
Spectral Sparsification via Bounded-Independence
Sampling
Dean Doron
Department of Computer Science, Stanford University, CA, USA
ddoron@stanford.edu

Jack Murtagh
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
jmurtagh@g.harvard.edu

Salil Vadhan
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
salil_vadhan@harvard.edu

David Zuckerman
Department of Computer Science, University of Texas at Austin, TX, USA
diz@cs.utexas.edu

Abstract
We give a deterministic, nearly logarithmic-space algorithm for mild spectral sparsification of
undirected graphs. Given a weighted, undirected graph G on n vertices described by a binary
string of length N , an integer k ≤ log n and an error parameter ε > 0, our algorithm runs in space
Õ(k log(N · wmax/wmin)) where wmax and wmin are the maximum and minimum edge weights in G,
and produces a weighted graph H with Õ(n1+2/k/ε2) edges that spectrally approximates G, in the
sense of Spielmen and Teng [52], up to an error of ε.

Our algorithm is based on a new bounded-independence analysis of Spielman and Srivastava’s
effective resistance based edge sampling algorithm [51] and uses results from recent work on space-
bounded Laplacian solvers [41]. In particular, we demonstrate an inherent tradeoff (via upper and
lower bounds) between the amount of (bounded) independence used in the edge sampling algorithm,
denoted by k above, and the resulting sparsity that can be achieved.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases Spectral sparsification, Derandomization, Space complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.39

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at [19], https://eccc.weizmann.ac.il/
report/2020/026/.

Funding Dean Doron: Research supported by a Motwani Postdoctoral Fellowship.
Jack Murtagh: Research supported by NSF grant CCF-1763299.
Salil Vadhan: Research supported by NSF grant CCF-1763299 and a Simons Investigator Award.
David Zuckerman: Research supported in part by NSF Grant CCF-1705028 and a Simons Investigator
Award (#409864).

Acknowledgements We thank Jelani Nelson for his insights on spectral sparsification via k-wise
independent sampling. We also thank Jarosław Błasiok for helpful discussions about random
matrices. The first author would like to thank Tselil Schramm and Amnon Ta-Shma for interesting
conversations.

EA
T
C
S

© Dean Doron, Jack Murtagh, Salil Vadhan, and David Zuckerman;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 39; pp. 39:1–39:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ddoron@stanford.edu
mailto:jmurtagh@g.harvard.edu
mailto:salil_vadhan@harvard.edu
mailto:diz@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.ICALP.2020.39
https://eccc.weizmann.ac.il/report/2020/026/
https://eccc.weizmann.ac.il/report/2020/026/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Spectral Sparsification via Bounded-Independence Sampling

1 Introduction

The graph sparsification problem is the following: given a weighted, undirected graph G,
compute a graph H that has very few edges but is a close approximation to G for some
definition of approximation. In general, graph sparsifiers are useful for developing more
efficient graph-theoretic approximation algorithms. Algorithms whose complexity depend on
the number of edges in the graph will be more efficient when run on the sparser graph H , and
if H approximates G in an appropriate way, the result on H may be a good approximation
to the desired result on G. In this work, we present an algorithm that can be implemented
deterministically in small space and achieves sparsification in the spectral sense of Spielman
and Teng [52]. (See Section 1.2 below for a more formal statement of our main result.)

1.1 Background
Motivated by network design and motion planning, Chew [10] studied graph spanners, which
are sparse versions of graphs that approximately preserve the shortest distance between each
pair of vertices. Benczúr and Karger [6] defined cut sparsifiers whose notion of approximation
is that every cut of H has size within a (1±ε) factor of the size of the corresponding cut in G.
They showed that every graph G on n vertices has a cut sparsifier H with O(n·log n/ε2) edges
and gave a randomized algorithm for computing such cut sparsifiers. Their algorithm runs
in nearly linear time (i.e., Õ(m) where m is the number of edges in G and the Õ(·) notation
hides polylogarithmic factors) and they used it to give a faster algorithm for approximating
minimum s-t cuts.

Spielman and Teng introduced spectral sparsifiers, which define approximation between
the graph and its sparsifier in terms of the quadratic forms of their Laplacians [52]. The
Laplacian of an undirected graph is the matrix L = D−A where A is the adjacency matrix of
the graph and D is the diagonal matrix of vertex degrees (i.e. Dii equals the weighted degree
of vertex i). H is said to be an ε-spectral approximation of G if for all vectors v ∈ Rn, we
have that v>L̃v ∈ (1± ε) · v>Lv, where L̃ and L are the Laplacians of H and G, respectively.
Spectral sparsifiers generalize cut sparsifiers, which can be seen by observing that when
v ∈ {0, 1}n, v is the characteristic vector of some set of vertices S ⊆ [n] and v>Lv equals the
sum of the weights of the edges cut by S.

Spielman and Teng showed that all graphs have spectral sparsifiers with O(n · logO(1) n/ε2)
edges and gave a nearly linear time randomized algorithm for computing them with high
constant probability. Their spectral sparsifiers were a key ingredient that they used to develop
the first nearly linear time algorithm for solving Laplacian systems. These fast Laplacian
solvers spawned a flurry of improvements and simplifications [16, 26, 28, 27, 30, 31, 34, 44] as
well as extensions to directed graphs [15, 14, 13] and to the space-bounded setting [18, 41, 1].
Spectral sparsification and the nearly linear time Laplacian solvers that use them have been
critical primitives that have enabled the development of faster algorithms for a wide variety
of problems including max flow [37, 11, 17, 24, 33], random generation of spanning trees,
[25, 40, 49], and other problems in computer science [43, 29].

Spielman and Srivastava [51] gave a spectral sparsification algorithm that both simplified
and improved upon the algorithm of Spielman and Teng. They show that randomly sampling
edges, independently with probabilities proportional to their effective resistances produces a
good spectral sparsifier with high probability. Viewing a graph as an electrical network, the
effective resistance of an edge (a, b) is the potential difference induced between them when a
unit of current is injected at a and extracted at b (or vice versa). More formally, the effective

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:3

resistance of an edge (a, b) in a graph with Laplacian L is Rab = (ea−eb)>L+(ea−eb), where
ei denotes the ith standard basis vector and L+ denotes the Moore-Penrose pseudoinverse of
L1. Spielman and Srivastava proved the following theorem.

I Theorem 1 (spectral sparsification via effective resistance sampling [51, 50]). Let G =
(V,E,w) be a weighted graph on n vertices and for each edge (a, b) ∈ E with weight wab,
define pab = min{1, 4 · log n · wab ·Rab/ε2}, where Rab is the effective resistance of (a, b) as
defined above. Construct a sparsifier H by sampling edges from G independently such that
each edge (a, b) in G is added to H with probability pab. For edges that get added to H,
reweight them with weight wab/pab. Let L and L̃ be the Laplacians of G and H, respectively.
Then, with high probability,
1. H has O(n · (log n)/ε2) edges, and,
2. L̃ ε-spectrally approximates L.
Furthermore, this procedure can be implemented to run in time Õ(mε2 · log(wmax/wmin)), where
m is the number of edges in G and wmax, wmin are the maximum and minimum edge weights
of G, respectively.2

The sparsity achieved by the Spielman and Srivastava sparsifiers was improved by Batson,
Spielman and Srivastava [5], who gave a deterministic algorithm for computing ε-spectral
sparsifiers with O(n/ε2) edges, which is asymptotically optimal, however, their algorithm is
less efficient, running in time O(m · n3/ε2). Work on these optimal sparsifiers continued with
another slightly faster deterministic algorithm [53] followed by an O(n2+ε)-time randomized
algorithm [2], and culminating in the randomized algorithms of Lee and Sun who achieved
almost-linear time [35] and finally nearly-linear time [36].

1.2 Our Main Result
In this work we study the deterministic space complexity of computing spectral sparsifiers.
Our main result is a deterministic, nearly-logarithmic space algorithm for computing mild
spectral sparsifiers, that is, graphs with O(n1+α/ε2) edges for any constant α > 0.

I Theorem 2 (see also Theorem 19). Let G be a connected, weighted, undirected graph on
n vertices, k ∈ N an independence parameter and ε > 0 an error parameter. There is a
deterministic algorithm that on input G, k, and ε, outputs a weighted graph H that is an
ε-spectral sparsifier of G and has O(n1+2/k · (log n)/ε2) edges. The algorithm runs in space
O(k log(N ·w)+log(N ·w) log log(N ·w)), where w = wmax/wmin is the ratio of the maximum
and minimum edge weights in G and N is the length of the input.

The closest analogue to spectral sparsifiers in the space-bounded derandomization lit-
erature is the derandomized square of Rozenman and Vadhan [47], a graph operation that
produces a sparse approximation to the square of a graph.3 The derandomized square was
introduced to give an alternative proof to Reingold’s celebrated result that Undirected S-T
Connectivity can be solved in deterministic logspace [46]. Murtagh, Sidford, Reingold,

1 L+ is a matrix with the same kernel as L that acts as an inverse of L on the orthogonal complement of
the kernel. See Section 2.2 for a formal definition.

2 In their original paper, [51], they fix the number of edges in the sparsifier in advance resulting in a
slightly different theorem statement and analysis. The version we cite here and what we model our
algorithm after was presented later in [50].

3 The square of a graph G is a graph on the same vertex set whose edges correspond to all walks of length
2 in G.

ICALP 2020

39:4 Spectral Sparsification via Bounded-Independence Sampling

and Vadhan [41] showed that the derandomized square actually produces a spectral sparsifier
of the square of a graph and this was a key observation they used to develop a deterministic,
nearly logarithmic space algorithm for solving Laplacian systems. Later the sparsification
benefits of the derandomized square were also used in nearly logarithmic space algorithms for
deterministically approximating random walk probabilities and for solving Laplacian systems
in Eulerian directed graphs [42, 1].

For a d-regular graph G on n vertices, its square G2 has degree d2 and the derandomized
square computes an ε-spectral approximation to G2 with degree O(d/ε2). On the other hand,
applying our sparsification to G2 results in an ε-spectral approximation with on average
O(nα/ε2) edges adjacent to each vertex for any constant α, which is independent of d and
much sparser when d = ω(nα). Also, our algorithm can sparsify any undirected graph, not
just squares. Our algorithm does not replace the derandomized square, however, because the
derandomized square can be iterated very space efficiently, a property that is used in all of its
applications thus far. Nevertheless, given the success of spectral sparsification and Laplacian
solvers in the nearly-linear time context and the fruit borne of porting these techniques to
the logspace setting, we are hopeful that our spectral sparsifiers will have further applications
in derandomization of space-bounded computation.

1.3 Techniques

Our deterministic space-efficient algorithm is modeled after the effective resistance based
sampling algorithm of Spielman and Srivastava (Theorem 1). Although the Spielman
and Srivastava procedure is randomized and does not achieve optimal sparsity, the known
algorithms that do ([5, 53, 2, 35, 36]) are more involved and often sequential in nature so do
not seem as amenable to small-space implementations.

To derandomize the Spielman-Srivastava algorithm, we follow the standard approach of
first reducing the number of random bits used to logarithmic, and then enumerating over all
random choices of the resulting algorithm. Following [39, 3], a natural way to reduce the
number of random bits used is to do the edge sampling only k-wise independently for some
k � |E| rather than sampling every edge independently from all other edges.

Let k be our bounded-independence parameter. Namely, we are only guaranteed that
every subset of k edges is chosen independently (with the right marginals), however there
may be correlations between the choices in tuples of size k + 1. It is well known that such a
sampling can be performed using fewer random bits. By [51], we know that k = |E| will, with
high probability, produce an ε-spectral sparsifier with O(n · log n/ε2) edges in expectation.
What about much smaller values of k? In Section 3, we prove the following:

I Theorem 3 (informal; see Theorem 9). Let G be a connected weighted undirected graph
on n vertices with Laplacian L, k ∈ N an independence parameter and ε > 0 an error
parameter. Let H be the graph which is the output of Spielman and Srivastava’s sampling-
based sparsification algorithm (Theorem 1), when the edge sampling is done in a k-wise
independent manner, and let L̃ be the Laplacian of H. Then, with high constant probability,
L̃ ε-approximates L and H has O(n1+2/k · (log n)/ε2) edges.

A first thing to observe is that k = log n gives the same result as in [51]. More importantly,
the above shows that the result interpolates: Even for a constant k, Theorem 3 gives a mild
sparsification that sparsifies dense graphs to O(n1+α) expected edges, where α > 0 is an
arbitrarily small constant.

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:5

We prove Theorem 3 by extending the arguments in [51, 50]. For every edge (a, b) ∈ E,
we define a random matrix Xab that corresponds to the choice made by the sparsification
algorithm, in such a way that X =

∑
(a,b)∈E Xa,b relates to the resulting Laplacian L̃.4 Let

Π be the orthogonal projection onto the image of L. Following [51, 50], we show that L̃
ε-spectrally approximates L (equivalently, that H is an ε-spectral sparsifier for G) with high
probability if X −Π has bounded moments. Deriving a tail bound that relies on the first
k moments alone, we can proceed with the analysis as if the Xab’s were truly independent.
More specifically, we bound Tr(EX [(X −Π)k]) using a matrix concentration result due to
Chen, Gittens and Tropp [9]. For the complete details, as well as how our argument differs
from [51, 50], see Section 3.

Getting a Deterministic Algorithm

Theorem 3 readily gives a simple, randomness-efficient algorithm, as k-wise independent
sampling of edges only requires O(k · log(N ·w)) random bits [23, 3] (See Lemma 8). However,
more work is needed to obtain a space-efficient deterministic algorithm. First, we need
to be able to compute the marginal sampling probabilities, which depend on the effective
resistances Rab. Fortunately, the recent work of Murtagh et al. [41] allows us to approximate
the effective resistances using only O(log(N · w) log log(N · w)) space and we show that the
k-wise independent sampling procedure can tolerate the approximation.

Next, to obtain a deterministic algorithm, we can enumerate over all possible random
choices of the algorithm in space O(k · log(N · w)) and compute a candidate sparsifier H
for each. We are guaranteed that at least one (indeed, most) of the resulting graphs H is a
good sparsifier for G but how can we identify which one? To do this, it suffices for us, given
Laplacians L and L̃, to distinguish the case that L̃ is an ε-spectral approximation of L from
the case that L̃ is not a 2 · ε-spectral approximation of L. We reduce that problem to that of
approximating the spectral radius of M = ((L̃−L)L+/ε)2, where L+ is the pseudoinverse of
L, which can be approximated in nearly logarithmic space by [41]. In fact, it will be sufficient
to check whether the trace of a logarithmically high power of M is below a certain threshold
to deduce that the spectral radius of M does not exceed 1. In Section 5.2, we show that the
latter case implies that L̃ indeed ε-approximates L.

The deterministic, nearly logarithmic space Laplacian solver of [41] only worked for
multigraphs, i.e. graphs with integer edge weights. To get our result for arbitrary weighted
graphs, we extend the work of [41] and give a deterministic, nearly logarithmic space
Laplacian solver for arbitrary undirected weighted graphs. Combining this extension with the
k-wise independent analysis of the edge sampling algorithm (Theorem 3) and the verification
procedure described above lets us prove our main result Theorem 2.

1.4 Lower Bounds for Bounded-Independence Sampling
Having established an upper bound on the amount of independence required for the edge-
sampling procedure (Theorem 3), a natural goal would be to come up with a corresponding
lower bound. Theorem 3 tells us that in order to sparsify to Õ(n1+α) expected edges, we
can use k-wise independent sampling for k = 2/α. Can a substantially smaller choice of k
perform just as well? In Section 4, we show that our upper bound of k = 2/α is tight up to
a small constant factor.

4 Specifically, X = L+/2L̃L+/2, where L+/2 is the square-root of the pseudoinverse of L.

ICALP 2020

39:6 Spectral Sparsification via Bounded-Independence Sampling

I Theorem 4 (informal; see Theorem 11). For every small enough α > 0 there exist infinitely
many connected graphs G = (V = [n], E) with all effective resistances equal that are d-regular
with d = Ω(nα) and a distribution D ∼ {0, 1}|E| that is k-wise independent for k = b4/3αc
with marginals 1/2 that would fail to produce an ε-spectral sparsifier of G to within any ε > 0
with high probability.

Our family of “bad graphs” will be dense graphs having large girth. Namely, given a
girth g and an integer d ≥ 3, we consider graphs G = (V = [n], E) satisfying d ≥ nγ/g + 1
for some constant 0 < γ < 2 [32]. Getting an infinite family of graphs with γ approaching 2
(and specifically attaining the Moore bound), even non-explicitly, has been the subject of
extensive study (see [21] and references therein). See also Section 4.1 for a further discussion.
Given a sparsification parameter α > 0, we set k ≈ γ/α and take a graph G on n vertices
with girth g = k + 1 and degree d > nγ/g + 1.

Our construction of the distribution D is inspired by Alon and Nussboim [4]: choose a
partition of the vertices V = V0] V1 uniformly at random, and for every edge e = (u, v) ∈ E,
include it in the sample if and only if either u, v ∈ V0 or u, v ∈ V1. Clearly, sampling edges
according to D results in a disconnected graph almost surely. However, we show that D is
indeed k-wise independent, relying on the fact that the girth of G is k + 1.

To obtain Theorem 4 we use the family of graphs given by Lazebnik et al. [32] who
obtained γ = 4/3. Indeed, any improvement in γ would bring our upper bound of k ≈ 2/α
and lower bound of k ≈ γ/α closer together.

1.5 Open Problems

An interesting open problem is to achieve improved sparsity, e.g. O(n · (log n)/ε2) matching
[51]. Our algorithm would require space Ω(log2 n) to achieve this sparsity, due to setting
k = Ω(log n). We remark that previous work implies that this can be done in randomized
logarithmic space. Indeed, Doron et al. [18] gave a randomized algorithm for solving
Laplacian systems in logarithmic space (without log log(·) factors), and this implies that one
can approximate effective resistances and hence implement the Spielman-Srivastava edge
sampling with full independence in randomized logspace. It is also an interesting question
whether there is a nearly logspace algorithm (even randomized) that produces spectral
sparsifiers of optimal sparsity (i.e., O(n/ε2) edges).

Finally, while it is not known how to compute spectral sparsifiers of arbitrary directed
graphs, there has been progress on sparsifying Eulerian digraphs in the nearly-linear time
literature [15, 14, 13, 12]. Given the recent advance of a nearly-logarithmic space solver
for Eulerian Laplacian systems [1], an interesting question is sparsifying Eulerian graphs in
small space.

2 Preliminaries

We will work with undirected weighted graphs, G = (V,E,w), where w is a vector of length
|E| and each edge (a, b) ∈ E is associated with a positive weight wab > 0. At times we refer
to undirected multigraphs, which are weighted graphs where all of the weights are integers.
The adjacency matrix of G is a symmetric, real-valued matrix A in which Aij = wij if
(i, j) ∈ E and Aij = 0 otherwise.

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:7

For any matrix A, its spectral norm ‖A‖ is max‖x‖=1 ‖Ax‖2, which is also the largest
singular value of A. For any square matrix A, its spectral radius, denoted ρ(A), is the largest
absolute value of its eigenvalues. When A is real and symmetric, the spectral norm equals the
spectral radius. The spectral norm is sub-multiplicative, i.e., ‖AB‖ ≤ ‖A‖ ‖B‖. We denote
by A> the transpose of A. We denote by 1 the all-ones vector, by 0 the all-zeros vector, and
ea is the vector with 1 in the a-th coordinate and 0 elsewhere, where ea’s dimension will be
understood from context (i.e., ea is the a-th standard basis vector).

The trace of a matrix A ∈ Rn×n, is Tr(A) =
∑
i∈[n] Aii, which also equals the sum of its

eigenvalues. The trace is invariant under cyclic permutations, i.e., Tr(AB) = Tr(BA). The
expectation of a random matrix is the matrix of the coordinate-wise expectations. More
formally, if A is a random matrix, then E[A] = Â where Âij = E[Aij] for all i, j ∈ [n]. The
trace and the expectation are both linear functions of a matrix and they commute. That is,
for all random matrices A, we have Tr(E[A]) = E[Tr(A)] (see, e.g.,[45]).

2.1 PSD Matrices and Spectral Approximation
A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD), denoted A � 0, if for every
x ∈ Rn it holds that x>Ax ≥ 0, or equivalently, if all its eigenvalues are non-negative. We
write A � B if A−B � 0.

I Definition 5. Let A and B be n× n symmetric PSD matrices. For a real ε > 0, we say
that A is an ε-spectral approximation of B, denoted A ≈ε B, if

(1− ε)B � A � (1 + ε)B.

When A and B share an eigenvector basis v1, . . . , vn, Definition 5 is equivalent to requiring
(1 − ε)µi ≤ λi ≤ (1 + ε)µi, where λ1, . . . , λn are the eigenvalues of A corresponding to
v1, . . . , vn and µ1, . . . , µn are the eigenvalues of B corresponding to v1, . . . , vn.

2.2 The Moore-Penrose Pseudoinverse
Let A be any linear operator. The Moore-Penrose pseudoinverse of A, denoted A+, is defined
as follows. If A = UΣV > is the singular value decomposition (SVD) of A, the pseudoinverse
is given by A+ = V Σ+U> where Σ+ is the matrix obtained by taking the reciprocal of
each nonzero diagonal element of Σ, and leaving the zeros intact. When A is a symmetric
PSD matrix, the SVD coincides with the eigen-decomposition and so if λ1, . . . , λn are the
eigenvalues of A then A+ shares the same eigenvector basis and has eigenvalues λ+

1 , . . . , λ
+
n ,

where λ+
i = 1/λi if λi 6= 0 and λ+

i = 0 otherwise.
Also note that if A is real then A+ is real-valued as well.
A square root of a matrix A is any matrix X that satisfies X2 = A. When A is symmetric

and PSD, it has a unique symmetric PSD square root, which we write as A1/2. If A = UΣU>
is the eigen-decomposition of A then A1/2 = U

√
ΣU> where

√
Σ is obtained by taking the

square root of each diagonal element of Σ. We denote by A+/2 the matrix (A+)1/2 = (A1/2)+.

2.3 The Graph Laplacian and Effective Resistance
Given a graph G on n vertices with an adjacency matrix A and degree matrix D (i.e., D is
a diagonal matrix where Dii =

∑n
j=1 Aij equals the weighted degree of vertex i in G), the

Laplacian of G is the matrix

L = D −A.

ICALP 2020

39:8 Spectral Sparsification via Bounded-Independence Sampling

For every undirected weighted graph G = (V,E,w), its Laplacian L is symmetric and PSD,
with smallest eigenvalue 0. The zero eigenvalue has multiplicity one if and only if G is
connected. In this case, ker(LG) = span({1}). For every edge (a, b) ∈ E, define the edge
Laplacian of (a, b) to be

Lab = (ea − eb)(ea − eb)> = (eb − ea)(eb − ea)>.

Note that L =
∑

(a,b)∈E wab · Lab.
It is often helpful to associate G with an electric circuit, where an edge (a, b) ∈ E

corresponds to a resistor of resistance 1/wab. For each pair of vertices a and b, the effective
resistance between them, denoted by Rab, is the energy of the electrical flow that sends one
unit of current from a to b. The effective resistance can be calculated using the pseudoinverse
of the Laplacian:

Rab = (ea − eb)>L+(ea − eb).

(See [8] for more information on Laplacians and viewing graphs as electrical networks). A
useful fact about effective resistances is Foster’s Theorem:

I Theorem 6 ([22]). For every undirected weighted graph G = (V,E,w) on n vertices it
holds that∑

(a,b)∈E

wab ·Rab = n− 1.

2.4 Bounded-Independence Sampling

Given a probability vector p ∈ [0, 1]m, let Bernoulli(p) denote the distribution X over {0, 1}m

where the bits are independent and for each i ∈ [m], E[Xi] = pi. For a set I ⊆ [m] and a
string z ∈ {0, 1}m, we let z|I ∈ {0, 1}|I| be the restriction of z to the indices in I.

I Definition 7. We say a distribution X ∼ {0, 1}m is k-wise independent with marginals
p ∈ [0, 1]m if for every set I ⊆ [m] with |I| ≤ k, it holds that X|I = Bernoulli(p|I). We refer
to X as a k-wise independent sample space with marginals p.

Consider G = (V,E,w) with |E| = m. Throughout, when we say sampling edges in a
k-wise independent manner, we refer to the process of picking an element x ∈ {0, 1}m from
a k-wise independent sample space uniformly at random and taking those edges e ∈ E for
which xe = 1.

For p ∈ [0, 1]m and a positive integer t, we define bpct to be the vector p′ obtained by
truncating every element of p after t bits. Thus, for each i ∈ [m], p′i = 2−tb2tpic, and so
|pi − p′i| ≤ 2−t. The following lemma states that we can construct small k-wise independent
sample spaces with any specified marginals.

I Lemma 8 (following [23, 3]). For every m, k, t ∈ N and p ∈ [0, 1]m there exists an explicit
k-wise independent distribution X ∼ {0, 1}m with marginals bpct, that can be sampled with
r = O(k · max {t, logm}) truly random bits. Furthermore, given ρ ∈ {0, 1}r, the element
x ∈ Supp(X) corresponding to the random bits ρ can be computed in O(k ·max {t, logm})
space.

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:9

3 Sparsification via Bounded-Independence Sampling

In Section 1, we briefly introduced the Spielman-Srivastava sparsification algorithm [51]
based on (truly) independent edge sampling, with probabilities proportional to the effective
resistances of the edges. In this section, we explore the tradeoff between the amount of
independence used in the edge sampling process and the resulting sparsity that can be
achieved.

In particular, we analyze the algorithm Sparsify (see Algorithm 1). The algorithm gets as
input an undirected, weighted, dense graph G = (V,E,w) on n vertices, approximate effective
resistances R̃ab for each edge (a, b) ∈ E, a bounded independence parameter k ≤ log n, a
desired approximation error ε > 0, and a parameter δ > 0 governing the success probability,
and outputs a sparser graph H whose Laplacian ε-spectral approximates the Laplacian of G
with probability at least 1− 2δ.

Algorithm 1 Computing a spectral sparsifier via bounded independence sampling.

Sparsify(G = (V,E,w), {R̃ab}(a,b)∈E , k, ε, δ).
1. Initialize H to be the empty graph on n = |V (G)| vertices.
2. Set s← 18e logn

ε2 ·
(
n
δ

)2/k.
3. For every edge (a, b) ∈ E, set pab ← min

{
1, wab · R̃ab · s

}
.

4. For every edge (a, b) ∈ E, add (a, b) to H with weight wab/pab with probability pab.
Do this sampling in a k-wise independent manner, following Lemma 8.

5. Return H.

First we will analyze Sparsify for the case where the effective resistances are given exactly,
i.e. R̃ab = Rab for all (a, b) ∈ E. Then, in Section 3.2 we will analyze the more general
case where we are given approximations to the effective resistances. This latter case is
useful algorithmically because more efficient algorithms are known for estimating effective
resistances than for computing them exactly, both in the time-bounded and space-bounded
settings [51, 41].

3.1 Sparsification With Exact Effective Resistances
In this section we give our main theorem about Sparsify.

I Theorem 9 (spectral sparsification via bounded independence). Let G = (V,E,w) be an
undirected connected weighted graph on n vertices with Laplacian L and effective resistances
R = {Rab}(a,b)∈E. Let 0 < ε < 1, 0 < δ < 1/2 and let k ≤ log n be an even integer. Let H
be the output of Sparsify(G,R, k, ε, δ) and let L̃ be its Laplacian. Then, with probability at
least 1− 2δ we have:
1. L̃ ≈ε L, and,
2. H has O

(
1

δ1+2/k · logn
ε2 · n1+ 2

k

)
edges.

Spielman and Srivastava showed that by using truly independent sampling (i.e., k = |E|) in
Sparsify, one can compute an ε-spectral sparsification of G with O(n · log n/ε2) edges, with
high constant probability [51]. One immediate consequence of Theorem 9 is that log n-wise
independent sampling suffices to match the sparsity that truly independent sampling achieves.
Another consequence of Theorem 9 is that for any constant 0 < α < 1 and any constant
γ < α/2, for k ≈ 2/(α− 2γ), k-wise independent sampling achieves a spectral sparsifier with
error ε = n−γ and O(n1+α) expected edges, with high constant probability.

ICALP 2020

39:10 Spectral Sparsification via Bounded-Independence Sampling

The proof of Theorem 9 is modeled after Spielman and Srivastava’s argument [51]. One
difference is that the sparsification algorithm in [51] fixes the number of edges to be sampled
in advance rather than having the number of edges be a random variable. They then prove
spectral approximation by reducing the problem to a question about concentration of random
matrices, which they resolve with a matrix Chernoff bound due to Rudelson and Vershynin
[48]. We follow a variant of this argument for the case where the number of edges in the
sparsifier is random and use a matrix concentration bound of Chen, Gittens, and Tropp [9].
This variant, for truly independent sampling, has appeared before in [50]. Our argument is
modified to address the fact that we only use k-wise independent sampling, and the proof is
given in the full version of the paper.

3.2 Sparsification With Approximate Effective Resistances
Spielman and Srivastava showed that the original version of spectral sparsification through
effective resistance sampling (with fully independent sampling and fixing the number of edges
in advance) is robust to small changes in the sampling probabilities. In this section we show
the same is true of Sparsify. As said, this is useful because more efficient algorithms are
known for estimating effective resistances than for computing them exactly, and we will also
use this fact for our space-bounded algorithm for sparsification in Section 5.

The lemma below says that if we only have small multiplicative approximations to the
effective resistances then the guarantees of Theorem 9 still hold with a small loss in the
sparsity.

I Lemma 10. Let G = (V,E,w) be an undirected connected weighted graph on n vertices
with Laplacian L. Let 0 < ε < 1, 0 < δ < 1/2 and let k ≤ log n be an even integer. For each
(a, b) ∈ E, let R̃ab be such that

(1− α) ·Rab ≤ R̃ab ≤ (1 + α) ·Rab,

where Rab is the effective resistance of (a, b) and 0 < α < 1. Let R̃ = {R̃ab/(1− α)}(a,b)∈E.
Let H be the output of Sparsify(G, R̃, k, ε, δ) and let L̃ be its Laplacian. Then, with probability
at least 1− 2δ we have:
1. L̃ ≈ε L, and,
2. H has O

(
1+α
1−α ·

1
δ1+2/k · logn

ε2 · n1+ 2
k

)
edges.

A proof of Lemma 10 can be found in the full version. Note that we could equivalently
define Sparsify to take approximate sampling probabilities as input (i.e., (1− α)pab ≤ p̃ab ≤
(1 + α)pab) rather than α-approximate effective resistances and the same lemma applies.

4 Lower Bounds for Bounded-Independence Sampling

In this section we give a lower bound for sampling-based bounded independence sparsification.
Our lower bound will hold even for unweighted, simple, regular graphs in which all the
effective resistances are the same, so for this section, assume G = (V = [n], E) is such a
graph. In Section 3 we measure sparsity in terms of the number of edges in the graph. We use
this measure rather than average degree because in weighted graphs, the degree of a vertex v
typically refers to the sum of the weights of the edges incident to v, whereas in sparsification
algorithms we are trying to minimize the number of edges incident to v, regardless of their
weight. In this section, we will sometimes refer to average degree rather than number of edges.
When we refer to the average degree of a weighted graph, we mean the average number of
edges incident to each vertex. For simple, unweighted graphs, these quantities are the same.

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:11

Fix some α > 0. Theorem 9 tells us that if we want to sparsify G to within error ε and
expected degree s = O

(
nα · log n/ε2), we can do so by sampling each edge with probability

p = s · (n − 1)/|E| in a k-wise independent manner, where k = 2/α (rounded to an even
integer).5 We now prove that k ≥ 4/3α is essential for such a sampling procedure, at least
for constant α.

I Theorem 11 (lower bound for spectral sparsification via bounded independence). Fix c > 0.
For every α ∈ (0, 4/15], there exist infinitely many n’s for which the following holds.

There exists a connected graph G = (V = [n], E) whose effective resistances are all equal
and a distribution D ∼ {0, 1}|E| that is k-wise independent for k = b4/3αc with marginals
1/2 that would fail to sparsify G to within any error ε > 0 and expected degree s = c log n ·nα0 ,
where α0 ≥ (1− 2α)α.

More specifically, sampling a subgraph of G according to D would result in a disconnected
graph with probability at least 1− 2/2n.

We note that a disconnected graph fails to be a good spectral sparsifier of a connected
graph, which is implicit in Theorem 11. Formally:

B Claim 12. Let G and G̃ be undirected graphs on n vertices with Laplacians L and L̃,
respectively. If G is connected and G̃ is disconnected then L̃ 6≈ε L for any ε > 0.

We give a proof of Claim 12 in the full version of the paper.

4.1 Moore-Like Graphs With a Given Girth
Toward proving Theorem 11, we will need, for every bounded-independence parameter k,
an infinite family of graphs satisfying certain properties. Recall that the girth of a graph G
is the length of the shortest cycle in G. We will need an infinite family of girth-g graphs
having large degree. Formally:

I Definition 13. Given γ > 0 and g : N → N, an infinite family of graphs
{Gi = (Vi = [ni], Ei)}i∈N is (g, γ)-Moorish if for every i ∈ N, Gi is connected, has girth
at least g(ni) and is di-regular for some di ≥ nγ/g(ni)

i + 1.

The problem of finding such families of graphs, or even proving their existence in some
regime of parameters, has been widely studied in extremal graph theory. A simple counting
argument ([20], see also [8]) shows that (g, γ)-Moorish families of graphs can only exist when
γ ≤ 2:

I Lemma 14 (the Moore bound, see, e.g., [8]). Every d-regular graph of girth g on n vertices
satisfies n ≥ 2 · ((d− 1)g/2 − 1)/(d− 2).

Still, no families with γ approaching 2 for arbitrary girths are known. The Ramanujan graphs
of Lubotzky, Phillips and Sarnak [38] were shown to obtain γ ≥ 4/3 by Biggs and Boshier [7].
Lazebnik, Ustimenko and Woldar [32] slightly improved upon [38] in the lower-order terms,
but more importantly for us, the family they construct consists of edge-transitive graphs.

5 We used the fact that for every (a, b) ∈ E, pab ← min {1, Rabs} = Rabs = R · s, which can be argued as
follows. When all effective resistances equal R, we have R = (n− 1)/|E| due to Theorem 6. Now, if G
has n · s edges or fewer, then it already achieves the desired sparsity so without loss of generality we
can assume that |E| > n · s. Hence, R · s < (n− 1)s/ns < 1. Also, the resulting graph should indeed be
a weighted one, however all its weights will be the same, 1/p.

ICALP 2020

39:12 Spectral Sparsification via Bounded-Independence Sampling

I Theorem 15 ([32]). For every prime power d and even integer g ≥ 6 there exists a d-regular
explicit simple, edge-transitive graph with n ≤ 2dg−b

g−3
4 c−4 vertices and girth g. In particular,

for every prime power d there exists a (g, γ = 4/3)-Moorish family of edge-transitive graphs,
where Im(g) = {6, 8, . . .}.

Intuitively, in an edge-transitive graph the local environment of every edge (i.e., the
vertices and edges adjacent to it) looks the same. More formally, an edge-transitive graph is
one in which any two edges are equivalent under some element of its automorphism group.
As the computation of the effective resistance is not affected by an automorphism, we can
conclude the following claim.

B Claim 16. Let G = (V,E) be an unweighted edge-transitive graph. Then, for every two
edges e = (a, b) and e′ = (a′, b′) in E it holds that Rab = Ra′b′ .

4.2 The Lower Bound Proof
We next prove our main result for this section, showing that Moorish edge-transitive graphs
cannot be sparsified via bounded-independence edge sampling when k is too small. Our
proof can be seen as an extension of an argument by Alon and Nussboim [4], who studied the
bounded independence relaxation of the usual Erdős-Rényi random graph model, where it is
only required that the distribution of any subset of k edges is independent. They provide
upper and lower bounds on the minimal k required to maintain properties that are satisfied
by a truly random graph, and in particular they show that there exists a pairwise independent
distribution D over edges with marginals 1/2 such that a random graph sampled from D is
disconnected almost surely.

As a warm-up, we extend the argument in [4] and show that 3-wise independence also
does not suffice, even for the special case of sparsifying the complete graph.

I Lemma 17. Let G = (V = [n], E) be the complete graph. There exists a distribution
D ∼ {0, 1}|E| that is 3-wise independent with marginals 1/4 such that sampling a subgraph
of G according to D would result in a disconnected graph with probability at least 1− 2/2n.

Proof. We first set some notations. Let G(A, p) be the usual Erdős-Rényi model, in which
each edge between two vertices in A is included in the graph with probability p. Let B(A)
be the natural distribution over complete bipartite graphs: Choose a partition A = A1]A2
uniformly at random and include all edges between A1 and A2.

We construct D ∼ {0, 1}|E| as follows. Choose a partition [n] = V0] V1 uniformly at
random. On V0, draw a graph from G(V0, 1/2) and on V1, draw a graph from B(V1). Clearly,
sampling G′ according to D would result in a disconnected graph unless V0 = ∅ or V1 = ∅,
which occurs with probability at most 2/2n, so what is left to show is that D is 3-wise
independent with marginals 1/4.

This is equivalent to saying that for every T ⊆ E with |T | ≤ 3, Pr[∀e ∈ T, D(e) = 1] =
1/4|T |. Let us first consider the case |T | = 1, i.e. T = e for a single edge e ∈ E. Notice that
D(e) = 1 only if both endpoints of e appear in the same side of the partition V0] V1, which
occurs with probability 1/2, and given that this occurs, e appears in G(V0, 1/2) or B(V1)
with probability 1/2. Thus, Pr[D(e) = 1] = 1/4, as desired.

Next, fix a set T ⊆ E of t ∈ {2, 3} edges and note that we can assume without loss of
generality that these edges form either a path or a triangle (for t = 3), as disjoint paths will
occur independently. If T forms a path, then similarly,

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:13

Pr[T ∈ D−1(1)] = Pr[V (T) ⊆ V0] · 2−t + Pr[V (T) ⊆ V1] · 2−t = 2−(t+1) · 2−t + 2−(t+1) · 2−t = 4−t,

which is what we want. If T forms a triangle, then using the fact that a bipartite graph is
triangle-free,

Pr[T ∈ D−1(1)] = Pr[V (T) ⊆ V0] · 1
8 = 4−3,

concluding the proof. J

The above lemma shows that one cannot sparsify the complete graph via (k = 3)-wise
independent edge sampling. For a general k, we indeed need to resort to Moore-like graphs.

Proof of Theorem 11. Recalling that k = b4/3αc, let g = k + 1 or g = k + 2, whichever is
even. Set d0 to be the first prime power larger than

1 + max
{

262/α8
, (2c)6/α2

}
.

By Theorem 15, for every prime power d ≥ d0 there exists n = n(g, d) and a girth-g,
edge-transitive, d-regular graph graph G = (V = [n], E) (note that by our assumption that
α ≤ 4/15, indeed g ≥ 6). From here onwards, fix such a d and n = n(g, d), observing that
{n(g, d)}d≥d0

is infinite.
Choose α0 so that c log n · nα0 = d/2 so that marginals 1/2 correspond to expected

sparsity s. Using the fact that d ≥ n4/3g + 1, it can be verified that α0 ≥ (1− 2α) · α. Using
the fact that d ≥ n4/3g + 1,

α0 ≥
4
3g −

log(2c log n)
log n ≥ 4

4
α + 6

− log(2c log n)
log n ≥

(
1− 3α

2

)
α− log(2c log n)

log n .

As n ≤ (d− 1)
3g
4 and n ≥ 2 · (d−1)

g
2−1

d−2 ≥ (d− 1)
g
2−1, the latter being the Moore bound, we

have

log(2c log n)
log n ≤

log(2c) + log 3g
4 + log log(d− 1)(

g
2 − 1

)
log(d− 1)

≤ log(2c)
log(d− 1) + 2 · log log(d− 1)

log(d− 1) ≤ α2

2 ,

where we used log(2c)
log(d−1) ≤

α2

6 , log 3g
4 ≤

g
2 − 1 and log log(d−1)

log(d−1) ≤ α2

6 . Thus, overall, α0 ≥
(1− 2α)α.

We now give a k-wise independent distribution with marginals 1/2 that fails to yield a
good spectral sparsifier for G, namely it will be disconnected with high probability.

To do so, construct D ∼ {0, 1}|E| as follows. Choose a partition [n] = V0]V1 uniformly at
random. Each random partition gives rise to an element D ∼ D in which for e = (u, v) ∈ E,
D(e) = 1 (i.e., the edge e is chosen to survive) if and only if either u, v ∈ V0 or u, v ∈ V1.

B Claim 18. The distribution D is k-wise independent with marginals 1/2.

Proof. As in the proof of Lemma 17, it suffices to show that for every set T ⊆ E of t ≤ k

edges of G we have Pr[T ⊆ D−1(1)] = 2−t. First, similar to Lemma 17, note that we can
assume without loss of generality that T is a connected component, since whenever T1 and T2
are over disjoint sets of vertices, Pr[T1 ∪ T2 ⊆ D−1(1)] = Pr[T1 ⊆ D−1(1)] · Pr[T2 ⊆ D−1(1)].
As the girth of G is larger than t, it must be the case that A is a tree.

In such a case, where T contains no cycles, Pr[T ∈ D] is equal to the probability that all
t+ 1 vertices in T belong to the same partition, which is 2 · 2−(t+1) = 2−t. C

ICALP 2020

39:14 Spectral Sparsification via Bounded-Independence Sampling

By the way D was constructed, it is clear that sampling G′ according to D would result
in a disconnected graph unless V0 = ∅ or V1 = ∅, which occurs with probability 1− 2/2n,
meaning that G′ almost surely does not ε-approximate G, for any ε. J

We again stress that by the work in Section 3, we know that any k-wise independent
distribution over the edges of G with marginals s · (n− 1)/|E| for k = d2/αe would produce
an ε-spectral sparsifier with expected degree O(s) with high constant probability.

The above also implies that any improvement upon Moorish families of edge-transitive
graphs will improve our lower bound. Assuming the existence of a (g, γ = 2)-Moorish family
of edge-transitive graphs we are able to show that the result of Section 3 is essentially tight.

5 Spectral Sparsifiers in Deterministic Small Space

In this section we show that Sparsify can be derandomized space efficiently.

I Theorem 19 (deterministic small-space sparsification). Let G be an undirected, connected,
weighted graph on n vertices with Laplacian L. There is a deterministic algorithm that, when
given G, an even integer k and 0 < ε < 1 outputs a weighted graph H with Laplacian L̃

satisfying:
1. L̃ ≈ε L, and,
2. H has O

(
logn
ε2 n1+2/k

)
edges.

The algorithm runs in space O(k log(N ·w)+log(N ·w) log log(N ·w)), where w = wmax/wmin
is the ratio of the maximum and minimum edge weights in G and N is the bitlength of the
input.

We use the standard model of space-bounded computation. The machine has a read-only
input tape, a constant number of read/write work tapes, and a write-only output tape. We
say the machine runs in space s if throughout the computation, it only uses s total tape cells
on the work tapes. The machine may write outputs to the output tape that are larger than s
(in fact as large as 2O(s)) but the output tape is write-only. We use the following fact about
the composition of space-bounded algorithms.

I Lemma 20. Let f1 and f2 be functions that can be computed in space s1(n), s2(n) ≥ log n,
respectively, and f2 has output of length `1(n) on inputs of size n. Then f2 ◦ f1 can be
computed in space

O(s2(`1(n)) + s1(n)).

The natural way to derandomize Sparsify would be to iterate over all elements of the
corresponding k-wise independent sample space. More formally, given {pab}(a,b)∈E , let Iab
be the indicator random variable that is 1 if and only if edge (a, b) is chosen. If the Iab’s
are k-wise independent so that Pr[Iab = 1] = pab (or some good approximation of pab), we
are guaranteed to succeed with nonzero probability. Hence, at least one assignment to the
Iab’s taken from the k-wise independent is guaranteed to work. From Section 2.4 we know
the sample space is small enough that we can afford to enumerate over all elements in it.
Towards proving Theorem 19, there are still three issues to consider:
1. Approximating the effective resistances Rab for every (a, b) ∈ E, space efficiently. For-

tunately, we can do this with high accuracy using the result of Murtagh, Reingold,
Sidford, and Vadhan [41] for approximating the pseudoinverse of a Laplacian, which we
state shortly.

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:15

2. Verifying that a given set of random choices in Sparsify provides a sparse and accurate
approximation to the input graph. The sparsity requirement is easy to check. To check
that L̃ ≈ε L, we devise a verification algorithm that uses the algorithm of [41]. The
details are given in Lemma 25.

3. The Laplacian solver of [41] only works for multigraphs (graphs with integer edge weights)
and we want an algorithm that works for general weighted graphs. To fix this, we extend
the work of [41] by giving a simple reduction from the weighted case to the multigraph
case. The details can be found in the full version of the paper.

5.1 Algorithm for Approximating Effective Resistances
A key ingredient in our deterministic sparsification algorithm is a deterministic nearly
logarithmic space algorithm for approximating the pseudoinverse of an undirected Laplacian.

I Theorem 21 ([41]). Given an undirected, connected multigraph G with Laplacian L = D−A
and ε > 0, there is a deterministic algorithm that computes a symmetric PSD matrix L̃+

such that L̃+ ≈ε L+, and uses space O(logN · log log N
ε), where N is the bitlength of the

input (as a list of edges).

Note that the space complexity above assumes that the multigraph is given as a list of edges.
If we instead think of parallel edges as integer edge weights, then N should be replaced by
N · wmax, where wmax is the maximum edge weight in G since an edge of weight w gets
repeated w times in the edge-list representation. To work with general weighted graphs, we
extend the result of [41].

I Lemma 22 (small space laplacian solver for weighted graphs). Given an undirected connected
weighted graph G = (V,E,w) with Laplacian L = D − A, and 0 < ε < 1, there exists a
deterministic algorithm that computes a symmetric PSD matrix L̃+ such that L̃+ ≈ε L+, and
uses space O(log(N ·w) log log(N ·w/ε)), where w = wmax/wmin is the ratio of the maximum
and minimum edge weights in G and N is the bitlength of the input.

A proof of Lemma 22 can be found in the full version. Lemma 22 immediately gives an
algorithm for computing strong multiplicative approximations to effective resistances.

I Lemma 23. Let G = (V,E,w) be an undirected, connected, weighted graph and let Rab be
the effective resistance of (a, b) ∈ E. There is an algorithm that computes a real number R̃ab
such that

(1− ε) ·Rab ≤ R̃ab ≤ (1 + ε) ·Rab

and uses space O(log(N ·w) · log log N ·w
ε), where w = wmax/wmin is the ratio of the maximum

and minimum edge weights in G and N is the bitlength of the input.

See the full version for a proof of Lemma 23.
Next we show how we test whether two matrices spectrally approximate each other. We

will need the following claim about the space complexity of matrix multiplication.

B Claim 24. Given n×n matrices M1, . . . ,Mk, their product M1 · . . . ·Mk can be computed
using O(logN · log k) space, where N is the bitlength of (M1, . . . ,Mk).

The proof of Claim 24 uses the natural divide and conquer algorithm and the fact that two
matrices can be multiplied in logarithmic space. A detailed proof can be found in [41].

ICALP 2020

39:16 Spectral Sparsification via Bounded-Independence Sampling

5.2 Testing for Spectral Proximity
In this section we give our deterministic, small-space procedure for verifying that two
Laplacians spectrally approximate one another.

I Lemma 25. There exists a deterministic algorithm that, given undirected, connected,
weighted graphs G̃ and G with Laplacians L̃, L, and ε, α > 0, outputs YES or NO such that
1. If L̃ ≈ε L, then the algorithm outputs YES, and,
2. If L̃ 6≈ε·√1+α L then the algorithm outputs NO.

The algorithm uses space O(log(N · w) · log log N ·w
αε + log(N · w) · log 1

α), where w =
wmax/wmin is the ratio of the maximum and minimum edge weights in G and G̃ and N is
the bitlength of the input.

The high level idea for the proof is that testing whether two matrices L and L̃ spectrally
approximate each other can be reduced to approximating the spectral radius of a particular
matrix

M =
(

(L̃− L)L+

ε

)2

.

In fact, it will be sufficient to check whether the trace of a sufficiently high power of M is
below a certain threshold to deduce whether the spectral radius of M does not exceed 1. For
intuition, replace the matrices with scalars m, `, and ˜̀where

m = (˜̀− `)2

(ε · `)2 .

Then, m ≤ 1 implies
√
m ≤ 1, which implies |˜̀− `| ≤ ε · ` – the kind of relative closeness we

want between the matrices L̃ and L when aiming for spectral approximation. The proof of
Lemma 25 can be found in the full version.

5.3 Completing the Proof of Theorem 19
We can now prove the main result of this section. As noted above, the algorithm proceeds
by first approximating the sampling probabilities and then sparsifying G where the surviving
edges are chosen from a small k-wise independent sample space whose marginals are set
properly. Each potential sparsifier is checked using the algorithm given in Section 5.2.

Proof of Theorem 19. Set δ = 1
4 , ε̂ = 4ε

5 and

s = 18e log n
ε̂2 ·

(n
δ

)2/k
,

for α soon to be determined. These parameters are chosen in accordance with the parameters
required for Sparsify to succeed with probability 1/2 and approximation error ε̂ (see Lemma 10).
Set α′ = α/(4 +α). We compute approximate effective resistances R̃ab for each edge (a, b) in
G using Lemma 23, so that

(1− α′)Rab ≤ R̃ab ≤ (1 + α′)Rab.

This takes O(log(N · w) log log((N · w)/α)) space. Then, we compute approximate sampling
probabilities as follows:

p̃ab = α′ ·
⌊

1
α′
·min

{
1, wab · R̃ab · s/(1− α′)

}⌋

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:17

That is, we truncate the required (approximate) sampling probabilities to log 1
α′ bits of preci-

sion. In particular, denoting the precise sampling probabilities by p?ab = min {1, wab ·Rab · s},
we have

min{1, wab · R̃ab · s/(1− α′)} − p∗ab ≤ wab · s ·Rab ·
(

1 + α′

1− α′ − 1
)

= p∗ab ·
2α′

1− α′ ≤ α/2

Furthermore, we have an additional error of α′ due to the truncation so |p̃ab − p?ab| ≤
α/2 + α′ ≤ α.

We want to set α so that p̃ab is a multiplicative approximation to p∗ab for all (a, b) ∈ E,
which requires α to be smaller than min(a,b)∈E){p∗ab}.

B Claim 26. Let dmax be the maximum weighted degree over all vertices in G. Then, for all
(a, b) ∈ E, p?ab ≥ 1/dmax.

Proof. Since s > 1 and wab ≥ 1 (all edge weights are positive integers) we have p?ab ≥ Rab.
Let λmin(C) denote the minimal nonzero eigenvalue of a matrix C. To lower bound Rab, we
use the variational characterization of eigenvalues and the definition of effective resistance to
write

Rab = (ea − eb)>L+(ea − eb) ≥ λmin(L+) · ‖ea − eb‖2

= 2
‖L‖

≥ 1
dmax

.

Note that we can indeed consider the minimal nonzero eigenvalue of L+ because ea − eb is
perpendicular to the one-dimensional kernel of L (the all-ones vector). C

In light of the above, we can set α so that 1/α = 2 · dmax = O(N · w) and get a 1/2-
multiplicative approximation to the sampling probabilities.

Now, consider the k-wise independent sample space D ⊆ {0, 1}|E| guaranteed to us by
Lemma 8, substituting t = dlog(1/α′)e. By Lemma 8, each element of D can be sampled
using

O(k ·max{log(1/α′), log |E|}) = O(k · log(N · w))

space. For each element of D, construct the corresponding sparse graph. Note that the
space used to cycle through each element can be reused. Lemma 10 tells us that at least
1− 2δ = 1/2 of the Laplacians of the resulting graphs ε̂-approximate the Laplacian of G and
have

O

(
1 + 1/2
1− 1/2 ·

1
δ1+2/k ·

log n
ε̂2 · n1+ 2

k

)
= O

(
log n
ε2 · n1+ 2

k

)
edges. For each of these graphs, we run the verification algorithm with accuracy para-
meter 9/16, which is guaranteed to find a graph with the above sparsity whose Laplacian
approximates the Laplacian of G with error

ε̂ ·
√

1 + 9
16 = 4ε

5 ·
√

25
16 = ε

in space

O

(
log(N · w) log log 16N · w

9ε̂ + log(N · w) log 16
9

)
= O

(
log(N · w) log log N · w

ε

)
.

ICALP 2020

39:18 Spectral Sparsification via Bounded-Independence Sampling

Again, the space used for the verification process can be reused. Adding up the space
complexities gives us a total of

O

(
k log(N · w) + log(N · w) log log N · w

ε

)
space. Note that the final result is vacuous when ε ≤ 1/n so we can without loss of generality
assume that ε ≥ 1/n. This gives a total space complexity of O(k log(N · w) + log(N ·
w) log log(N · w)). J

References
1 AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles, Aaron Sidford, and

Salil Vadhan. High-precision estimation of random walks in small space. arXiv preprint, 2019.
arXiv:1912.04524.

2 Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret
minimization beyond matrix multiplicative updates. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC 2015), pages 237–245. ACM, 2015.

3 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of algorithms, 7(4):567–583, 1986.

4 Noga Alon and Asaf Nussboim. k-wise independent random graphs. In Proceedings of the 49th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pages 813–822.
IEEE, 2008.

5 Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM
Review, 56(2):315–334, 2014.

6 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In
STOC, volume 96, pages 47–55. Citeseer, 1996.

7 Norman L. Biggs and Alan G. Boshier. Note on the girth of Ramanujan graphs. Journal of
Combinatorial Theory, Series B, 49(2):190–194, 1990.

8 Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media, 2013.
9 Richard Y. Chen, Alex Gittens, and Joel A. Tropp. The masked sample covariance estimator:

An analysis using matrix concentration inequalities. Information and Inference: A Journal of
the IMA, 1(1):2–20, 2012.

10 L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal of
Computer and System Sciences, 39(2):205–219, 1989.

11 Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-
Hua Teng. Electrical flows, Laplacian systems, and faster approximation of maximum flow
in undirected graphs. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing (STOC 2011), pages 273–282. ACM, 2011.

12 Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing
Wang. Graph sparsification, spectral sketches, and faster resistance computation, via short
cycle decompositions. In Proceedings of the 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2018), pages 361–372. IEEE, 2018.

13 Michael B. Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B.
Rao, and Aaron Sidford. Solving directed Laplacian systems in nearly-linear time through
sparse LU factorizations. In Proceedings of the 59th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2018), pages 898–909. IEEE, 2018.

14 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron
Sidford, and Adrian Vladu. Almost-linear-time algorithms for Markov chains and new spectral
primitives for directed graphs. In Proceedings of the 49th Annual ACM Symposium on Theory
of Computing (STOC 2017), pages 410–419. ACM, 2017.

http://arxiv.org/abs/1912.04524

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:19

15 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian
Vladu. Faster algorithms for computing the stationary distribution, simulating random walks,
and more. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2016), pages 583–592. IEEE, 2016.

16 Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B.
Rao, and Shen Chen Xu. Solving SDD linear systems in nearly m log1/2 n time. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pages 343–352.
ACM, 2014.

17 Michael B Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in Õ(m10/7 log W) time. In Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 752–771.
SIAM, 2017.

18 Dean Doron, François Le Gall, and Amnon Ta-Shma. Probabilistic logarithmic-space algorithms
for Laplacian solvers. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2017), pages 41:1–41:20. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

19 Dean Doron, Jack Murtagh, Salil Vadhan, and David Zuckerman. Spectral sparsification
via bounded-independence sampling. Electronic Colloquium on Computational Complexity
(ECCC), 2020.

20 Paul Erdős and Horst Sachs. Reguläre graphen gegebener taillenweite mit minimaler knotenzahl.
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12(251-257):22, 1963.

21 Geoffrey Exoo and Robert Jajcay. Dynamic cage survey. Electron. J. Combin, 15(16):4, 2008.
22 Ronald M. Foster. The average impedance of an electrical network. Contributions to Applied

Mechanics (Reissner Anniversary Volume), pages 333–340, 1949.
23 A. Joffe. On a set of almost deterministic k-independent random variables. The Annals of

Probability, 2(1):161–162, 1974.
24 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-

time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), pages 217–226. SIAM, 2014.

25 Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning trees. In
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2019), pages 13–21. IEEE, 2009.

26 Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,
combinatorial algorithm for solving SDD systems in nearly-linear time. In Proceedings of the
45th Annual ACM Symposium on Theory of Computing (STOC 2013), pages 911–920. ACM,
2013.

27 Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for SDD linear
systems. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2011), pages 590–598. IEEE, 2011.

28 Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
linear systems. SIAM Journal on Computing, 43(1):337–354, 2014.

29 Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and
multilevel solvers for problems in computer vision and image processing. In International
Symposium on Visual Computing, pages 1067–1078. Springer, 2009.

30 Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified Cholesky and multigrid solvers for connection Laplacians. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC 2016), pages 842–850. ACM, 2016.

31 Rasmus Kyng and Sushant Sachdeva. Approximate Gaussian elimination for Laplacians-fast,
sparse, and simple. In Proceedings of the 57th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2016), pages 573–582. IEEE, 2016.

ICALP 2020

39:20 Spectral Sparsification via Bounded-Independence Sampling

32 Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. A new series of dense graphs of
high girth. Bulletin of the American mathematical society, 32(1):73–79, 1995.

33 Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A new approach to computing maximum
flows using electrical flows. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing (STOC 2013), pages 755–764. ACM, 2013.

34 Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2013), pages 147–156. IEEE, 2013.

35 Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear time.
In Proceedings of the 56th IEEE Annual Symposium on Foundations of Computer Science
(FOCS 2015), pages 250–269. IEEE, 2015.

36 Yin Tat Lee and He Sun. An SDP-based algorithm for linear-sized spectral sparsification.
In Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017),
pages 678–687. ACM, 2017.

37 Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. arXiv
preprint, 2019. arXiv:1910.14276.

38 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

39 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986.

40 Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of random
spanning trees and the effective resistance metric. In Proceedings of the 26th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2014), pages 2019–2036. SIAM, 2014.

41 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. Derandomization beyond
connectivity: Undirected Laplacian systems in nearly logarithmic space. In Proceedings of
the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages
801–812. IEEE, 2017.

42 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. Deterministic approxima-
tion of random walks in small space. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), pages 42:1–42:22.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

43 Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating the exponential,
the Lanczos method and an Õ(m)-time spectral algorithm for balanced separator. In Proceedings
of the 44th Annual ACM Symposium on Theory of Computing (STOC 2012), pages 1141–1160.
ACM, 2012.

44 Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear systems.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014),
pages 333–342. ACM, 2014.

45 Robert Qiu and Michael Wicks. Cognitive networked sensing and big data. Springer, 2014.
46 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.
47 Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Approximation,

Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 436–447.
Springer, 2005.

48 Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through
geometric functional analysis. Journal of the ACM (JACM), 54(4):21, 2007.

49 Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation.
In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC 2018),
pages 214–227. ACM, 2018.

50 Daniel A. Spielman. Yale Applied Mathematics 561/Computer Science 662, Lecture Notes:
Spectral Graph Theory, November 2015. URL: http://www.cs.yale.edu/homes/spielman/
561/lect17-15.pdf.

http://arxiv.org/abs/1910.14276
http://www.cs.yale.edu/homes/spielman/561/lect17-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect17-15.pdf

D. Doron, J. Murtagh, S. Vadhan, and D. Zuckerman 39:21

51 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011.

52 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC 2004), pages 81–90, 2004.

53 Anastasios Zouzias. A matrix hyperbolic cosine algorithm and applications. In Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2012), pages 846–858.
Springer, 2012.

ICALP 2020

	Introduction
	Background
	Our Main Result
	Techniques
	Lower Bounds for Bounded-Independence Sampling
	Open Problems

	Preliminaries
	PSD Matrices and Spectral Approximation
	The Moore-Penrose Pseudoinverse
	The Graph Laplacian and Effective Resistance
	Bounded-Independence Sampling

	Sparsification via Bounded-Independence Sampling
	Sparsification With Exact Effective Resistances
	Sparsification With Approximate Effective Resistances

	Lower Bounds for Bounded-Independence Sampling
	Moore-Like Graphs With a Given Girth
	The Lower Bound Proof

	Spectral Sparsifiers in Deterministic Small Space
	Algorithm for Approximating Effective Resistances
	Testing for Spectral Proximity
	Completing the Proof of Theorem 19

