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Abstract

We prove that the Impagliazzo-Nisan-Wigderson [9] pseudorandom generator (PRG) fools ordered
(read-once) permutation branching programs of unbounded width with a seed length of Õ(log d +
log n · log(1/ε)), assuming the program has only one accepting vertex in the final layer. Here, n is
the length of the program, d is the degree (equivalently, the alphabet size), and ε is the error of the
PRG. In contrast, we show that a randomly chosen generator requires seed length Ω(n log d) to fool
such unbounded-width programs. Thus, this is an unusual case where an explicit construction is
“better than random.”

Except when the program’s width w is very small, this is an improvement over prior work. For
example, when w = poly(n) and d = 2, the best prior PRG for permutation branching programs
was simply Nisan’s PRG [15], which fools general ordered branching programs with seed length
O(log(wn/ε) log n). We prove a seed length lower bound of Ω̃(log d+log n · log(1/ε)) for fooling these
unbounded-width programs, showing that our seed length is near-optimal. In fact, when ε ≤ 1/ log n,
our seed length is within a constant factor of optimal. Our analysis of the INW generator uses the
connection between the PRG and the derandomized square of Rozenman and Vadhan [20] and the
recent analysis of the latter in terms of unit-circle approximation by Ahmadinejad et al. [1].

2012 ACM Subject Classification Theory of computation→ Pseudorandomness and derandomization

Keywords and phrases Pseudorandom generators, permutation branching programs

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.7

Funding William M. Hoza: Supported by the NSF GRFP under grant DGE-1610403 and a
Harrington Fellowship from UT Austin.
Edward Pyne: Supported by NSF grant CCF-1763299.
Salil Vadhan: Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

Acknowledgements We thank Jack Murtagh for collaboration at the start of this research. The first
author thanks Dean Doron for insightful and relevant discussions about the works by Murtagh et
al. [13, 14]. We thank Shyam Narayanan, Dean Doron and David Zuckerman for valuable comments
on a draft of this paper.

© William M. Hoza, Edward Pyne, and Salil Vadhan;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5162-9181
https://williamhoza.com/tcs/
mailto:whoza@utexas.edu
https://sites.google.com/view/tedpyne/
mailto:epyne@college.harvard.edu
https://salil.seas.harvard.edu/
mailto:salil_vadhan@harvard.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 PRGs for Unbounded-Width Permutation BPs

1 Introduction

Randomness, like time or space, is a computational resource. All else being equal, it is best to
use as few random bits as possible. A pseudorandom generator (PRG) is a tool for reducing
the number of random bits used by some computational process.

I Definition 1.1. Let F be a class of functions B : [d]n → {0, 1}. An ε-PRG for F is a
function G : {0, 1}s → [d]n such that for every B ∈ F ,

|Pr[B(U[d]n) = 1]− Pr[B(G(U{0,1}s)) = 1]| ≤ ε,

where US is the uniform distribution over the set S. The value s is the seed length of the
PRG.

Motivated by the goal of derandomizing small-space computation, a long line of research
has studied PRGs for classes F of functions computable by branching programs.

I Definition 1.2. An ordered branching program B of length n, width w and degree d
computes a function B : [d]n → {0, 1}. At time step t ∈ [n], the program maintains a state
in [w], reads the next symbol σt of the input σ ∈ [d]n and updates its state according to a
transition function Wt : [w]× [d]→ [w]. We allow the transition function Wt to be different
at each time step.

Moreover, there is an initial state vstart ∈ [w] and a single accept state vend ∈ [w]. Let u
be the final state of the branching program on input σ. If u = vend the branching program
accepts, denoted B(σ) = 1. For any other final state the program rejects, denoted B(σ) = 0.

We can represent a branching program as a graph, with n + 1 layers and w vertices per
layer corresponding to the states of the program at each step. For all t ∈ [n], for state s
in layer t− 1 and s′ in layer t, we add edge (s, s′) with label σt ∈ [w] if Wt(s, σt) = s′. An
ordered read-once branching program of length n and width w can compute the output of an
algorithm that uses logw bits of memory and n random bits, by taking the state at each layer
as the contents of memory at that time. Unusually, we will consider branching programs
where the width is unbounded (e.g., it can even be w = dn), albeit with the restriction of
being a permutation branching program.

I Definition 1.3. A permutation branching program is an ordered branching program
where for all t ∈ [n] and σ ∈ [d], Wt(·, σ) is a permutation. This can be thought of as the
computation being time-reversible.

Note that with this restriction the graph representation consists of n+ 1 layers where each
layer is the union of d perfect matchings, with each matching corresponding to a distinct
input symbol.

Restricted classes of branching programs, including permutation branching programs [22,
5, 10], have received attention largely because of the lack of progress on designing PRGs
for general length-n width-n branching programs since the work of Nisan three decades
ago [15]. There has also been work on permutation branching programs where the input
is read in an arbitrary order [17, 3]. Our main theorem is that there is an explicit PRG
fooling unbounded-width permutation branching programs with seed length that is nearly
logarithmic in n and has no dependence on the width w:

I Theorem 1.4 (Main Theorem). For all n, d ∈ N and ε > 0, there is an explicitly computable
ε-PRG G : {0, 1}s → [d]n for permutation branching programs of length n, degree d, and
arbitrary width. This PRG has seed length

O (log d+ log n · (log log n+ log(1/ε)) .
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In contrast, we show that a randomly chosen generator requires seed length Ω(n log d)
to fool such unbounded-width programs. Thus, this is an unusual case where an explicit
construction is “better than random.” (See Section 1.3 for more discussion.)

The PRG is an instantiation of the Impagliazzo-Nisan-Wigderson (INW) generator [9].
The proof uses the interpretation of the INW generator in terms of the derandomized square
for consistently labeled graphs, introduced by Rozenman and Vadhan [20], and the analysis
of the derandomized square in terms of unit-circle approximation by Ahmadinejad et al. [1].

We emphasize that our definition of permutation branching program only allows one
accepting vertex. This assumption is crucial: a permutation branching program with
unbounded width and an unbounded number of accepting vertices can compute any Boolean
function on [d]n, so nontrivial PRGs for that model do not exist. That being said, a program
with a accepting vertices can be written as a sum of a programs with one accepting vertex
each, so our PRG fools such a permutation branching program with seed length

O(log d+ log n · (log log n+ log(a/ε))).

1.1 Prior Work on the Derandomized Square
In the paper introducing the derandomized square [20], Rozenman and Vadhan showed
how to use it to decide undirected connectivity in deterministic log space, giving another
proof of Reingold’s famous theorem [16]. As another application, they showed how to take a
(polynomially long) pseudorandom walk through a regular, aperiodic directed graph in such
a way that the final vertex is distributed nearly uniformly (i.e., is close to the stationary
distribution of a truly random walk), matching a result of Reingold, Trevisan, and Vadhan [18].
As mentioned previously, they observed that this pseudorandom walk is described by the
INW generator, assuming the graph is “consistently labeled” (see Definition 3.4). However,
their analysis does not show how to approximate short random walks (e.g., shorter than the
mixing time).

In a pair of relatively recent works [13, 14], Murtagh et al. showed how to approximate
(in some respects) random walks of any length n, even if n is much smaller than the graph’s
mixing time. These algorithms are only for undirected graphs, but the recent work by
Ahmadinejad et al. [1] handles the more general case of Eulerian digraphs (as well as getting
stronger results for undirected graphs). Among other tools, all three of these papers [13, 14, 1]
use the derandomized square.

Fooling branching programs amounts to approximating bounded-length random walks
through directed graphs, which is why we rely on Ahmadinejad et al.’s results [1] for our
theorem. One of their results is a deterministic non-black-box algorithm for estimating the
acceptance probability of a given polynomial-width “regular” branching program in space
Õ(log n) to within error ε = 1/ poly(n). Our theorem solves the more challenging black-box
derandomization problem, although it only works for permutation branching programs and
we have a worse dependence on the error parameter ε.

1.2 Prior PRGs for Permutation Branching Programs
Our PRG is superior to prior generators for permutation branching programs1 when the width
of the branching program is not small. Previous work has focused on the constant-width case.
In that regime, the best PRG for permutation branching programs is due to Steinke [22].

1 In this discussion of prior work, we focus on the case d = 2 for simplicity.

ITCS 2021



7:4 PRGs for Unbounded-Width Permutation BPs

He achieves seed length O(w4 logw log n + log n log(1/ε)), which is better than our seed
length by a factor of log log n. For larger widths up to w = poly(n), the best prior PRG for
permutation branching programs is by Braverman et al. [2], who gave a PRG for regular
branching programs with seed length

O(logw log n+ log n · (log log n+ log(1/ε))).

Note that when w = poly(n) and ε = Ω(1), Braverman et al.’s PRG has seed length Θ(log2 n),
just like Nisan’s PRG [15], whereas our PRG has seed length Õ(log n). The case w = poly(n)
is arguably the most important case, because polynomial-width ordered branching programs
correspond to uniform randomized algorithms that always halt. Recall that low-error PRGs
for polynomial-width regular branching programs suffice for derandomizing all of RL [18].

When the width is even larger than poly(n), the best prior PRG is by De [5]. De’s
work is focused on the constant-width case, but he also gave a generator with seed length
O(log(n/ε) log n) independent of w.

1.3 Failure of the Probabilistic Method
There is something counterintuitive about the superpolynomial-width regime. Recall that for
typical models of computation, including polynomial-width degree-2 branching programs, it
is straightforward to show that there exists a nonexplicit PRG with seed length O(log(n/ε)),
because a random function is a good PRG. Furthermore, it is typically fairly trivial to prove
a matching Ω(log(n/ε)) lower bound. The main challenge, in most cases, is to devise an
explicit construction matching the parameters of the probabilistic existence proof.

However, the standard nonexplicit existence argument is not applicable to unbounded-
width permutation branching programs, because they can compute doubly-exponentially many
distinct functions; in particular, we show (Lemma 5.1) that they can compute every Boolean
function B(x, y) that tests whether π(x) = y for a permutation π : [d]n/2 → [d]n/2. And
indeed, as mentioned previously, for seed length less than (n log d)/4, we show (Theorem 5.2)
that a random function is not a good PRG for this model. The reason is that when a
generator is chosen at random, with high probability, there is some permutation π such that
every output (x, y) of the generator satisfies π(x) = y.

Since the probabilistic method fails here, it might be surprising that there even exists a
PRG with near-logarithmic seed length, let alone our explicit construction. Intuitively, the
INW generator manages to outperform the probabilistic method because the second half of
the INW generator’s output is information-theoretically unpredictable given the first half,
and vice versa.

We remark that another family of unbounded-width ordered branching programs has
been studied previously: “monotone” branching programs. From Meka and Zuckerman’s
work [12], it follows that a random function is a good PRG for unbounded-width monotone
branching programs. In that respect, the model we study is more unusual.

1.4 The Optimal Seed Length
These considerations raise the question of what the optimal seed length is for our model. We
prove (Theorem 6.1) that any PRG for unbounded-width permutation branching programs
must have seed length at least Ω(log d+ log n · log(1/ε)), provided ε is not extremely small.2
Thus, our explicit PRG’s seed length is near-optimal. In fact, although the lower bound gets

2 E.g., any ε ≥ exp(−(n log d)0.99) is large enough.
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slightly weaker when ε is extremely small, we give a matching refinement of our upper bound
in that regime (see Corollary 4.9), providing an explicit PRG with asymptotically optimal
seed length whenever ε ≤ 1/ log n.

To the best of our knowledge, this is the first known case where, e.g., some seed length s
is sufficient for a constant-error PRG, but seed length O(s+ log n) is not sufficient to achieve
error 1/n. In the context of fooling shallow circuits, similar lower bounds were proven
previously for restricted classes of PRGs such as k-wise independent distributions [11] or
small-bias distributions [6], but our lower bound holds for any PRG whatsoever. Our lower
bound uses basic tools from matching theory and information theory.

On the other hand, we show (Theorem 7.1) that a random function is at least a good
hitting set generator (HSG); the optimal seed length for nonexplicit HSGs for unbounded-
width permutation branching programs is Θ(log(nd/ε)). This is the first case we are aware
of where there is a large gap between the best possible PRGs and the best possible HSGs.

1.5 Organization
In Section 2, we introduce measures of spectral approximation for matrices and basic linear
algebra facts. In Section 3, we introduce the derandomized square, and recall two theorems
relating the square to unit-circle approximation, then prove repeated derandomized squaring
provides a suitable quality approximation. In Section 4, we use the bounds on repeated
derandomized squares to analyze the INW generator. In Section 5, we prove that a random
function with seed length less than (n log d)/4 does not fool unbounded-width permutation
branching programs. In Section 6, we prove our lower bound on the seed length of any PRG
for these programs. Finally, in Section 7, we identify the optimal seed length for nonexplicit
HSGs for these programs.

2 Spectral Approximation Preliminaries

We first introduce basic notation and recall two measures of closeness of approximation for
matrices, complex spectral approximation and unit-circle approximation.

For a complex number z ∈ C we write z∗ to denote the complex conjugate of z and |z| to
denote the magnitude of z.
For a matrix A ∈ CN×N we write A∗ to denote its conjugate transpose and write
UA = (A+A∗)/2 to denote its symmetrization.
We say a Hermitian matrix A is positive semidefinite (PSD) or write A � 0 if x∗Ax ≥ 0
for all x ∈ CN . For two Hermitian matrices A,B, we use A � B to denote A − B � 0
and define � analogously.

I Definition 2.1 (Complex Spectral Approximation [1]). For A,B ∈ CN×N and ε > 0, we say
A is a complex ε-approximation of B, denoted A ≈ε B, if

∀x, y ∈ CN , |x∗(B −A)y| ≤ ε

2(||x||2 + ||y||2 − x∗UBx− y∗UBy).

For two N -vertex digraphs G̃,G with random walk matrices A,B, write G̃ ≈ε G if A ≈ε B.

We now recall the stronger notion that we will use for analyzing the generator.

I Definition 2.2 (Unit-Circle Approximation [1]). For A,B ∈ CN×N and ε > 0, we say A is
a unit-circle ε-approximation of B, denoted A ◦

≈ε B, if

∀x, y ∈ CN , |x∗(B −A)y| ≤ ε

2(||x||2 + ||y||2 − |x∗Bx+ y∗By|).

For two N -vertex digraphs G̃,G with random walk matrices A,B, write G̃ ◦
≈ε G if A ◦

≈ε B.

ITCS 2021



7:6 PRGs for Unbounded-Width Permutation BPs

Including the magnitude operation in the right hand side forces the approximation to be
exact for all eigenspaces with eigenvalues of complex magnitude 1, and this property is essential
for the preservation of approximation under high powers. The unit-circle approximation is
developed in [1]. We rely on a convenient equivalence between unit-circle approximation and
complex approximation:

I Lemma 2.3 ([1] Lemma 3.8). Let A,B ∈ CN×N and ε > 0. Then A ◦
≈ε B if and only if

for all z ∈ C with |z| = 1, zA ≈ε zB.

We will also use this basic result about complex approximation. Note that Cohen et
al. [4] prove the analogous statement where complex numbers are replaced with reals.

I Lemma 2.4. Let A,B ∈ CN×N where A ≈ε B. Then (1− ε)UI−B � UI−A � (1 + ε)UI−B.

Proof. Let arbitrary x ∈ CN . Bounding the gap between the symmetrizations via the
definition of complex approximation gives

|x∗UI−Bx− x∗UI−Ax| =
∣∣∣∣12(x∗(B +B∗)x− x∗(A+A∗)x)

∣∣∣∣
≤
∣∣∣∣12x∗(B −A)x

∣∣∣∣+
∣∣∣∣12x∗(B∗ −A∗)x

∣∣∣∣
≤ 1

2ε(||x||
2 − x∗UBx) + 1

2ε(||x||
2 − x∗UBx)

= ε · x∗UI−Bx.

This directly implies x∗UI−Ax− (1− ε)x∗UI−Bx ≥ 0 and (1 + ε)x∗UI−Bx− x∗UI−Ax ≥ 0.
Since x was arbitrary we are done. J

We now state an approximate triangle inequality for unit-circle approximation, which
will be a tool for bounding the error of the generator. Previously, Cohen et al. [4] proved a
similar lemma regarding the real analogue of complex approximation.

I Lemma 2.5 (Quasi-Triangle Inequality). If C ◦
≈ε2 B

◦
≈ε1 A then C ◦

≈ε1+ε2+ε1ε2 A.

Proof. Let z ∈ C satisfy |z| = 1, and let x, y ∈ CN be arbitrary. Since B ◦
≈ε1 A, by

Lemma 2.3, zB ≈ε1 zA, so

|x∗(A−B)y| ≤ ε1

2 (x∗UI−zAx+ y∗UI−zAy).

Similarly, since C ◦
≈ε2 B,

|x∗(B − C)y| ≤ ε2

2 (x∗UI−zBx+ y∗UI−zBy)

≤ ε2

2 · (1 + ε1) · (x∗UI−zAx+ y∗UI−zAy)

where the second inequality follows from Lemma 2.4. Therefore,

|x∗(A− C)y| ≤ |x∗(A−B)y|+ |x∗(B − C)y|

≤
(ε1

2 + ε2

2 + ε1ε2

2

)
· (x∗UI−zAx+ y∗UI−zAy).

Since x and y were arbitrary, this shows that zC ≈ε1+ε2+ε1ε2 zA. Since z was arbitrary, we
are done by Lemma 2.3. J
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I Corollary 2.6 (Iterated Quasi-Triangle Inequality). Suppose δ ≤ 1 and

A0
◦
≈δ A1

◦
≈δ . . .

◦
≈δ A`.

Then A0
◦
≈ε A` with ε = `δ/(1− δ)2.

Proof. Applying Lemma 2.5 inductively, we get a bound of

∑̀
i=0

(`− i) · δi+1 = `δ − δ2 · (`+ 1− δ`)
(1− δ)2 ≤ `δ

(1− δ)2 . J

Finally, we give a basic result used to relate unit-circle to entrywise approximation for
the final generator analysis.

I Proposition 2.7. Given A,B ∈ CN×N so that A ◦
≈ε B, for all indices u, v ∈ [N ],

|Au,v −Bu,v| ≤ ε.

Proof. Let eu, ev be the standard basis vectors with ones in coordinates u, v respectively
and apply Definition 2.2:

|Au,v −Bu,v| = |e∗u(A−B)ev| ≤
ε

2(||eu||2 + ||ev||2 − |e∗uBeu + e∗vBev|) ≤ ε. J

3 Repeated Derandomized Squaring

3.1 Graph Labelings
Branching programs are closely related to graphs with one-way labelings.

I Definition 3.1 (One-Way Labeling [20]). A one-way labeling of a d-regular directed
multigraph G assigns a label in [d] to each edge (u, v) such that for every vertex u, the labels
of the outgoing edges of u are distinct. If G has a one-way labeling, let G[u, i] denote the
vertex v such that (u, v) is labeled i.

One-way labelings are compatible with the operation of powering a graph. One step on
Gn corresponds to n steps in G. The formal definition follows.

I Definition 3.2 (Graph Powering). Let G be a d-regular directed multigraph with a one-way
labeling. For n ≥ 1, we recursively define Gn to be a (dn)-regular directed multigraph on the
same vertex set with a one-way labeling given by

G1 = G
Gn+1[v, (e1, e2)] = Gn[G[v, e1], e2],

identifying [dn+1] = [d]× [dn].

Derandomized squaring is a way of “approximating” the powers of a graph. The deran-
domized squaring operation is defined in terms of graphs with additional structure, namely,
a two-way labeling.

I Definition 3.3 (Two-Way Labeling [20]). A two-way labeling of a d-regular directed
multigraph G assigns two labels in [d] to each edge (u, v): one as an edge incident to u

(the “outgoing label”) and one as an edge incoming to v (the “incoming label”). We require
that for every vertex v, the outgoing labels of the outgoing edges of v are distinct, and the
incoming labels of the incoming edges of v are distinct. If G is an N -vertex graph with a
two-way labeling, we define the rotation map [19, 20] RotG : [N ]× [d]→ [N ]× [d] by letting
RotG(u, i) = (v, j) if there is an edge (u, v) with outgoing label i and incoming label j.

ITCS 2021



7:8 PRGs for Unbounded-Width Permutation BPs

Naturally, if G has a two-way labeling, we think of G as also having a one-way labeling
given by the outgoing labels: RotG(u, i) = (v, j) =⇒ G[u, i] = v. Conversely, there is a
natural way to extend any consistent one-way labeling (defined next) to a two-way labeling.

I Definition 3.4 (Consistent One-Way Labeling [8]). A consistent one-way labeling of a
graph G is a one-way labeling such that for every vertex v, the labels of the incoming edges
of v are distinct. Equivalently, G[u, i] = G[v, i] =⇒ u = v. If G has a consistent one-way
labeling, then we can extend G to a graph G that has a two-way labeling given by

RotG(u, i) = (G[u, i], i).

3.2 Derandomized Squaring
Now we are ready to define the derandomized square operation, introduced by Rozenman
and Vadhan [20]. Let G = (V,E) be a regular directed multigraph. In the true square
G2, for each vertex v ∈ V , there is a complete bipartite graph from in-neighbors of v to
outneighbors of v, equivalent to all two-step walks through v. A derandomized square picks
out a pseudorandom subset of such walks by correlating the two steps via edges on an
expander graph H.

I Definition 3.5 (Derandomized Square [20]). Let G be a directed d-regular multigraph on
N vertices with a two-way labeling. Let H be a directed c-regular multigraph on d vertices
with a one-way labeling. We define the derandomized square G s H to be a (cd)-regular
directed multigraph on N vertices with a one-way labeling given by

(G s H)[v, (i, j)] = G[v′,H[i′, j]],

where (v′, i′) = RotG(v, i).

Note that Definition 3.5 requires G to have a two-way labeling, but the derandomized
square G s H itself only has a one-way labeling. If we wish to apply the derandomized
squaring operation a second time to approximate G4, we must first assign incoming labels to
the edges in G s H. When they introduced the derandomized square operation, Rozenman
and Vadhan studied two distinct approaches for assigning incoming edge labels [20]. The first
approach is to assume that we start with a graph G with a consistent one-way labeling. In
this case, G s H has a consistent one-way labeling as well (see Lemma 4.2). This approach
is closely connected to the INW generator [9], as we will discuss in Section 4. The second
approach is to assume that H has a two-way labeling. In this case, one can assign incoming
edge labels to G s H by setting RotGsH(v0, (i0, j0)) = (v2, (i3, j1)), where

(v1, i1) = RotG(v0, i0), (i2, j1) = RotH(i1, j0), (v2, i3) = RotG(v1, i2).

This is the approach taken in, e.g., the recent work of Ahmadinejad et al. [1]. Note that if
G has a consistent one-way labeling and H has a two-way labeling, the two approaches for
assigning incoming edge labels to G s H do not coincide.

Like previous work, we will use auxiliary graphs H that are good spectral expanders,
meaning that λ(H) (defined next) is small. For the purposes of this paper, an undirected
graph is a symmetric directed graph, i.e., a directed graph such that for every edge (u, v),
the reverse edge (v, u) is also present.

I Definition 3.6. Let H be an undirected regular multigraph on N vertices with random walk
matrix M . We define λ(H) = maxx∈RN :〈1,x〉=0 ||Mx||2/||x||2, where 1 is the all-ones vector.
This is equal to the second largest eigenvalue in absolute value of M .
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Ahmadinejad et al. showed that the derandomized square is a unit-circle approximation
of the true square [1]. Since the conclusion of this theorem is only a statement about the
random walk matrix of G s H, the theorem is oblivious to any edge labels in G s H.

I Theorem 3.7 ([1] Theorem 5.9). Let G be a d-regular directed multigraph with a two-way
labeling, and let H be a c-regular undirected multigraph on d vertices with a one-way labeling.
If λ(H) ≤ ε, then G s H ◦

≈2ε G2.

We now use the spectral approximation measures of Section 2 to bound the error
introduced by repeated derandomized squares. In the theorem below, although Gi has a
two-way labeling, when we write Gi = Gi−1 s Hi, we merely mean equality of one-way
labelings. Thus, our bound applies regardless of how the incoming edge labels of Gi−1 s Hi

are assigned, as long as they form a valid two-way labeling.

I Theorem 3.8 (Repeated Derandomized Squaring). Let G0,G1, . . . ,G` be directed multi-
graphs on N vertices with two-way labelings, where Gi is (d · ci)-regular. Let ε ∈ (0, 0.12),
and let H1, . . . ,H` be undirected c-regular multigraphs with one-way labelings, where Hi is
on d · ci−1 vertices and λ(Hi) ≤ ε. Assume that for every i ∈ [`], we have Gi = Gi−1 s Hi.
Then G`

◦
≈8`ε G2`

0 .

The proof of Theorem 3.8 relies on a result by Ahmadinejad et al. [1] saying that unit-circle
approximations are preserved under arbitrary true powers.

I Lemma 3.9 ([1] Corollary 4.9). Let G̃,G be directed multigraphs. If G̃ ◦
≈ε G then for all

k ∈ N we have G̃k ◦≈ε/(1− 3
2 ε) Gk.

Proof of Theorem 3.8. By Theorem 3.7, for all j, Gi+1
◦
≈2ε G2

i . We then use Lemma 3.9
which states that we can take arbitrary powers and preserve unit-circle approximation. For
arbitrary i ∈ [`], ki ∈ N we have Gki

i+1
◦
≈ 2ε

1−3ε
G2ki
i . Then by choosing ki = 2`−i we obtain a

chain

G`
◦
≈ 2ε

1−3ε
G2
`−1

◦
≈ 2ε

1−3ε
G4
`−2

◦
≈ 2ε

1−3ε
. . .

◦
≈ 2ε

1−3ε
G2`

0 ,

relating the final derandomized square to the true power via a sequence of unit-circle
approximations. Applying Corollary 2.6 gives the bound G`

◦
≈C G2`

0 where C = 2ε`· 1−3ε
(1−5ε)2 ≤

8ε`. J

4 The Pseudorandom Generator

In this section, we present the PRG of Theorem 1.4. We first state the definition of the
Impagliazzo-Nisan-Widgerson (INW) generator and relate it to the repeated derandomized
square. For the remainder of the section, fix a sequence of c-regular undirected multigraphs
H1,H2, . . . where Hi has d · ci−1 vertices and has a one way labeling. We define a sequence
of generators INW0, INW1, . . . such that INWi : [d]× [c]i → [d]2i .

I Definition 4.1 (INW Generator [9]). Define INW0(σ) = σ for σ ∈ [d] as the trivial PRG
that outputs its input and INWi+1(v, e) = (INWi(v), INWi(Hi+1[v, e])).

This is the recursive definition of the INW generator [9]. However, in the context of graphs
with consistent one-way labelings there exists an equivalent characterization in terms of the
derandomized square [20], which we will use for our analysis. The following two lemmas
follow from the reasoning in Rozenman and Vadhan’s work [20, Theorem 5.8]. We repeat
the proofs here for completeness.
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7:10 PRGs for Unbounded-Width Permutation BPs

I Lemma 4.2. Let G be a d-regular multigraph and H a c-regular undirected multigraph on
d vertices. If G has a consistent one-way labeling, then G s H has a consistent one-way
labeling.

Proof. Let G̃ = G s H. By the definitions of G and s, we have

G̃[v, (i, j)] = G[G[v, i],H[i, j]].

To prove that G̃ has a consistent one-way labeling, fix (i, j), and suppose G̃[u, (i, j)] =
G̃[v, (i, j)]. We must show that u = v. Indeed, G[G[u, i],H[i, j]] = G[G[v, i],H[i, j]]. Since
G has a consistent one-way labeling, this implies that G[u, i] = G[v, i]. Again using the fact
that G has a consistent one-way labeling, this implies that u = v as desired. J

I Lemma 4.3. Let G0 be a d-regular multigraph on any number of vertices with a consistent
one-way labeling. For i ≥ 0, inductively define Gi+1 = Gi s Hi+1. Then for all v and e,
Gi[v, e] = G2i

0 [v, INWi(e)].

Proof. First, note that inductively, Gi has a consistent labeling by Lemma 4.2, so Gi+1 is
well-defined. Now we show by induction on i that Gi[v, e] = G2i

0 [v, INWi(e)]. The case of
G0 is immediate. Assume the inductive hypothesis holds for i. Fix an arbitrary vertex v
and edge label e = (e1, e2) ∈ [d · ci]× [c]. We have

Gi+1[v, e] = Gi[Gi[v, e1],Hi+1[e1, e2]] (Definitions)

= G2i

0 [G2i

0 [v, INWi(e1)], INWi(Hi+1[e1, e2])] (Induction hypothesis)

= G2i+1

0 [v, (INWi(e1), INWi(Hi+1[e1, e2]))]

= G2i+1

0 [v, INWi+1(e)]. J

Let ` = dlog(n)e, and define G : [d]× [c]` → [d]n by letting G(x) be the n-symbol prefix of
INW`(x). This will be the generator that proves Theorem 1.4.

4.1 Approximation Guarantee
To bridge the gap between regular graphs and branching programs, we now define the
execution graph of a branching program, which is just like the standard graph representation
of the program, but the length is padded to a power of two and edges are added to wrap
around from the end to the beginning.

I Definition 4.4 (Branching Program Execution Graph). Let B be a permutation branching
program of width w, degree d and length n, and let m be the smallest power of 2 greater than
n. Define the execution graph of B to be a directed d-regular multigraph G on the vertex
set {0, . . . ,m} × [w] with a one-way labeling given by

G[(t, u), σ] =


(t+ 1,Wt(u, σ)) t ∈ {0, . . . , n− 1}
(t+ 1, u) t ∈ {n, . . . ,m− 1}
(0, u) t = m,

where Wt is the transition function of B at layer i as in Definition 1.3.

I Remark 4.5. Since B is a permutation branching program, the execution graph G has a
consistent one-way labeling. This is not true for general regular branching programs and is
why our method does not generalize.
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B Claim 4.6. Let ε > 0. If every Hi satisfies λ(Hi) ≤ ε/(8`), then G is an ε-PRG for
permutation branching programs of degree d, length n, and arbitrary width.

Proof. Let B be an arbitrary permutation branching program of degree d and length n.
Let G0 be the execution graph of B. Let G1,G2, . . . be the graphs in Lemma 4.3. By
Theorem 3.8 we have G`

◦
≈ε Gm

0 .
Let u = (0, vstart) be the start vertex in the execution graph, and let v = (m, vend) be the

accept vertex. By the definition of G0, for all σ ∈ [d]m, we have Gm
0 [u, σ] = (m, a), where a

is the final state of B when it reads σ1...n. Therefore, Gm
0 [u, σ] = v ⇐⇒ B(σ1...n) = 1.

Let M be the random walk matrix of G0 and M̃ the random walk matrix of G`. Then∣∣∣∣∣ Pr
x←U[d]×[c]`

[B(G(x)) = 1]− Pr
σ←U[d]n

[B(σ) = 1]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
x←U[d]×[c]`

[Gm
0 [u, INW`(x)] = v]− Pr

e←U[d]m
[Gm

0 [u, e] = v]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
e←U[d]×[c]`

[G`[u, e] = v]− Pr
e←U[d]m

[Gm
0 [u, e] = v]

∣∣∣∣∣
=
∣∣∣M̃v,u −Mm

v,u

∣∣∣ ,
which is at most ε by Proposition 2.7. C

To complete the proof of Theorem 1.4 we recall a result giving the existence of explicit
expanders of all sizes.

I Lemma 4.7 ([14] Theorem 3.3, Definition 2.13). For all n > 1 and λ > 0, there is a
c = poly(1/λ) and a c-regular undirected multigraph H on n vertices with a one-way labeling
such that λ(H) ≤ λ, and given λ, v, and e, the vertex H[v, e] can be computed in space
O(log(nc)).

Proof of Theorem 1.4. Let Hi be the expander given by Lemma 4.7 with λ = ε/(8`)
and n = d · ci−1. This sequence H1,H2, . . . satisfies the requirements of Claim 4.6, so G
constructed with this sequence is an ε-PRG. It remains to show the seed length and that the
generator is explicit.

By construction the `th INW generator INW` has domain [d] × [c]`. By definition
` ≤ log(n) + 1 and by Lemma 4.7 the degree of Hi for all i is c = poly(log(n)/ε), which gives
a seed length of s = O(log d+ log n · (log log n+ log(1/ε))).

Finally, G is explicit, in that the output of the generator can be computed in working space
O(s). This follows directly from Definition 4.1 and the explicitness of the expanders. J

4.2 Improved Seed Length for Tiny Error
So far, we have designed a PRG with seed length

O(log d+ log n · (log log n+ log(1/ε))). (1)

In this section, we will present a simple reduction that yields an improved seed length when
ε is extremely small.

I Lemma 4.8. Suppose G : {0, 1}s → [dm]n is an ε-PRG for length-n degree-(dm) permutation
branching programs. Identify [dm] = [d]m, and think of G as a function G : {0, 1}s → [d]mn.
Then G is an ε-PRG for length-(mn) degree-d permutation branching programs.

ITCS 2021



7:12 PRGs for Unbounded-Width Permutation BPs

Proof. Let B be a length-(mn) degree-d permutation branching program. Define a length-n
degree-(dm) branching program B′ where one step of B′ simulates m steps of B. Then B′ is
a permutation branching program, and B′ computes the same function as B, so fooling B′
implies fooling B. J

I Corollary 4.9. For all n, d ∈ N and ε > d−n/2, there is an explicitly computable ε-PRG
G : {0, 1}s → [d]n for permutation branching programs of length n, degree d, and arbitrary
width. This PRG has seed length

O

(
log d+ log

(
n log d

log(1/ε)

)
· (log log n+ log(1/ε))

)
.

Proof. If log(1/ε) < log d, then the seed length of Equation 1 is already sufficient. Assume,
therefore, that log(1/ε) ≥ log d. Let m =

⌈
log(1/ε)

log d

⌉
and let n′ = dn/me. Plugging into

Equation 1, we have constructed already a PRG for length-n′ degree-(dm) permutation
branching programs with seed length s, where

s ≤ O(log(dm) + log(n/m) · (log log n+ log(1/ε))

= O

(
log(1/ε) + log

(
n log d

log(1/ε)

)
· (log log n+ log(1/ε))

)
= O

(
log
(
n log d

log(1/ε)

)
· (log log n+ log(1/ε))

)
,

where the last step uses the assumption ε ≥ d−n/2 which implies log
(
n log d

log(1/ε)

)
≥ 1. By

Lemma 4.8, that same PRG fools length-(mn′) degree-d permutation branching programs.
Since mn′ > n, by truncating to the first n symbols, we get the desired PRG for length-n
degree-d permutation branching programs. J

5 A Random Function is Not a Good PRG

In this section, we prove that a random generator does not fool unbounded-width permutation
branching programs, unless the seed length is Ω(n log d). The proof is based on the following
family of exponential-width permutation branching programs.

I Lemma 5.1. Let n be a multiple of two, and let π : [d]n/2 → [d]n/2 be a permutation. There
is a width-(dn/2) length-n degree-d permutation branching program B such that

B(x, y) = 1 ⇐⇒ y = π(x).

Proof. Let Zd denote the ring of integers modulo d. We identify the state space [dn/2] with
the space Zn/2

d , a Zd-module. Let e1, . . . , en/2 ∈ Zn/2
d denote the standard “basis vectors,”

i.e., et has a 1 in coordinate t and 0 in all other coordinates. The transition function
Wt : Zn/2

d × Zd → Zn/2
d is given by

Wt(v, σ) =
{
v + σ · et if t ≤ n/2
π−1(π(v)− σ · et) if t > n/2.

These transition functions satisfy the permutation condition, because Wt(Wt(v, σ),−σ) = v.
The start state of B is the zero element 0 ∈ Zn/2

d , and the accepting state is π−1(0).
By induction, when B reads an input (x, y) ∈ (Zn/2

d )2, it passes through the state x in
layer n/2, and ultimately it arrives at the state π−1(π(x) − y) in the final layer. Thus,
B(x, y) = 1 ⇐⇒ y = π(x). J
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I Theorem 5.2 (Failure of the Probabilistic Method). Let n be a multiple of 2. Let s =⌊
n log d

4

⌋
− 1, and sample a generator G uniformly at random from all functions G : {0, 1}s →

[d]n. With probability at least 3/4, there is some length-n degree-d permutation branching
program B such that∣∣∣∣ Pr

σ←U[d]n
[B(σ) = 1]− Pr

x←U{0,1}s

[B(G(x)) = 1]
∣∣∣∣ = 1− d−n/2.

Proof. LetGL, GR : {0, 1}s → [d]n/2 be the left and right halves of G respectively, i.e., G(x) =
GL(x) ◦GR(x). We claim that with high probability, GL and GR are both injective. Indeed,
for each pair of distinct seeds x, x′ ∈ {0, 1}s, the strings GL(x), GL(x′) are independent
uniform (n/2)-symbol strings, so PrG[GL(x) = GL(x′)] = d−n/2. The number of pairs (x, x′)
is at most

(2s

2
)
≤ 1

2 22s ≤ 2−3dn/2, where the last inequality is by our choice of s. Therefore,
by the union bound, PrG[GL is not injective] ≤ 2−3. The same argument applies to GR as
well, so except with probability 2 · 2−3 = 1

4 , GL and GR are both injective. In this case,
there exists a permutation π : [d]n/2 → [d]n/2 such that for every seed x, π(GL(x)) = GR(x).
By Lemma 5.1, there is a length-n degree-d permutation branching program B such that
B(y, z) = 1 ⇐⇒ z = π(y). Therefore, for every seed x, B(G(x)) = 1, so Prx[B(G(x)) =
1] = 1. On the other hand, since π is a permutation, Prσ[B(σ) = 1] = d−n/2. J

6 Seed Length Lower Bound

In this section, we prove our lower bound on the seed length of any PRG for unbounded-
width permutation branching programs, showing that our PRG’s seed length is near-optimal.
Except when ε is extremely small, the lower bound is Ω(log d+ log n · log(1/ε)).

I Theorem 6.1. Let d ≥ 2 and n ≥ 1. Let G : {0, 1}s → [d]n be an ε-PRG for length-n
degree-d permutation branching programs of unbounded width, where d−n/2 ≤ ε ≤ 0.49. Then

s ≥ Ω
(

log d+ log
(
n log d

log(1/ε)

)
· log(1/ε)

)
.

The proof of Theorem 6.1 is based on the same family of exponential-width branching
programs that we used to prove Theorem 5.2. At an intuitive level, we argue that either the
first half of the PRG’s output is information-theoretically unpredictable given the second
half, or vice versa. After all, if each half is somewhat predictable given the other half, there
ought to exist a permutation π such that the pseudorandom string (x, y) has a noticeable
chance (say at least 2ε) of satisfying π(x) = y, whereas a truly random string is extremely
unlikely to satisfy π(x) = y. It follows that the PRG must use Ω(log(1/ε)) bits of seed above
and beyond the seed length for sampling the first half or the second half individually.

To obtain a suitable permutation π, we rely on a version of the Kőnig-Egerváry theorem
regarding maximum matchings in bipartite graphs. (In the lemma statement, think of p
as a weight function on the edges of the complete bipartite graph KN,N , and think of π as
identifying a perfect matching.)

I Lemma 6.2 (Kőnig-Egerváry theorem for fractional edge weights, [21, Theorem 17.1]). For
every integer N ≥ 1 and every function p : [N ] × [N ] → [0,∞), there exist a permutation
π : [N ]→ [N ] and functions q, r : [N ]→ [0,∞) such that

∀x, y ∈ [N ], p(x, y) ≤ q(x) + r(y) (2)

and ∑
x∈[N ]

p(x, π(x)) =
∑
x∈[N ]

q(x) +
∑
y∈[N ]

r(y). (3)
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Note that Equations 2 and 3 immediately imply that π maximizes
∑
x p(x, π(x)). A

proof of Lemma 6.2 can be found in Schrijver’s text [21, Theorem 17.1]. Alternatively,
Lemma 6.2 follows from strong linear programming duality and the fact that the integer
matching polytope equals the fractional matching polytope.

As outlined previously, we would now like to show that if each of X and Y is somewhat
predictable given the other, then there is a noticeable chance that π(X) = Y . To rigorously
formulate and prove this statement, we use the notion of Shannon entropy.

I Definition 6.3. If X is a discrete random variable, the entropy of X is

H[X] = E
x∼X

[
log
(

1
Pr[X = x]

)]
.

If X and Y are jointly distributed discrete random variables, the joint entropy H[X,Y ] is the
entropy of the pair (X,Y ), and the conditional entropy of X given Y is

H[X | Y ] = E
y∼Y

[H[X | Y = y]] = E
x∼X
y∼Y

[
log
(

1
Pr[X = x | Y = y]

)]
.

I Lemma 6.4. Let N ≥ 1, and let X and Y be jointly distributed random variables, each
taking values in [N ]. There exists a permutation π : [N ]→ [N ] such that

Pr[π(X) = Y ] ≥ 2−H[X|Y ]−H[Y |X].

Lemma 6.4 bears a resemblance to a well-known fact, which says that if we allow
an arbitrary function π (not necessarily a permutation), the maximum possible value of
Pr[π(X) = Y ] is precisely 2−H∞(Y |X), where H∞(Y | X) is the “average min-entropy” of Y
given X [7]. Our lemma is an interesting “symmetric” variant.

Proof. Let π, q, r be the functions guaranteed by Lemma 6.2 for the function p(x, y) =
Pr[(X,Y ) = (x, y)]. Let X = Supp(X) and Y = Supp(Y ). Then

Pr[π(X) = Y ] =
∑
x∈[N ]

q(x) +
∑
y∈[N ]

r(y) (Equation 3)

≥
∑
x∈X

q(x) +
∑
y∈Y

r(y)

=
∑
x∈X
y∈Y

Pr[(X,Y ) = (x, y)] ·
(

q(x)
Pr[X = x] + r(y)

Pr[Y = y]

)

≥
∑
x∈X
y∈Y

Pr[(X,Y ) = (x, y)]2 · q(x) + r(x)
Pr[X = x] · Pr[Y = y]

≥
∑
x∈X
y∈Y

Pr[(X,Y ) = (x, y)]3

Pr[X = x] · Pr[Y = y] (Equation 2)

= E
(x,y)∼(X,Y )

[Pr[X = x | Y = y] · Pr[Y = y | X = x]]

≥ 2E(x,y)∼(X,Y )[log(Pr[X=x|Y=y]·Pr[Y=y|X=x])] (Jensen)

= 2−H[X|Y ]−H[Y |X]. J

To apply Lemma 6.4 to analyze pseudorandom distributions for permutation branching
programs, we will use the standard chain rule for Shannon entropy.
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B Claim 6.5 (Chain Rule). If X and Y are discrete random variables, then H[X,Y ] =
H[X] + H[Y | X].

I Lemma 6.6. Let n be a multiple of two, let X and Y be random variables distributed over
[d]n/2, and let ε ≥ d−n/2. Assume that for every length-n degree-d permutation branching
program B,

|Pr[B(U[d]n) = 1]− Pr[B(X,Y ) = 1]| ≤ ε. (4)

Then

H[X,Y ] ≥ 1
2

(
H[X] + H[Y ] + log

(
1
2ε

))
.

Proof. Let π be the permutation of Lemma 6.4. By Lemma 5.1, there is some length-n
degree-d permutation branching program B such that B(x, y) = 1 ⇐⇒ π(x) = y. Since π
is a permutation, Pr[B(U[d]n) = 1] = d−n/2. Therefore, by Equation 4,

2−H[X|Y ]−H[Y |X] ≤ d−n/2 + ε ≤ 2ε.

Therefore,

H[X,Y ] = 1
2(H[X] + H[Y | X] + H[Y ] + H[X | Y ]) (Chain Rule)

≥ 1
2

(
H[X] + H[Y ] + log

(
1
2ε

))
. J

To complete the proof of Theorem 6.1, we use the following standard fact about Shannon
entropy.

B Claim 6.7. If X is a discrete random variable and f is a function, then H[f(X)] ≤ H[X].

Proof of Theorem 6.1. The seed length must be Ω(log d) simply because the program can
compute any arbitrary function of its first symbol. For i ≥ 0, let

ni =
⌈

log(1/ε)
log d

⌉
· 2i.

We will prove by induction on i that if a distribution X over [d]ni fools length-ni degree-d
permutation branching programs with error ε, then

H[X] ≥ i

2 · log
(

1
2ε

)
.

The base case i = 0 is trivial. For the inductive step, consider a distribution (X,Y ) over
strings of length ni, where |X| = |Y | = ni−1. Since a permutation branching program can
elect to ignore some of its input symbols, X and Y must each individually fool length-ni−1
degree-d permutation branching programs with error ε. Therefore, by induction,

1
2(H[X] + H[Y ]) ≥ (i− 1)

2 · log
(

1
2ε

)
.

Furthermore, since ni ≥ 2 log(1/ε)/ log d, we have ε ≥ d−ni/2, so we may apply Lemma 6.6
to complete the inductive step.
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Now consider

i =
⌊

log
(

n

dlog(1/ε)/ log de

)⌋
.

Since ε ≥ d−n/2, we have n/2 ≤ ni ≤ n. Let X be the truncation of G(U{0,1}s) to the first
ni symbols. Then

s = H[U{0,1}s ] ≥ H[G(U{0,1}s)] ≥ H[X] ≥ i

2 log
(

1
2ε

)
,

where the first two inequalities follow from Claim 6.7. If log(1/ε) > log d, then i =
Ω
(

log
(
n log d

log(1/ε)

))
, so we are done. Meanwhile, if log d = λ · log(1/ε) for some λ ≥ 1, then

i = blog nc, so we have shown

s ≥ blog nc
2 · log

(
1
2ε

)
.

We also have

s ≥ Ω(log d) = Ω(λ · log(1/ε)) ≥ Ω(log λ · log(1/ε)).

Combining, we get

s ≥ Ω ((log n+ log λ) · log(1/ε))
= Ω (log(nλ) · log(1/ε))

= Ω
(

log
(
n log d

log(1/ε)

)
· log(1/ε)

)
. J

7 The Optimal Seed Length for Hitting Set Generators

Let F be a class of functions B : [d]n → {0, 1}. Recall that an ε-HSG for F is a function
G : {0, 1}s → [d]n such that

∀B ∈ F , Pr[B(U[d]n) = 1] ≥ ε =⇒ ∃x ∈ {0, 1}s, B(G(x)) = 1.

Thus, an HSG is a “one-sided” variant of a PRG.
In this section, we prove that any HSG for polynomial-width permutation branching

programs is an HSG for unbounded-width permutation branching programs. As a corollary,
we will show that the optimal (nonexplicit) seed length for an HSG for unbounded-width
permutation branching programs is O(log(nd/ε)).

I Theorem 7.1. Let n be a positive integer, let G : {0, 1}s → [d]n be a function, and let
ε > 0.
1. There is a value w = O(n/ε) such that if G is an (ε/2)-HSG for width-w length-n ordered

branching programs, then G is an ε-HSG for unbounded-width length-n permutation
branching programs.

2. There is a value w = O(n2/ε) such that if G is an (ε/2)-HSG for width-w length-n
permutation branching programs, then G is an ε-HSG for unbounded-width length-n
permutation branching programs.

Item 2 is not necessary for the purpose of establishing the optimal seed length for HSGs
for unbounded-width permutation branching programs. We include the proof because we
find it interesting.
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Proof. Let B be a length-n permutation branching program. We will define a function
f : [d]n → {0, 1} such that f(x) = 1 =⇒ B(x) = 1 and Prx∈[d]n [B(x) 6= f(x)] ≤ ε/2.
Furthermore, we will show that f can be computed by an ordered branching program of
width O(n/ε), as well as by a permutation branching program of width O(n2/ε).

Think of B as a directed graph. Let V0, . . . , Vn be the layers of the graph. For each
vertex v, let p→v denote the probability that B passes through v when it reads a random
input. Let q = d2n/εe. If the width of B is less than q, we can just let f = B, so assume
the width of B is at least q. For each t ∈ {0, 1, . . . , n}, define St to be the set of q vertices
v ∈ Vt with the largest values of p→v. Let f(x) = 1 if the path through B described by x
stays within S0, S1, . . . , Sn and ends at the accepting vertex.

Clearly, f(x) = 1 =⇒ B(x) = 1. Now consider sampling x = (x1, . . . , xn) ∈ [d]n
uniformly at random. For each t ∈ [n] and each vertex v ∈ Vt, let Bv→ denote the
permutation branching program that ignores the first t symbols of its inputs and then
simulates the last (n − t) layers of B starting at vertex v. By the definition of St, each
v ∈ Vt \ St satisfies p→v < 1/q. Therefore,

Pr
x

[B(x) 6= f(x)] ≤
n∑
t=1

∑
v∈Vt\St

p→v · Pr
x

[Bv→(x) = 1]

<
1
q
·
n∑
t=1

∑
v∈Vt\St

Pr
x

[Bv→(x) = 1]

≤ 1
q
·
n∑
t=1

E
x

[∑
v∈Vt

Bv→(x)
]
.

Consider any fixed t and x. By the permutation condition, it is possible to work backward
from the accepting vertex to find the unique vertex v ∈ Vt such that Bv→(x) = 1. Therefore,∑
v∈Vt

Bv→(x) = 1. Thus,

Pr
x

[B(x) 6= f(x)] ≤ 1
q
·
n∑
t=1

1 ≤ ε

2 .

An ordered branching program for f can be obtained from B by deleting all the vertices
in Vt \ St and redirecting all their incoming edges to a new ⊥ vertex. All outgoing edges
from the ⊥ vertex in layer t point to the ⊥ vertex in layer t+ 1, and finally in layer n, the ⊥
vertex is a reject vertex. Clearly, the width of this program is q + 1.

Now let us define a permutation branching program computing f of width w = q · (n+ 1).
Let w0 be the width of B, and number the states so that St corresponds to [q] ⊆ [w0]. Let
Wt : [w0] × [d] → [w0] be the transition function of B. Let At,σ be the set of v ∈ [q] such
that Wt(v, σ) ∈ [q]. By the permutation condition, for each fixed t and σ, the function
Wt(·, σ) is a permutation on [w0]. Therefore, there exists a permutation πt,σ : [w0] \At,σ →
[w0] \Wt(At,σ, σ).

Let Zn denote the additive group of integers modulo n, and identify [w] = [q] × Zn+1.
The new branching program’s transition function W ′t : [q]× Zn+1 × [d]→ [q]× Zn+1 is given
by

W ′t (v, i, σ) =
{

(Wt(v, σ), i) if v ∈ At,σ
(πt,σ(v), i+ 1) otherwise.

Clearly, this satisfies the permutation condition. The start state is (vstart, 0) and the accept
state is (vend, 0), where vstart and vend are the start and accept states of B. If f(σ) = 1, then
inductively, when our permutation branching program reads σ, it simulates B and ultimately
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accepts without ever incrementing i. Conversely, if our permutation branching program
accepts σ, then i must never be incremented. Therefore, when B reads σ, it stays within the
sets S0, . . . , Sn and accepts, and hence f(σ) = 1.

Finally, if Pr[B(U[d]n) = 1] ≥ ε, then Pr[f(U[d]n) = 1] ≥ ε/2. Therefore, under either of
the two assumptions of the theorem, G hits f , and since f ≤ B, this implies that G hits B
as well. J

I Corollary 7.2. For every n, d, ε, there exists an ε-HSG G : {0, 1}s → [d]n for unbounded-
width length-n degree-d permutation branching programs with seed length s = O(log(nd/ε)).

Proof. It is standard that there exists a nonexplicit ε-HSG for width-w length-n degree-d
ordered branching programs with seed length O(log(wnd/ε)). (Indeed, a random function is
an HSG with these parameters with high probability.) J

The next claim shows that the seed length in Corollary 7.2 is optimal.

B Claim 7.3. Let d ≥ 2 and n ≥ 1. Let G : {0, 1}s → [d]n be an ε-HSG for length-n
degree-d permutation branching programs of unbounded width, where d−n ≤ ε ≤ 1/3. Then
s ≥ Ω(log(nd/ε)).

Proof sketch. The seed length needs to be at least Ω(log d) because the program can compute
any function of the first input symbol. The seed length needs to be at least Ω(log(1/ε))
because unbounded-width permutation branching programs can check whether a prefix of
the input is equal to a fixed arbitrary string. Finally, let G : {0, 1}s → [d]n with s < log n;
we will show that G is not a (1/3)-HSG for degree-d permutation branching programs. Let
b : [d]→ F2 be as close to balanced as possible. Since 2s < n, there is some nonzero vector
z ∈ Fn2 such that for every seed x,

n∑
i=1

zi · b(G(x)i) = 0.

The function B(x) =
∑n
i=1 zi · b(xi) can be computed by a width-2 degree-d permutation

branching program, and Prx[B(x) = 1] ≥ 1/3. C

8 Directions for Further Research

The obvious challenge is to obtain optimal PRGs for unbounded-width permutation branching
programs in the large-error regime. We conjecture that our seed length lower bound is tight,
i.e., there is a PRG construction that eliminates the log log n factor from our PRG’s seed
length.

We showed that there is a nonexplicit HSG with seed length O(log(n/ε)) for unbounded-
width permutation branching programs. A natural problem is to match the seed length with
an explicit construction. In the constant-width case, Braverman et al. [2] presented a simple
HSG for the more general model of regular branching programs with seed length O(log n),
independent of ε.

We wonder what PRGs can be constructed for the more challenging model of arbitrary-
order permutation branching programs. Reingold, Steinke, and Vadhan [17] and Chattopad-
hyay et al. [3] have constructed PRGs for the small-width case. By using one generator for
large ε and the other for small ε, one can achieve seed length Õ(log n · log(1/ε)) when the
width is a constant. For the unbounded-width case, explicit constructions or bounds for
nonexplicit PRGs would be interesting.
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Finally, we wonder whether our results can be generalized to the case of unbounded-width
regular branching programs. Our HSG existence proof (Theorem 7.1 and Corollary 7.2) does
generalize to the regular case3, but the PRG situation is unclear.
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