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Abstract—A key challenge in robotics is the capability to
perceive unseen objects, which can improve a robot’s ability to
learn from and adapt to its surroundings. One approach is to
employ unsupervised, salient object discovery methods, which
have shown promise in the computer vision literature. However,
most state-of-the-art methods are unsuitable for robotics because
they are limited to processing whole video segments before
discovering objects, which can constrain real-time perception.
To address these gaps, we introduce Unsupervised Foraging of
Objects (UFO), a novel, unsupervised, salient object discovery
method designed for monocular robot vision. We designed UFO
with a parallel discover-prediction paradigm, permitting it to
discover arbitrary, salient objects on a frame-by-frame basis,
which can help robots to engage in scalable object learning. We
compared UFO to the two fastest and most accurate methods
for unsupervised salient object discovery (Fast Segmentation
and Saliency-Aware Geodesic), and show that UFO 6.5 times
faster, achieving state-of-the-art precision, recall, and accuracy.
Furthermore our evaluation suggests that UFO is robust to real-
world perception challenges encountered by robots, including
moving cameras and moving objects, motion blur, and occlusion.
It is our goal that this work will be used with other robot
perception methods, to design robots that can learn novel object
concepts, leading to improved autonomy.

I. INTRODUCTION

Within the next decade, robots will inevitably transition
from working in controlled labs to unstructured environments
where they will be in close proximity to people [1], [2].
To build trust with those around them, robots must be able
to perform efficiently, robustly, and safely. However, human
environments are unpredictable, and the context, people, and
objects are prone to change over time [3]–[6].

One challenge that robots must overcome “in the wild” is
to discover unseen objects. This will play an important role
for robots to learn about new objects to help them perform
tasks (e.g., appraising anomalous parts or tools used for repair,
retrieval of uncommon items, investigating new environments,
identifying entities that can be manipulated, etc.). Furthermore,
by exploring and interacting with unseen objects, robots can
learn in a scalable manner.

Roboticists often leverage multi-modal data (e.g., via depth
sensors) association to infer arbitrary objects [7]. For example,
depth segmentation is prevalent in grasping [8], simultane-
ous localization and mapping (SLAM) [9], and multi-object
tracking [10] topics. Recently, some researchers have also
proposed using depth proposals to discover and track generic
objects in street scenes [11], [12]. However, depth cameras
can be particularly sensitive to placement, dynamic lighting
conditions, and distance [13]. This can cause methods that
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rely on depth or 3D image to be more constrained to specific
domains (e.g., close or far-range applications), in contrast to
standard RGB cameras which can be used for more general
vision problems. As a consequence, some researchers show
that depth is not necessary for robot perception, and that
vision-related tasks can be achieved using monocular camera
systems [14], [15].

Using solely RGB imaging, some researchers address the
problem of detecting unseen objects that are visually salient,
also known as salient object discovery. The most recent
approaches require some degree of semi-supervision, for ex-
ample, manually drawing a bounding box or segmentation
mask (See Figure 4) that encapsulates the boundaries of an
object. This annotation provides a training example (e.g., one-
shot object learning), so that the object can be discovered from
multiple viewpoints [16], [17]. However, these methods can
be poorly suited for real-time robotics because they require
a human to manually initialize them each time that a robot
encounters a new object.

To date, little work addresses salient object discovery in
an unsupervised manner, typically by aggregating multi-view
images [18], [19]. These methods extract key features (e.g.
optical flow boundaries) at spaced time intervals across entire
video segments to determine the presence of salient objects.
However, these methods often take many image frames to
process, which can be prohibitively slow for real-time robots
[19]. This can disrupt reactive decision-making behaviors of
robots, which are essential for time-sensitive tasks (c.f., [20]).

To this end, we introduce an unseen salient object discovery
method, Unsupervised Foraging of Objects (UFO). UFO is
automatic and unsupervised in the sense that it does not
require manual annotation or initialization to discover objects.
Furthermore, UFO only requires a spatiotemporal stream of
RGB image frames for input, making it a suitable method for
robots with monocular RGB camera systems.

The contributions of this paper are threefold. First, our
method discovers unseen objects within a few image frames,
in contrast to existing methods that require entire image
sequences to be processed before object discovery can occur.
By extension, UFO is able to discover salient objects in real-
time image sequences, while also achieving state-of-the-art
recall, precision, and accuracy.

Second, we designed a novel parallel discover-prediction
paradigm to enforce the selection of strong object candidates,
improving precision over state-of-the-art salient object discov-
ery methods. Our method leverages the history of previously
discovered objects to make new predictions about their loca-
tions while also re-discovering them using low-level image
cues. In this way, previously discovered object instances can
be used to make self-correcting predictions as objects change



Fig. 1. Our unsupervised object discovery framework, UFO, is composed of six processes: a) object proposal generation, b) saliency scoring , c) non-maximum
suppression (NMS), d) feature extraction, e) sliding window graph update, f) path selection, and g) object proposal prediction.

appearance over time.
Third, our method is less computationally expensive than

predominant methods that employ motion cues. Instead, UFO
leverages object proposals, exploiting their spatiotemporal
consistency to obtain object boundaries. UFO can infer unseen
objects in seconds, whereas optical flow-based methods can
take on the order of minutes.

II. RELATED WORK

Designing robots to autonomously learn about novel objects
remains to be a prominent topic in robotics research. Some
methods learn about the appearances of task-specific objects
from demonstration [21], [22]. This can enable robots to
learn about relevant objects without extensive training, and
to transfer their knowledge to newly encountered ones.

Other researchers augment object models with generalizable
affordance concepts, so that their manipulation policies and
task functions can be transferred to similar, but novel objects
[23], [24]. This can enable robots to grasp generic objects,
understand their significance in relation to other objects, and
to learn how to use them across broader task domains.

While many methods attempt to solve key research areas
in scalable object learning, they often do not translate to
real-world settings due to vision-related challenges, such as
moving cameras and objects, motion blur, and occlusion. In
this section, we discuss recent work relating to salient object
discovery, which has potential to overcome these challenges
to enable robots to learn novel and relevant objects.

A. Object Proposal Algorithms

The concept of finding image regions that contain object-
like characteristics, or objectness, is not new [25]. In fact,
state-of-the-art object detection methods use some form of an
object proposal algorithm (OPA) to generate general object
proposals (GOPs), abstractions that each consist of two ele-
ments: a bounding box (b) and an objectness confidence score
(o) [26], [27]. The GOPs are typically applied to a classifier,
which then assigns them with an object class.

However, OPAs by themselves are not very useful, because
they output hundreds to thousands of image regions, where
the majority of them are irrelevant to detection tasks. Con-
sequently, OPAs depend on other algorithmic components to
filter them (i.e., classifier) [28].

B. Salient Object Discovery

The concept of saliency seeks to extract image regions that
are distinctly separate from the background, as a means to
mimic human visual attention [29]. In robotics, saliency is
often used to filter images so that computational resources
are more efficiently allocated to visually important regions
(e.g., semantic segmentation [30] or waypoint detection for
navigation [31]). Applying this concept to salient objects,
salient object discovery (SOD) can be summarized by the
problem of inferring image regions that are highly salient
while also obeying object boundaries.

Because the definition of object can be ambiguous, methods
are typically evaluated on datasets that have one prominent
object per image. This allows methods to be evaluated using
standard metrics (e.g., precision and recall) while also elimi-
nating uncertainty about which objects should be discovered.

The most common approach to SOD in video and robotics
applications is with one-shot discovery, which can reliably
track generic objects, even those subjected to dynamic appear-
ance, illumination, or background changes [32], [33]. This re-
quires a human to annotate one frame from an image sequence,
often by drawing a bounding box or segmentation mask.
Features are then extracted from the annotation to initialize
a tracker, which generates object discovery predictions for the
remainder of the image sequence [34].

However, semi-supervised and one-shot approaches to SOD
are not practical for robotics because they require a human to
manually initialize them each time that a robot encounters a
new object. Consequently, this can inhibit a robot’s ability to
autonomously learn about novel objects.

Some researchers approach the problem using unsupervised
methods, where the goal is to initialize object discovery
without needing manual annotation. With the advent of faster
and denser optical flow algorithms [35], [36], motion bound-
aries can be used to delineate objects from the background.
Consequently, the current top-performing unsupervised SOD
methods use some form of motion boundary detection in their
pipeline [18], [19]. However, these methods are computation-
ally expensive, typically taking on the order of minutes to
discover objects, which can impede robot perception tasks.
Moreover, they often rely on post-processing, treating object
discovery as a constrained optimization problem over large
image sequences. Ultimately, these methods cannot discover
objects on-the-fly, making them unsuitable for robots.



III. UFO

Here, we describe UFO, which addresses unsupervised SOD
for RGB vision. UFO introduces the concept of an augmented
GOP, a data structure that contains a bounding box (b), an
objectness confidence score (o), a saliency score (s), and a
feature embedding (f ). A bounding box (b) corresponds to
the location of a potential object, and an objectness confidence
score (o) measures the likelihood that the same bounding box
tightly encloses an object. Saliency (s) measures how much
a bounding box visually stands out in an image frame. A
feature embedding (f ) is a compact representation of an image
region inside a bounding box, which is used to detect object
correspondences for adjacent frames.

We developed UFO with the observation that GOPs corre-
sponding to non-objects appear randomly, which can occur due
to camera noise, lighting, or image artifacts. In contrast, GOPs
containing objects appear more consistently, making it possible
to detect salient object correspondences in image sequences.

Transforming GOPs to vertices and object correspondences
to edges, we construct a sliding window graph. This graph is
updated for each frame, tracking the histories of discovered
objects, which are used to generatively predict GOPs in the
event that the OPA fails to make consistent predictions.

Figure 1 shows an overview of UFO and each of its aspects,
which include: (a) object proposal generation, (b) saliency
scoring, (c) saliency-aware non-maximum suppression, (d)
feature extraction, (e) sliding window graph updating, (f) path
selection, and (g) object proposal prediction. For the first frame
of an image sequence, UFO performs Steps (a)-(f), generating
an object prediction for the next frame in Step (g). Steps (a)-(f)
repeat for the next frame, merging the object prediction from
the previous frame after Step (c). This procedure repeats for
incoming frames, where the sliding window graph is updated
with the history of discovered objects in Step (e). These steps
are described in detail in the following section.

A. Object Proposal Generation

Given an image sequence, we first apply an OPA to an image
frame, It, at time t to generate a finite number (N ) of GOPs.
Each GOP consists of a bounding box which we denote as btnt ,
and we denote the set of bounding boxes generated by the OPA
as Bt = {btnt |nt ∈ 1 . . . Nt}. For each GOP, the OPA assigns
a confidence value that relates to the probability that the GOP
correlates to an object, or objectness score. We denote the set
of objectness scores as Ot = {otnt |nt ∈ 1 . . . Nt}.

In our implementation, we selected DeepMask [37] for the
OPA with N = 100, which we determined to provide an
optimal balance of speed and performance.

B. Saliency Scoring

To discover salient objects, we designed a method to mea-
sure the normalized saliency of each GOP. We first compute a
saliency heat map, U t, for image frame It, using the Minimum
Barrier Distance (MBD) Transform [38]. Next, we generate a
binary mask, U tmsk, to compute the strongest salient pixels
that highly correlate to object centers of mass. Since MBD

generates a bimodal distribution of salient pixels centered
around Gaussian distributed clusters, we can apply a globally-
optimal threshold (e.g., Otsu’s method [39]) to yield U tmsk,
which represents the locations of the strongest salient pixels
that correspond to “hot points” in U t. This approach allows us
to compute a normalized measure of saliency for each GOP,
which can adapt to changes in lighting and contrast that can
affect the raw saliency values in U t.

There are two primary components in our saliency met-
ric: saliency area (sarea) and saliency centeredness (scenter).
Saliency area measures the number of salient pixels enclosed
by each bounding box, btnt , with respect to (w.r.t.) the total
number of salient pixels in the image frame (see Equation 1):

stareant =

∑
x,y∈btnt

U tmsk(x, y)∑
x,y∈It

U tmsk(x, y)
(1)

where x and y denote pixel coordinates w.r.t. It.
GOPs with bounding boxes that contain no salient pixels

(i.e., stareant = 0) are immediately discarded. For sake of
discussion and simplicity, we treat N as a constant, although
N is time-dependent in practice.
Scenter measures how closely located a GOP is to the center

of a hot region in U t (shown in Equation 2):

stcenternt = max
x,y∈btnt

(
U t(x, y) ◦ g(x, y)

)
(2)

where g(x, y) is a two dimensional Gaussian function
centered-aligned with bounding box btnt . We require the
standard deviations of g(x, y) to be arbitrarily small to bias
the center pixels, so we selected σx = w

10 and σy = h
10 ,

respectively, where w is the width and h is the height of btnt
1. This allows maximally salient pixels at the center of btnt to
yield a saliency centeredness of 1, and non-salient pixels at
the center of btnt to yield a saliency centeredness of 0.

The saliency area and saliency centeredness metrics are then
aggregated (shown in Equation 3) to construct a set of saliency
scores, St = stnt |nt ∈ 1 . . . N such that (s.t.) 0 ≤ stnt ≤ 1.

stnt = stareant s
t
centernt

(3)

C. Modified and Saliency-Aware Non-maximum Suppression

OPAs will generate redundantly overlapping GOPs that
need to be removed. This is achieved by using non-maximum
suppression (NMS), which selects the best GOP among over-
lapping ones. Traditional NMS is greedy [40], using the
confidence scores directly generated by the OPA. While OPAs
can produce high quality bounding boxes (i.e., those that
tightly enclose objects), they can sometimes falsely assign
parts of an object with higher confidence scores than the
whole object. Additionally, OPAs can sometimes assign high
objectness scores to background elements. These conditions

1We experimented with various standard deviations and found that any value
between w

20
≤ σx ≤ w

5
and h

20
≤ σy ≤ h

5
did not impact performance.



Fig. 2. In modified non-maximum suppression (mNMS), the strongest
bounding box is assigned with the cumulative sum of the scores of all
overlapping neighbors.

can cause the standard greedy NMS approach to incorrectly
suppress GOPs that are essential to object discovery.

Thus, we designed a novel NMS procedure that accounts
for both objectness and saliency; our approach is constructed
in two stages: modified greedy NMS (mNMS) and saliency-
aware greedy NMS (sNMS) shown in Algorithm 1. In mNMS,
the maximally-selected GOPs are augmented with the sum
of scores of their neighboring GOPs (illustrated in Figure 2).
These sum-of-neighbor scores favor GOPs with more within-
frame redundancy (i.e., GOPs with stronger correlations to
objects). The outputs of the mNMS are then applied to sNMS.

For sNMS, a graph is constructed using GOPs as vertices,
and the intersection over minimum area (IoMA) of their
bounding boxes as edges (shown in Equation 4). When used in
tandem with the sum-of-neighbor scores from mNMS, sNMS
suppresses non-redundant GOPs that more likely correlate
with irrelevant entities (e.g., object parts or background re-
gions), that also overlap with real objects.

IoMA =
a ∩ b

min(aarea, barea)
(4)

where a and b are bounding boxes and area denotes their area.
In sNMS, we sum-aggregate the scores from mNMS (i.e.,

sum-of-neighbors) and saliency scores, St, to select the best
GOP among neighbors. This achieves selection of GOPs that
have more redundant overlap that are also highly salient. To
eliminate outlier bias, we apply feature scaling to normalize
the objectness and saliency scores, shown in Equation 5:

Y =
X−X

max(X)−min(X)
(5)

where a bolded variable indicates a vector, X denotes the mean
of vector X.

D. Feature Extraction

For each GOP, we extract their image features to detect cor-
respondences across adjacent image frames. We experimented
with various CNN architectures (AlexNet [41], VGG19 [42],
ResNet [43], and InceptionV3 [44]) to study how they perform
as feature extractors for bipartite image feature matching
(discussed in Section III-E). In general, since image content
does not drastically vary across adjacent image frames, we
found that the performance differences of UFO were negligible
(less than 0.01mAP ) when substituting the CNN. We selected
VGG-19 for its simplicity, speed, and object representational
power. Features are extracted from the final fully connected
layer (fc7), and stored in a set which we denote as F t =
{f tnt |nt ∈ 1 . . . Nt}.

Algorithm 1: Saliency-Aware Greedy NMS (sNMS)
Inputs: A set of GOPs.
Initialization: Let Gs = (Vs,Es) using GOPs as
vertices and the intersection over minimum area
overlap of their bounding boxes define edges. V′s = ∅.

while |Vs| > 0 do

vmax←vi =argmax
i

∑
j∈Vs

Φ(i, j) =

{
1, if e(vi, vj)
0, otherwise

Vneighbors ← {v|e(v, vmax) ≥ 0.5}
vselect ← vn = argmax

n|vn∈Vneighbors

(v∗n.o+ v∗n.s)

vselect.o = max(vneighbors.o)
V′s ← vselect
Vs = Vs −Vneighbors

end
Return V′

. o is the objectness score corresponding to vertex vn.

. s is the saliency score corresponding to vertex vn.

. ∗ denotes scale-normalized (shown in Equation 5).

E. Sliding Window Graph Update

Previously, we discussed bounding boxes (Bt), objectness
scores (Ot), saliency scores (St), and feature vectors (F t)
at time t. We now group these components into a single
structure, denoting a set of GOPs at time t as V t = {vtnt ⊇
btnt , o

t
nt , s

t
nt , f

t
nt |nt ∈ 1 . . . Nt}. For example, the bounding

box of the n-th GOP at time t, is expressed as vtnt .b. Using
this notation, we expand our discussion from a single image
frame to a time-dependent sequence, where the current frame
at time t is It, and a prior frame is It−τ for time τ .

To track the history of prior GOPs with a memory-scalable
approach, we adapted a sliding window graph. This enables
GOPs that fall outside of a temporal window to be removed
from memory, allowing UFO to run indefinitely.

Given a window of size W , we construct a sliding win-
dow directed acyclic graph. In our implementation, we set
W = 3 (we later discuss this parameter in Section IV-D).
We denote this graph as G = (V,E), with vtnt as vertices,
and edges defined by the spatiotemporal intersection over
union (IoU) of their bounding boxes between adjacent frames.
For example, the vertices in the window are denoted as
V = {V t−W . . . V t}. V is stored in a queue where V t

corresponds to the GOPs of the most recent image frame, It.
Edges are generated in a directed matter from t − 1 to

t, where edges from previous time steps are moved further
into the queue as new frames become available. Edges are
only formed for GOPs if their bounding boxes are time-
adjacent and spatially overlapping (i.e. vt−1ni .b∩v

t
nj .b > 0|ni ∈

1 . . . |V t−1|, nj ∈ 1 . . . |V t|).
For each pair of GOPs in adjacent frames It and It−1, we

compute their pairwise similarity score, Λ (shown in Equation
6), using their bounding box dimensions (i.e., width and
height) and VGG19 features. Λ = 1 indicates little or no
similarity and Λ = 0 indicates perfect similarity.



Fig. 3. The sliding window graph of length W (shown in green). Vertices
represent GOPs and edges represent similarity scores. Dashed lines show the
resultant, non-adjacent connections of vertices between times t−W +1 and
t−1. Solid lines show direct connections between vertices of adjacent frames.

Λ = λ(a, b), 0 ≤ λ(a, b) ≤ 1

λ(a, b) = 1− e−zssd(af ,bf )e−
(
|ah−bh|
ah+bh

+
|aw−bw|
aw+bw

) (6)

where a and b are bounding boxes corresponding to spatiotem-
porally adjacent GOPs, subscripts w and h refer to a bounding
box’s width and height, and subscript f denotes their feature
embeddings. zssd computes the similarity of two fixed-length
feature vectors via zero-mean sum of square differences.

To find optimal edge assignments for vertices V t−1 and V t

we apply bipartite minimum-cost matching using their similar-
ity scores, λ(vt−1nt−1

, vtnt), where nt−1 . . . Nt−1 and nt . . . Nt.
This procedure is repeated for incoming frames to form object
paths. The time step is updated and the previous version of the
sliding window graph is moved further into the FIFO queue
(i.e., V t−W ← V t−W+1, . . . , V t−1 ← V t).

F. Path Selection

Finally, to discover objects, we compute the shortest paths
in G which correspond to the greatest GOP correspondences
in the image sequence. G contains a finite number (K) of
shortest paths which we denote as P = {pk|k ∈ 1 . . .K},
where pk contains a set of vertices: pk = {vt−W+1

nW , . . . , vtnt}.
From P , the goal is to find a path pk that represents the most
salient object in the image sequence.

We designed a greedy path selection strategy to find the
path that contains vertices with the highest objectness and
saliency scores, which likely corresponds to the most salient
object in the image sequence. To prevent outlier bias, we
apply scaling (shown in Equation 5) to the set of objectness
(V t.o) and saliency scores (V t.s) from each frame in interval
t−W . . . t. For each path pk, the normalized objectness and
saliency scores are used to derive sum-aggregated selection
scores (pk.score), shown in Equation 7.

The set of paths P = {pk|k ∈ 1 . . .K} is sorted in
descending order w.r.t. to pk.score. Finally, the top-ranking
path is selected, where the bounding box vtnt .b ∈ p0, is the
output of UFO.

pk.score =

t−WP+1∑
τ=t

∑
vτnτ∈pk

vτnτ .s+

t−WP+1∑
τ=t

∑
vτnτ∈pk

vτnτ .o (7)

Fig. 4. Image sequence depicting segmentation mask to bounding box
conversion procedure. Left: original segmentation mask. Center: ropes are
removed. Right: the final bounding box forms a perimeter around the mask.

G. Object Proposal Prediction

While GOPs of objects tend to consistently appear through-
out an image sequence, it is still unlikely that they will be
present in every frame, since the appearance of objects can
change dramatically over time. This can cause UFO to tem-
porarily misdetect discovered objects until the corresponding
path is regenerated in the sliding window.

To mitigate this problem, we generate a template using the
bounding box from the previous frame. This template is cross-
correlated with the current frame to predict the location of
the object. Assuming the displacement of the object is small
between adjacent frames, we form a search area two times the
template, centered at the object’s previously known location.

The resulting bounding box is then assigned with the mean
objectness score of the vertices in its path to form a GOP
prediction. We also apply a penalization factor to the mean
objectness score, which enables the objectness score of a
recurrent prediction to decay over time, preventing erroneous
predictions from propagating due to drift.

The prediction is merged with the output of the OPA for
the current frame (Section III-A). Merging is achieved by
computing the similarity score (shown in Equation 6) and
solving bipartite matching for within-frame GOPs. Among
matching pairs, the higher-scoring GOP is selected as the final
merged candidate.

IV. EVALUATION AND RESULTS

A. Dataset

We use the DAVIS 2016 dataset [45], a standard testbed
for evaluating SOD methods. The dataset consists of 50
RGB videos, each decomposed into image frame sequences
depicting a moving salient object (e.g., vehicle, pedestrian,
or animal) captured at varying distances to the camera. Each
image sequence consists of a unique outdoor scene with
some containing non-salient detractor objects. Moreover, each
sequence is captured from a moving camera under various
lighting conditions, clutter, and occlusion, making it a suitable
dataset to represent challenges in robot vision.

The dataset contains ground truth segmentation masks for
each frame, which we converted to bounding box format 2. To
generate high quality bounding boxes (e.g., to support tighter
fits around objects), we needed to adjust some segmentation
masks by removing thin object parts (e.g., strings, ropes,

2We note that while we made adjustments to DAVIS to make our experi-
ments bounding box compatible, we compared our results to the recent survey
by Caelles et al. [46], which also reported auxiliary bounding box evaluation
results. We found no discernible differences in FST’s performance. We note
however, that we use the latest release of SAL which performs better than
reported in their paper.
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Fig. 5. Sample object discovery sequence across a challenging scene (i.e., mallard-fly) from the DAVIS 2016 dataset. Our results suggests that UFO is robust
to dynamic lighting, and fast camera and object motion, which is difficult for methods that rely on optical flow or motion boundaries.

Fig. 6. Comparison between UFO and two state-of-the-art methods on DAVIS using standard metrics (IoU = 0.5). We report the average end-to-end
computation time in seconds per frame (t(s)). Columns with upward arrows indicate that a higher score is better. Lower computation time is better. UFO
scores best for computation time, precision, F-score, accuracy, and mAP .

chains) – for an example, see Figure 4. In total we adjusted
281 of 3455 images (i.e., from paragliding-launch (79), kite-
walk (79), kite-surf (49), and boat (74) scenes).

B. Comparison to the State-of-the-Art

We selected two recent unsupervised SOD methods to com-
pare against UFO: Saliency-Aware Geodesic (SAL) [18] and
Fast Segmentation (FST) [19], the fastest and most accurate
methods reported in the literature [46]. We evaluated FST and
SAL using the default parameters from their respective papers.
Our results are shown in Figures 5, 6, 7, and 11.

To provide a fair comparison to UFO, we converted the
segmentation masks from the output of SAL and FST to
bounding boxes using the procedures in Section IV-A.

To measure performance, we employed widely-used met-
rics from the SOD literature: precision, recall, F-measure,
accuracy, mean average precision (mAP ), and end-to-end
computation per frame in seconds (t(s)) [47]. To measure the
generalizability of each method, we computed the precision
for each image sequence, then averaged them across all 50
sequences to compute the mean average precision (mAP ).

We found that UFO was approximately 6.5 times faster than
SAL (which took on average 35.7 seconds to infer object
discovery predictions for each frame) and FST (which took
on average 29.4 seconds). Comparing precision, recall, F-
measure, and accuracy, we found that UFO scored similarly
to FST, while SAL scored lower for all metrics.

C. Ablation Experiments

To analyze the importance of each system component, we
evaluated ablated versions of UFO. Specifically, we inves-
tigated how UFO performs without the proposal prediction
(UFO-P) and saliency-aware NMS (UFO-NMS) components.

We also evaluated UFO without either of these components
(UFO-P-NMS). We show our results in Figures 8 and 7.

When prediction is removed from UFO (UFO-P), perfor-
mance declines across all metrics, with exception to compu-
tation time (4.41 seconds per frame). Our results suggest that
the prediction component is important for correcting object
discovery instances that can become corrupt over time.

When NMS is removed (UFO-NMS), performance again
declines across all metrics. Moreover, UFO-NMS has longer
computation time (6.41 seconds per frame). This suggests that
saliency-aware NMS removes non-salient OPAs, reducing both
the number of false positives and computation time.

Finally, we show that UFO-P-NMS has substantially longer
computation time than UFO (6.53 seconds per frame). This
further suggests that both components are significant to UFO’s
design, such that the prediction component increases recall,
while saliency-aware NMS reduces computation time.

D. Performance Due to Window Size

To explore how the size of the sliding window affects UFO,
we incrementally varied parameter W (results shown in Figure

Fig. 7. Precision (left) and Accuracy (right) measured over IoU threshold,
which correlate to robustness to false-positives and overall accuracy, respec-
tively (higher is better). For the standard overlap criterion (IoU = 0.5), UFO
scores highest.



Fig. 8. Ablation Study Findings: overall performance of UFO declines when prediction and/or NMS components are removed from the pipeline.

Fig. 9. Effect of Window Size (W ) Findings: overall performance of UFO declines as the window size increases.

9). Our experiments show that as W increases, UFO can
focus on false-positive or detractor objects instead of the main
object, which reduces recall performance. Specifically, UFO
will favor objects that remain in the window for a longer time,
which possibly includes detractor objects. However, we also
found that a larger W decreases computation time because it
also reduces the number of object candidates.

When W is small, we found that UFO is more adaptable
to new object candidates. This also enables it to recover
previously discovered objects that were lost due to occlusion.
We also found that a smaller W enables UFO to achieve higher
recall when objects of interest are more easily discernible from
the background (e.g., more salient).

E. Computation Time of System Components

To study which factors affect the speed of UFO, we mea-
sured the computation time of each of its system components.
In general, we found that most components were computa-
tionally inexpensive, with exception to the OPA and NMS
algorithm. However, we can expect the speed of the pipeline
to improve by refining the OPA and NMS algorithm, since
all other components are dependent on them. Our results are
shown in Figure 10.

V. DISCUSSION

In this paper, we introduced UFO, an unsupervised SOD
method which can automatically discover unseen salient ob-
jects on-the-fly. UFO is a vision-based approach which can
complement other perception methods that address object
learning for robots. For example, UFO can be used with
haptic-based approaches, to enable robots to autonomously
explore novel objects by both means of touch and sight (c.f.
[23]). UFO can also be suitable for detecting unfamiliar ob-
jects, to inspire robots to examine them via active perception.

Our method is designed for RGB vision, making it a viable
perception framework for robots with monocular camera sys-
tems. Moreover, UFO is flexible in that it does not require
depth data, which can be problematic for object discovery
methods that rely on range estimation.

UFO is approximately 6.5 times faster than recent unsuper-
vised SOD methods for RGB vision. Our method leverages an
OPA to generate salient GOPs, exploiting their spatiotemporal
consistency to discover objects in image sequences. We also

designed UFO with a discover-prediction approach, which
recovers previously discovered objects in the event that the
OPA fails to generate suitable GOPs. With this approach, we
show that object discovery can be achieved much more quickly
than predominant approaches that rely on motion boundary
detection. Since unsupervised SOD methods require multiple
frames and iterations to discover objects, optical flow-based
methods take on the order of minutes, while UFO is able to
reduce this time to seconds. To our knowledge, UFO is the
fastest unsupervised SOD method for RGB vision.

We evaluated UFO on the DAVIS dataset, which reflects
real-world robot perception challenges including moving cam-
eras and objects, motion blur, and occlusion. In terms of
overall precision, F1-measure, and accuracy, UFO attained the
highest performance among the methods studied. Moreover,
UFO was able to perform consistently across nearly all of the
scenes, suggesting that it can generalize to a broad range of
robot vision contexts (see Figure 11).

We also found that UFO was robust to motion blur and
dynamic lighting. In some image sequences (c.f., “mallard-
fly” in Figure 5), the object of interest is visible at start of the
sequence, but became heavily blurred when both the object
and camera velocities suddenly changed. Because UFO does
not rely on motion boundaries, it was still able to discover
these objects, which suggests that it is robust to faster camera
movement, suggesting its suitability for mobile robot vision.

One limitation was that we used DeepBox [48] to generate
GOPs, where experimentation with other OPAs could have
possibly improved our results. However, DeepBox still enabled
UFO to achieve state-of-the-art recall and precision, and we
treat our current design as a lower bound for performance.

In our future work we plan to migrate our method to a fully
data-driven approach (e.g., CNNs, recurrent neural networks),

Fig. 10. Average Per-image Computation time of individual system compo-
nents in UFO.



Fig. 11. Examples of successful (top row) and less successful (bottom row)
object discovery instances. Cyan boxes show the output of UFO, and magenta
boxes correspond to ground truth objects.

to see if we can share computations between saliency map gen-
eration, GOP prediction, and feature extraction components,
which can potentially improve computation time. Moreover,
we would like to adapt our method to use a twin network
approach [34] to improve object correspondence matching, in
cases that might cause object appearances to more drastically
change between frames. Moreover, this will offer us insight
into developing systems that can simultaneously discover
multiple objects, and also more robustly bootstrap unseen
objects. When deployed on a robot, this can improve its ability
to discover objects with varying degrees of uncertainty.

Finally, we plan to port UFO to a robotic system to gather
data in unconstrained environments for the purpose of training
object recognition models in real-time. This will ultimately al-
low us to build a scalable object detection framework that can
learn on-the-fly, which will enable robots to one day become
more seamlessly integrated to real-world environments.
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[13] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” in ECCV, 2014.

[14] O. Mendez, S. Hadfield, N. Pugeault, and R. Bowden, “Sedar-semantic
detection and ranging: Humans can localise without lidar, can robots?”
in ICRA, 2018.

[15] M. Denninger and R. Triebel, “Persistent anytime learning of objects
from unseen classes,” in IROS, 2018.

[16] K. Chen, H. Song, C. C. Loy, and D. Lin, “Discover and learn new
objects from documentaries,” in CVPR, 2017.

[17] L. Wang, G. Hua, R. Sukthankar, J. Xue, Z. Niu, and N. Zheng, “Video
object discovery and co-segmentation with extremely weak supervision,”
TPAMI, 2017.

[18] W. Wang, J. Shen, R. Yang, and F. Porikli, “Saliency-aware video object
segmentation,” TPAMI, 2018.

[19] A. Papazoglou and V. Ferrari, “Fast object segmentation in unconstrained
video,” in ICCV, 2013.

[20] T. Iqbal, S. Rack, and L. D. Riek, “Movement coordination in human–
robot teams: a dynamical systems approach,” TRO, 2016.

[21] C. Devin, P. Abbeel, T. Darrell, and S. Levine, “Deep object-centric
representations for generalizable robot learning,” in ICRA, 2018.

[22] J. Oberlin and S. Tellex, “Autonomously acquiring instance-based object
models from experience,” in Robotics Research, 2018.

[23] T.-T. Do, A. Nguyen, and I. Reid, “Affordancenet: An end-to-end deep
learning approach for object affordance detection,” in ICRA, 2018.

[24] D. Paulius, A. B. Jelodar, and Y. Sun, “Functional object-oriented
network: Construction & expansion,” in ICRA, 2018.

[25] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?” in CVPR,
2010.

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014.

[27] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in CVPR, 2016.

[28] D. M. Chan and L. D. Riek, “Object proposal algorithms in the wild:
Are they generalizable to robot perception?” in IROS, 2019.

[29] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” TPAMI, 1998.

[30] H. Blum, A. Gawel, R. Siegwart, and C. Cadena, “Modular sensor fusion
for semantic segmentation,” in IROS, 2018.

[31] T. Dang, C. Papachristos, and K. Alexis, “Visual saliency-aware receding
horizon autonomous exploration with application to aerial robotics,” in
ICRA, 2018.

[32] K. Rakelly, E. Shelhamer, T. Darrell, A. A. Efros, and S. Levine, “Few-
shot segmentation propagation with guided networks,” arXiv, 2018.

[33] D. Gordon, A. Farhadi, and D. Fox, “Real time recurrent regression
networks for visual tracking of generic objects,” RAL, 2018.

[34] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. Torr,
“End-to-end representation learning for correlation filter based tracking,”
in CVPR, 2017.

[35] T. Brox and J. Malik, “Object segmentation by long term analysis of
point trajectories,” in ECCV, 2010.

[36] N. Sundaram, T. Brox, and K. Keutzer, “Dense point trajectories by
gpu-accelerated large displacement optical flow,” in ECCV, 2010.

[37] P. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment object
candidates,” in NIPS, 2015.

[38] J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and R. Mech, “Minimum
barrier salient object detection at 80 fps,” in ICCV, 2015.

[39] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. on sys., man, and cyber. (SMC), 1979.

[40] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in
ICPR, 2006.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv, 2014.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.

[45] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and
A. Sorkine-Hornung, “A benchmark dataset and evaluation methodology
for video object segmentation,” in CVPR, 2016.

[46] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and
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