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ABSTRACT CCS CONCEPTS

This paper shows several connections between data structure prob-
lems and cryptography against preprocessing attacks. Our results
span data structure upper bounds, cryptographic applications, and
data structure lower bounds, as summarized next.

First, we apply Fiat—Naor inversion, a technique with crypto-
graphic origins, to obtain a data structure upper bound. In particular,
our technique yields a suite of algorithms with space S and (online)
time T for a preprocessing version of the N-input 3SUM problem
where S3-T = O(N?®). This disproves a strong conjecture (Goldstein
et al., WADS 2017) that there is no data structure that solves this
problem for S = N% % and T = N9 for any constant § > 0.

Secondly, we show equivalence between lower bounds for a
broad class of (static) data structure problems and one-way func-
tions in the random oracle model that resist a very strong form
of preprocessing attack. Concretely, given a random function
F : [N] — [N] (accessed as an oracle) we show how to compile
it into a function GF : [N?] — [N?] which resists S-bit prepro-
cessing attacks that run in query time T where ST = O(N?7¢)
(assuming a corresponding data structure lower bound on 3SUM).
In contrast, a classical result of Hellman tells us that F itself can
be more easily inverted, say with N 2/3 pit preprocessing in N 2/3
time. We also show that much stronger lower bounds follow from
the hardness of kSUM. Our results can be equivalently interpreted
as security against adversaries that are very non-uniform, or have
large auxiliary input, or as security in the face of a powerfully
backdoored random oracle.

Thirdly, we give non-adaptive lower bounds for 3SUM which
match the best known lower bounds for static data structure prob-
lems. Moreover, we show that our lower bound generalizes to a
range of geometric problems, such as three points on a line, polygon
containment, and others.
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1 INTRODUCTION

Cryptography and data structures have long enjoyed a productive
relationship [12, 17, 19, 39, 50, 53, 58, 59, 61, 62]: indeed, the rela-
tionship has been referred to as a “match made in heaven” [60].
In this paper, we initiate the study of a new connection between
the two fields, which allows us to construct novel cryptographic
objects starting from data structure lower bounds, and vice versa.
Our results are three-fold. Our first result is a new upper bound
for a data structure version of the classical 33UM problem (called
3SUM-Indexing) using Fiat-Naor inversion [39], a technique with
cryptographic origins. This result refutes a strong conjecture due
to Goldstein, Kopelowitz, Lewenstein and Porat [46]. In our sec-
ond and main result, we turn this connection around, and show
a framework for constructing one-way functions in the random
oracle model whose security bypasses known time/space tradeoffs,
relying on any of a broad spectrum of (conjectured) data structure
lower bounds (including for 3SUM-Indexing). As a third result, we
show new lower bounds for a variety of data structure problems
(including for 3SUM-Indexing) which match the state of the art in
the field of static data structure lower bounds.

Next, we describe our results, focusing on the important special
case of 3SUM-Indexing; all of our results and methods extend to the
more general kSUM-Indexing problem where pairwise sums are
replaced with (k — 1)-wise sums for an arbitrary constant integer
k independent of the input length. Section 1.1 gives background on
3SUM-Indexing, then Section 1.2 discusses our contributions.
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1.1 3SUM and 3SUM-Indexing

One of the many equivalent formulations of the 3SUM problem is
the following: given a set A of N integers, output ay, az, a3 € A such
that a; + a = a3. There is an easy O(N?) time deterministic algo-
rithm for 3SUM. Conversely, the popular 3SUM conjecture states
that there are no sub-quadratic algorithms for this problem [37, 41].

CoNJECTURE 1.1 (THE “MODERN 3SUM CONJECTURE”). 3SUM
cannot be solved in time O(N?~%) for any constant § > 0.

Conjecture 1.1 has been helpful for understanding the precise
hardness of many geometric problems [3, 5, 8-10, 14, 18, 26, 31, 37,
38, 41, 73]. Furthermore, starting with the works of [67, 76], the
3SUM conjecture has also been used for conditional lower bounds
for many combinatorial [1, 45, 55] and string search problems [2, 6,
7, 20, 25, 55].

Our main results relate to a preprocessing variant of 3SUM
known as 3SUM-Indexing, which was first defined by Demaine
and Vadhan [32] in an unpublished note and then by Goldstein,
Kopelowitz, Lewenstein and Porat [46]. In 3SUM-Indexing, there
is an offline phase where a computationally unbounded algorithm
receives A = {ay,...,an} and produces a data structure with S
words of w bits each; and an online phase which is given the target
b and needs to find a pair (a;, aj) such that a; + aj = b by probing
only T memory cells of the data structure (i.e., taking “query time”
T). The online phase does not receive the set A directly, and there
is no bound on the computational complexity of the online phase,
only the number of queries it makes.

There are two simple algorithms that solve 3SUM-Indexing. The
first stores a sorted version of A as the data structure (so S = N) and
in the online phase, solves 3SUM-Indexing in T = O(N) time using
the standard two-finger algorithm for 3SUM. The second stores all
pairwise sums of A, sorted, as the data structure (so S = O(N?))
and in the online phase, looks up the target b in T = O(1) time.!
There were no other algorithms known prior to this work. This led
[32, 46] to formulate the following three conjectures.

CoNJECTURE 1.2 ([46]). If there exists an algoritﬁm which solves
3SUM-Indexing with preprocessing space S and T = O(1) probes then
S = Q(N?).

CoNJECTURE 1.3 ([32]). If there exists an algorithm which solves
3SUM-Indexing with preprocessing space S and T probes, then ST =
Q(N?).

CONJECTURE 1.4 ([46]). If there exists an algorithm which solves
3SUM-Indexing with T = O(N'~%) probes for some § > 0 then
S =Q(N?).

These conjectures are in ascending order of strength:

Conjecture 1.4 = Conjecture 1.3 = Conjecture 1.2.

In terms of lower bounds, Demaine and Vadhan [32] showed
that any 1-probe data structure for 3SUM-Indexing requires space
S =Q(N?). They leave the case of T > 1 open. Goldstein et al. [46]
established connections between Conjectures 1.2 and 1.4 and the
hardness of Set Disjointness, Set Intersection, Histogram Indexing
and Forbidden Pattern Document Retrieval.

!The notation O( f(N)) suppresses poly-logarithmic factors in f(N).
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1.2 Our Results

Our contributions are three-fold. First, we show better algorithms
for 3SUM-Indexing, refuting Conjecture 1.4. Our construction relies
on combining the classical Fiat-Naor inversion algorithm, originally
designed for cryptographic applications, with hashing. Secondly,
we improve the lower bound of [32] to arbitrary T. Moreover, we
generalize this lower bound to a range of geometric problems, such
as 3 points on a line, polygon containment, and others. (Due to space
constraints, this generalization is presented only in the full version
[48] of this paper.) As we argue later, any asymptotic improvement
to our lower bound will result in a major breakthrough in static
data structure lower bounds.

Finally, we show how to use the conjectured hardness of
3SUM-Indexing for a new cryptographic application: namely, de-
signing cryptographic functions that remain secure with massive
amounts of preprocessing. We show how to construct one-way
functions in this model assuming the hardness of a natural average-
case variant of 3SUM-Indexing. Furthermore, we prove that this
construction generalizes to an explicit equivalence between certain
types of hard data structure problems and OWFs in this preprocess-
ing model. This setting can also be interpreted as security against
backdoored random oracles, a problem of grave concern in the
modern world.

We describe these results in more detail below.

1.2.1  Upper Bound for 3SUM-Indexing.

THEOREM 1.5. For every 0 < § < 1, there is an adaptive data

structure for 3SUM-Indexing with space S = O(N?~%) and query
time T = O(N39).

In particular, Theorem 1.5 implies that by setting § = 0.1, we get
a data structure that solves 3SUM-Indexing in space S = O(N'9)
and T = O(N°3) probes, and thus refutes Conjecture 1.4.

In a nutshell, the upper bound starts by considering the function
f(i,j) = a; + aj. This function has a domain of size N? but a
potentially much larger range. In a preprocessing step, we design a
hashing procedure to convert f into a function g with a range of
size O(N?) as well, such that inverting g lets us invert f. Once we
have such a function, we use Fiat and Naor [39]’s general space-
time tradeof for inverting functions, which gives non-trivial data
structures for function inversion as long as function evaluation
can be done efficiently. Due to our definitions of the functions
f and g, we can efficiently compute them at every input, which
leads to efficient inversion of f, and, therefore, an efficient solution
to 3SUM-Indexing. For more details, see Section 3. We note that
prior to this work, the result of Fiat and Naor [39] was recently
used by Corrigan-Gibbs and Kogan [29] for other algorithmic and
complexity applications. In a concurrent work, Kopelowitz and
Porat [56] obtain a similar upper bound for 3SUM-Indexing.

1.2.2  Lower Bound for 3SUM-Indexing and Beyond. We show that
any algorithm for 3SUM-Indexing that uses a small number of
probes requires large space, as expressed formally in Theorem 1.6.

THEOREM 1.6. For every non-adaptive algorithm that uses space
S and query time T and solves 3SUM-Indexing, it holds that S =
5(N1+1/T).
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The lower bound gives us meaningful (super-linear) space
bounds for nearly logarithmic T. Showing super-linear space
bounds for static data structures for T = w(log N) probes is a major
open question with significant implications [36, 57, 66, 68, 72].

The standard way to prove super-linear space lower bounds for
T = O(log N) is the so-called cell-sampling technique. Applying
this technique amounts to showing that one can recover a fraction
of the input by storing a subset of data structure cells and then
using an incompressibility argument. This technique applies to data
structure problems which have the property that one can recover
some fraction of the input given the answers to any sufficiently
large subset of queries.

Unfortunately, the 3SUM-Indexing problem does not have this
property and the cell-sampling technique does not readily apply.
Instead we use a different incompressibility argument, closer to the
one introduced by Gennaro and Trevisan in [43] and later developed
in [30, 35]. We argue that given a sufficiently large random subset
of cells, with high probability over a random choice of input, it is
possible to recover a constant fraction of the input. It is crucial for
our proof that the input is chosen at random after the subset of
data structure cells, yielding a lower bound only for non-adaptive
algorithms.

Next, we show how to extend our lower bound to other data
structure problems. For this, we define 3SUM-Indexing-hardness,
the data structure analogue of 3SUM-hardness. In a nutshell, a data
structure problem is 3SUM-Indexing-hard if there exists an efficient
data structure reduction from 3SUM-Indexing to it. We then show
how to adapt known reductions from 3SUM to many problems
in computational geometry and obtain efficient reductions from
3SUM-Indexing to their data structure counterparts. This in turns
implies that the lower bound in Theorem 1.6 carries over to these
problems as well.

1.2.3 Cryptography against Massive Preprocessing Attacks. In a
seminal 1980 paper, Hellman [50] initiated the study of algorithms
for inverting (cryptographic) functions with preprocessing. In par-
ticular, given a function F : [N] — [N] (accessed as an oracle), an
adversary can run in unbounded time and produce a data struc-
ture of S bits.? Later, given access to this data structure and (a
possibly uniformly random) y € [N] as input, the goal of the ad-
versary is to spend T units of time and invert y, namely output
an x € [N] such that F(x) = y. It is easy to see that bijective
functions F can be inverted at all points y with space S and time
T where ST = O(N). Hellman showed that a random function F
can be inverted in space S and time T where S?T = O(N?), giving
in particular a solution with S =T = O(N?/3). Fiat and Naor [39]
provided a rigorous analysis of Hellman’s tradeoff and additionally
showed that a worst-case function can be inverted on a worst-case
input in space S and time T where S3T = O(N3), giving in par-
ticular a solution with S = T = O(N3/4). A series of follow-up
works [4, 15, 30] studied time-space tradeoffs for inverting one-way
permutations, one-way functions and pseudorandom generators. In
terms of lower bounds, Yao [78] showed that for random functions
(and permutations) ST = Q(N). Sharper lower bounds, which also
quantify over the success probability and work for other primitives

2The unbounded preprocessing time is amortized over a large number of function
inversions. Furthermore, typically the preprocessing time is O (N).
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such as pseudorandom generators and hash functions, are known
from recent work [4, 27, 28, 35, 42, 74].

Hellman’s method and followups have been extensively used in
practical cryptanalysis, for example in the form of so-called “rain-
bow tables” [65]. With the increase in storage and available com-
puting power (especially to large organizations and nation states),
even functions that have no inherent weakness could succumb
to preprocessing attacks. In particular, when massive amounts of
(possibly distributed) storage is at the adversary’s disposal, S could
be Q(N), and the preprocessed string could simply be the function
table of the inverse function F~! which allows the adversary to
invert F by making a single access to the S bits of preprocessed
string.

One way out of this scenario is to re-design a new function
F with a larger domain. This is a time-consuming and complex
process [63, 64], taking several years, and is fraught with the danger
that the new function, if it does not undergo sufficient cryptanalysis,
has inherent weaknesses, taking us out of the frying pan and into
the fire.

We consider an alternative method that immunizes the function
F against large amounts of preprocessing. In particular, we consider
an adversary that can utilize S > N bits of preprocessed advice,
but can only access this advice by making a limited number of
queries, in particular T < N. This restriction is reasonable when
accessing the adversary’s storage is expensive, for example when
the storage consists of slow but massive memory, or when the
storage is distributed across the internet, or when the adversary
fields a stream of inversion requests. (We note that while we restrict
the number of queries, we do not place any restrictions on the
runtime.)

In particular, we seek to design an immunizing compiler that
uses oracle access to F to compute a function G(x) = GF'(x). We
want G to remain secure (for example, hard to invert) even against
an adversary that can make T queries to a preprocessed string of
length S bits. Both the preprocessing and the queries can depend
on the design of the compiler G. Let G : [N’] — [N’]. To prevent
the inverse table attack (mentioned above), we require that N’ > S.

From Data Structure Lower Bounds to Immunizing Compilers. We
show how to use data structure lower bounds to construct immu-
nizing compilers. We illustrate such a compiler here assuming the
hardness of the 3SUM-Indexing problem. The compiler proceeds
in two steps.

(1) First, given oracle access to a random function F : [2N] —
[2N], construct a new (random) function F’ : [N] — [N?]
by letting F’(x) = F(0,x)||F(1, x).

(2) Second, let GF (x,y) = F/(x) + F'(y) (where the addition is
interpreted, e.g., over the integers).

Assuming the hardness of 3SUM-Indexing for space S and T
queries, we show that this construction is one-way against adver-
saries with S bits of preprocessed advice and T online queries. (As
stated before, our result is actually stronger: the function remains
uninvertible even if the adversary could run for unbounded time
in the online phase, as long as it can make only T queries.) Con-
jecture 1.3 of Demaine and Vadhan, for example, tells us that this
function is uninvertible as long as ST = N?€ for any constant
€ > 0. In other words, assuming (the average-case version of) the



STOC 20, June 22-26, 2020, Chicago, IL, USA

3SUM-Indexing conjecture of [32], this function is as uninvertible
as a random function with the same domain and range.

This highlights another advantage of the immunization approach:
assume that we have several functions (modeled as independent
random oracles) Fy, Fy, . . ., Fy all of which are about to be obsolete
because of the increase in the adversary’s space resources. Instead
of designing ¢ independent new functions Fl’, .. .,F;, one could
use our immunizer G to obtain, in one shot, F l’ = GFi that are as
uninvertible as £ new random functions.

A General Connection. In fact, we show a much more general
connection between (average-case) data structure lower bounds
and immunizing compilers. In more detail, we formalize a data
structure problem by a function g that takes as input the datad and a
“target” y and outputs a “solution” g. In the case of 3SUM-Indexing,
d is the array of n numbers ay, ..., an, and q is a pair of indices
i and j such that a; + aj = y. We identify a key property of the
data structure problem, namely efficient query generation. The data
structure problem has an efficient query generator if there is a
function that, given i and j, makes a few queries to d and outputs y
such that g(d,y) = (i, j). In the case of 3SUM-Indexing, this is just
the function that looks up a; and a; and outputs their sum.

We then show that any (appropriately hard) data structure prob-
lem with an efficient query generator gives us a one-way function
in the preprocessing model. In fact, in Section 5.3, we show an
equivalence between the two problems.

The Necessity of Unproven Assumptions. The one-wayness of our
compiled functions rely on an unproven assumption, namely the
hardness of the 3SUM-Indexing problem with relatively large space
and time (or more generally, the hardness of a data structure prob-
lem with an efficient query generator). We show that unconditional
constructions are likely hard to come by in that they would result
in significant implications in circuit complexity.

In particular, a long-standing open problem in computational
complexity is to find a function f : {0,1}" — {0, 1} which can-
not be computed by binary circuits of linear size O(n) and depth
O(logn) [11, 75, Frontier 3]. We show that even a weak one-way
function in the random oracle model with preprocessing (for spe-
cific settings of parameters) implies a super-linear circuit lower
bound. Due to space constraints, this result is presented only in
the full version [48] of this paper. Our proof employs the approach
used in several recent works [29, 36, 70, 77].

Relation to Immunizing Against Cryptographic Backdoors. Back-
doors in cryptographic algorithms pose a grave concern [23, 24, 49],
and a natural question is whether one can modify an entropic but
imperfect (unkeyed) function, which a powerful adversary may
have tampered with, into a function which is provably hard to
invert even to such an adversary. In other words, can we use a
“backdoored” random oracle to build secure cryptography? One
possible formalization of a backdoor is one where an unbounded
offline adversary may arbitrarily preprocess the random oracle
into an exponentially large lookup table to which the (polynomial-
time) online adversary has oracle access. It is easy to see that this
formalization is simply an alternative interpretation of (massive)
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preprocessing attacks. Thus, our result shows how to construct one-
way functions in this model assuming the hardness of a natural
average-case variant of 3SUM-Indexing.

On immunizing against backdoors, a series of recent works [16,
34, 40, 71] studied backdoored primitives including pseudorandom
generators and hash functions. In this setting, the attacker might be
given some space-bounded backdoor related to a primitive, which
could allow him to break the system more easily. In particular, back-
doored hash functions and random oracles are studied in [16, 40].
Both of them observe that immunizing against a backdoor for a
single unkeyed hash function might be hard. For this reason, [16]
considers the problem of combining two random oracles (with two
independent backdoors). Instead, we look at the case of a single
random oracle but add a restriction on the size of the advice. [40]
considers the setting of keyed functions such as (weak) pseudo-
random functions, which are easier to immunize than unkeyed
functions of the type we consider in this work.

The BRO model and an Alternative Immunization Strategy. As
mentioned just above, the recent work of [16] circumvents the prob-
lem of massive preprocessing in a different way, by assuming the
existence of at least two independent (backdoored) random oracles.
This allows them to use techniques from two-source extraction
and communication complexity to come up with an (uncondition-
ally secure) immunization strategy. A feature of their approach is
that they can tolerate unbounded preprocessing that is separately
performed on the two (independent) random oracles.

Domain Extension and Indifferentiability. Our immunization al-
gorithm is effectively a domain extender for the function (random
oracle) F. While it is too much to hope that G¥ is indifferentiable
from a random oracle [33], we show that it could still have interest-
ing cryptographic properties such as one-wayness. We leave it as
an interesting open question to show that our compiler preserves
other cryptographic properties such as pseudorandomness, or al-
ternatively, to come up with other compilers that preserve such
properties.

1.3 Other Related Work

Non-Uniform Security, Leakage, and Immunizing Backdoors. A
range of work on non-uniform security, preprocessing attacks, leak-
age, and immunizing backdoors can all be seen as addressing the
common goal of achieving security against powerful adversaries
that attack a cryptographic primitive given access to some “advice”
(or “leakage” or “backdoor information”) that was computed in
advance during an unbounded preprocessing phase.

On non-uniform security of hash functions, recent works [28, 35,
74] studied the auxiliary-input random-oracle model in which an
attacker can compute arbitrary S bits of leakage before attacking
the system and make T additional queries to the random oracle.
Although our model is similar in that it allows preprocessed leakage
of a random oracle, we differ significantly in two ways: the size
of the leakage is larger, and the attacker only has oracle access
to the leakage. Specifically, their results and technical tools only
apply to the setting where the leakage is smaller than the random
oracle truth table, whereas our model deals with larger leakage.
Furthermore, the random oracle model with auxiliary input allows
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the online adversary to access and depend on the leakage arbitrarily
while our model only allows a bounded number of oracle queries to
the leakage; our model is more realistic for online adversaries with
bounded time and which cannot read the entire leakage at query
time.

Kleptography. The study of backdoored primitives is also related
to — and sometimes falls within the field of — kleptography, origi-
nally introduced by Young and Yung [79-81]. A kleptographic attack
“uses cryptography against cryptography” [81], by changing the
behavior of a cryptographic system in a fashion undetectable to
an honest user with black-box access to the cryptosystem, such
that the use of the modified system leaks some secret information
(e.g., plaintexts or key material) to the attacker who performed the
modification. An example of such an attack might be to modify
the key generation algorithm of an encryption scheme such that
an adversary in possession of a “backdoor” can derive the private
key from the public key, yet an honest user finds the generated key
pairs to be indistinguishable from correctly produced ones.

Data-Structure Versions of Problems in Fine-Grained Complexity.
While the standard conjectures about the hardness of CNF-SAT,
3SUM, OV and APSP concern algorithms, the OMV conjecture
claims a data structure lower bound for the Matrix-Vector Multipli-
cation problem. While algorithmic conjectures help to understand
time complexity of the problems, it is also natural to consider data
structure analogues of the fine-grained conjectures in order to un-
derstand space complexity of the corresponding problems. Recently,
Goldstein et al. [46, 47] proposed data structure variants of many
classical hardness assumptions (including 3SUM and OV). Other
data structure variants of the 3SUM problem have also been studied
in [13, 21, 22, 32]. In particular, Chan and Lewenstein [22] use tech-
niques from additive combinatorics to give efficient data structures
for solving 3SUM on subsets of the preprocessed sets.

2 PRELIMINARIES
2.1 Notation

When an uppercase letter represents an integer, we use the con-
vention that the associated lowercase letter represents its base-2
logarithm: N = 2™ S = 25, etc. [N] denotes the set {1,...,N}
that we identify with {0, 1}". x||y denotes the concatenation of bit
strings x and y. PPT stands for probabilistic polynomial time.

We do not consistently distinguish between random variables
and their realizations, but when the distinction is necessary or
useful for clarity, we denote random variables in boldface.

2.2 kSUM-Indexing

This paper focuses on the variant of 3SUM known as 3SUM-
Indexing, formally defined in [46], which can be thought of as
a preprocessing or data structure variant of 3SUM. In fact, all our
results extend to the more general kSUM and kSUM-Indexing prob-
lems which consider (k — 1)-wise sums instead of pairwise sums.
We also generalize the definition of [46] by allowing the input to
be elements of an arbitrary abelian® group. We use + to denote the
group operation.

3This is for convenience and because our applications only involve abelian groups;
our results and techniques easily generalize to the non-abelian case.
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Definition  2.1. The  problem kSUM-Indexing(G, N),
parametrized by an integer N > k — 1 and an abelian group G, is
defined to be solved by a two-part algorithm A = (A, Az) as
follows.

e Preprocessing phase. A; receives as input a tuple A =
(ai,...,an) of N elements from G and outputs a data struc-
ture D4 of size* at most S. Aj is computationally unbounded.

e Query phase. Denote by Z the set of (k — 1)-wise sums of
elements from A: Z = {}};cya; : I € [N] A|I| = k- 1}
Given an arbitrary query b € Z, A, makes at most T oracle
queries to D4 and must output I C [N] with |I| = k— 1 such
that ;e a; = b.°

We say that A is an (S, T) algorithm for kSUM-Indexing(G, N).
Furthermore, we say that A is non-adaptive if the T queries made
by A are non-adaptive (i.e, the indices of the queried cells are
only a function of b).

Remark 1. An alternative definition would have the query b be
an arbitrary element of G (instead of being restricted to Z) and
Ay return the special symbol L when b € G\ Z. Any algorithm
conforming to Definition 2.1 — with undefined behavior for b €
G \ Z — can be turned into an algorithm for this seemingly more
general problem at the cost of (k — 1) extra queries: given output
I C [N] on query b, return I if };cy a; = b and return L otherwise.

Remark 2. The fact that kSUM-Indexing is defined in terms of
(k —1)-wise sums of distinct elements from G is without loss of gen-
erality for integers, but prevents the occurrence of degenerate cases
in some groups. For example, consider the case of 3SUM-Indexing
for a group G such that all elements are of order 2 (e.g., (Z/2Z)“")
then finding (i, i2) such that a;, + a;, = 0 has the trivial solution
(i,i) forany i € [N].

Remark 3. In order to preprocess the elements of some group G, we
assume an efficient way to enumerate its elements. More specifically,
we assume a time- and space-efficient algorithm for evaluating an
injective function Index: G — [N*] for a constant c. For simplicity,
we also assume that the word length is at least clog N so that we
can store Index(g) for every g € G in a memory cell. For example,
for the standard 3SUM-Indexing problem over the integers from 0
to N¢, one can consider the group G = (Z/mZ, +) for m = 2N¢ + 1,
and the trivial function Index(a + mZ) = a for 0 < a < m. For ease
of exposition, we abuse notation and write g instead of Index(g)
for an element of the group g € G. For example, g mod p for an
integer p will always mean Index(g) mod p.

The standard 3SUM-Indexing problem (formally introduced in
[46]) corresponds to the case where G = (Z, +) and k = 3. In fact, it
is usually assumed that the integers are upper-bounded by some
polynomial in N, which is easily shown to be equivalent to the case
where G = (Z/N€Z,+) for some ¢ > 0, and is sometimes referred
to as modular 3SUM when there is no preprocessing.

Another important special case is when G = ((Z/2Z)", +) for
some ¢ > 0 and k = 3. In this case, G can be thought of as the
4The model of computation in this paper is the word RAM model where we assume
that the word length is © (log N). Furthermore we assume that words are large enough
to contain description of elements of G, ie., |G| < N° for some ¢ > 0. The size of a
data structure is the number of words (or cells) it contains.

SWithout loss of generality, we can assume that D4 contains a copy of A and in this
case Ay could return the tuple (a;);cr at the cost of (k — 1) additional queries.
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group of binary strings of length cn where the group operation is
the bitwise XOR (exclusive or). This problem is usually referred to
as 3XOR when there is no preprocessing, and we refer to its prepro-
cessing variant as 3XOR-Indexing. In [54], the authors provide some
evidence that the hardnesses of 3XOR and 3SUM are related and
conjecture that Conjecture 1.1 generalizes to 3XOR. We similarly
conjecture that in the presence of preprocessing, Conjecture 1.3
generalizes to 3XOR-Indexing.

Following Definition 2.1, the results and techniques in this paper
hold for arbitrary abelian groups and thus provide a unified treat-
ment of the 3SUM-Indexing and 3XOR-Indexing problems. It is an
interesting open question for future research to better understand
the influence of the group G on the hardness of the problem.

Open Question 1. For which groups is kSUM-Indexing significantly
easier to solve, and for which groups does Conjecture 1.3 not hold?

2.2.1 Average-Case Hardness. This paper moreover introduces a
new average-case variant of kSUM-Indexing (Definition 2.2 below)
that, to the authors’ knowledge, has not been stated in prior litera-
ture. Definition 2.2 includes an error parameter ¢, as for the crypto-
graphic applications it is useful to consider solvers for average-case
kSUM-Indexing that only output correct answers with probability
e<1l

Definition 2.2. The average-case kSUM-Indexing(G, N) problem,
parametrized by an abelian group G and integer N > k — 1, is
defined to be solved by a two-part algorithm A = (A, A) as
follows.

e Preprocessing phase. Let A be a tuple of N elements
from G drawn uniformly at random and with replacement®.
A1(A) outputs a data structure D 4 of size at most S. A has
unbounded computational power.

e Query phase. Given a query b drawn uniformly at random
inZ={Y;erai:I S [N]A|l|=k—-1},and givenup to T
oracle queries to D, Az (b) outputs I € [N] with |I| = k-1
such that }};cya; = b.

We say that A (A1, Ay) is an (S5, T,¢) solver for
kSUM-Indexing if it answers the query correctly with probabil-
ity € over the randomness of A, A, and the random query b. When
& =1, we leave it implicit and write simply (S, T).

Remark 4. In the query phase of Definition 2.2, the query b is
chosen uniformly at random in Z and not in G. As observed in
Remark 1, this is without loss of generality for e = 1. When ¢ < 1,
the meaningful way to measure A’s success probability is as in
Definition 2.2, since otherwise, if Z had negligible density in G, A
could succeed with overwhelming probability by always outputting
1.

3 UPPER BOUND

We will use the following data structure first suggested by Hell-
man [50] and then rigorously studied by Fiat and Naor [39].

THEOREM 3.1 ([39]). For any function F: X — X, and for any
choice of values S and T such that ST > |X|?, there is a deterministic

6We remark that for the classical version of kSUM, the uniform random distribution
of the inputs is believed to be the hardest (see, e.g., [69]).

Alexander Golovnev, Siyao Guo, Thibaut Horel, Sunoo Park, and Vinod Vaikuntanathan

299

data structure with space O(S) which allows inverting F at every point
making O(T) queries to the memory cells and evaluations of F.”

We demonstrate the idea of our upper bound for the case of
3SUM. Since we are only interested in the pairwise sums of the N
input elementsay, . .., an € G, we can hash down their sums to a set
of size O(N?). Now we define the function f (i, j) = a; +ajfori, j e
[N], and note that its domain and range are both of size O(N?). We
apply the generic inversion algorithm of Fiat and Naor to f with
|X| = O(N?), and obtain a data structure for 3SUM-Indexing.

First, in Lemma 3.2 we give an efficient data structure for the
“modular” version of kSUM-Indexing(G, N) where the input is an
integer p = O(N*~1) and N group elements a1, . .., an € G. Given
query b € G the goal is to find (i1, .. ., ix_;) € [N]¥7! such that
aj, +---+aj_, =bmod p.8 Then, in Theorem 3.3 we reduce the
general case of kSUM-Indexing(G, N) to the modular case.

LEMMA 3.2. For every integerk > 3, real0 < § < k — 2, and
every integer p = O(NK-1), there is an adaptive data structure
which uses space S = O(N*1-9) and query time T = O(N?39)
and solves modular kSUM-Indexing(G, N): for input ay,...,an € G
and a query b € G, it outputs (i1, . ..,ik_;) € [N]*! such that
aj, ++--+aj,_, =bmod p, if such a tuple exists.

ProOF. Let the N input elements be ay,...,axy € G. The data
structure stores all a; (this takes only N memory cells) along
with the information needed to efficiently invert the function
f: [N]*"1 = G defined below. For (i1, ..., ix_;) € [N]¥71, let

S,

cosif—1) =aj +---+a;_, modp.
Note that:

(1) f is easy to compute. Indeed, given the input, one can com-
pute f by looking at only k — 1 input elements.

(2) The domain of f is of size N*-1 and the range of f is of size
p=O(Nk-1).

(3) Inverting f at a point b € G finds a tuple (iy,...,ig_1) €
[N1%71 such that a;, + - -- +a;,_, = b mod p, which essen-
tially solves the modular kSUM-Indexing(G, N) problem.

Now we use the data structure from Theorem 3.1 with |X| =
O(N*-1) to invert f. This gives us a data structure with space
O(S + N) = O(S) and query time O(T) for every ST > |X|3 =
O(N3(k=1)) 'which finishes the proof. o

It remains to show that the input of kSUM-Indexing can always
be hashed to a set of integers [p] for some p = O(N*-1). While
many standard hashing functions will work here, we remark that it
is important for our application that the hash function of choice
has a time- and space-efficient implementation (for example, the
data structure in [39] requires non-trivial implementations of hash
functions). Below, we present a simple hashing procedure which
suffices for kSUM-Indexing; a more general reduction can be found
in Lemma 17 in [29].

"While the result in Theorem 1.1 in [39] is stated for a randomized preprocessing
procedure, we remark that a less efficient deterministic procedure which brute forces
the probability space can be used instead.

8Recall from Remark 3 that this notation actually means Index(a;; +---+ a,-k_l) =

Index(b) mod p.
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THEOREM 3.3. For every integerk > 3 andreal0 < § < k — 2,
there is an adaptive data structure for kSUM-Indexing(G, N) with
space S = O(NKk=1-8) gnd query time T = O(N39).

In particular, by taking k = 3 and § = 0.1, we get a data structure
which solves 3SUM-Indexing in space S = O(N!) and query time
T = O(N®3), and, thus, refutes Conjecture 1.4.

ProOF. Let the N inputsbe ay,...,an € G.Let Z C [N¢], |Z| <
(klfl) be the set of (k — 1)-wise sums of the inputs: Z = {a;, +--- +
aj,_,:1<i; <...<ip_; <N}

LetI = {N*=1 ... 3kcN*~1log N} be an interval of integers. By
the prime number theorem, for large enough N, I contains at least
2cNk-1 primes. Let us pick n = log N random primes py, ..., pn
from I. For two distinct numbers z1, z2 € Z, we say that they have
a collision modulo p if z1 = z2 mod p.

Let g € G be a positive query of kSUM-Indexing(G, N), that is,
b = Index(g) € Z. First, we show that with high probability (over
the choices of n random primes) there exists an i € [n] such that for
every z € Z \ {b}, z # b mod p;. Indeed, for every z € Z \ {b}, we
have that (z—b) has at most logyx-1(N€) = ¢/ (k1) prime factors
from I. Since |Z| < (,ji’l), at most c(klyl)/(k — 1) primes from I
divide (z — b) for some z € Z. Therefore, a random prime from I
gives a collision between b and some z € Z \ {b} with probability
at most

() 1 cNk-1 1
k=1 2cNk-1 7 (k-1)(k—-1)! 2cNk-1
1 1

S ak—Dk—1) = 2k

Now we have that for every b € Z, the probability that there exists
an i € [n] such that b does not collide with any z € Z \ {b} modulo
pi,is at least 1 — (27K)" = 1 — Nk Therefore, with probability at
least 1 — 1/N, a random set of n primes has the following property:
for every b € Z there exists an i € [n] such that b does not collide
with any z € Z \ {b} modulo p;. Since such a set of n primes
exists, the preprocessing stage of the data structure can find it
deterministically.

Now we construct n = log N modular kSUM-Indexing(G, N)
data structures (one for each p;), and separately solve the problem
for each of the n primes. This results in a data structure as guaran-
teed by Lemma 3.2 with a log N overhead in space and time. The
data structure also stores the inputs aj, ..., ay. Once it sees a solu-
tion modulo p;, it checks whether it corresponds to a solution to the
original problem. Now correctness follows from two observations.
Since the data structure checks whether a solution modulo p; gives
a solution to the original problem, the data structure never reports
false positives. Second, the above observation that for every b € Z
there is a prime p; such that b does not collide with other z € Z,
a solution modulo p; will correspond to a solution of the original
problem (thus, no false negatives can be reported either). O

Remark 5. A few extensions of Theorem 3.3 are in order.

(1) The result of Fiat and Naor [39] also gives an efficient ran-
domized data structure. Namely, there is a randomized data
structure with preprocessing running time O(|X]), which
allows inverting F at every point with probability at least
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1 —1/|X| over the randomness of the preprocessing stage.
Thus, the preprocessing phase of the randomized version
of Theorem 3.1 runs in quasilinear time O0(]X]) = O(Nk-1)
(since sampling n = log N random primes from a given in-
terval can also be done in randomized time O(1)). This, in
particular, implies that the preprocessing time of the pre-
sented data structure for 3SUM-Indexing is optimal under
the 3SUM Conjecture (Conjecture 1.1). Indeed, if for k = 3,
the preprocessing time was improved to N2~¢, then one
could solve 3SUM by querying the N input numbers in (ran-
domized or expected) time N27¢.

For the case of random inputs (for example, for inputs sam-
pled as in Definition 2.2), one can achieve a better time-space
trade-off. Namely, if the inputs ay, . . ., an are uniformly ran-
dom numbers from a range of size at least Q(N*¥~1), then
for every 0 < § < k — 2 there is a data structure with
space S = O(Nk-1-8) and query time T = O(N?9) (with
high probability over the randomness of the input instances).
This is an immediate generalization of Theorem 3.3 equipped
with the analogue of Theorem 3.1 for a function [39] with
low collision probability, which achieves the trade-off of
S2T = |X)2.

For polynomially small ¢ = 1/|X|* (for constant a), the
trade-off between S and T can be further improved for the e-
approximate solution of kSUM-Indexing, using approximate
function inversion by De et al. [30].

—
)
~

We have shown how to refute the strong 3SUM-Indexing conjec-
ture of [46] using techniques from space-time tradeoffs for function
inversion [39, 50], specifically the general function inversion algo-
rithm of Fiat and Naor [39]. A natural open question is whether a
more specific function inversion algorithm could be designed.

Open Question 2. Can the space-time trade-off achieved in The-
orem 3.3 be improved by exploiting the specific structure of the
3SUM-Indexing problem?

4 LOWER BOUND

We now present our lower bound: we prove a space-time trade-off
of § = Q(N"/T) for any non-adaptive (S, T) algorithm. While it is
weaker than Conjecture 1.3, any improvement on this result would
break a long-standing barrier in static data structure lower bounds:
no bounds better than T > Q(lo};(g%) are known, even for the
non-adaptive cell-probe and linear models [36, 57, 66, 68, 72].

Our main lower bound (Theorem 4.2) is proven with respect to a
slight variant on Definition 2.1 to which our proof techniques more
readily lend themselves, defined next.

Definition 4.1. The element version of the kSUM-Indexing(G, N)
problem is exactly like the kSUM-Indexing(G, N) problem (Defini-
tion 4.1), except that a solution is a set {a; };¢s of group elements
summing to a given input instead of simply a set I of indices.

Remark 6. It follows from the observation in Footnote 5 that a
lower bound for (S, T) algorithms for the element version of the
kSUM-Indexing(G, N) problem implies a lower bound for (S, T —
k +1) algorithms for the kSUM-Indexing(G, N) problem as defined
in Definition 4.1.
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THEOREM 4.2. Let k > 3 and N be integers, and let G be an
abelian group with |G| > N*=1. Then any non-adaptive (S,T) al-
gorithm for the element version of kSUM-Indexing(G, N) satisfies
S=Q(NWT),

Our proof relies on a compressibility argument similar to
[30, 43], also known as cell-sampling in the data structure liter-
ature [66]. Roughly speaking, we show that given an (S, T) algo-
rithm (Aj, Ajz), we can recover a subset of the input A by storing a
randomly sampled subset V' of the preprocessed data structure D4
and simulating A on all possible queries: the simulation succeeds
whenever the queries made by Aj fall inside V. Thus, by storing V
along with the remaining part of the input, we obtain an encoding
of the entire input. This implies that the length of the encoding
must be at least the entropy of a randomly chosen input.

Proor. Consider an (S,T) algorithm A = (A, Az) for the
element version of kSUM-Indexing(G, N). For conciseness, in the
rest of this proof, we write simply kSUM-Indexing(G, N) to denote
the element version of kSUM-Indexing(G, N).

We use A to design encoding and decoding procedures for inputs
of kSUM-Indexing(G, N) as follows: we first sample a subset V of
the data structure cells which allows us to answer many queries,
then we argue that we can recover a constant fraction of the input
from this set, which yields a succinct encoding of the input.

Sampling a Subset V of Cells. For a query b € G, Query(b) C [S]
denotes the set of probes made by Ay on input b (with |Query(d)| <
T, since Ay makes at most T probes to the data structure). Given
a subset V' C [S] of cells, we denote by Gy the set of queries in
G which can be answered by Az by only making probes within
V:Gy = {b € G : Query(b) C V}. Observe that for a uniformly
random set V of size v:

S-T
EWWH=§:HMWW@CVPHQEil
= - S
beG (u)

=y v—T\!
=|G > |G ,
ol []5 (5=7)

where the last inequality uses that a/b > (a—1)/(b—1) fora < b.
Hence, there exists a subset V of size v, such that:

T
vo—-T
Gyl = |G| |——=] .,
ol 2161 (377
and we will henceforth consider such a set V. The size v of V will
be set later so that |Gy| > |G|/N.

Using V to Recover the Input. Consider some input A =
(ai,...,an) for kSUM-Indexing(G, N). We say that i € [N] is
good if a; is output by A, given some query in Gy . Since queries
in Gy can be answered by only storing the subset of cells of the
data structure indexed by V, our decoding procedure will retrieve
from these cells all the good elements from A.

For a set of indices I C [N], let ar = }};¢y a; be the sum of input
elements with indices in I. Also, for a fixed set Gy and i € [N],
let g(i) € Gy by some element from Gy which can be written as a
(k = 1)-sum of the inputs including ;. If there is no such element
in Gy, then let g(i) = L. Formally,

g(i) =min{g € Gy: AI C [N]\{i},|I| =k —2: aj + a; = g}
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with the convention that if the minimum is taken over an empty
set, then g(i) = L.
Note that i € [N] is good if:

(g() # L) A (VT S INI\{iL Ul =k-1,a; #g()). (1)

Indeed, observe that:

(1) The first part of the conjunction guarantees that there exists
b € Gy which can be decomposed as b = a; + ay for I C

[NT\ {i}.
(2) The second part of the conjunction guarantees that every
decomposition b = aj, |J| = k — 1 contains the elements a;.

By correctness of (A, Ay outputs a decomposition of its input as
a sum of (k — 1) elements in A if one exists. For i as in (1), ev-
ery decomposition b = aj contains the input g;, and, therefore,
Az(ay) = (aiy, ..., ai_,), where i € {i1,...,ik_1}.

We denote by Ny C [N] the set of good indices, and compute
its expected size when A is chosen at random according to the
distribution in Definition 2.2, i.e., for each i € [N], a; is chosen
independently and uniformly in G.

E[INv|]

N
> 3" Prlg(i) # L1Pr[¥] < [N]\ {i},

i=1
Ul =k-1, a5 #9(i) | g(i) # 1] )
Let L C [N]\ {i} be a fixed set of indices of size |L| = k — 3. Then:

Pr(g(i) # L]
=Pr[3I C [N]\ {i}|I| =k — 2: a; +as € Gy]
=1-Pr[VIC [N]\ {i},|I|=k—-2: a; +as ¢ Gy]
=1-"Pr[VI’ C [N]\ {i},

| =k-3Yi’ € [N]\ (I’ U{i}): a; +ap +ar ¢ Gy]
>1-Pr[Vi’ € [N]\ (LU {i}): a; + a; + ar ¢ Gy]

N-(k-2)
Zl_p_Ekg
|G

>

where the first inequality follows from setting I’ = L, the second
inequality holds because for every i’ € [N] \ (L U {i}), ay needs
to be distinct from the |Gy | elements —a; — ar + g for g € Gy.
Furthermore:

Pr(V]  [NJ\{i},[JI =k -1 a5 # g(i) | g(i) # 1]
=1-Pr[3J € [N]\{iL, Ul =k—-1,a7=g(i) | g(i) # L]

>1- > Prlay=g() | g(i) # 1]

JEINT\{i}
IJ|=k-1

N-1 1 1
>1- P>,
k-1) |G| ~ 2
where the first inequality uses the union bound and the last inequal-
ity uses that |G| > N¥~!. Using the previous two derivations in (2),
we get:
G|

N-(k-2)
lﬂww]zg(pwl_ﬁﬂ) )Zg, o
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>

where the last inequality uses that |Gy| |G|/N and (1 -

l/N)N_(k_Z) < 1/2 for large enough N.

Encoding and Decoding. 1t follows from (3) and a simple averag-
ing argument that with probability at least 1/16 over the random
choice of A, Ny is of size at least N/5. We will henceforth focus
on providing encoding and decoding procedures for such inputs
A. Specifically, consider the following pair of encoding/decoding
algorithms for A:

e Enc(A): given input A = (ay,...,aN).
(1) use A to compute the set Niy C [N] of good indices.
(2) store (fﬂl(A)j)jeV and (a;)igNy, -
e Dec(Enc(A)): for each b € G, simulate A on input b:
(1) If Query(b) C V, use (A1(A););cy (which was stored in
Enc(A)) to simulate Az and get Az(b). By definition of
Ny, when b ranges over the queries such that Query(b) C
V, this step recovers (a;)ieny, -
(2) Then recover (a;)ign, directly from Enc(A).
Note that the bit length of the encoding is:

4N
|[Enc(A)| <v-w+ (N —|Ny|log|G| <v-w+ ?log|G|

where w is the word length and where the second inequality holds
because we restrict ourselves to inputs A such that [Ny | > N/5. By
a standard incompressibility argument (see for example Fact 8.1 in
[30]), since our encoding and decoding succeeds with probability
at least 1/16 over the random choice of A, we need to be able to
encode at least |G|V /16 distinct values, hence:

©)

Finally, as discussed before, we set v such that |Gy |/|G| > 1/N.
For this, by the computation performed at the beginning of this
proof, it is sufficient to have:

o-T\T 1
> —.
S-T N
Hence, weseto = T+(S—T) /Nl/T andsince T < N < S (otherwise

the result is trivial), (4) implies:

S = §(N1+1/T)

4N
v-w+?log|G| > Nlog |G|+ 0O(1)

]

Remark 7. kSUM-Indexing(Z/N€Z, N) reduces to kSUM-Indexing
over the integers, so our lower bound extends to
kSUM-Indexing(Z, N), too. Specifically, the reduction works
as follows: we choose {0,...,N¢—1} as the set of repre-
sentatives of Z/N€Z. Given some input A < Z/N°Z for
kSUM-Indexing(Z/N€Z,N), we treat it as a list of inte-
gers and build a data structure using our algorithm for
kSUM-Indexing(Z, N). Now, given a query b € Z/N°Z, we
again treat it as an integer and query the data structure at
b,b + N¢ ...,b + (k — 2)N. The correctness of the reduction
follows from the observation that b = aj, +---+a;,_, if and only if
aj, +---+aj_, €{b,b+N° ..., b+ (k-2)N}.

As we already mentioned, no lower bound better than T >
Q( lo};(g%) is known even for the non-adaptive cell-probe and lin-
ear models, so Theorem 4.2 matches the best known lower bounds

for static data structures. An ambitious goal for future research
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would naturally be to prove Conjecture 1.3. A first step in this di-
rection would be to extend Theorem 4.2 to adaptive strategies that
may err with some probability.

Open Question 3. Must any (possibly adaptive) (S, T, ¢) algorithm
for 3SUM-Indexing(G, N) require S = £~2(€N1+1/T)?

5 CRYPTOGRAPHY AGAINST MASSIVE
PREPROCESSING ATTACKS

5.1 Background on Random Oracles and
Preprocessing

A line of work initiated by Impagliazzo and Rudich [52] studies
the hardness of a random oracle as a one-way function. In [52] it
was shown that a random oracle is an exponentially hard one-way
function against uniform adversaries. The case of non-uniform
adversaries was later studied in [51, 82]. Specifically we have the
following result.

ProposITION 5.1 ([82]). With probability at least 1 — % over the
choice of a random oracle R : {0, 1} — {0, 1}, for all oracle circuits

C of size at most T:
— (T2
€0 (—) .
N

In Proposition 5.1, the choice of the circuit occurs after the ran-
dom draw of the oracle: in other words, the description of the circuit
can be seen as a non-uniform advice which depends on the random
oracle. Proposition 5.2 is a slight generalization where the adversary
is a uniform Turing machine independent of the random oracle,
with oracle access to an advice of length at most S depending on
the random oracle. While the two formulations are equivalent in
the regime S < T, one advantage of this reformulation is that S can
be larger than the running time T of the adversary.

Pr

R -1
e T C (R(x)) €R (R(x))

PROPOSITION 5.2 (IMPLICIT IN [30]). Let A be a uniform oracle
Turing machine whose number of oracle queries is T : {0,1}"* — N.
For alln € N and S € N, with probability at least 1 — % over the
choice of a random oracle R : {0,1}" — {0,1}":

VP e {0,1}5
T(S
x<—€({1}" ﬂR!P(R(x)) R (R(X))] 0 (%) ‘

In Proposition 5.2, the advice P can be thought of as the result
of a preprocessing phase involving the random oracle. Also, no as-
sumption is made on the computational power of the preprocessing
adversary but it is simply assumed that the length of the advice is
bounded.

Remark 8. Propositions 5.1 and 5.2 assume a deterministic adver-
sary. For the regime of S > T (which is the focus of this work), this
assumption is without loss of generality since a standard averaging
argument shows that for a randomized adversary, there exists a
choice of “good” randomness for which the adversary achieves at
least its expected success probability. This choice of randomness can
be hard-coded in the non-uniform advice, yielding a deterministic
adversary.

Note, however, that Proposition 5.2 provides no guarantee when
S > N.In fact, in this case, defining P to be any inverse mapping
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R™! of R allows an adversary to invert R with probability one by
making a single query to P. So, R itself can no longer be used as a
one-way function when S > N — but one can still hope to use R to
define a new function fR that is one-way against an adversary with
advice of size S > N. This idea motivates the following definition.

Definition 5.3. Let R : {0,1}" — {0, 1}" be a random oracle. A
one-way function in the random oracle model with S preprocessing is
an efficiently computable oracle function fX : {0, 1}"/ — {0, 1}’",
such that for any two-part adversary A = (Ay, Az) satisfying
[A1(-)] < S and where A is PPT, the following probability is
negligible in n:’

Pr
Rx—{0,1}"

|£R (A O (R ) = R -

We say that f is an (S, T, ¢)-one-way function if the probability in
(5) is less than ¢ and Ay makes at most T random oracle queries.

®)

The adversary model in Definition 5.3 is very similar to the 1-
BRO model of [16], differing only in having a restriction on the
output size of A;. As was noted in [16], without this restriction
(and in fact, as soon as S > 2" by the same argument as above),
no function f® can achieve the property given in Definition 5.3.
[16] bypasses this impossibility by considering the restricted case
of two independent oracles with two independent preprocessed
advices (of unrestricted sizes). Our work bypasses it in a different
and incomparable way, by considering the case of a single random
oracle with bounded advice.

5.2 Constructing One-Way Functions from
kSUM-Indexing

Our main candidate construction of a OWF (Construction 1) relies
on the hardness of average-case kSUM-Indexing. First, we define
what hardness means, then give the constructions and proofs.

Definition 5.4. Average-case kSUM-Indexing is (G, N, S, T, ¢)-
hard if the success probability!” of any (S,T) algorithm A =
(A1, Az) in answering average-case kSUM-Indexing (G,N) queries
is at most e.

Construction 1. For N € N, let (G, +) be an abelian group and let
R : [N] — G be arandom oracle. Our candidate OWF construction
has two components:
e the function fR : [N]¥! S G defined by fR(x) =
YK R(x;) for x € [N]¥1; and
e the input distribution, uniform over {x € [N k1
%),

X1 #

Remark 9 (Approximate sampling). We depart from the standard
definition of a OWF by using a nonuniform input distribution
in our candidate construction. This makes it easier to relate its
security to the hardness of kSUM-Indexing. As long as the input
distribution is efficiently samplable, a standard construction can be
used to transform any OWF with nonuniform input into a OWF
which operates on uniformly random bit strings. Specifically, one

9 A negligible function is one that is in 0(n~°) for all constants c.
O0ver the randomness of A, A, and the average-case kSUM-Indexing query. (Recall:
A is kSUM-Indexing’s input.)
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simply defines a new OWF equal to the composition of the sampling
algorithm and the original OWF, (see [44, Section 2.4.2]).

In our case, since N!/(N —k+1)! is not guaranteed to be a power
of 2, the input distribution in Construction 1 cannot be sampled
exactly in time polynomial in log N. However, using rejection sam-
pling, it is easy to construct a sampler taking as input O([log N1%)
random bits and whose output distribution is 1/N-close in statis-
tical distance to the input distribution. It is easy to propagate this
exponentially!! small sampling error without affecting the conclu-
sion of Theorem 5.5 below. A similar approximate sampling occurs
when considering OWFs based on the hardness of number theoretic
problems, which require sampling integers uniformly in a range
whose length is not necessarily a power of two.

Remark 10. Similarly, the random oracle R used in the construc-
tion is not a random oracle in the traditional sense since its do-
main and co-domain are not bit strings. If |G| and N are powers
of two, then R can be implemented exactly by a standard random
oracle {0, 11°6N — {0, 1}1°8IGI If not, using a random oracle
{0, I}POIY( Mog |GIT) _, {0, l}p"1y< Mog |G  and rejection sampling,
it is possible to implement an oracle R’ which is 1/N close to R in
statistical distance. We can similarly propagate this 1/N sampling
error without affecting the conclusion of Theorem 5.5.

THEOREM 5.5. Consider a sequence of abelian groups (GN)N>1
such that |G| > Nk-1*¢ for somec > 0 and all N > k — 1, and
a function S : N — R. Assume that for all polynomial T there
exists a negligible function ¢ such that average-case kSUM-Indexing is
(GN, N, S(n), T(n),e(n))-hard for all N > 1 (recall that n = log N).
Then the function f defined in Construction 1 is a one-way function
in the random oracle model with S preprocessing.

The function fR in Construction 1 is designed precisely so that
inverting R on input x is equivalent to solving kSUM-Indexing
for the input A = (R(1),...,R(N)) and query Zfz_ll ay,;. However,
observe that the success probability of a OWF inverter is defined for
arandom input distributed as }}; ¢ a; where I C [N] is a uniformly
random set of indices of size k — 1. In contrast, in average-case
kSUM-Indexing, the query distribution is uniform over {} ;¢ a; :
I € N,|I| = k — 1}. These two distributions are not identical
whenever there is a collision: two sets I and I’ such that ;¢ a;
Yier ai- The following two lemmas show that whenever |G| >
NK=1%¢ for some ¢ > 0, there are few enough collisions that the
two distributions are negligibly close in statistical distance, which
is sufficient to prove Theorem 5.5.

LEMMA 5.6. Let N > k — 1 be an integer and let G be an abelian
group with |G| = N*¥=1*¢ for somec > 0. Let A = (ay, ...,an) be
a tuple of N elements drawn with replacement from G. Define the
following two random variables:

o Xi = Y;cra; wherel C [N] is a uniformly random set of size
k-1
o Xo: uniformly random over {3 ;cra; : I € [N],|I| =k —1}.

Then the statistical distance is || (A, X1) — (A, X2)|ls = O(1/VN€).

URecall that N = 2™ and that following Definition 5.3, n is the security parameter.
Terms like “exponential” or “negligible” are thus defined with respect to n.
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Proor. First, by conditioning on the realization of A:

1A, X1) — (A, X2)lls = Z Pr[A = A]lIX114 — Xpjalls,  (6)
AeGN

where X; 4 denotes the distribution of X; conditioned on the event
A =Aforie {12}

We now focus on a single summand from (6) corresponding
to the realization A A and define Z = {};crai I ¢
[N],|I| = k — 1}, the set of (k — 1)-sums and for g € G, ¢g =
{I C[N] : |I|=k—-1A Yecrai =g} is the number of (k — 1)-
sets of indices whose corresponding sum equals g. Then we have:

1 Cg
1zl ()

Observe that ¢; > 1 whenever g € Z. We now assume that |Z| >

1
X114 = Xapalls = 5 Z

3 k]ll 1) (we will later only use the following derivation under this
assumption). Splitting the sum on ¢g > 1:

X114 — X2)alls
1 1 1 1 Cg 1
= - —_——— |+ = - —
2 g:cZgzl 12l (kIfl)) 2 g:§>1 ( (kllll) 12

where we used the trivial upper bound |Z| < (,ji’l) and the assump-

tion that |Z] > %( k}ij 1) to determine the sign of the quantity inside
the absolute value. We then write:

1 1
X114 — X2)alls = EgZZI E - _(k]iil))
“vg

1 cg—1 1 1 )
+ = + - —

2 g;czg‘il ( ) (Y 1l

1 1 Cg — 1
<z + =

2 Zz |Z| klyl)) 2g,r:cZg:>1 (kljl)

1 1 1 1 cg—1
= - —_— + p—

2 gicg21 |Z| (kNl)) 2 g:czgzzl (kllll)
:G_|m

~. |
(k—1)

where the inequality uses again that |Z] < (klfl), and the last
equality uses that Zg:cgzl cg = (,f)’l) and that Z = {g : ¢ > 1}.

We now consider some § < 1/2 which will be set at the end of
the proof and split the sum in (6) on |Z| < (1 - §) (,jfl);

2> (N -9

where we used the trivial upper bound [|X;j4 — Xpalls < 1 when
1Z] < (1-96) (kljl) and the upper bound [ X; |4 — X3lls < § when
1Z] > (1-8)( kI:] 1) by the previous derivation.

(A, X1) = (A, X2)lls

25 (Y Ja-o

25 (Y Ja-o

<Pr +6-Pr

<Pr +94,
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We now use Markov’s inequality and Lemma 5.7 below to upper

bound the first summand:
)
1 “E[j1z]]) +5
5(151) k-1

< L[N, s 1 .
=516I1\k-1) 7% 5(k-1)INe

where the last inequality uses that |G| > N*~1*¢ by assumption.
Finally, we set § = 1/VN€ to get the desired conclusion. O

||(As Xl) - (As XZ)”S <

d.

LEMMA 5.7. Let N > k — 1 be an integer and let G be an abelian
group of size at least N. Let A = (ay, ..., an) be a tuple of N elements
drawn with replacement from G. Define Z = {Zie[ a; : IC[N]A
|I| = k — 1} to be the set of (k — 1)-sums of coordinates of A, then:

)=t )

Proor. For each (k — 1)-set of indices I C [N], we define the
random variable Xj to be the indicator that the sum ;g a; collides
with }};¢p a; for some (k — 1)-set of indices I’ # I:

: |I'|=k—1/\I’¢I/\Za,~=Zai}.

iel iel

Then, using a union bound and since the probability of a collision

is 1/|G|:
2,

iel

X =1 {31’ c [N]

N

(k=1)
a,=Za,~] < I|CG| .

iel

x| <) pr

r+1

On the other hand, there are at least as many elements in Z as
(k — 1)-sets of indices I € [N] which do not collide with any other
(k — 1)-set:

2z Y a-xo=(N)- ¥ x
IEIN] ICIN]
[=k—1 I=k—1

Combining the previous two inequalities concludes the proof. O
We are now ready to prove Theorem 5.5.

ProoF (THEOREM 5.5). Throughout the proof, we fix N and write
G, S, T to denote Gy, S(n), T(n) respectively, leaving the parameter
n implicit. Suppose, for contradiction, that f is not a one-way func-
tion in the random oracle model with S preprocessing. Then there
exists A = (A, Az) such that [A;(-)| < S and Aj is PPT, which
inverts f with probability at least § for some non-negligible &:

Pr [fR (ﬂg,ﬂl(R) (fR(x))) :fR(x)] 5.

where R : [N] = G is a random oracle and x € [N]*~! is a random
input to fR distributed as defined in Construction 1. Then, we use A
to build an (S, T) solver A’ = (A;], A;) for kSUM-Indexing(G, N)
as follows. Given input A = (ay, . .., ay) for kSUM-Indexing(G, N),
.7({ defines random oracle R : [N] — G such that R(i) = a; for
i € [N] and outputs Aj (R) — this amounts to interpreting the tuple
A as a function mapping indices to coordinates. A, is identical to

(7)

Ajz. By construction, whenever A2 successfully inverts fR (ie.,
outputs x € [N1%! such that fR(x) = b for input b), then the
output of A; satisfies Zifz_ll ax; = b.
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It follows from (7) that A’ as described thus far solves average-
case kSUM-Indexing(G, N) with success probability § when given
as input a query distributed as f®(x). By construction, the dis-
tribution of fR(x) is identical to the distribution of }};¢s a; for a
uniformly random set I C [N] of size k — 1, let X; denote this
distribution. However, average-case kSUM-Indexing(G, N) is de-
fined with respect to a distribution of queries which is uniform over
{Zierai : I € [N] A|I| =k — 1}, let us denote this distribution by
X;. By Lemma 5.6, we have that [|(4, X1) — (4, X2)]ls = O(1/VN¢),
hence A3 solves kSUM-Indexing(G, N) for the correct query dis-
tribution X, with probability at least § — O(1/VYN€) which is non-
negligible since § is non-negligible. Denoting by T the running
time of A2, we just proved that A’ is an (S5,T, 5 — O(1/VN¥))
adversary for average-case kSUM-Indexing(G, N), which is a con-
tradiction. ]

We conjecture that 3SUM-Indexing is (G, N, S, T, ¢)-hard with
£= % when G = (Z/N€Z, +) (the standard 3SUM-Indexing prob-
lem) and G = ((Z/2Z)°", &) (the 3XOR-Indexing problem) for ¢ > 2.
If this conjecture is true, the previous theorem implies the existence
of (exponentially strong) one-way functions in the random oracle
model as long the preprocessing satisfies S < N2~ for § > 0. As
per the discussion below Definition 5.3, Theorem 5.5 is vacuous in
the regime where S = Q(N?).

5.3 Cryptography with Preprocessing and Data
Structures

In this section we show that the construction in Section 5.2 is a spe-
cific case of a more general phenomenon. Specifically, Theorem 5.10
below states that the existence of one-way functions in the random
oracle model with preprocessing is equivalent to the existence of
a certain class of hard-on-average data structure problems. The
next two definitions formalize the definitions of a data structure
problem and a solver for a data structure problem.

Definition 5.8. An (S, T, ¢)-solver for a data structure problem
g: DX Q — Y is atwo-part algorithm B = (81, B2) such that:

e By takes as input d € D and computes a data structure ¢(d)
such that |#(d)| < S; and

o B, takes as input query q € Q, makes at most T queries to
¢(d), and outputs y € Y.

We say that a given execution of B succeeds if B, outputs y =
9(d. ).

Theorem 5.10 considers a special class of data structure problems
for which a query can be efficiently generated given its answer, as
defined next.

Definition 5.9. Let g : D X Q — Y be a static data structure
problem and let h : D XY — Q. Then h is an efficient query
generator for g if h is computable in time poly(log |Ql,log|Y|) and

YdeD,yeY, g(dhr(dy)=y. (®)

For any h which is an efficient query generator for g, we say that
(g, h) is (S, T, €)-hard if for query distribution q = h(d,y) where
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d € D,y € Y are uniformly random, no (S, T)-solver succeeds with
probability more than e.1?

Remark 11. For the 3SUM-Indexing problem, A is the function
that takes d = (a1,...,an) and a pair of indices y = (i, j) and
outputs a; + a;. Constructing a corresponding function g for this h
is equivalent to solving the 3SUM-Indexing problem.

Remark 12. Let g, h be defined as in Definition 5.9. Then because g
is a function and h satisfies (8), it holds that for any given d € D,
the function h(d, -) is injective. That is, for any d € D,y,y’ € Y,

h(d,y) = h(d.y’) ©)

THEOREM 5.10. There exists a (S, T, €)-hard data structure with
efficient query generation iff there exists a (S, T, €)-hard OWF in the
random oracle model with preprocessing.

More specifically, there is an efficient explicit transformation: (1)
from any (S, T, )-hard data structure with efficient query generation
to a (S, T, €)-hard OWF in the random oracle model with preprocess-
ing; and (2) from any (S, T, €)-hard OWF in the random oracle model
with preprocessing to an explicit construction of a (S, T, €)-hard data
structure. For the second transformation, the resulting data structure
is always in QuasiP (with respect to its input size), and is in fact in
P whenever the input/output size of the underlying OWF is linear in
the input/output size of the random oracle.

= y=y .

ProOF. We show the two implications in turn.'3

e DS = OWF. Let g : {0, 1} x {0, 1}’”, — {0, 1}"/ be a data
structure problem, and let & : {0, 1}V x {0, 1}"/ — {0, l}m/ be
an efficient query generator for g such that (g, h) is (S, T, ¢)-
hard. Let R : {0,1}" — {0,1}" be a random oracle, such
that N = n2". We define an oracle function f¥ : {0, Y L
{0,1}™ as follows:

Rx) =hRx),

where R denotes the binary representation of R.

fisa (S, T,e)-hard OWF in the random oracle model with
preprocessing, because it is efficiently computable and hard
to invert, as proven next. Since h is efficiently computable, f
runs in time poly(n’, m’).

It remains to show that f is (S, T, €)-hard to invert. Suppose,
for contradiction, that this is not the case: namely, that there
is a two-part adversary A = (A, Az) such that

Pr [h (R, AT ® (h(R,x))) - h(R,x)] Se, (10)

x—{0,1}"

and A;’s output size is at most S, Az makes at most T queries
to A1 (R), and the probability is also over the sampling of
the random oracle R.
We use A to build (B, B2), an (S, T)-solver for g, as follows.
On input d € {0,1}N, B; simply outputs ¢(d) = A;(d). On
input ¢ € {0,1}™, B, runs ﬂéﬂl(R)(q); for each query ¢
that Ay’s makes to A; (R), By simply queries ¢(d) on { and
returns the response to Aj.

12For simplicity we consider the uniform distributions on D and Y, but all definitions
and results easily generalize to arbitrary distributions.

BThroughout this proof, we assume the domain and range of the data structure
problem and OWF are bitstrings. The proof generalizes to arbitrary domains and
ranges.
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It follows from (9) and (10) that

pr |89 (hdy)=y|=e.
de{o,1)}N
ye—{01}"
This contradicts the (S, T, ¢)-hardness of (g, h).

e OWF = DS. Let fR: {0,1}" — {0,1}™ be a (S, T, ¢)-hard
OWEF in the random oracle model with preprocessing, for
a random oracle mapping n bits to n bits. We design a data
structure problem g : {0, 1}V x {0, 13" - {0,1}" and an
efficient query generator h for g such that N = n2" and (g, h)
is (S, T, ¢)-hard, as follows.

- h(d.y) = f(y).

- g(d,q) =min{y € Y : fI(y) = q}."*

h is computable in time poly(n’, m’), as required by Defini-
tion 5.9, because f¢ is efficiently computable (in its input
size). Furthermore, h satisfies (8) since g is, by construction,
an inverse of h.

Next, we show that (g, h) is (S, T, €)-hard. Suppose the con-
trary, for contradiction. Then there exists an (S, T)-solver
B = (B4, By) for g that succeeds with probability greater
than ¢ on query distribution g = h(d,y) = f%(y) where d,y
are uniformly random. Then 8 is quite literally an inverter
for the OWF f, where d corresponds to the random oracle
and g corresponds to the challenge value to be inverted: by
assumption, B satisfies

pr (B (W) = W) > e

d—({0,1}"—>{0,1}")
y—{o)”

This contradicts the (S, T, ¢)-hardness of f.
Finally, g is computable in DTIME[2" - poly(n’)], since it
can be solved by exhaustively searching all y € {0, 1} and
outputting the first (i.e., minimum) such that f%(y) = q.
Note that n’,m’ € poly(n) since n’,m’ are the input and
output sizes of a OWF with oracle access to a random ora-
cle mapping n bits to n bits. Hence, g is computable in time
quasipolynomial in |d| = N = n2", ie., the size of g’s first in-
put. In particular, g is computable in time poly(N) whenever
n’,m’ € O(n). O

Remark 13. As an example, a one-way function fX: {0,1}°" —
{0,1}°" in the random oracle model with preprocessing S = 23"
would give an adaptive data structure lower bound for a function
with N inputs, N° outputs, space S = Q(N3/polylog(N)) and
query time T = poly log(N). Finding such a function is a big open
problem in the area of static data structures [36, 57, 66, 68, 72].
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