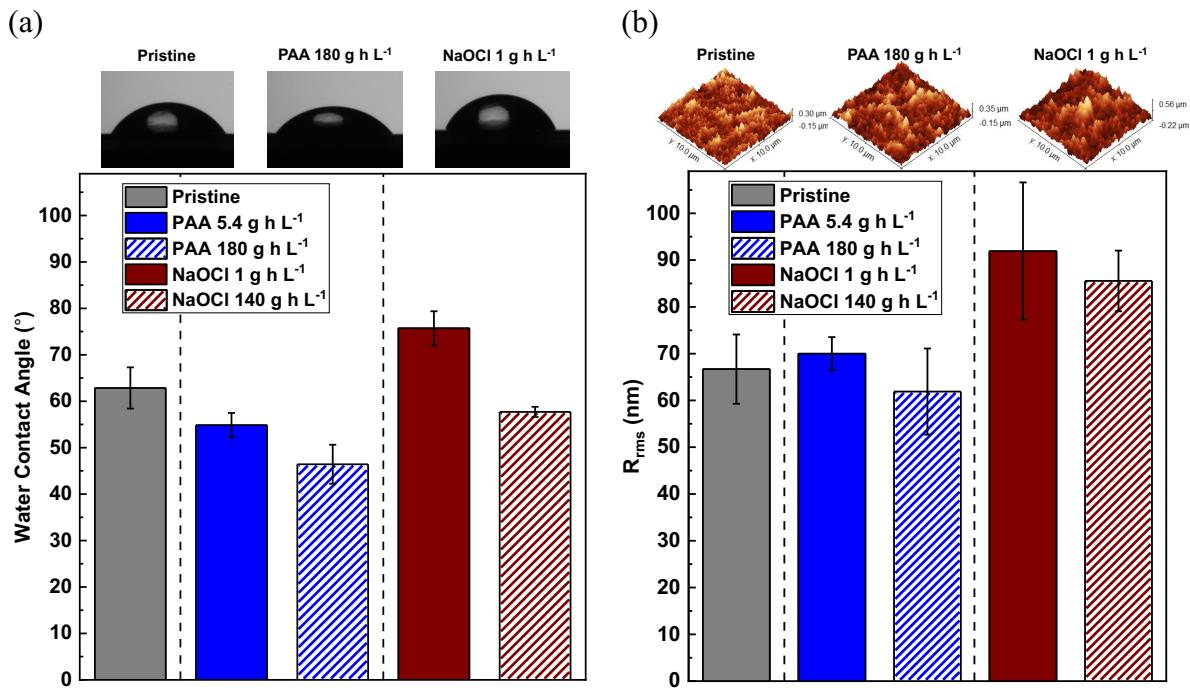

763 74. R. D. Bach, C. Canepa, J. E. Winter and P. E. Blanchette, Mechanism of Acid-
764 Catalyzed Epoxidation of Alkenes with Peroxy Acids, *The Journal of Organic
765 Chemistry*, 1997, **62**, 5191-5197.

766 75. J. Kim and C.-H. Huang, Reactivity of Peracetic Acid with Organic Compounds: A
767 Critical Review, *ACS ES&T Water*, 2020, DOI: 10.1021/acsestwater.0c00029.

768

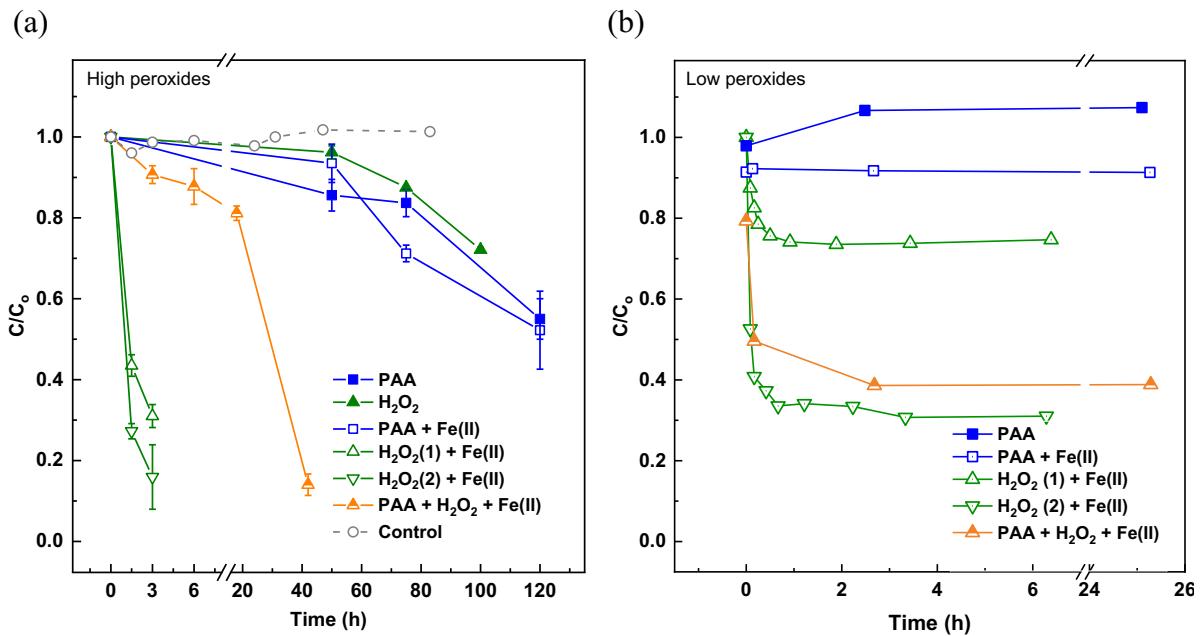


769
 770 **Figure 1.** Comparison of (a) pure water flux, (b) NaCl rejection, and (c) organic compound
 771 rejection among pristine and oxidant-exposed NF90 membranes. Initial oxidant concentration
 772 was 1000 mg L^{-1} ; the initial pH was 6.5. Performance tests were conducted under 4 bar
 773 pressure; further details are provided in sections 2.2 and 2.3. The PAA exposure experiments
 774 were conducted in duplicates, with error bars showing the difference between two replicate
 775 exposure experiments; when error bars are not visible, they fall within the symbols. The grey
 776 area in (a) and (b) represents the range of values for pristine membranes from duplicate tests.
 777 The three organic compounds ethylene glycol (EG), glycerol, polyethylene glycol 200 (PEG
 778 200) have molecular weight of 62, 92, and 200 g mol^{-1} , respectively. The fluxes of NaCl and
 779 organic compounds corresponding to (b) and (c) are shown in Figure S4.
 780



781
782
783
784
785
786
787
788
789
790
791
792

Figure 2. Effects of the presence of chloride ion (Cl⁻) and Fe(II) during oxidant exposure on membrane performance. (a) and (b) show the pure water flux and NaCl rejection for membranes exposed to oxidants in the presence of varying concentrations of chloride. (c) and (d) are the corresponding graphs for membranes exposed to oxidants in the presence of Fe(II). Fe(II) was added as FeSO₄. Exposure time was 24 h; the initial oxidant concentrations were 100 mg L⁻¹ PAA (containing 17 mg L⁻¹ H₂O₂ from the commercial stock), 100 mg L⁻¹ PAA and 217 mg L⁻¹ H₂O₂, or 100 mg L⁻¹ NaOCl. Detailed experimental conditions are described in sections 2.2 and 2.3. The PAA exposure values calculated based on the PAA decay profiles in the presence of chloride or Fe(II) are shown in Table S3. Error bars show the difference between two replicate exposure experiments.



793
794 **Figure 3.** (a) FTIR spectra of pristine, PAA-exposed, and NaOCl-exposed NF90 membranes.
795 Deconvoluted fits of amide I region of the FTIR spectra of (b) pristine and (c) PAA-exposed
796 (180 g h L^{-1}) membranes. The initial oxidant concentration was 1000 mg L^{-1} ; the initial
797 solution pH was 6.5; room temperature. Other experimental conditions are as described in
798 sections 2.2 and 2.3. The area of fitted peak at around 1720 cm^{-1} was used to calculate free
799 carboxylic acid concentration. The ratio of carboxylic acid peak area over the summation of
800 two amide C=O groups, H-bonded C=O (green) and amide C=O (blue), is calculated as an
801 approximate of carboxylic acid group generation. The fitting and calculation details are
802 presented in Table 2.
803
804
805

806
807
808
809
810
811
812
813
814
815
816

Figure 4. (a) Water contact angle and (b) root-mean-square roughness of pristine, PAA-exposed, and NaOCl-exposed NF90 membranes. The initial oxidant concentration was 1000 mg L⁻¹; the initial solution pH was 6.5; room temperature. Other experimental conditions are as described in sections 2.2 and 2.3. Water contact angle error bars represent the standard deviation of 20 measurements (2 membrane samples with 10 different locations measured for each). R_{rms} error bars represent standard deviation of measurements at 5 different locations on a membrane coupon. The AFM images are also shown in Figure S8.

817 **Figure 5.** Benzanilide degradation at pH 3 with (a) high (13 to 64 mM, i.e., 1000–2000 mg L⁻¹) and (b) low initial (100 μ M for PAA and 38 or 238 μ M for H_2O_2) peroxide concentrations. The solution conditions are summarized in Table S1 and S2. The high initial peroxide concentrations match those in the membrane exposure experiments. The low initial peroxide concentrations simulate those used in reference [34] on micropollutants degradation by PAA/Fe(II). The control sample had no peroxide added. Residual oxidants were quenched by sodium thiosulfate. Samples from Fe(II) experiments were filtered using 0.45 μ m glass fiber syringe filters prior to HPLC analysis. The concentration data for (a) and (b) are shown in Table S4 and S5, respectively. The pseudo first-order rate constants for (a) are shown in Table S6.

827
828

829 **Table 1.** Peak fitting parameters for the amide I region of the FTIR spectra of pristine and
 830 PAA-exposed membranes and the comparison of their surface carboxylic acid content.

Sample	Component	Component peak shape	Peak center position (cm ⁻¹)	Full width at half maximum (cm ⁻¹)	Fitted peak area in fitting range (abs × cm ⁻¹)	Fit root mean square error	Ratio ^a
Pristine	C=C aromatic	92%Lorentze +Guassian	1607.5	27.5	0.57		
	H-bonded C=O	Gaussian	1652.0	38.1	0.49	1.75×10^{-4}	0.130
	C=O amide	Gaussian	1675.0	33.8	0.47		
	C=O acid	66%Lorentze +Guassian	1724.0	60.9	0.12		
PAA-exposed (180 g h L ⁻¹)	C=C aromatic	92%Lorentze +Guassian	1607.1	28.6	0.55		
	H-bonded C=O	Gaussian	1653.1	38.0	0.50	1.49×10^{-4}	0.149
	C=O amide	Gaussian	1676.2	33.5	0.48		
	C=O acid	66%Lorentze +Guassian	1718.0	70.0	0.15		

831 ^a Ratio of the area of the C=O acid peak to the sum of the area of the H-bonded C=O and C=O amide peaks

832

833

834 **Table 2.** Surface elemental composition of pristine and oxidant-exposed membranes
 835 determined by XPS analysis.

Oxidant Exposure ^a	C (%)	N (%)	Atomic Composition				
			O (%)	Cl (%)	O/N ratio	Cl/N ratio	
Pristine	—	75.02	12.35	12.63	ND ^b	1.02	ND
PAA	5.4 g h L ⁻¹	73.79	11.65	14.56	ND	1.25	ND
	180 g h L ⁻¹	72.21	11.45	16.35	ND	1.43	ND
NaOCl	1 g h L ⁻¹	69.51	10.18	13.83	6.49	1.36	0.64
	140 g h L ⁻¹	70.10	7.36	15.32	7.23	2.08	0.98
PAA+Cl ⁻	1.80 g h L ⁻¹ ^c	74.02	11.0	14.69	0.29	1.34	0.03
PAA+Fe(II)	0.29 g h L ⁻¹	72.18	11.35	15.42 ^d	ND	1.36	ND

836 ^a The initial concentration of PAA or NaOCl was 1000 mg L⁻¹ in experiments without Cl⁻ or Fe(II). For
 837 PAA+Fe and PAA+Cl experiments: the initial PAA concentration was 100 ppm; Fe(II) concentration was 10
 838 mg L⁻¹ (added as FeSO₄); Cl⁻ concentration was 1200 mg L⁻¹; exposure time was 24 h. The initial solution pH
 839 was 6.5. Room temperature. The exposure was calculated after accounting for oxidant decay.

840 ^b ND: not detected in a survey scan (detailed information provided section 2.4).

841 ^c Exposure calculated based on total oxidant concentration as PAA and HOCl cannot be differentiated by the
 842 DPD method.

843 ^d The oxygen content was corrected by subtracting the oxygen groups from Fe₂O₃ (0.7% Fe). Fe₂O₃ was
 844 confirmed by high-resolution XPS scan at 740–705 eV region.

845

846

847