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ABSTRACT
This paper shows several connections between data structure prob-

lems and cryptography against preprocessing attacks. Our results

span data structure upper bounds, cryptographic applications, and

data structure lower bounds, as summarized next.

First, we apply Fiat–Naor inversion, a technique with crypto-

graphic origins, to obtain a data structure upper bound. In particular,

our technique yields a suite of algorithms with space 𝑆 and (online)

time 𝑇 for a preprocessing version of the 𝑁 -input 3SUM problem

where 𝑆3 ·𝑇 = 𝑂 (𝑁 6). This disproves a strong conjecture (Goldstein
et al., WADS 2017) that there is no data structure that solves this

problem for 𝑆 = 𝑁 2−𝛿
and 𝑇 = 𝑁 1−𝛿

for any constant 𝛿 > 0.

Secondly, we show equivalence between lower bounds for a

broad class of (static) data structure problems and one-way func-

tions in the random oracle model that resist a very strong form

of preprocessing attack. Concretely, given a random function

𝐹 : [𝑁 ] → [𝑁 ] (accessed as an oracle) we show how to compile
it into a function 𝐺𝐹

: [𝑁 2] → [𝑁 2] which resists 𝑆-bit prepro-

cessing attacks that run in query time 𝑇 where 𝑆𝑇 = 𝑂 (𝑁 2−𝜀 )
(assuming a corresponding data structure lower bound on 3SUM).

In contrast, a classical result of Hellman tells us that 𝐹 itself can

be more easily inverted, say with 𝑁 2/3
-bit preprocessing in 𝑁 2/3

time. We also show that much stronger lower bounds follow from

the hardness of kSUM. Our results can be equivalently interpreted

as security against adversaries that are very non-uniform, or have

large auxiliary input, or as security in the face of a powerfully

backdoored random oracle.

Thirdly, we give non-adaptive lower bounds for 3SUM which

match the best known lower bounds for static data structure prob-

lems. Moreover, we show that our lower bound generalizes to a

range of geometric problems, such as three points on a line, polygon

containment, and others.
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1 INTRODUCTION
Cryptography and data structures have long enjoyed a productive

relationship [12, 17, 19, 39, 50, 53, 58, 59, 61, 62]: indeed, the rela-

tionship has been referred to as a “match made in heaven” [60].

In this paper, we initiate the study of a new connection between

the two fields, which allows us to construct novel cryptographic

objects starting from data structure lower bounds, and vice versa.

Our results are three-fold. Our first result is a new upper bound

for a data structure version of the classical 3SUM problem (called

3SUM-Indexing) using Fiat–Naor inversion [39], a technique with

cryptographic origins. This result refutes a strong conjecture due

to Goldstein, Kopelowitz, Lewenstein and Porat [46]. In our sec-

ond and main result, we turn this connection around, and show

a framework for constructing one-way functions in the random

oracle model whose security bypasses known time/space tradeoffs,

relying on any of a broad spectrum of (conjectured) data structure

lower bounds (including for 3SUM-Indexing). As a third result, we

show new lower bounds for a variety of data structure problems

(including for 3SUM-Indexing) which match the state of the art in

the field of static data structure lower bounds.

Next, we describe our results, focusing on the important special

case of 3SUM-Indexing; all of our results and methods extend to the

more general kSUM-Indexing problem where pairwise sums are

replaced with (𝑘 − 1)-wise sums for an arbitrary constant integer

𝑘 independent of the input length. Section 1.1 gives background on

3SUM-Indexing, then Section 1.2 discusses our contributions.
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1.1 3SUM and 3SUM-Indexing
One of the many equivalent formulations of the 3SUM problem is

the following: given a set𝐴 of 𝑁 integers, output 𝑎1, 𝑎2, 𝑎3 ∈ 𝐴 such

that 𝑎1 + 𝑎2 = 𝑎3. There is an easy 𝑂 (𝑁 2) time deterministic algo-

rithm for 3SUM. Conversely, the popular 3SUM conjecture states

that there are no sub-quadratic algorithms for this problem [37, 41].

Conjecture 1.1 (The “Modern 3SUM conjecture”). 3SUM
cannot be solved in time 𝑂 (𝑁 2−𝛿 ) for any constant 𝛿 > 0.

Conjecture 1.1 has been helpful for understanding the precise

hardness of many geometric problems [3, 5, 8–10, 14, 18, 26, 31, 37,

38, 41, 73]. Furthermore, starting with the works of [67, 76], the

3SUM conjecture has also been used for conditional lower bounds

for many combinatorial [1, 45, 55] and string search problems [2, 6,

7, 20, 25, 55].

Our main results relate to a preprocessing variant of 3SUM

known as 3SUM-Indexing, which was first defined by Demaine

and Vadhan [32] in an unpublished note and then by Goldstein,

Kopelowitz, Lewenstein and Porat [46]. In 3SUM-Indexing, there

is an offline phase where a computationally unbounded algorithm
receives 𝐴 = {𝑎1, . . . , 𝑎𝑁 } and produces a data structure with 𝑆

words of𝑤 bits each; and an online phase which is given the target

𝑏 and needs to find a pair (𝑎𝑖 , 𝑎 𝑗 ) such that 𝑎𝑖 + 𝑎 𝑗 = 𝑏 by probing

only 𝑇 memory cells of the data structure (i.e., taking “query time”

𝑇 ). The online phase does not receive the set 𝐴 directly, and there

is no bound on the computational complexity of the online phase,

only the number of queries it makes.

There are two simple algorithms that solve 3SUM-Indexing. The

first stores a sorted version of𝐴 as the data structure (so 𝑆 = 𝑁 ) and

in the online phase, solves 3SUM-Indexing in𝑇 = 𝑂 (𝑁 ) time using

the standard two-finger algorithm for 3SUM. The second stores all

pairwise sums of 𝐴, sorted, as the data structure (so 𝑆 = 𝑂 (𝑁 2))
and in the online phase, looks up the target 𝑏 in 𝑇 = 𝑂 (1) time.

1

There were no other algorithms known prior to this work. This led

[32, 46] to formulate the following three conjectures.

Conjecture 1.2 ([46]). If there exists an algorithm which solves
3SUM-Indexing with preprocessing space 𝑆 and𝑇 = 𝑂 (1) probes then
𝑆 = Ω̃(𝑁 2).

Conjecture 1.3 ([32]). If there exists an algorithm which solves
3SUM-Indexing with preprocessing space 𝑆 and 𝑇 probes, then 𝑆𝑇 =

Ω̃(𝑁 2).

Conjecture 1.4 ([46]). If there exists an algorithm which solves
3SUM-Indexing with 𝑇 = 𝑂 (𝑁 1−𝛿 ) probes for some 𝛿 > 0 then
𝑆 = Ω̃(𝑁 2).

These conjectures are in ascending order of strength:

Conjecture 1.4⇒ Conjecture 1.3⇒ Conjecture 1.2.

In terms of lower bounds, Demaine and Vadhan [32] showed

that any 1-probe data structure for 3SUM-Indexing requires space

𝑆 = Ω̃(𝑁 2). They leave the case of𝑇 > 1 open. Goldstein et al. [46]
established connections between Conjectures 1.2 and 1.4 and the

hardness of Set Disjointness, Set Intersection, Histogram Indexing

and Forbidden Pattern Document Retrieval.

1
The notation𝑂 (𝑓 (𝑁 )) suppresses poly-logarithmic factors in 𝑓 (𝑁 ) .

1.2 Our Results
Our contributions are three-fold. First, we show better algorithms

for 3SUM-Indexing, refuting Conjecture 1.4. Our construction relies

on combining the classical Fiat–Naor inversion algorithm, originally

designed for cryptographic applications, with hashing. Secondly,

we improve the lower bound of [32] to arbitrary 𝑇 . Moreover, we

generalize this lower bound to a range of geometric problems, such

as 3 points on a line, polygon containment, and others. (Due to space

constraints, this generalization is presented only in the full version

[48] of this paper.) As we argue later, any asymptotic improvement

to our lower bound will result in a major breakthrough in static

data structure lower bounds.

Finally, we show how to use the conjectured hardness of

3SUM-Indexing for a new cryptographic application: namely, de-

signing cryptographic functions that remain secure with massive

amounts of preprocessing. We show how to construct one-way

functions in this model assuming the hardness of a natural average-

case variant of 3SUM-Indexing. Furthermore, we prove that this

construction generalizes to an explicit equivalence between certain

types of hard data structure problems and OWFs in this preprocess-

ing model. This setting can also be interpreted as security against

backdoored random oracles, a problem of grave concern in the

modern world.

We describe these results in more detail below.

1.2.1 Upper Bound for 3SUM-Indexing.

Theorem 1.5. For every 0 ≤ 𝛿 ≤ 1, there is an adaptive data
structure for 3SUM-Indexing with space 𝑆 = 𝑂 (𝑁 2−𝛿 ) and query
time 𝑇 = 𝑂 (𝑁 3𝛿 ).

In particular, Theorem 1.5 implies that by setting 𝛿 = 0.1, we get

a data structure that solves 3SUM-Indexing in space 𝑆 = 𝑂 (𝑁 1.9)
and 𝑇 = 𝑂 (𝑁 0.3) probes, and thus refutes Conjecture 1.4.

In a nutshell, the upper bound starts by considering the function

𝑓 (𝑖, 𝑗) = 𝑎𝑖 + 𝑎 𝑗 . This function has a domain of size 𝑁 2
but a

potentially much larger range. In a preprocessing step, we design a

hashing procedure to convert 𝑓 into a function 𝑔 with a range of

size 𝑂 (𝑁 2) as well, such that inverting 𝑔 lets us invert 𝑓 . Once we

have such a function, we use Fiat and Naor [39]’s general space-

time tradeoff for inverting functions, which gives non-trivial data

structures for function inversion as long as function evaluation
can be done efficiently. Due to our definitions of the functions

𝑓 and 𝑔, we can efficiently compute them at every input, which

leads to efficient inversion of 𝑓 , and, therefore, an efficient solution

to 3SUM-Indexing. For more details, see Section 3. We note that

prior to this work, the result of Fiat and Naor [39] was recently

used by Corrigan-Gibbs and Kogan [29] for other algorithmic and

complexity applications. In a concurrent work, Kopelowitz and

Porat [56] obtain a similar upper bound for 3SUM-Indexing.

1.2.2 Lower Bound for 3SUM-Indexing and Beyond. We show that

any algorithm for 3SUM-Indexing that uses a small number of

probes requires large space, as expressed formally in Theorem 1.6.

Theorem 1.6. For every non-adaptive algorithm that uses space
𝑆 and query time 𝑇 and solves 3SUM-Indexing, it holds that 𝑆 =

Ω̃(𝑁 1+1/𝑇 ).
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The lower bound gives us meaningful (super-linear) space

bounds for nearly logarithmic 𝑇 . Showing super-linear space

bounds for static data structures for𝑇 = 𝜔 (log𝑁 ) probes is a major

open question with significant implications [36, 57, 66, 68, 72].

The standard way to prove super-linear space lower bounds for

𝑇 = 𝑂 (log𝑁 ) is the so-called cell-sampling technique. Applying

this technique amounts to showing that one can recover a fraction

of the input by storing a subset of data structure cells and then

using an incompressibility argument. This technique applies to data

structure problems which have the property that one can recover

some fraction of the input given the answers to any sufficiently

large subset of queries.

Unfortunately, the 3SUM-Indexing problem does not have this

property and the cell-sampling technique does not readily apply.

Instead we use a different incompressibility argument, closer to the

one introduced by Gennaro and Trevisan in [43] and later developed

in [30, 35]. We argue that given a sufficiently large random subset

of cells, with high probability over a random choice of input, it is

possible to recover a constant fraction of the input. It is crucial for

our proof that the input is chosen at random after the subset of

data structure cells, yielding a lower bound only for non-adaptive
algorithms.

Next, we show how to extend our lower bound to other data

structure problems. For this, we define 3SUM-Indexing-hardness,

the data structure analogue of 3SUM-hardness. In a nutshell, a data

structure problem is 3SUM-Indexing-hard if there exists an efficient

data structure reduction from 3SUM-Indexing to it. We then show

how to adapt known reductions from 3SUM to many problems

in computational geometry and obtain efficient reductions from

3SUM-Indexing to their data structure counterparts. This in turns

implies that the lower bound in Theorem 1.6 carries over to these

problems as well.

1.2.3 Cryptography against Massive Preprocessing Attacks. In a

seminal 1980 paper, Hellman [50] initiated the study of algorithms

for inverting (cryptographic) functions with preprocessing. In par-

ticular, given a function 𝐹 : [𝑁 ] → [𝑁 ] (accessed as an oracle), an

adversary can run in unbounded time and produce a data struc-

ture of 𝑆 bits.
2
Later, given access to this data structure and (a

possibly uniformly random) 𝑦 ∈ [𝑁 ] as input, the goal of the ad-
versary is to spend 𝑇 units of time and invert 𝑦, namely output

an 𝑥 ∈ [𝑁 ] such that 𝐹 (𝑥) = 𝑦. It is easy to see that bijective

functions 𝐹 can be inverted at all points 𝑦 with space 𝑆 and time

𝑇 where 𝑆𝑇 = 𝑂 (𝑁 ). Hellman showed that a random function 𝐹

can be inverted in space 𝑆 and time 𝑇 where 𝑆2𝑇 = 𝑂 (𝑁 2), giving
in particular a solution with 𝑆 = 𝑇 = 𝑂 (𝑁 2/3). Fiat and Naor [39]

provided a rigorous analysis of Hellman’s tradeoff and additionally

showed that a worst-case function can be inverted on a worst-case

input in space 𝑆 and time 𝑇 where 𝑆3𝑇 = 𝑂 (𝑁 3), giving in par-

ticular a solution with 𝑆 = 𝑇 = 𝑂 (𝑁 3/4). A series of follow-up

works [4, 15, 30] studied time-space tradeoffs for inverting one-way

permutations, one-way functions and pseudorandom generators. In

terms of lower bounds, Yao [78] showed that for random functions

(and permutations) 𝑆𝑇 = Ω(𝑁 ). Sharper lower bounds, which also

quantify over the success probability and work for other primitives

2
The unbounded preprocessing time is amortized over a large number of function

inversions. Furthermore, typically the preprocessing time is𝑂 (𝑁 ) .

such as pseudorandom generators and hash functions, are known

from recent work [4, 27, 28, 35, 42, 74].

Hellman’s method and followups have been extensively used in

practical cryptanalysis, for example in the form of so-called “rain-

bow tables” [65]. With the increase in storage and available com-

puting power (especially to large organizations and nation states),

even functions that have no inherent weakness could succumb

to preprocessing attacks. In particular, when massive amounts of

(possibly distributed) storage is at the adversary’s disposal, 𝑆 could

be Ω(𝑁 ), and the preprocessed string could simply be the function

table of the inverse function 𝐹−1 which allows the adversary to

invert 𝐹 by making a single access to the 𝑆 bits of preprocessed

string.

One way out of this scenario is to re-design a new function

𝐹 with a larger domain. This is a time-consuming and complex

process [63, 64], taking several years, and is fraught with the danger

that the new function, if it does not undergo sufficient cryptanalysis,

has inherent weaknesses, taking us out of the frying pan and into

the fire.

We consider an alternative method that immunizes the function
𝐹 against large amounts of preprocessing. In particular, we consider

an adversary that can utilize 𝑆 ≫ 𝑁 bits of preprocessed advice,

but can only access this advice by making a limited number of

queries, in particular 𝑇 ≪ 𝑁 . This restriction is reasonable when

accessing the adversary’s storage is expensive, for example when

the storage consists of slow but massive memory, or when the

storage is distributed across the internet, or when the adversary

fields a stream of inversion requests. (We note that while we restrict

the number of queries, we do not place any restrictions on the

runtime.)

In particular, we seek to design an immunizing compiler that
uses oracle access to 𝐹 to compute a function 𝐺 (𝑥) = 𝐺𝐹 (𝑥). We

want 𝐺 to remain secure (for example, hard to invert) even against

an adversary that can make 𝑇 queries to a preprocessed string of

length 𝑆 bits. Both the preprocessing and the queries can depend

on the design of the compiler 𝐺 . Let 𝐺 : [𝑁 ′] → [𝑁 ′]. To prevent

the inverse table attack (mentioned above), we require that 𝑁 ′ > 𝑆 .

From Data Structure Lower Bounds to Immunizing Compilers. We

show how to use data structure lower bounds to construct immu-

nizing compilers. We illustrate such a compiler here assuming the

hardness of the 3SUM-Indexing problem. The compiler proceeds

in two steps.

(1) First, given oracle access to a random function 𝐹 : [2𝑁 ] →
[2𝑁 ], construct a new (random) function 𝐹 ′ : [𝑁 ] → [𝑁 2]
by letting 𝐹 ′(𝑥) = 𝐹 (0, 𝑥)∥𝐹 (1, 𝑥).

(2) Second, let 𝐺𝐹 (𝑥,𝑦) = 𝐹 ′(𝑥) + 𝐹 ′(𝑦) (where the addition is

interpreted, e.g., over the integers).

Assuming the hardness of 3SUM-Indexing for space 𝑆 and 𝑇

queries, we show that this construction is one-way against adver-

saries with 𝑆 bits of preprocessed advice and 𝑇 online queries. (As

stated before, our result is actually stronger: the function remains

uninvertible even if the adversary could run for unbounded time

in the online phase, as long as it can make only 𝑇 queries.) Con-

jecture 1.3 of Demaine and Vadhan, for example, tells us that this

function is uninvertible as long as 𝑆𝑇 = 𝑁 2−𝜖
for any constant

𝜖 > 0. In other words, assuming (the average-case version of) the
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3SUM-Indexing conjecture of [32], this function is as uninvertible

as a random function with the same domain and range.

This highlights another advantage of the immunization approach:

assume that we have several functions (modeled as independent

random oracles) 𝐹1, 𝐹2, . . . , 𝐹ℓ all of which are about to be obsolete

because of the increase in the adversary’s space resources. Instead

of designing ℓ independent new functions 𝐹 ′
1
, . . . , 𝐹 ′

ℓ
, one could

use our immunizer 𝐺 to obtain, in one shot, 𝐹 ′
𝑖
= 𝐺𝐹𝑖

that are as

uninvertible as ℓ new random functions.

A General Connection. In fact, we show a much more general

connection between (average-case) data structure lower bounds

and immunizing compilers. In more detail, we formalize a data

structure problem by a function𝑔 that takes as input the data𝑑 and a

“target” 𝑦 and outputs a “solution” 𝑞. In the case of 3SUM-Indexing,

𝑑 is the array of 𝑛 numbers 𝑎1, . . . , 𝑎𝑛 , and 𝑞 is a pair of indices

𝑖 and 𝑗 such that 𝑎𝑖 + 𝑎 𝑗 = 𝑦. We identify a key property of the

data structure problem, namely efficient query generation. The data
structure problem has an efficient query generator if there is a

function that, given 𝑖 and 𝑗 , makes a few queries to 𝑑 and outputs 𝑦

such that 𝑔(𝑑,𝑦) = (𝑖, 𝑗). In the case of 3SUM-Indexing, this is just

the function that looks up 𝑎𝑖 and 𝑎 𝑗 and outputs their sum.

We then show that any (appropriately hard) data structure prob-

lem with an efficient query generator gives us a one-way function

in the preprocessing model. In fact, in Section 5.3, we show an

equivalence between the two problems.

The Necessity of Unproven Assumptions. The one-wayness of our
compiled functions rely on an unproven assumption, namely the

hardness of the 3SUM-Indexing problem with relatively large space

and time (or more generally, the hardness of a data structure prob-

lem with an efficient query generator). We show that unconditional

constructions are likely hard to come by in that they would result

in significant implications in circuit complexity.

In particular, a long-standing open problem in computational

complexity is to find a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 which can-

not be computed by binary circuits of linear size 𝑂 (𝑛) and depth

𝑂 (log𝑛) [11, 75, Frontier 3]. We show that even a weak one-way

function in the random oracle model with preprocessing (for spe-

cific settings of parameters) implies a super-linear circuit lower

bound. Due to space constraints, this result is presented only in

the full version [48] of this paper. Our proof employs the approach

used in several recent works [29, 36, 70, 77].

Relation to Immunizing Against Cryptographic Backdoors. Back-
doors in cryptographic algorithms pose a grave concern [23, 24, 49],

and a natural question is whether one can modify an entropic but

imperfect (unkeyed) function, which a powerful adversary may

have tampered with, into a function which is provably hard to

invert even to such an adversary. In other words, can we use a

“backdoored” random oracle to build secure cryptography? One

possible formalization of a backdoor is one where an unbounded

offline adversary may arbitrarily preprocess the random oracle

into an exponentially large lookup table to which the (polynomial-

time) online adversary has oracle access. It is easy to see that this

formalization is simply an alternative interpretation of (massive)

preprocessing attacks. Thus, our result shows how to construct one-

way functions in this model assuming the hardness of a natural

average-case variant of 3SUM-Indexing.

On immunizing against backdoors, a series of recent works [16,

34, 40, 71] studied backdoored primitives including pseudorandom

generators and hash functions. In this setting, the attacker might be

given some space-bounded backdoor related to a primitive, which

could allow him to break the system more easily. In particular, back-

doored hash functions and random oracles are studied in [16, 40].

Both of them observe that immunizing against a backdoor for a

single unkeyed hash function might be hard. For this reason, [16]

considers the problem of combining two random oracles (with two

independent backdoors). Instead, we look at the case of a single

random oracle but add a restriction on the size of the advice. [40]

considers the setting of keyed functions such as (weak) pseudo-

random functions, which are easier to immunize than unkeyed

functions of the type we consider in this work.

The BRO model and an Alternative Immunization Strategy. As
mentioned just above, the recent work of [16] circumvents the prob-

lem of massive preprocessing in a different way, by assuming the

existence of at least two independent (backdoored) random oracles.

This allows them to use techniques from two-source extraction

and communication complexity to come up with an (uncondition-

ally secure) immunization strategy. A feature of their approach is

that they can tolerate unbounded preprocessing that is separately
performed on the two (independent) random oracles.

Domain Extension and Indifferentiability. Our immunization al-

gorithm is effectively a domain extender for the function (random

oracle) 𝐹 . While it is too much to hope that 𝐺𝐹
is indifferentiable

from a random oracle [33], we show that it could still have interest-

ing cryptographic properties such as one-wayness. We leave it as

an interesting open question to show that our compiler preserves

other cryptographic properties such as pseudorandomness, or al-

ternatively, to come up with other compilers that preserve such

properties.

1.3 Other Related Work
Non-Uniform Security, Leakage, and Immunizing Backdoors. A

range of work on non-uniform security, preprocessing attacks, leak-

age, and immunizing backdoors can all be seen as addressing the

common goal of achieving security against powerful adversaries

that attack a cryptographic primitive given access to some “advice”

(or “leakage” or “backdoor information”) that was computed in

advance during an unbounded preprocessing phase.

On non-uniform security of hash functions, recent works [28, 35,

74] studied the auxiliary-input random-oracle model in which an

attacker can compute arbitrary 𝑆 bits of leakage before attacking

the system and make 𝑇 additional queries to the random oracle.

Although our model is similar in that it allows preprocessed leakage

of a random oracle, we differ significantly in two ways: the size

of the leakage is larger, and the attacker only has oracle access

to the leakage. Specifically, their results and technical tools only

apply to the setting where the leakage is smaller than the random

oracle truth table, whereas our model deals with larger leakage.

Furthermore, the random oracle model with auxiliary input allows
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the online adversary to access and depend on the leakage arbitrarily

while our model only allows a bounded number of oracle queries to

the leakage; our model is more realistic for online adversaries with

bounded time and which cannot read the entire leakage at query

time.

Kleptography. The study of backdoored primitives is also related

to — and sometimes falls within the field of — kleptography, origi-
nally introduced by Young and Yung [79–81]. A kleptographic attack
“uses cryptography against cryptography” [81], by changing the

behavior of a cryptographic system in a fashion undetectable to

an honest user with black-box access to the cryptosystem, such

that the use of the modified system leaks some secret information

(e.g., plaintexts or key material) to the attacker who performed the

modification. An example of such an attack might be to modify

the key generation algorithm of an encryption scheme such that

an adversary in possession of a “backdoor” can derive the private

key from the public key, yet an honest user finds the generated key

pairs to be indistinguishable from correctly produced ones.

Data-Structure Versions of Problems in Fine-Grained Complexity.
While the standard conjectures about the hardness of CNF-SAT,

3SUM, OV and APSP concern algorithms, the OMV conjecture

claims a data structure lower bound for the Matrix-Vector Multipli-

cation problem. While algorithmic conjectures help to understand

time complexity of the problems, it is also natural to consider data

structure analogues of the fine-grained conjectures in order to un-

derstand space complexity of the corresponding problems. Recently,

Goldstein et al. [46, 47] proposed data structure variants of many

classical hardness assumptions (including 3SUM and OV). Other

data structure variants of the 3SUM problem have also been studied

in [13, 21, 22, 32]. In particular, Chan and Lewenstein [22] use tech-

niques from additive combinatorics to give efficient data structures

for solving 3SUM on subsets of the preprocessed sets.

2 PRELIMINARIES
2.1 Notation
When an uppercase letter represents an integer, we use the con-

vention that the associated lowercase letter represents its base-2

logarithm: 𝑁 = 2
𝑛, 𝑆 = 2

𝑠
, etc. [𝑁 ] denotes the set {1, . . . , 𝑁 }

that we identify with {0, 1}𝑛 . 𝑥 ∥𝑦 denotes the concatenation of bit

strings 𝑥 and 𝑦. PPT stands for probabilistic polynomial time.

We do not consistently distinguish between random variables

and their realizations, but when the distinction is necessary or

useful for clarity, we denote random variables in boldface.

2.2 kSUM-Indexing
This paper focuses on the variant of 3SUM known as 3SUM-

Indexing, formally defined in [46], which can be thought of as

a preprocessing or data structure variant of 3SUM. In fact, all our

results extend to the more general kSUM and kSUM-Indexing prob-

lems which consider (𝑘 − 1)-wise sums instead of pairwise sums.

We also generalize the definition of [46] by allowing the input to

be elements of an arbitrary abelian
3
group. We use + to denote the

group operation.

3
This is for convenience and because our applications only involve abelian groups;

our results and techniques easily generalize to the non-abelian case.

Definition 2.1. The problem kSUM-Indexing(𝐺, 𝑁 ),
parametrized by an integer 𝑁 ≥ 𝑘 − 1 and an abelian group 𝐺 , is

defined to be solved by a two-part algorithm A = (A1,A2) as
follows.

• Preprocessing phase. A1 receives as input a tuple 𝐴 =

(𝑎1, . . . , 𝑎𝑁 ) of 𝑁 elements from𝐺 and outputs a data struc-

ture𝐷𝐴 of size
4
at most 𝑆 .A1 is computationally unbounded.

• Query phase. Denote by 𝑍 the set of (𝑘 − 1)-wise sums of

elements from 𝐴: 𝑍 = {∑𝑖∈𝐼 𝑎𝑖 : 𝐼 ⊆ [𝑁 ] ∧ |𝐼 | = 𝑘 − 1}.
Given an arbitrary query 𝑏 ∈ 𝑍 , A2 makes at most 𝑇 oracle

queries to 𝐷𝐴 and must output 𝐼 ⊆ [𝑁 ] with |𝐼 | = 𝑘 − 1 such
that

∑
𝑖∈𝐼 𝑎𝑖 = 𝑏.5

We say that A is an (𝑆,𝑇 ) algorithm for kSUM-Indexing(𝐺, 𝑁 ).
Furthermore, we say that A is non-adaptive if the 𝑇 queries made

by A2 are non-adaptive (i.e., the indices of the queried cells are

only a function of 𝑏).

Remark 1. An alternative definition would have the query 𝑏 be

an arbitrary element of 𝐺 (instead of being restricted to 𝑍 ) and

A2 return the special symbol ⊥ when 𝑏 ∈ 𝐺 \ 𝑍 . Any algorithm

conforming to Definition 2.1 — with undefined behavior for 𝑏 ∈
𝐺 \ 𝑍 — can be turned into an algorithm for this seemingly more

general problem at the cost of (𝑘 − 1) extra queries: given output

𝐼 ⊆ [𝑁 ] on query 𝑏, return 𝐼 if
∑
𝑖∈𝐼 𝑎𝑖 = 𝑏 and return ⊥ otherwise.

Remark 2. The fact that kSUM-Indexing is defined in terms of

(𝑘−1)-wise sums of distinct elements from𝐺 is without loss of gen-

erality for integers, but prevents the occurrence of degenerate cases

in some groups. For example, consider the case of 3SUM-Indexing

for a group 𝐺 such that all elements are of order 2 (e.g., (Z/2Z)𝑐𝑛)
then finding (𝑖1, 𝑖2) such that 𝑎𝑖1 + 𝑎𝑖2 = 0 has the trivial solution

(𝑖, 𝑖) for any 𝑖 ∈ [𝑁 ].
Remark 3. In order to preprocess the elements of some group𝐺 , we

assume an efficient way to enumerate its elements. More specifically,

we assume a time- and space-efficient algorithm for evaluating an

injective function Index : 𝐺 → [𝑁𝑐 ] for a constant 𝑐 . For simplicity,

we also assume that the word length is at least 𝑐 log𝑁 so that we

can store Index(𝑔) for every 𝑔 ∈ 𝐺 in a memory cell. For example,

for the standard 3SUM-Indexing problem over the integers from 0

to 𝑁𝑐
, one can consider the group 𝐺 = (Z/𝑚Z, +) for𝑚 = 2𝑁𝑐 + 1,

and the trivial function Index(𝑎 +𝑚Z) = 𝑎 for 0 ≤ 𝑎 < 𝑚. For ease

of exposition, we abuse notation and write 𝑔 instead of Index(𝑔)
for an element of the group 𝑔 ∈ 𝐺 . For example, 𝑔 mod 𝑝 for an

integer 𝑝 will always mean Index(𝑔) mod 𝑝 .

The standard 3SUM-Indexing problem (formally introduced in

[46]) corresponds to the case where𝐺 = (Z, +) and 𝑘 = 3. In fact, it

is usually assumed that the integers are upper-bounded by some

polynomial in 𝑁 , which is easily shown to be equivalent to the case

where 𝐺 = (Z/𝑁𝑐Z, +) for some 𝑐 > 0, and is sometimes referred

to as modular 3SUM when there is no preprocessing.

Another important special case is when 𝐺 =
(
(Z/2Z)𝑐𝑛, +

)
for

some 𝑐 > 0 and 𝑘 = 3. In this case, 𝐺 can be thought of as the

4
The model of computation in this paper is the word RAM model where we assume

that the word length isΘ(log𝑁 ) . Furthermore we assume that words are large enough

to contain description of elements of𝐺 , i.e., |𝐺 | ≤ 𝑁 𝑐
for some 𝑐 > 0. The size of a

data structure is the number of words (or cells) it contains.

5
Without loss of generality, we can assume that 𝐷𝐴 contains a copy of𝐴 and in this

case A2 could return the tuple (𝑎𝑖 )𝑖∈𝐼 at the cost of (𝑘 − 1) additional queries.
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group of binary strings of length 𝑐𝑛 where the group operation is

the bitwise XOR (exclusive or). This problem is usually referred to

as 3XOR when there is no preprocessing, and we refer to its prepro-

cessing variant as 3XOR-Indexing. In [54], the authors provide some

evidence that the hardnesses of 3XOR and 3SUM are related and

conjecture that Conjecture 1.1 generalizes to 3XOR. We similarly

conjecture that in the presence of preprocessing, Conjecture 1.3

generalizes to 3XOR-Indexing.

Following Definition 2.1, the results and techniques in this paper

hold for arbitrary abelian groups and thus provide a unified treat-

ment of the 3SUM-Indexing and 3XOR-Indexing problems. It is an

interesting open question for future research to better understand

the influence of the group 𝐺 on the hardness of the problem.

Open Question 1. For which groups is kSUM-Indexing significantly

easier to solve, and for which groups does Conjecture 1.3 not hold?

2.2.1 Average-Case Hardness. This paper moreover introduces a

new average-case variant of kSUM-Indexing (Definition 2.2 below)

that, to the authors’ knowledge, has not been stated in prior litera-

ture. Definition 2.2 includes an error parameter 𝜀, as for the crypto-

graphic applications it is useful to consider solvers for average-case

kSUM-Indexing that only output correct answers with probability

𝜀 < 1.

Definition 2.2. The average-case kSUM-Indexing(𝐺, 𝑁 ) problem,

parametrized by an abelian group 𝐺 and integer 𝑁 ≥ 𝑘 − 1, is

defined to be solved by a two-part algorithm A = (A1,A2) as
follows.

• Preprocessing phase. Let 𝐴 be a tuple of 𝑁 elements

from 𝐺 drawn uniformly at random and with replacement
6
.

A1 (𝐴) outputs a data structure 𝐷𝐴 of size at most 𝑆 .A1 has

unbounded computational power.

• Query phase. Given a query 𝑏 drawn uniformly at random

in 𝑍 = {∑𝑖∈𝐼 𝑎𝑖 : 𝐼 ⊆ [𝑁 ] ∧ |𝐼 | = 𝑘 − 1}, and given up to 𝑇

oracle queries to 𝐷𝐴 ,A2 (𝑏) outputs 𝐼 ⊆ [𝑁 ] with |𝐼 | = 𝑘 −1
such that

∑
𝑖∈𝐼 𝑎𝑖 = 𝑏.

We say that A = (A1,A2) is an (𝑆,𝑇 , 𝜀) solver for

kSUM-Indexing if it answers the query correctly with probabil-

ity 𝜀 over the randomness of A, 𝐴, and the random query 𝑏. When

𝜀 = 1, we leave it implicit and write simply (𝑆,𝑇 ).

Remark 4. In the query phase of Definition 2.2, the query 𝑏 is

chosen uniformly at random in 𝑍 and not in 𝐺 . As observed in

Remark 1, this is without loss of generality for 𝜀 = 1. When 𝜀 < 1,

the meaningful way to measure A’s success probability is as in

Definition 2.2, since otherwise, if 𝑍 had negligible density in 𝐺 , A
could succeed with overwhelming probability by always outputting

⊥.

3 UPPER BOUND
We will use the following data structure first suggested by Hell-

man [50] and then rigorously studied by Fiat and Naor [39].

Theorem 3.1 ([39]). For any function 𝐹 : X → X, and for any
choice of values 𝑆 and𝑇 such that 𝑆3𝑇 ≥ |X|3, there is a deterministic

6
We remark that for the classical version of kSUM, the uniform random distribution

of the inputs is believed to be the hardest (see, e.g., [69]).

data structure with space𝑂 (𝑆) which allows inverting 𝐹 at every point
making 𝑂 (𝑇 ) queries to the memory cells and evaluations of 𝐹 . 7

We demonstrate the idea of our upper bound for the case of

3SUM. Since we are only interested in the pairwise sums of the 𝑁

input elements𝑎1, . . . , 𝑎𝑁 ∈ 𝐺 , we can hash down their sums to a set

of size𝑂 (𝑁 2). Now we define the function 𝑓 (𝑖, 𝑗) = 𝑎𝑖 +𝑎 𝑗 for 𝑖, 𝑗 ∈
[𝑁 ], and note that its domain and range are both of size𝑂 (𝑁 2). We

apply the generic inversion algorithm of Fiat and Naor to 𝑓 with

|X| = 𝑂 (𝑁 2), and obtain a data structure for 3SUM-Indexing.

First, in Lemma 3.2 we give an efficient data structure for the

“modular” version of kSUM-Indexing(𝐺, 𝑁 ) where the input is an
integer 𝑝 = 𝑂 (𝑁𝑘−1) and 𝑁 group elements 𝑎1, . . . , 𝑎𝑁 ∈ 𝐺 . Given

query 𝑏 ∈ 𝐺 the goal is to find (𝑖1, . . . , 𝑖𝑘−1) ∈ [𝑁 ]𝑘−1 such that

𝑎𝑖1 + · · · + 𝑎𝑖𝑘−1 ≡ 𝑏 mod 𝑝 .8 Then, in Theorem 3.3 we reduce the

general case of kSUM-Indexing(𝐺, 𝑁 ) to the modular case.

Lemma 3.2. For every integer 𝑘 ≥ 3, real 0 ≤ 𝛿 ≤ 𝑘 − 2, and
every integer 𝑝 = 𝑂 (𝑁𝑘−1), there is an adaptive data structure
which uses space 𝑆 = 𝑂 (𝑁𝑘−1−𝛿 ) and query time 𝑇 = 𝑂 (𝑁 3𝛿 )
and solves modular kSUM-Indexing(𝐺, 𝑁 ): for input 𝑎1, . . . , 𝑎𝑁 ∈ 𝐺
and a query 𝑏 ∈ 𝐺 , it outputs (𝑖1, . . . , 𝑖𝑘−1) ∈ [𝑁 ]𝑘−1 such that
𝑎𝑖1 + · · · + 𝑎𝑖𝑘−1 ≡ 𝑏 mod 𝑝 , if such a tuple exists.

Proof. Let the 𝑁 input elements be 𝑎1, . . . , 𝑎𝑁 ∈ 𝐺 . The data
structure stores all 𝑎𝑖 (this takes only 𝑁 memory cells) along

with the information needed to efficiently invert the function

𝑓 : [𝑁 ]𝑘−1 → 𝐺 defined below. For (𝑖1, . . . , 𝑖𝑘−1) ∈ [𝑁 ]𝑘−1, let

𝑓 (𝑖1, . . . , 𝑖𝑘−1) = 𝑎𝑖1 + · · · + 𝑎𝑖𝑘−1 mod 𝑝 .

Note that:

(1) 𝑓 is easy to compute. Indeed, given the input, one can com-

pute 𝑓 by looking at only 𝑘 − 1 input elements.

(2) The domain of 𝑓 is of size 𝑁𝑘−1
, and the range of 𝑓 is of size

𝑝 = 𝑂 (𝑁𝑘−1).
(3) Inverting 𝑓 at a point 𝑏 ∈ 𝐺 finds a tuple (𝑖1, . . . , 𝑖𝑘−1) ∈
[𝑁 ]𝑘−1 such that 𝑎𝑖1 + · · · + 𝑎𝑖𝑘−1 ≡ 𝑏 mod 𝑝 , which essen-

tially solves the modular kSUM-Indexing(𝐺, 𝑁 ) problem.

Now we use the data structure from Theorem 3.1 with |X| =
𝑂 (𝑁𝑘−1) to invert 𝑓 . This gives us a data structure with space

𝑂 (𝑆 + 𝑁 ) = 𝑂 (𝑆) and query time 𝑂 (𝑇 ) for every 𝑆3𝑇 ≥ |X|3 =

𝑂 (𝑁 3(𝑘−1) ), which finishes the proof. □

It remains to show that the input of kSUM-Indexing can always

be hashed to a set of integers [𝑝] for some 𝑝 = 𝑂 (𝑁𝑘−1). While

many standard hashing functions will work here, we remark that it

is important for our application that the hash function of choice

has a time- and space-efficient implementation (for example, the

data structure in [39] requires non-trivial implementations of hash

functions). Below, we present a simple hashing procedure which

suffices for kSUM-Indexing; a more general reduction can be found

in Lemma 17 in [29].

7
While the result in Theorem 1.1 in [39] is stated for a randomized preprocessing

procedure, we remark that a less efficient deterministic procedure which brute forces

the probability space can be used instead.

8
Recall from Remark 3 that this notation actually means Index(𝑎𝑖

1
+ · · · + 𝑎𝑖𝑘−1 ) ≡

Index(𝑏) mod 𝑝 .
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Theorem 3.3. For every integer 𝑘 ≥ 3 and real 0 ≤ 𝛿 ≤ 𝑘 − 2,
there is an adaptive data structure for kSUM-Indexing(𝐺, 𝑁 ) with
space 𝑆 = 𝑂 (𝑁𝑘−1−𝛿 ) and query time 𝑇 = 𝑂 (𝑁 3𝛿 ).

In particular, by taking 𝑘 = 3 and 𝛿 = 0.1, we get a data structure

which solves 3SUM-Indexing in space 𝑆 = 𝑂 (𝑁 1.9) and query time

𝑇 = 𝑂 (𝑁 0.3), and, thus, refutes Conjecture 1.4.

Proof. Let the 𝑁 inputs be 𝑎1, . . . , 𝑎𝑁 ∈ 𝐺 . Let 𝑍 ⊆ [𝑁𝑐 ], |𝑍 | <( 𝑁
𝑘−1

)
be the set of (𝑘 − 1)-wise sums of the inputs: 𝑍 = {𝑎𝑖1 + · · · +

𝑎𝑖𝑘−1 : 1 ≤ 𝑖1 < . . . < 𝑖𝑘−1 ≤ 𝑁 }.
Let 𝐼 = {𝑁𝑘−1, . . . , 3𝑘𝑐𝑁𝑘−1

log𝑁 } be an interval of integers. By

the prime number theorem, for large enough 𝑁 , 𝐼 contains at least

2𝑐𝑁𝑘−1
primes. Let us pick 𝑛 = log𝑁 random primes 𝑝1, . . . , 𝑝𝑛

from 𝐼 . For two distinct numbers 𝑧1, 𝑧2 ∈ 𝑍 , we say that they have

a collision modulo 𝑝 if 𝑧1 ≡ 𝑧2 mod 𝑝 .

Let 𝑔 ∈ 𝐺 be a positive query of kSUM-Indexing(𝐺, 𝑁 ), that is,
𝑏 = Index(𝑔) ∈ 𝑍 . First, we show that with high probability (over

the choices of 𝑛 random primes) there exists an 𝑖 ∈ [𝑛] such that for
every 𝑧 ∈ 𝑍 \ {𝑏}, 𝑧 . 𝑏 mod 𝑝𝑖 . Indeed, for every 𝑧 ∈ 𝑍 \ {𝑏}, we
have that (𝑧−𝑏) has at most log𝑁𝑘−1 (𝑁𝑐 ) = 𝑐/(𝑘 −1) prime factors

from 𝐼 . Since |𝑍 | <
( 𝑁
𝑘−1

)
, at most 𝑐

( 𝑁
𝑘−1

)
/(𝑘 − 1) primes from 𝐼

divide (𝑧 − 𝑏) for some 𝑧 ∈ 𝑍 . Therefore, a random prime from 𝐼

gives a collision between 𝑏 and some 𝑧 ∈ 𝑍 \ {𝑏} with probability

at most

𝑐
( 𝑁
𝑘−1

)
𝑘 − 1 ·

1

2𝑐𝑁𝑘−1 ≤
𝑐𝑁𝑘−1

(𝑘 − 1) (𝑘 − 1)! ·
1

2𝑐𝑁𝑘−1

=
1

2(𝑘 − 1) (𝑘 − 1)! ≤
1

2
𝑘
.

Now we have that for every 𝑏 ∈ 𝑍 , the probability that there exists

an 𝑖 ∈ [𝑛] such that 𝑏 does not collide with any 𝑧 ∈ 𝑍 \ {𝑏} modulo

𝑝𝑖 , is at least 1 − (2−𝑘 )𝑛 = 1 − 𝑁−𝑘 . Therefore, with probability at

least 1 − 1/𝑁 , a random set of 𝑛 primes has the following property:

for every 𝑏 ∈ 𝑍 there exists an 𝑖 ∈ [𝑛] such that 𝑏 does not collide

with any 𝑧 ∈ 𝑍 \ {𝑏} modulo 𝑝𝑖 . Since such a set of 𝑛 primes

exists, the preprocessing stage of the data structure can find it

deterministically.

Now we construct 𝑛 = log𝑁 modular kSUM-Indexing(𝐺, 𝑁 )
data structures (one for each 𝑝𝑖 ), and separately solve the problem

for each of the 𝑛 primes. This results in a data structure as guaran-

teed by Lemma 3.2 with a log𝑁 overhead in space and time. The

data structure also stores the inputs 𝑎1, . . . , 𝑎𝑁 . Once it sees a solu-

tion modulo 𝑝𝑖 , it checks whether it corresponds to a solution to the

original problem. Now correctness follows from two observations.

Since the data structure checks whether a solution modulo 𝑝𝑖 gives

a solution to the original problem, the data structure never reports

false positives. Second, the above observation that for every 𝑏 ∈ 𝑍
there is a prime 𝑝𝑖 such that 𝑏 does not collide with other 𝑧 ∈ 𝑍 ,
a solution modulo 𝑝𝑖 will correspond to a solution of the original

problem (thus, no false negatives can be reported either). □

Remark 5. A few extensions of Theorem 3.3 are in order.

(1) The result of Fiat and Naor [39] also gives an efficient ran-
domized data structure. Namely, there is a randomized data

structure with preprocessing running time 𝑂 ( |X|), which
allows inverting 𝐹 at every point with probability at least

1 − 1/|X| over the randomness of the preprocessing stage.

Thus, the preprocessing phase of the randomized version

of Theorem 3.1 runs in quasilinear time 𝑂 ( |X|) = 𝑂 (𝑁𝑘−1)
(since sampling 𝑛 = log𝑁 random primes from a given in-

terval can also be done in randomized time 𝑂 (1)). This, in
particular, implies that the preprocessing time of the pre-

sented data structure for 3SUM-Indexing is optimal under

the 3SUM Conjecture (Conjecture 1.1). Indeed, if for 𝑘 = 3,

the preprocessing time was improved to 𝑁 2−𝜀
, then one

could solve 3SUM by querying the 𝑁 input numbers in (ran-

domized or expected) time 𝑁 2−𝜀
.

(2) For the case of random inputs (for example, for inputs sam-

pled as in Definition 2.2), one can achieve a better time-space

trade-off. Namely, if the inputs 𝑎1, . . . , 𝑎𝑁 are uniformly ran-

dom numbers from a range of size at least Ω(𝑁𝑘−1), then
for every 0 ≤ 𝛿 ≤ 𝑘 − 2 there is a data structure with

space 𝑆 = 𝑂 (𝑁𝑘−1−𝛿 ) and query time 𝑇 = 𝑂 (𝑁 2𝛿 ) (with
high probability over the randomness of the input instances).

This is an immediate generalization of Theorem 3.3 equipped

with the analogue of Theorem 3.1 for a function [39] with

low collision probability, which achieves the trade-off of

𝑆2𝑇 = |X|2.
(3) For polynomially small 𝜀 = 1/|X|𝛼 (for constant 𝛼), the

trade-off between 𝑆 and 𝑇 can be further improved for the 𝜀-

approximate solution of kSUM-Indexing, using approximate

function inversion by De et al. [30].

We have shown how to refute the strong 3SUM-Indexing conjec-

ture of [46] using techniques from space-time tradeoffs for function

inversion [39, 50], specifically the general function inversion algo-

rithm of Fiat and Naor [39]. A natural open question is whether a

more specific function inversion algorithm could be designed.

Open Question 2. Can the space-time trade-off achieved in The-

orem 3.3 be improved by exploiting the specific structure of the

3SUM-Indexing problem?

4 LOWER BOUND
We now present our lower bound: we prove a space-time trade-off

of 𝑆 = Ω̃(𝑁 1+1/𝑇 ) for any non-adaptive (𝑆,𝑇 ) algorithm.While it is

weaker than Conjecture 1.3, any improvement on this result would

break a long-standing barrier in static data structure lower bounds:

no bounds better than 𝑇 ≥ Ω( log𝑁

log(𝑆/𝑁 ) ) are known, even for the

non-adaptive cell-probe and linear models [36, 57, 66, 68, 72].

Our main lower bound (Theorem 4.2) is proven with respect to a

slight variant on Definition 2.1 to which our proof techniques more

readily lend themselves, defined next.

Definition 4.1. The element version of the kSUM-Indexing(𝐺, 𝑁 )
problem is exactly like the kSUM-Indexing(𝐺, 𝑁 ) problem (Defini-

tion 4.1), except that a solution is a set {𝑎𝑖 }𝑖∈𝐼 of group elements

summing to a given input instead of simply a set 𝐼 of indices.

Remark 6. It follows from the observation in Footnote 5 that a

lower bound for (𝑆,𝑇 ) algorithms for the element version of the

kSUM-Indexing(𝐺, 𝑁 ) problem implies a lower bound for (𝑆,𝑇 −
𝑘 + 1) algorithms for the kSUM-Indexing(𝐺, 𝑁 ) problem as defined

in Definition 4.1.
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Theorem 4.2. Let 𝑘 ≥ 3 and 𝑁 be integers, and let 𝐺 be an
abelian group with |𝐺 | ≥ 𝑁𝑘−1. Then any non-adaptive (𝑆,𝑇 ) al-
gorithm for the element version of kSUM-Indexing(𝐺, 𝑁 ) satisfies
𝑆 = Ω̃(𝑁 1+1/𝑇 ).

Our proof relies on a compressibility argument similar to

[30, 43], also known as cell-sampling in the data structure liter-

ature [66]. Roughly speaking, we show that given an (𝑆,𝑇 ) algo-
rithm (A1,A2), we can recover a subset of the input𝐴 by storing a

randomly sampled subset 𝑉 of the preprocessed data structure 𝐷𝐴

and simulating A2 on all possible queries: the simulation succeeds

whenever the queries made byA2 fall inside 𝑉 . Thus, by storing 𝑉

along with the remaining part of the input, we obtain an encoding

of the entire input. This implies that the length of the encoding

must be at least the entropy of a randomly chosen input.

Proof. Consider an (𝑆,𝑇 ) algorithm A = (A1,A2) for the
element version of kSUM-Indexing(𝐺, 𝑁 ). For conciseness, in the

rest of this proof, we write simply kSUM-Indexing(𝐺, 𝑁 ) to denote
the element version of kSUM-Indexing(𝐺, 𝑁 ).

We useA to design encoding and decoding procedures for inputs

of kSUM-Indexing(𝐺, 𝑁 ) as follows: we first sample a subset 𝑉 of

the data structure cells which allows us to answer many queries,

then we argue that we can recover a constant fraction of the input

from this set, which yields a succinct encoding of the input.

Sampling a Subset𝑉 of Cells. For a query 𝑏 ∈ 𝐺 ,Query(𝑏) ⊆ [𝑆]
denotes the set of probes made byA2 on input𝑏 (with |Query(𝑏) | ≤
𝑇 , since A2 makes at most 𝑇 probes to the data structure). Given

a subset 𝑉 ⊆ [𝑆] of cells, we denote by 𝐺𝑉 the set of queries in

𝐺 which can be answered by A2 by only making probes within

𝑉 : 𝐺𝑉 = {𝑏 ∈ 𝐺 : Query(𝑏) ⊆ 𝑉 }. Observe that for a uniformly

random set 𝑉 of size 𝑣 :

E
[
|𝐺𝑉 |

]
=

∑
𝑏∈𝐺

Pr[Query(𝑏) ⊆ 𝑉 ] ≥ |𝐺 |
(𝑆−𝑇
𝑣−𝑇

)(𝑆
𝑣

)
= |𝐺 |

𝑇−1∏
𝑖=0

𝑣 − 𝑖
𝑆 − 𝑖 ≥ |𝐺 |

(
𝑣 −𝑇
𝑆 −𝑇

)𝑇
,

where the last inequality uses that 𝑎/𝑏 ≥ (𝑎 − 1)/(𝑏 − 1) for 𝑎 ≤ 𝑏.

Hence, there exists a subset 𝑉 of size 𝑣 , such that:

|𝐺𝑉 | ≥ |𝐺 |
(
𝑣 −𝑇
𝑆 −𝑇

)𝑇
,

and we will henceforth consider such a set 𝑉 . The size 𝑣 of 𝑉 will

be set later so that |𝐺𝑉 | ≥ |𝐺 |/𝑁 .

Using 𝑉 to Recover the Input. Consider some input 𝐴 =

(𝑎1, . . . , 𝑎𝑁 ) for kSUM-Indexing(𝐺, 𝑁 ). We say that 𝑖 ∈ [𝑁 ] is
good if 𝑎𝑖 is output by A2 given some query in 𝐺𝑉 . Since queries

in 𝐺𝑉 can be answered by only storing the subset of cells of the

data structure indexed by 𝑉 , our decoding procedure will retrieve

from these cells all the good elements from 𝐴.

For a set of indices 𝐼 ⊆ [𝑁 ], let 𝑎𝐼 =
∑
𝑖∈𝐼 𝑎𝑖 be the sum of input

elements with indices in 𝐼 . Also, for a fixed set 𝐺𝑉 and 𝑖 ∈ [𝑁 ],
let 𝑔(𝑖) ∈ 𝐺𝑉 by some element from 𝐺𝑉 which can be written as a

(𝑘 − 1)-sum of the inputs including 𝑎𝑖 . If there is no such element

in 𝐺𝑉 , then let 𝑔(𝑖) = ⊥. Formally,

𝑔(𝑖) = min{𝑔 ∈ 𝐺𝑉 : ∃𝐼 ⊆ [𝑁 ] \ {𝑖}, |𝐼 | = 𝑘 − 2 : 𝑎𝑖 + 𝑎𝐼 = 𝑔}

with the convention that if the minimum is taken over an empty

set, then 𝑔(𝑖) = ⊥.
Note that 𝑖 ∈ [𝑁 ] is good if:(

𝑔(𝑖) ≠ ⊥
)
∧

(
∀𝐽 ⊆ [𝑁 ] \ {𝑖}, |𝐽 | = 𝑘 − 1, 𝑎 𝐽 ≠ 𝑔(𝑖)

)
. (1)

Indeed, observe that:

(1) The first part of the conjunction guarantees that there exists

𝑏 ∈ 𝐺𝑉 which can be decomposed as 𝑏 = 𝑎𝑖 + 𝑎𝐼 for 𝐼 ⊆
[𝑁 ] \ {𝑖}.

(2) The second part of the conjunction guarantees that every

decomposition 𝑏 = 𝑎 𝐽 , |𝐽 | = 𝑘 − 1 contains the elements 𝑎𝑖 .

By correctness of A, A2 outputs a decomposition of its input as

a sum of (𝑘 − 1) elements in 𝐴 if one exists. For 𝑖 as in (1), ev-

ery decomposition 𝑏 = 𝑎𝐼 contains the input 𝑎𝑖 , and, therefore,

A2 (𝑎𝐼 ) = (𝑎𝑖1 , . . . , 𝑎𝑖𝑘−1 ), where 𝑖 ∈ {𝑖1, . . . , 𝑖𝑘−1}.
We denote by 𝑁𝑉 ⊆ [𝑁 ] the set of good indices, and compute

its expected size when 𝐴 is chosen at random according to the

distribution in Definition 2.2, i.e., for each 𝑖 ∈ [𝑁 ], 𝑎𝑖 is chosen
independently and uniformly in 𝐺 .

E
[
|𝑁𝑉 |

]
≥

𝑁∑
𝑖=1

Pr[𝑔(𝑖) ≠ ⊥] Pr[∀𝐽 ⊆ [𝑁 ] \ {𝑖},

|𝐽 | = 𝑘 − 1, 𝑎 𝐽 ≠ 𝑔(𝑖) | 𝑔(𝑖) ≠ ⊥] (2)

Let 𝐿 ⊆ [𝑁 ] \ {𝑖} be a fixed set of indices of size |𝐿 | = 𝑘 − 3. Then:

Pr[𝑔(𝑖) ≠ ⊥]
= Pr[∃𝐼 ⊆ [𝑁 ] \ {𝑖}, |𝐼 | = 𝑘 − 2 : 𝑎𝑖 + 𝑎𝐼 ∈ 𝐺𝑉 ]
= 1 − Pr[∀𝐼 ⊆ [𝑁 ] \ {𝑖}, |𝐼 | = 𝑘 − 2 : 𝑎𝑖 + 𝑎𝐼 ∉ 𝐺𝑉 ]
= 1 − Pr[∀𝐼 ′ ⊆ [𝑁 ] \ {𝑖},

|𝐼 ′ | = 𝑘 − 3,∀𝑖 ′ ∈ [𝑁 ] \ (𝐼 ′ ∪ {𝑖}) : 𝑎𝑖 + 𝑎𝐼 ′ + 𝑎𝑖′ ∉ 𝐺𝑉 ]
≥ 1 − Pr[∀𝑖 ′ ∈ [𝑁 ] \ (𝐿 ∪ {𝑖}) : 𝑎𝑖 + 𝑎𝐿 + 𝑎𝑖′ ∉ 𝐺𝑉 ]

≥ 1 −
(
1 − |𝐺𝑉 |
|𝐺 |

)𝑁−(𝑘−2)
,

where the first inequality follows from setting 𝐼 ′ = 𝐿, the second

inequality holds because for every 𝑖 ′ ∈ [𝑁 ] \ (𝐿 ∪ {𝑖}), 𝑎𝑖′ needs
to be distinct from the |𝐺𝑉 | elements −𝑎𝑖 − 𝑎𝐿 + 𝑔 for 𝑔 ∈ 𝐺𝑉 .

Furthermore:

Pr[∀𝐽 ⊆ [𝑁 ] \ {𝑖}, |𝐽 | = 𝑘 − 1, 𝑎 𝐽 ≠ 𝑔(𝑖) | 𝑔(𝑖) ≠ ⊥]
= 1 − Pr[∃𝐽 ⊆ [𝑁 ] \ {𝑖}, |𝐽 | = 𝑘 − 1, 𝑎 𝐽 = 𝑔(𝑖) | 𝑔(𝑖) ≠ ⊥]

≥ 1 −
∑

𝐽 ⊆[𝑁 ]\{𝑖 }
| 𝐽 |=𝑘−1

Pr[𝑎 𝐽 = 𝑔(𝑖) | 𝑔(𝑖) ≠ ⊥]

≥ 1 −
(
𝑁 − 1
𝑘 − 1

)
· 1

|𝐺 | ≥
1

2

,

where the first inequality uses the union bound and the last inequal-

ity uses that |𝐺 | ≥ 𝑁𝑘−1
. Using the previous two derivations in (2),

we get:

E
[
|𝑁𝑉 |

]
≥ 𝑁

2

(
1 −

(
1 − |𝐺𝑉 |
|𝐺 |

)𝑁−(𝑘−2) )
≥ 𝑁

4

, (3)
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where the last inequality uses that |𝐺𝑉 | ≥ |𝐺 |/𝑁 and (1 −
1/𝑁 )𝑁−(𝑘−2) ≤ 1/2 for large enough 𝑁 .

Encoding and Decoding. It follows from (3) and a simple averag-

ing argument that with probability at least 1/16 over the random
choice of 𝐴, 𝑁𝑉 is of size at least 𝑁 /5. We will henceforth focus

on providing encoding and decoding procedures for such inputs

𝐴. Specifically, consider the following pair of encoding/decoding

algorithms for 𝐴:

• Enc(𝐴): given input 𝐴 = (𝑎1, . . . , 𝑎𝑁 ).
(1) use A2 to compute the set 𝑁𝑉 ⊆ [𝑁 ] of good indices.

(2) store

(
A1 (𝐴)𝑗 )𝑗 ∈𝑉 and (𝑎𝑖 )𝑖∉𝑁𝑉

.

• Dec

(
Enc(𝐴)

)
: for each 𝑏 ∈ 𝐺 , simulate A2 on input 𝑏:

(1) If Query(𝑏) ⊆ 𝑉 , use
(
A1 (𝐴)𝑖

)
𝑖∈𝑉 (which was stored in

Enc(𝐴)) to simulate A2 and get A2 (𝑏). By definition of

𝑁𝑉 , when 𝑏 ranges over the queries such thatQuery(𝑏) ⊆
𝑉 , this step recovers (𝑎𝑖 )𝑖∈𝑁𝑉

.

(2) Then recover (𝑎𝑖 )𝑖∉𝑁𝑣
directly from Enc(𝐴).

Note that the bit length of the encoding is:

|Enc(𝐴) | ≤ 𝑣 ·𝑤 + (𝑁 − |𝑁𝑉 |) log |𝐺 | ≤ 𝑣 ·𝑤 + 4𝑁

5

log |𝐺 |

where𝑤 is the word length and where the second inequality holds

because we restrict ourselves to inputs 𝐴 such that |𝑁𝑉 | ≥ 𝑁 /5. By
a standard incompressibility argument (see for example Fact 8.1 in

[30]), since our encoding and decoding succeeds with probability

at least 1/16 over the random choice of 𝐴, we need to be able to

encode at least |𝐺 |𝑁 /16 distinct values, hence:

𝑣 ·𝑤 + 4𝑁

5

log |𝐺 | ≥ 𝑁 log |𝐺 | +𝑂 (1) (4)

Finally, as discussed before, we set 𝑣 such that |𝐺𝑉 |/|𝐺 | ≥ 1/𝑁 .

For this, by the computation performed at the beginning of this

proof, it is sufficient to have:(
𝑣 −𝑇
𝑆 −𝑇

)𝑇
≥ 1

𝑁
.

Hence, we set 𝑣 = 𝑇 +(𝑆−𝑇 )/𝑁 1/𝑇
and since𝑇 ≤ 𝑁 ≤ 𝑆 (otherwise

the result is trivial), (4) implies:

𝑆 = Ω̃(𝑁 1+1/𝑇 ) □

Remark 7. kSUM-Indexing(Z/𝑁𝑐Z, 𝑁 ) reduces to kSUM-Indexing

over the integers, so our lower bound extends to

kSUM-Indexing(Z, 𝑁 ), too. Specifically, the reduction works

as follows: we choose {0̄, . . . , 𝑁𝑐 − 1} as the set of repre-

sentatives of Z/𝑁𝑐Z. Given some input 𝐴 ⊆ Z/𝑁𝑐Z for

kSUM-Indexing(Z/𝑁𝑐Z, 𝑁 ), we treat it as a list of inte-

gers and build a data structure using our algorithm for

kSUM-Indexing(Z, 𝑁 ). Now, given a query
¯𝑏 ∈ Z/𝑁𝑐Z, we

again treat it as an integer and query the data structure at

𝑏, 𝑏 + 𝑁𝑐 , . . . , 𝑏 + (𝑘 − 2)𝑁𝑐
. The correctness of the reduction

follows from the observation that
¯𝑏 = 𝑎𝑖1 + · · · + 𝑎𝑖𝑘−1 if and only if

𝑎𝑖1 + · · · + 𝑎𝑖𝑘−1 ∈ {𝑏,𝑏 + 𝑁𝑐 , . . . , 𝑏 + (𝑘 − 2)𝑁𝑐 }.

As we already mentioned, no lower bound better than 𝑇 ≥
Ω( log𝑁

log(𝑆/𝑁 ) ) is known even for the non-adaptive cell-probe and lin-

ear models, so Theorem 4.2 matches the best known lower bounds

for static data structures. An ambitious goal for future research

would naturally be to prove Conjecture 1.3. A first step in this di-

rection would be to extend Theorem 4.2 to adaptive strategies that

may err with some probability.

Open Question 3. Must any (possibly adaptive) (𝑆,𝑇 , 𝜀) algorithm
for 3SUM-Indexing(𝐺, 𝑁 ) require 𝑆 = Ω̃(𝜀𝑁 1+1/𝑇 )?

5 CRYPTOGRAPHY AGAINST MASSIVE
PREPROCESSING ATTACKS

5.1 Background on Random Oracles and
Preprocessing

A line of work initiated by Impagliazzo and Rudich [52] studies

the hardness of a random oracle as a one-way function. In [52] it

was shown that a random oracle is an exponentially hard one-way

function against uniform adversaries. The case of non-uniform

adversaries was later studied in [51, 82]. Specifically we have the

following result.

Proposition 5.1 ([82]). With probability at least 1 − 1

𝑁
over the

choice of a random oracle 𝑅 : {0, 1}𝑛 → {0, 1}𝑛 , for all oracle circuits
𝐶 of size at most 𝑇 :

Pr

𝑥←{0,1}𝑛

[
𝐶𝑅 (

𝑅(𝑥)
)
∈ 𝑅−1

(
𝑅(𝑥)

) ]
∈ 𝑂

(
𝑇 2

𝑁

)
.

In Proposition 5.1, the choice of the circuit occurs after the ran-
dom draw of the oracle: in other words, the description of the circuit

can be seen as a non-uniform advice which depends on the random

oracle. Proposition 5.2 is a slight generalization where the adversary

is a uniform Turing machine independent of the random oracle,

with oracle access to an advice of length at most 𝑆 depending on

the random oracle. While the two formulations are equivalent in

the regime 𝑆 ≤ 𝑇 , one advantage of this reformulation is that 𝑆 can

be larger than the running time 𝑇 of the adversary.

Proposition 5.2 (Implicit in [30]). Let A be a uniform oracle
Turing machine whose number of oracle queries is 𝑇 : {0, 1}𝑛 → N.
For all 𝑛 ∈ N and 𝑆 ∈ N, with probability at least 1 − 1

𝑁
over the

choice of a random oracle 𝑅 : {0, 1}𝑛 → {0, 1}𝑛 :
∀𝑃 ∈ {0, 1}𝑆 ,

Pr

𝑥←{0,1}𝑛

[
A𝑅,𝑃 (

𝑅(𝑥)
)
∈ 𝑅−1

(
𝑅(𝑥)

) ]
∈ 𝑂

(
𝑇 (𝑆 + 𝑛)

𝑁

)
.

In Proposition 5.2, the advice 𝑃 can be thought of as the result

of a preprocessing phase involving the random oracle. Also, no as-

sumption is made on the computational power of the preprocessing

adversary but it is simply assumed that the length of the advice is

bounded.

Remark 8. Propositions 5.1 and 5.2 assume a deterministic adver-

sary. For the regime of 𝑆 > 𝑇 (which is the focus of this work), this

assumption is without loss of generality since a standard averaging

argument shows that for a randomized adversary, there exists a

choice of “good” randomness for which the adversary achieves at

least its expected success probability. This choice of randomness can

be hard-coded in the non-uniform advice, yielding a deterministic

adversary.

Note, however, that Proposition 5.2 provides no guarantee when

𝑆 ≥ 𝑁 . In fact, in this case, defining 𝑃 to be any inverse mapping
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𝑅−1 of 𝑅 allows an adversary to invert 𝑅 with probability one by

making a single query to 𝑃 . So, 𝑅 itself can no longer be used as a

one-way function when 𝑆 ≥ 𝑁 — but one can still hope to use 𝑅 to

define a new function 𝑓 𝑅 that is one-way against an adversary with

advice of size 𝑆 ≥ 𝑁 . This idea motivates the following definition.

Definition 5.3. Let 𝑅 : {0, 1}𝑛 → {0, 1}𝑛 be a random oracle. A

one-way function in the random oracle model with 𝑆 preprocessing is

an efficiently computable oracle function 𝑓 𝑅 : {0, 1}𝑛′ → {0, 1}𝑚′

such that for any two-part adversary A = (A1,A2) satisfying
|A1 (·) | ≤ 𝑆 and where A2 is PPT, the following probability is

negligible in 𝑛:9

Pr

𝑅,𝑥←{0,1}𝑛

[
𝑓 𝑅

(
A𝑅,A1 (𝑅)

2

(
𝑓 𝑅 (𝑥)

))
= 𝑓 𝑅 (𝑥)

]
. (5)

We say that 𝑓 is an (𝑆,𝑇 , 𝜀)-one-way function if the probability in

(5) is less than 𝜀 and A2 makes at most 𝑇 random oracle queries.

The adversary model in Definition 5.3 is very similar to the 1-

BRO model of [16], differing only in having a restriction on the

output size of A1. As was noted in [16], without this restriction

(and in fact, as soon as 𝑆 ≥ 2
𝑛′

by the same argument as above),

no function 𝑓 𝑅 can achieve the property given in Definition 5.3.

[16] bypasses this impossibility by considering the restricted case

of two independent oracles with two independent preprocessed

advices (of unrestricted sizes). Our work bypasses it in a different

and incomparable way, by considering the case of a single random

oracle with bounded advice.

5.2 Constructing One-Way Functions from
kSUM-Indexing

Our main candidate construction of a OWF (Construction 1) relies

on the hardness of average-case kSUM-Indexing. First, we define

what hardness means, then give the constructions and proofs.

Definition 5.4. Average-case kSUM-Indexing is (𝐺, 𝑁, 𝑆,𝑇 , 𝜀)-
hard if the success probability

10
of any (𝑆,𝑇 ) algorithm A =

(A1,A2) in answering average-case kSUM-Indexing (G,N) queries

is at most 𝜀.

Construction 1. For 𝑁 ∈ N, let (𝐺, +) be an abelian group and let

𝑅 : [𝑁 ] → 𝐺 be a random oracle. Our candidate OWF construction

has two components:

• the function 𝑓 𝑅 : [𝑁 ]𝑘−1 → 𝐺 defined by 𝑓 𝑅 (𝑥) =∑𝑘−1
𝑖=1 𝑅(𝑥𝑖 ) for 𝑥 ∈ [𝑁 ]𝑘−1; and

• the input distribution, uniform over {𝑥 ∈ [𝑁 ]𝑘−1 : 𝑥1 ≠

· · · ≠ 𝑥𝑘−1}.

Remark 9 (Approximate sampling). We depart from the standard

definition of a OWF by using a nonuniform input distribution

in our candidate construction. This makes it easier to relate its

security to the hardness of kSUM-Indexing. As long as the input

distribution is efficiently samplable, a standard construction can be

used to transform any OWF with nonuniform input into a OWF

which operates on uniformly random bit strings. Specifically, one

9
A negligible function is one that is in 𝑜 (𝑛−𝑐 ) for all constants 𝑐 .

10
Over the randomness of A,𝐴, and the average-case kSUM-Indexing query. (Recall:

𝐴 is kSUM-Indexing’s input.)

simply defines a newOWF equal to the composition of the sampling

algorithm and the original OWF, (see [44, Section 2.4.2]).

In our case, since 𝑁 !/(𝑁 −𝑘 +1)! is not guaranteed to be a power
of 2, the input distribution in Construction 1 cannot be sampled

exactly in time polynomial in log𝑁 . However, using rejection sam-

pling, it is easy to construct a sampler taking as input 𝑂 (⌈log𝑁 ⌉2)
random bits and whose output distribution is 1/𝑁 -close in statis-

tical distance to the input distribution. It is easy to propagate this

exponentially
11

small sampling error without affecting the conclu-

sion of Theorem 5.5 below. A similar approximate sampling occurs

when considering OWFs based on the hardness of number theoretic

problems, which require sampling integers uniformly in a range

whose length is not necessarily a power of two.

Remark 10. Similarly, the random oracle 𝑅 used in the construc-

tion is not a random oracle in the traditional sense since its do-

main and co-domain are not bit strings. If |𝐺 | and 𝑁 are powers

of two, then 𝑅 can be implemented exactly by a standard random

oracle {0, 1}log𝑁 → {0, 1}log |𝐺 | . If not, using a random oracle

{0, 1}poly( ⌈log |𝐺 | ⌉) → {0, 1}poly( ⌈log |𝐺 | ⌉) , and rejection sampling,

it is possible to implement an oracle 𝑅′ which is 1/𝑁 close to 𝑅 in

statistical distance. We can similarly propagate this 1/𝑁 sampling

error without affecting the conclusion of Theorem 5.5.

Theorem 5.5. Consider a sequence of abelian groups (𝐺𝑁 )𝑁 ≥1
such that |𝐺𝑁 | ≥ 𝑁𝑘−1+𝑐 for some 𝑐 > 0 and all 𝑁 ≥ 𝑘 − 1, and
a function 𝑆 : N → R. Assume that for all polynomial 𝑇 there
exists a negligible function 𝜀 such that average-case kSUM-Indexing is
(𝐺𝑁 , 𝑁 , 𝑆 (𝑛),𝑇 (𝑛), 𝜀 (𝑛))-hard for all 𝑁 ≥ 1 (recall that 𝑛 = log𝑁 ).
Then the function 𝑓 defined in Construction 1 is a one-way function
in the random oracle model with 𝑆 preprocessing.

The function 𝑓 𝑅 in Construction 1 is designed precisely so that

inverting 𝑓 𝑅 on input 𝑥 is equivalent to solving kSUM-Indexing

for the input 𝐴 =
(
𝑅(1), . . . , 𝑅(𝑁 )

)
and query

∑𝑘−1
𝑖=1 𝑎𝑥𝑖 . However,

observe that the success probability of a OWF inverter is defined for

a random input distributed as

∑
𝑖∈𝐼 𝑎𝑖 where 𝐼 ⊆ [𝑁 ] is a uniformly

random set of indices of size 𝑘 − 1. In contrast, in average-case

kSUM-Indexing, the query distribution is uniform over {∑𝑖∈𝐼 𝑎𝑖 :

𝐼 ⊆ 𝑁, |𝐼 | = 𝑘 − 1}. These two distributions are not identical

whenever there is a collision: two sets 𝐼 and 𝐼 ′ such that

∑
𝑖∈𝐼 𝑎𝑖 =∑

𝑖∈𝐼 ′ 𝑎𝑖 . The following two lemmas show that whenever |𝐺 | ≥
𝑁𝑘−1+𝑐

for some 𝑐 > 0, there are few enough collisions that the

two distributions are negligibly close in statistical distance, which

is sufficient to prove Theorem 5.5.

Lemma 5.6. Let 𝑁 ≥ 𝑘 − 1 be an integer and let 𝐺 be an abelian
group with |𝐺 | ≥ 𝑁𝑘−1+𝑐 for some 𝑐 > 0. Let A = (a1, . . . , a𝑁 ) be
a tuple of 𝑁 elements drawn with replacement from 𝐺 . Define the
following two random variables:

• X1 =
∑
𝑖∈I a𝑖 where I ⊆ [𝑁 ] is a uniformly random set of size

𝑘 − 1.
• X2: uniformly random over {∑𝑖∈𝐼 a𝑖 : 𝐼 ⊆ [𝑁 ], |𝐼 | = 𝑘 − 1}.

Then the statistical distance is ∥(A,X1) − (A,X2)∥s = 𝑂
(
1/
√
𝑁𝑐

)
.

11
Recall that 𝑁 = 2

𝑛
and that following Definition 5.3, 𝑛 is the security parameter.

Terms like “exponential” or “negligible” are thus defined with respect to 𝑛.
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Proof. First, by conditioning on the realization of A:

∥(A,X1) − (A,X2)∥s =
∑

𝐴∈𝐺𝑁

Pr[A = 𝐴] ∥X
1 |𝐴 − X2 |𝐴∥s , (6)

where X𝑖 |𝐴 denotes the distribution of X𝑖 conditioned on the event

A = 𝐴 for 𝑖 ∈ {1, 2}.
We now focus on a single summand from (6) corresponding

to the realization A = 𝐴 and define 𝑍 = {∑𝑖∈𝐼 𝑎𝑖 : 𝐼 ⊆
[𝑁 ], |𝐼 | = 𝑘 − 1}, the set of (𝑘 − 1)-sums and for 𝑔 ∈ 𝐺 , 𝑐𝑔 =

|{𝐼 ⊆ [𝑁 ] : |𝐼 | = 𝑘 − 1 ∧∑
𝑖∈𝐼 𝑎𝑖 = 𝑔}| is the number of (𝑘 − 1)-

sets of indices whose corresponding sum equals 𝑔. Then we have:

∥X
1 |𝐴 − X2 |𝐴∥s =

1

2

∑
𝑔∈𝑍

����� 1

|𝑍 | −
𝑐𝑔( 𝑁
𝑘−1

) ����� .
Observe that 𝑐𝑔 ≥ 1 whenever 𝑔 ∈ 𝑍 . We now assume that |𝑍 | ≥
1

2

( 𝑁
𝑘−1

)
(we will later only use the following derivation under this

assumption). Splitting the sum on 𝑐𝑔 > 1:

∥X
1 |𝐴 − X2 |𝐴∥s

=
1

2

∑
𝑔 :𝑐𝑔=1

(
1

|𝑍 | −
1( 𝑁

𝑘−1
) ) + 1

2

∑
𝑔 :𝑐𝑔>1

(
𝑐𝑔( 𝑁
𝑘−1

) − 1

|𝑍 |

)
,

where we used the trivial upper bound |𝑍 | ≤
( 𝑁
𝑘−1

)
and the assump-

tion that |𝑍 | ≥ 1

2

( 𝑁
𝑘−1

)
to determine the sign of the quantity inside

the absolute value. We then write:

∥X
1 |𝐴 − X2 |𝐴∥s =

1

2

∑
𝑔 :𝑐𝑔=1

(
1

|𝑍 | −
1( 𝑁

𝑘−1
) )

+ 1

2

∑
𝑔 :𝑐𝑔>1

(
𝑐𝑔 − 1( 𝑁
𝑘−1

) + 1( 𝑁
𝑘−1

) − 1

|𝑍 |

)
≤ 1

2

∑
𝑔 :𝑐𝑔≥1

(
1

|𝑍 | −
1( 𝑁

𝑘−1
) ) + 1

2

∑
𝑔 :𝑐𝑔>1

𝑐𝑔 − 1( 𝑁
𝑘−1

)
=

1

2

∑
𝑔 :𝑐𝑔≥1

(
1

|𝑍 | −
1( 𝑁

𝑘−1
) ) + 1

2

∑
𝑔 :𝑐𝑔≥1

𝑐𝑔 − 1( 𝑁
𝑘−1

)
=

(
1 − |𝑍 |( 𝑁

𝑘−1
) ) ,

where the inequality uses again that |𝑍 | ≤
( 𝑁
𝑘−1

)
, and the last

equality uses that

∑
𝑔:𝑐𝑔≥1 𝑐𝑔 =

( 𝑁
𝑘−1

)
and that 𝑍 = {𝑔 : 𝑐𝑔 ≥ 1}.

We now consider some 𝛿 ≤ 1/2 which will be set at the end of

the proof and split the sum in (6) on |𝑍 | ≤ (1 − 𝛿)
( 𝑁
𝑘−1

)
:

∥(A,X1) − (A,X2)∥s

≤ Pr

[
|𝑍 | ≤

(
𝑁

𝑘 − 1

)
(1 − 𝛿)

]
+ 𝛿 · Pr

[
|𝑍 | >

(
𝑁

𝑘 − 1

)
(1 − 𝛿)

]
≤ Pr

[
|𝑍 | ≤

(
𝑁

𝑘 − 1

)
(1 − 𝛿)

]
+ 𝛿 ,

where we used the trivial upper bound ∥X
1 |𝐴 − X2 |𝐴∥s ≤ 1 when

|𝑍 | ≤ (1 − 𝛿)
( 𝑁
𝑘−1

)
and the upper bound ∥X

1 |𝐴 −X2 |𝐴∥s < 𝛿 when

|𝑍 | > (1 − 𝛿)
( 𝑁
𝑘−1

)
by the previous derivation.

We now use Markov’s inequality and Lemma 5.7 below to upper

bound the first summand:

∥(A,X1) − (A,X2)∥s ≤
1

𝛿
( 𝑁
𝑘−1

) ((
𝑁

𝑘 − 1

)
− E

[
|𝑍 |

] )
+ 𝛿

≤ 1

𝛿 |𝐺 |

(
𝑁

𝑘 − 1

)
+ 𝛿 ≤ 1

𝛿 (𝑘 − 1)!𝑁𝑐
+ 𝛿 .

where the last inequality uses that |𝐺 | ≥ 𝑁𝑘−1+𝑐
by assumption.

Finally, we set 𝛿 = 1/
√
𝑁𝑐

to get the desired conclusion. □

Lemma 5.7. Let 𝑁 ≥ 𝑘 − 1 be an integer and let 𝐺 be an abelian
group of size at least 𝑁 . LetA = (a1, . . . , a𝑁 ) be a tuple of 𝑁 elements
drawn with replacement from 𝐺 . Define 𝑍 =

{ ∑
𝑖∈𝐼 a𝑖 : 𝐼 ⊆ [𝑁 ] ∧

|𝐼 | = 𝑘 − 1} to be the set of (𝑘 − 1)-sums of coordinates of 𝐴, then:(
𝑁

𝑘 − 1

)
− E

[
|𝑍 |

]
≤ 1

|𝐺 |

(
𝑁

𝑘 − 1

)
2

.

Proof. For each (𝑘 − 1)-set of indices 𝐼 ⊆ [𝑁 ], we define the
random variable𝑋𝐼 to be the indicator that the sum

∑
𝑖∈𝐼 a𝑖 collides

with

∑
𝑖∈𝐼 ′ a𝑖 for some (𝑘 − 1)-set of indices 𝐼 ′ ≠ 𝐼 :

𝑋𝐼 = 1

{
∃𝐼 ′ ⊆ [𝑁 ] : |𝐼 ′ | = 𝑘 − 1 ∧ 𝐼 ′ ≠ 𝐼 ∧

∑
𝑖∈𝐼

a𝑖 =
∑
𝑖∈𝐼 ′

a𝑖

}
.

Then, using a union bound and since the probability of a collision

is 1/|𝐺 |:

E
[
𝑋𝐼

]
≤

∑
𝐼 ′≠𝐼

Pr

[∑
𝑖∈𝐼

a𝑖 =
∑
𝑖∈𝐼 ′

a𝑖

]
≤

( 𝑁
𝑘−1

)
|𝐺 | .

On the other hand, there are at least as many elements in 𝑍 as

(𝑘 − 1)-sets of indices 𝐼 ⊆ [𝑁 ] which do not collide with any other

(𝑘 − 1)-set:

|𝑍 | ≥
∑

𝐼 ⊆[𝑁 ]
|𝐼 |=𝑘−1

(1 − 𝑋𝐼 ) =
(

𝑁

𝑘 − 1

)
−

∑
𝐼 ⊆[𝑁 ]
|𝐼 |=𝑘−1

𝑋𝐼 .

Combining the previous two inequalities concludes the proof. □

We are now ready to prove Theorem 5.5.

Proof (Theorem 5.5). Throughout the proof, we fix𝑁 andwrite

𝐺, 𝑆,𝑇 to denote𝐺𝑁 , 𝑆 (𝑛),𝑇 (𝑛) respectively, leaving the parameter

𝑛 implicit. Suppose, for contradiction, that 𝑓 is not a one-way func-

tion in the random oracle model with 𝑆 preprocessing. Then there

exists A = (A1,A2) such that |A1 (·) | ≤ 𝑆 and A2 is PPT, which

inverts 𝑓 with probability at least 𝛿 for some non-negligible 𝛿 :

Pr

𝑅,x

[
𝑓 𝑅

(
A𝑅,A1 (𝑅)

2

(
𝑓 𝑅 (x)

))
= 𝑓 𝑅 (x)

]
≥ 𝛿 . (7)

where 𝑅 : [𝑁 ] → 𝐺 is a random oracle and x ∈ [𝑁 ]𝑘−1 is a random
input to 𝑓 𝑅 distributed as defined in Construction 1. Then, we useA
to build an (𝑆,𝑇 ) solverA ′ = (A ′

1
,A ′

2
) for kSUM-Indexing(𝐺, 𝑁 )

as follows. Given input𝐴 = (𝑎1, . . . , 𝑎𝑁 ) for kSUM-Indexing(𝐺, 𝑁 ),
A ′

1
defines random oracle 𝑅 : [𝑁 ] → 𝐺 such that 𝑅(𝑖) = 𝑎𝑖 for

𝑖 ∈ [𝑁 ] and outputsA1 (𝑅) — this amounts to interpreting the tuple

𝐴 as a function mapping indices to coordinates. A ′
2
is identical to

A2. By construction, whenever A2 successfully inverts 𝑓 𝑅 (i.e.,
outputs 𝑥 ∈ [𝑁 ]𝑘−1 such that 𝑓 𝑅 (𝑥) = 𝑏 for input 𝑏), then the

output of A ′
2
satisfies

∑𝑘−1
𝑖=1 𝑎𝑥𝑖 = 𝑏.
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It follows from (7) that A ′ as described thus far solves average-

case kSUM-Indexing(𝐺, 𝑁 ) with success probability 𝛿 when given

as input a query distributed as 𝑓 𝑅 (x). By construction, the dis-

tribution of 𝑓 𝑅 (x) is identical to the distribution of

∑
𝑖∈𝐼 𝑎𝑖 for a

uniformly random set 𝐼 ⊆ [𝑁 ] of size 𝑘 − 1, let 𝑋1 denote this

distribution. However, average-case kSUM-Indexing(𝐺, 𝑁 ) is de-
fined with respect to a distribution of queries which is uniform over

{∑𝑖∈𝐼 𝑎𝑖 : 𝐼 ⊆ [𝑁 ] ∧ |𝐼 | = 𝑘 − 1}, let us denote this distribution by

𝑋2. By Lemma 5.6, we have that ∥(𝐴,𝑋1) − (𝐴,𝑋2)∥s = 𝑂 (1/
√
𝑁𝑐 ),

hence A2 solves kSUM-Indexing(𝐺, 𝑁 ) for the correct query dis-

tribution 𝑋2 with probability at least 𝛿 −𝑂 (1/
√
𝑁𝑐 ) which is non-

negligible since 𝛿 is non-negligible. Denoting by 𝑇 the running

time of A2, we just proved that A ′ is an (𝑆,𝑇 , 𝛿 − 𝑂 (1/
√
𝑁𝑐 ))

adversary for average-case kSUM-Indexing(𝐺, 𝑁 ), which is a con-

tradiction. □

We conjecture that 3SUM-Indexing is (𝐺, 𝑁, 𝑆,𝑇 , 𝜀)-hard with

𝜀 = 𝑆𝑇
𝑁 2

when 𝐺 = (Z/𝑁𝑐Z, +) (the standard 3SUM-Indexing prob-

lem) and𝐺 = ((Z/2Z)𝑐𝑛, ⊕) (the 3XOR-Indexing problem) for 𝑐 > 2.

If this conjecture is true, the previous theorem implies the existence

of (exponentially strong) one-way functions in the random oracle

model as long the preprocessing satisfies 𝑆 ≤ 𝑁 2−𝛿
for 𝛿 > 0. As

per the discussion below Definition 5.3, Theorem 5.5 is vacuous in

the regime where 𝑆 = Ω̃(𝑁 2).

5.3 Cryptography with Preprocessing and Data
Structures

In this section we show that the construction in Section 5.2 is a spe-

cific case of a more general phenomenon. Specifically, Theorem 5.10

below states that the existence of one-way functions in the random

oracle model with preprocessing is equivalent to the existence of

a certain class of hard-on-average data structure problems. The

next two definitions formalize the definitions of a data structure

problem and a solver for a data structure problem.

Definition 5.8. An (𝑆,𝑇 , 𝜀)-solver for a data structure problem
𝑔 : 𝐷 ×𝑄 → 𝑌 is a two-part algorithm B = (B1,B2) such that:

• B1 takes as input 𝑑 ∈ 𝐷 and computes a data structure 𝜙 (𝑑)
such that |𝜙 (𝑑) | ≤ 𝑆 ; and

• B2 takes as input query 𝑞 ∈ 𝑄 , makes at most 𝑇 queries to

𝜙 (𝑑), and outputs 𝑦 ∈ 𝑌 .
We say that a given execution of B succeeds if B2 outputs 𝑦 =

𝑔(𝑑, 𝑞).

Theorem 5.10 considers a special class of data structure problems

for which a query can be efficiently generated given its answer, as

defined next.

Definition 5.9. Let 𝑔 : 𝐷 × 𝑄 → 𝑌 be a static data structure

problem and let ℎ : 𝐷 × 𝑌 → 𝑄 . Then ℎ is an efficient query
generator for 𝑔 if ℎ is computable in time poly(log |𝑄 |, log |𝑌 |) and

∀𝑑 ∈ 𝐷, 𝑦 ∈ 𝑌, 𝑔
(
𝑑, ℎ(𝑑,𝑦)

)
= 𝑦 . (8)

For any ℎ which is an efficient query generator for 𝑔, we say that

(𝑔, ℎ) is (𝑆,𝑇 , 𝜀)-hard if for query distribution 𝑞 = ℎ(𝑑,𝑦) where

𝑑 ∈ 𝐷,𝑦 ∈ 𝑌 are uniformly random, no (𝑆,𝑇 )-solver succeeds with
probability more than 𝜀.12

Remark 11. For the 3SUM-Indexing problem, ℎ is the function

that takes 𝑑 = (𝑎1, . . . , 𝑎𝑛) and a pair of indices 𝑦 = (𝑖, 𝑗) and
outputs 𝑎𝑖 + 𝑎 𝑗 . Constructing a corresponding function 𝑔 for this ℎ

is equivalent to solving the 3SUM-Indexing problem.

Remark 12. Let 𝑔, ℎ be defined as in Definition 5.9. Then because 𝑔

is a function and ℎ satisfies (8), it holds that for any given 𝑑 ∈ 𝐷 ,
the function ℎ(𝑑, ·) is injective. That is, for any 𝑑 ∈ 𝐷,𝑦,𝑦′ ∈ 𝑌 ,

ℎ(𝑑,𝑦) = ℎ(𝑑,𝑦′) ⇒ 𝑦 = 𝑦′ . (9)

Theorem 5.10. There exists a (𝑆,𝑇 , 𝜀)-hard data structure with
efficient query generation iff there exists a (𝑆,𝑇 , 𝜀)-hard OWF in the
random oracle model with preprocessing.

More specifically, there is an efficient explicit transformation: (1)
from any (𝑆,𝑇 , 𝜀)-hard data structure with efficient query generation
to a (𝑆,𝑇 , 𝜀)-hard OWF in the random oracle model with preprocess-
ing; and (2) from any (𝑆,𝑇 , 𝜀)-hard OWF in the random oracle model
with preprocessing to an explicit construction of a (𝑆,𝑇 , 𝜀)-hard data
structure. For the second transformation, the resulting data structure
is always inQuasiP (with respect to its input size), and is in fact in
P whenever the input/output size of the underlying OWF is linear in
the input/output size of the random oracle.

Proof. We show the two implications in turn.
13

• DS⇒ OWF. Let 𝑔 : {0, 1}𝑁̃ × {0, 1}𝑚′ → {0, 1}𝑛′ be a data
structure problem, and letℎ : {0, 1}𝑁̃ ×{0, 1}𝑛′ → {0, 1}𝑚′ be
an efficient query generator for 𝑔 such that (𝑔, ℎ) is (𝑆,𝑇 , 𝜀)-
hard. Let 𝑅 : {0, 1}𝑛 → {0, 1}𝑛 be a random oracle, such

that 𝑁̃ = 𝑛2𝑛 . We define an oracle function 𝑓 𝑅 : {0, 1}𝑛′ →
{0, 1}𝑚′ as follows:

𝑓 𝑅 (𝑥) = ℎ(𝑅, 𝑥) ,
where 𝑅 denotes the binary representation of 𝑅.

𝑓 is a (𝑆,𝑇 , 𝜀)-hard OWF in the random oracle model with

preprocessing, because it is efficiently computable and hard

to invert, as proven next. Since ℎ is efficiently computable, 𝑓

runs in time poly(𝑛′,𝑚′).
It remains to show that 𝑓 is (𝑆,𝑇 , 𝜀)-hard to invert. Suppose,

for contradiction, that this is not the case: namely, that there

is a two-part adversary A = (A1,A2) such that

Pr

𝑥←{0,1}𝑛′

[
ℎ

(
𝑅,AA1 (𝑅)

2
(ℎ(𝑅, 𝑥))

)
= ℎ(𝑅, 𝑥)

]
> 𝜀 , (10)

andA1’s output size is at most 𝑆 ,A2 makes atmost𝑇 queries

to A1 (𝑅), and the probability is also over the sampling of

the random oracle 𝑅.

We useA to build (B1,B2), an (𝑆,𝑇 )-solver for 𝑔, as follows.
On input 𝑑 ∈ {0, 1}𝑁̃ , B1 simply outputs 𝜙 (𝑑) = A1 (𝑑). On
input 𝑞 ∈ {0, 1}𝑚′ , B2 runs AA1 (𝑅)

2
(𝑞); for each query 𝜁

thatA2’s makes toA1 (𝑅), B2 simply queries 𝜙 (𝑑) on 𝜁 and

returns the response to A2.

12
For simplicity we consider the uniform distributions on 𝐷 and 𝑌 , but all definitions

and results easily generalize to arbitrary distributions.

13
Throughout this proof, we assume the domain and range of the data structure

problem and OWF are bitstrings. The proof generalizes to arbitrary domains and

ranges.
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It follows from (9) and (10) that

Pr

𝑑←{0,1}𝑁̃
𝑦←{0,1}𝑛′

[
B𝜙 (𝑑)
2
(ℎ(𝑑,𝑦)) = 𝑦

]
≥ 𝜀 .

This contradicts the (𝑆,𝑇 , 𝜀)-hardness of (𝑔, ℎ).
• OWF⇒ DS. Let 𝑓 𝑅 : {0, 1}𝑛′ → {0, 1}𝑚′ be a (𝑆,𝑇 , 𝜀)-hard
OWF in the random oracle model with preprocessing, for

a random oracle mapping 𝑛 bits to 𝑛 bits. We design a data

structure problem 𝑔 : {0, 1}𝑁̃ × {0, 1}𝑚′ → {0, 1}𝑛′ and an

efficient query generatorℎ for𝑔 such that 𝑁̃ = 𝑛2𝑛 and (𝑔, ℎ)
is (𝑆,𝑇 , 𝜀)-hard, as follows.
– ℎ(𝑑,𝑦) = 𝑓 𝑑 (𝑦).
– 𝑔(𝑑, 𝑞) = min{𝑦 ∈ 𝑌 : 𝑓 𝑑 (𝑦) = 𝑞}.14
ℎ is computable in time poly(𝑛′,𝑚′), as required by Defini-

tion 5.9, because 𝑓 𝑑 is efficiently computable (in its input

size). Furthermore, ℎ satisfies (8) since 𝑔 is, by construction,

an inverse of ℎ.

Next, we show that (𝑔, ℎ) is (𝑆,𝑇 , 𝜀)-hard. Suppose the con-
trary, for contradiction. Then there exists an (𝑆,𝑇 )-solver
B = (B1,B2) for 𝑔 that succeeds with probability greater

than 𝜀 on query distribution 𝑞 = ℎ(𝑑,𝑦) = 𝑓 𝑑 (𝑦) where 𝑑,𝑦
are uniformly random. Then B is quite literally an inverter

for the OWF 𝑓 , where 𝑑 corresponds to the random oracle

and 𝑞 corresponds to the challenge value to be inverted: by

assumption, B satisfies

Pr

𝑑←({0,1}𝑛→{0,1}𝑛)
𝑦←{0,1}𝑛′

[
𝑓 𝑑

(
BB1 (𝑑)
2

(
𝑓 𝑑 (𝑦)

))
= 𝑓 𝑑 (𝑦)

]
> 𝜀 .

This contradicts the (𝑆,𝑇 , 𝜀)-hardness of 𝑓 .
Finally, 𝑔 is computable in DTIME[2𝑛′ · poly(𝑛′)], since it
can be solved by exhaustively searching all 𝑦 ∈ {0, 1}𝑛′ and
outputting the first (i.e., minimum) such that 𝑓 𝑑 (𝑦) = 𝑞.

Note that 𝑛′,𝑚′ ∈ poly(𝑛) since 𝑛′,𝑚′ are the input and

output sizes of a OWF with oracle access to a random ora-

cle mapping 𝑛 bits to 𝑛 bits. Hence, 𝑔 is computable in time

quasipolynomial in |𝑑 | = 𝑁̃ = 𝑛2𝑛 , i.e., the size of 𝑔’s first in-

put. In particular, 𝑔 is computable in time poly(𝑁̃ ) whenever
𝑛′,𝑚′ ∈ 𝑂 (𝑛). □

Remark 13. As an example, a one-way function 𝑓 𝑅 : {0, 1}5𝑛 →
{0, 1}5𝑛 in the random oracle model with preprocessing 𝑆 = 2

3𝑛

would give an adaptive data structure lower bound for a function

with 𝑁 inputs, 𝑁 5
outputs, space 𝑆 = Ω(𝑁 3/poly log(𝑁 )) and

query time 𝑇 = poly log(𝑁 ). Finding such a function is a big open

problem in the area of static data structures [36, 57, 66, 68, 72].
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