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Robot-Centric Perception of Human Groups

ANGELIQUE TAYLOR, DARREN M. CHAN, and LAUREL D. RIEK, University of California

San Diego

The robotics community continually strives to create robots that are deployable in real-world environments.
Often, robots are expected to interact with human groups. To achieve this goal, we introduce a new method,
the Robot-Centric Group Estimation Model (RoboGEM), which enables robots to detect groups of people.
Much of the work reported in the literature focuses on dyadic interactions, leaving a gap in our understanding
of how to build robots that can effectively team with larger groups of people. Moreover, many current methods
rely on exocentric vision, where cameras and sensors are placed externally in the environment, rather than
onboard the robot. Consequently, these methods are impractical for robots in unstructured, human-centric
environments, which are novel and unpredictable. Furthermore, the majority of work on group perception
is supervised, which can inhibit performance in real-world settings. RoboGEM addresses these gaps by be-
ing able to predict social groups solely from an egocentric perspective using color and depth (RGB-D) data.
To achieve group predictions, RoboGEM leverages joint motion and proximity estimations. We evaluated
RoboGEM against a challenging, egocentric, real-world dataset where both pedestrians and the robot are in
motion simultaneously, and show RoboGEM outperformed two state-of-the-art supervised methods in detec-
tion accuracy by up to 30%, with a lower miss rate. Our work will be helpful to the robotics community, and
serve as a milestone to building unsupervised systems that will enable robots to work with human groups in
real-world environments.
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1 INTRODUCTION

Since its inception, the human-robot interaction (HRI) community has strived to design robots for
real-world environments [55, 107, 114, 125, 129]. For example, robots are being used to motivate
older adults to exercise to improve their health, assist clinicians with daily tasks, support workers
in manufacturing, and help people navigate in airports [1, 28, 54, 54, 72, 79, 108, 115, 128, 131].
In these environments, robots are often tasked with interacting with groups of people. Thus, it is
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Fig. 1. This article introduces RoboGEM, an ego-centric, unsupervised, group perception method. This figure

demonstrates RoboGEM detecting groups while both the robot and pedestrians in the environment are in

motion.

important that robots have an adequate understanding of social groups [22, 30, 44, 59, 61, 62, 66,
77, 79, 83, 84, 90, 96, 129, 132, 133].

Much prior work focuses on dyadic interaction (i.e., one human and one robot) in controlled
environments that do not represent real-world conditions [51, 125]. Additionally, many methods
are designed for surveillance applications, which rely on cameras placed externally in the environ-
ment. However, these methods can be impractical or unfeasible because mobile robots can often
be tasked to operate in unstructured environments where they must rely solely on their onboard
sensors. Moreover, exo-centric group detection and tracking methods in robotics applications can
raise significant privacy concerns [16, 17, 67, 88, 102].

While nascent, there is a growing body of literature on group perception methods in HRI [75,
76, 83, 84, 86, 127, 129, 132, 133]. However, many of these approaches rely on supervised learning,
which requires training models on large datasets [75, 76, 83, 84, 86]. There are a few ego-centric
group detection methods that are unsupervised (c.f. Ref. [23]), though the methods are deployed
from a stationary sensor. Thus, this warrants exploration into unsupervised group detection meth-
ods for mobile robots.

To address these gaps, we introduce a new method, the Robot-Centric Group Estimation Model

(RoboGEM), which enables robots to detect human groups in real-world environments from an
egocentric perspective using unsupervised learning. RoboGEM works by first estimating human
velocity using dense optical flow vectors. Next, it estimates pairwise proximity between people us-
ing a pedestrian detector. Then, it combines these models to compute features using joint proximity
and motion predictions. Finally, it uses these features to perform hierarchical clustering analysis
to detect groups.

Our approach is beneficial in several ways. First, it can be used in group tracking pipelines to im-
prove their performance. Unlike previous approaches in the literature that only work in controlled
environments and employ stationary cameras, our method is designed for ego-centric, color and
depth (RGB-D) perception, encompassing the challenging problem of moving people from a mo-
bile platform [65, 85, 136]. We collected an RGB-D dataset that was recorded in a crowded, sunny,
outdoor environment, which caused many computer vision challenges such as occlusion, shadow,
and varying lighting illuminations. Thus, our approach was designed for real-world situations, us-
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ing real-world data; therefore, robots using our method will be well-equipped to handle everyday
challenges.

The main contributions of our work are threefold. First, we present RoboGEM, a novel unsuper-
vised, ego-centric group detection algorithm. It is straightforward to implement and can be used
across many human-robot teaming scenarios. Second, our evaluation addresses an important prob-
lem in robotics, which is solving vision tasks while both the robot and pedestrians are in motion,
across a challenging, real-world dataset. Third, we show that RoboGEM outperforms two top-
performing algorithms by up to 30% in terms of accuracy (see Section 4.4). This work addresses an
imperative need in HRI, which will contribute to our goal of enabling robots to seamlessly integrate
themselves in human-centered environments. Furthermore, our work will be helpful to the robotics
community as it will promote further exploration of human-robot teamwork in real-world settings.

2 RELATED WORK

In order to perform human group detection, we must first be able to detect pedestrians. Thus,
we first highlight trends in pedestrian detection and discuss how those methods led to advances
in egocentric perception. Then, we discuss the current state-of-the-art group-related problems in
the literature, which include group dynamics, spatial behavior, and group detection (i.e., group
prediction) and tracking (i.e., group identification) in HRI, as these are closely related to our work.

2.1 Pedestrian Detection

The objective of pedestrian detection is to locate people in images or consecutive frames in video
streams, where the output is typically represented in the form of bounding boxes. Pedestrian de-
tection is an important area of research for robotics and computer vision, with applications in
surveillance, activity recognition, and video analysis [31, 36, 144, 144].

Past research on pedestrian detection includes approaches using either stationary or mobile
sensors. Pedestrian detection from stationary cameras are typically placed overhead, where people
are monitored over time [137]. Before depth sensors became prevalent in robotics, RGB images
were predominantly used to detect people.

Most prior approaches use features such as Histogram of Oriented Gradients (HOG) [31] or
background subtraction to narrow down the search space to find people in images [100]. De-
formable part models is another popular technique that uses HOG to detect different parts of
the body and is used to train classifiers for pedestrian detection [38]. Also, due to the complex
geometry of the human body, other features such as color, shape, and motion are used as well. In
the final stage of detection, a classifier, such as a Support Vector Machine (SVM), is used to make
a decision about whether or not the image contains one or more pedestrians [83].

In robotics, sensors in addition to traditional RGB monocular cameras are often used to detect
people. For example, Arras et al. [7] used a laser range finder to detect and track people’s legs
using a Kalman-Filter based multi-target tracking system. Jafari et al. [63] used head-mounted
RGB-D sensors in a multi-hypothesis tracking system to detect and track upper bodies. They used
a normalized depth-based template approach to detect upper bodies and groundHOG to detect
people from far ranges [124]. Spinello et al. [122] detected full bodies in RGB-D data using a HOG-
inspired feature, Histogram of Oriented Depths.

Recently, researchers have become interested in pedestrian detection from an egocentric per-
spective [14, 94, 112, 113]. Egocentric vision aims to solve perception problems from the first-
person viewpoint. Applications include activity recognition, video summarization, and mapping
[13, 15, 97, 112, 113]. Data is usually collected from head-mounted sensors or cameras that are
mounted on mobile platforms.
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Many of the aforementioned techniques have also been used for egocentric vision. However,
because both the sensor and people are in motion, it is challenging to determine whether a
pedestrian’s change in position is a result of the sensor’s motion or people moving in the en-
vironment. Thus, a motion model that describes the robot’s own movements is typically used to
differentiate robot from human motion [15, 94].

Egocentric vision is particularly important as robots begin entering complex human environ-
ments. It is not feasible for robots to depend on overhead cameras as a means of monitoring the
robot’s environment or as an extension to its vision system. Additionally, robots will encounter
new situations and must be able to handle conditions with no a priori knowledge; therefore, they
require unsupervised methods so that they can learn solely on input data.

In recent years, the computer vision community has transitioned from using hand-crafted ap-
pearance features (e.g., HOG, Haar, Local Binary Pattern (LBP)) to using deep learning (DL) archi-
tectures to generate features for pedestrian detection. These DL architectures use Convolutional
Neural Networks (CNNs), which typically consist of passing images through a series of filters such
as convolution, non-linear, pooling (downsample or max pooling), rectified linear units or ReLU
(normalization), and fully connected layers. The fully connected layer generates a fixed length
vector that is used for classification. Using different configurations of such layers has enabled
researchers to improve pedestrian detection accuracy beyond what hand-crafted featured-based
approaches have been able to achieve [32, 33, 71].

There have been many approaches proposed for pedestrian detection using DL, which aim to
address one or more of the following challenges: using varying input image sizes [56], using region
proposals effectively [49, 50], training on a full image versus training on object proposals [3, 6, 18,
37], and improving training and testing time without sacrificing accuracy [49, 103–106]. Some
of the most popular methods include YOLO in its variants [103–105], Faster RCNN [106], Spatial
Pyamid Pooling networks (SSPNets) [56] and more. We use YOLO [103–105] in our work because
it achieves state-of-the-art performance and runs in real time.

2.2 Groups in HRI

Modeling group dynamics is important for robots as they work in teams. Some problems in model-
ing group dynamics include team decision-making and synchrony. For instance, some researchers
explored how robots can help mitigate conflicts in teams and how a robot’s gaze influences its
teammates’ perception of decision making [65, 110]. Additionally, Correia et al. [29] explored how
human group members in a two-human, two-robot group generate their membership preferences
to these robots based on the robot’s behaviors.

Synchrony is used as a way to characterize groups in order to help robots coordinate their ac-
tions with a team. For instance, Iqbal et al. [59–62] designed algorithms that model the high-level
actions of a human group, and measured the degree of synchrony in the group to enable a ro-
bot to coordinate its actions with the group. Additionally, Lorenz et al. [85] conducted a study
on movement coordination in human-robot teams and found that humans unintentionally coor-
dinated their movements with robots.

Although this work serves as an important step in modeling group dynamics, they are also
conducted in well-controlled environments. This can be problematic as group behavior can be
unpredictable; therefore, these approaches may not be generalizable to real-world environments.

Another approach in the literature models group spatial behavior using two major constructs:
proxemics and F-Formations. Proxemics is the study of human use of space during face-to-face
interactions [52]. It encompasses one’s personal preferences for spatial comfort zones, which range
from intimate to public space. This is influenced by people’s culture, age, and gender backgrounds
[10, 52, 89, 92, 126]. F-Formations are a systematic way of defining groups based on their sustained
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spatial and orientational relationship [69]. They describe how groups self-organize themselves into
three spaces: (1) o-space is the center of the group, (2) p-space is where the group members stand,
and (3) r-space is the space immediately outside of the group.

Much of the work done on HRI in groups has explored how a robot’s behavior impacts a group’s
spatial behavior. For example, Vazquez et al. [134] investigated how a robot’s role during a game
impacts its human group partner’s spatial behaviors. Vroon et al. [136] designed a reactive system
that generates hypotheses for social positioning of approach, retreat, and converse behaviors while
solving a group task.

2.3 Group Spatial Behaviors

Another trending topic is the exploration of spatial behaviors in public settings for robot tour
guides [46, 117]. For example, Fiore et al. [40] designed a robot that actively reacts to a group’s
motion by performing stop and wait behaviors based on the group’s needs and the urgency of
the current task. Karreman et al. [68] investigated how a tour guide robot’s orientation influenced
visitors’ orientation. However, rather than determining which people are within a group together,
these robots are reactive to people in the robot’s environment.

There has also been work done that uses F-Formations to model groups. The goal of F-Formation
detection is to estimate the o-space of the group, which is the space in front of group members or in
the center of the group [69]. Some work explored rotating the robot’s orientation and using motion
models to determine how they impact F-Formations [69, 73, 139]. Vazquez et al. [135] designed an
F-Formation detection system that uses position and head orientation to track the direction of
people’s lower body, which generates soft group assignments to track body orientation.

While this prior work aims to model groups using F-Formations, it is challenging to detect
such groups from a mobile platform. Hence, current methods model F-Formations as free-standing
groups, which can potentially fail in cases when people are moving.

2.4 Group Detection and Tracking

The final theme involves detection and tracking of groups and crowds [16, 23, 84, 131]. Prior work
in surveillance and robotics have explored detecting moving groups in large crowds. This prob-
lem is addressed from an exo-centric perspective where the sensor is placed overhead. Many ap-
proaches include probabilistic methods such as particle filters [2, 11, 12, 21, 42, 48, 93, 99, 101,
140–143], graph-based approaches such as generalized minimum clique graphs [19, 39, 70, 81, 95,
145], clustering-based methods such as k-means and agglomerative clustering [45, 47, 120, 121],
as well as methods based on the social force model [78, 88, 119, 123].

Group detection and tracking has also been explored from an ego-centric perspective using Mul-
tiple Hypothesis Tracking (MHT) [16, 24, 75, 76, 86, 91], fluid dynamics [116], and clustering [23,
127, 130]. MHT is the most popular method that formulates group tracking as a combinational
selection problem where a set of hypotheses from the previous and current iteration of the algo-
rithm are evaluated in order to perform data association. Due to the computational complexity of
MHT, many approaches select the k-best hypotheses [75, 76, 91]. Also, researchers have addressed
group splitting, merging, and size estimation using MHT [76, 86].

The probabilistic approach proposed by Choi et al. [24] localizes and classifies structural groups

in a single image to encode interactional features between people in groups using bottom-up in-
teraction potentials, intragroup potentials, and background potentials. The work done by Choi
et al. relies on several features such as individual poses (standing, sitting on an object, sitting on
the floor), and eight different viewpoints (front, front-left, back-right, etc.). However, such features
are not readily accessible for mobile robots and gaining access to these features would greatly in-
crease an algorithm’s complexity. For example, this method requires real-time activity recognition
(to detect individual poses) and a multi-sensor network (for multiple viewpoints). Also, the work
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done in Ref. [24] does not run on sequential video data, which is typically the case for perception
problems on mobile robots.

Brščić et al. [16] designed a probabilistic model of spatial formations of pedestrians to predict
two- and three-person groups. However, in real-world settings, robots can encounter groups ex-
ceeding a membership of three, which could lead to challenges when the robot is required to work
alongside such groups.

Clustering-based methods typically consist of estimating features that characterize groups and
then find clusters within these features to detect groups. For example, Chatterjee and Steinfeld
[23] estimated dense crowds by finding clusters in 3D point clouds. They used these clusters to
predict moving pedestrians in crowds.

The work done in the Spencer project has by far made the most headway in detecting and track-
ing groups from an ego-centric perspective. The project’s goal is to design an assistive robotic
platform that guides travelers through busy airports [131]. As a part of this project, Linder et al.
published an evaluation framework that detects and tracks human groups [84]. Although group
tracking methods are arguably more useful in practical situations than group detectors, they de-
pend on group detectors for accurate tracking performance. Linder et al. [84] identified the pedes-
trian detector as a key component of the tracking pipeline, which requires further attention in the
research community to improve tracking accuracy.

We have identified several gaps in the literature, which we plan to address in our work. First,
there are many approaches that are conducted in controlled, predictable environments. This can
hinder computational models as they do not generalize to real-world environments. Thus, we col-
lect our data in a naturalistic setting, capturing real people in the real world.

Additionally, unlike methods that make an underlying assumption that people in the environ-
ment are a part of a group, we aim to detect different groups throughout the robot’s environment
including people from near and far distances. Thus, in situations where robots are working with
a team, they will have the ability to detect their team members as they move throughout the
environment.

Although F-Formations are important for free-standing groups, current approaches have an
underlying limitation as it is challenging to estimate the o-space as the group moves in the envi-
ronment. Additionally, most prior work uses exo-centric (i.e., birds-eye view) sensors, which leads
to infeasible sensing systems in everyday environments. Alternatively, we use joint proximity and
motion estimations to detect groups, as this is most feasible in real-world environments to date.
Also, we use egocentric perspective sensors so that robots are not required to depend on external
monitoring systems.

Finally, the method proposed by Linder et al. [84] is most comparable to ours and addresses
some of the same challenges. However, its main drawback is that it uses supervised learning and
requires large manually labeled datasets for training. To address this gap, we designed an unsu-
pervised algorithm that detects human groups. To our knowledge, this article is the first to address
unsupervised detection of human groups from the egocentric perspective of a mobile robot.

3 ROBOT-CENTRIC GROUP ESTIMATION MODEL

The goal of RoboGEM is to enable robots to detect human groups from an egocentric perspective.
We use the definition of groups from Linder et al. [83] which states that groups are two or more
people in close proximity to one another with a common motion goal. Our method is comprised of
three modules: pedestrian detection module P , pedestrian motion estimation moduleV , and group
detection module G (see Figure 2).

RoboGEM can be used with any standard RGB-D sensor or stereo camera as long as they pro-
vide calibrated RGB and depth image pairs. Additionally, it was also designed for mobile robots,
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Fig. 2. Overview of RoboGEM. First, RoboGEM detects pedestrians in RGB images using an off-the-shelf

detector. This provides the bounding boxes (BB) 〈bn,t
x ,b

n,t
y ,b

n,t
w ,b

n,t
h
〉 for pedestrians in the data, where

bn,t
x and bn,t

y are the BB centroids, bn,t
w is the width, and bn,t

h
is the height. In parallel, the pedestrian

motion estimation module computes optical flow vectors vt = 〈vt
x ,v

t
y 〉 from t to t + 1. RoboGEM uses the

magnitude | |v | | and orientationvt
θ

. Next, the group detection module computes the mean of the depth pixels

for the BB, bn,t
z for each person. Then, RoboGEM concatenates the aforementioned features into a vector

f n,t . We use these features to perform hierarchical clustering to detect human groups.

so it can detect groups under stationary and mobile sensor motion scenarios. Furthermore, it
does not require a priori knowledge of the robot’s environment (e.g., indoor/outdoor and objects
present).

L2NORM(f n,t ): Returns the Euclidean distance between each feature in fn,t (see Equation (3)).
LINKAGE(distt ): Returns a similarity measure between clusters in distt using average linkage

(see Equation (4)).
CLUSTER(Z ): Returns group cluster identifiers for each person observed in an image.

Our approach leverages spatiotemporal observations of people to cluster them into groups. The
overall intuition of our approach is that groups tend to walk in similar directions, with similar
motion patterns, and in close proximity to each other [84]. Using calibrated RGB-D images, Robo-
GEM identifies people, measures their proximity, and determines their velocity. These features are
then used by the group detection module, which employs agglomerative hierarchical clustering to
detect groups.

We make the following assumptions: the robot is mobile and moving around in a space where
n = 1, 2, 3, . . . ,N is the number of people present at time (or frame) t , where t = {1, 2, 3, . . . ,T }
for T -number of frames in a video sequence. P generates bounding boxes (BB) at time t, bn,t =

〈bn,t
x ,b

n,t
y ,b

n,t
w ,b

n,t
h
〉, which is the centroid column and row, width, and height, respectively.

V estimates velocityvt = 〈vt
x ,v

t
y〉, which is a vector containing motion estimates from t to t + 1.

Let the flow vectors for bn,t be denoted vt (bn,t ). A local feature vector for an image at t for a
pedestrian n is denoted f n,t = 〈bn,t

x ,b
n,t
y ,b

n,t
w ,b

n,t
h
,bn,t

z , | |vt | |,vt
θ
〉, where the BB coordinates are

normalized between 0 and 1, as explained in Section 3.3. The output of RoboGEM is Cn,t ∈ RN

vector, which holds a group number or cluster identifiers for bn,t .
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ALGORITHM 1: Group_Detection( f n,t ,α )

Assigns group identifiers to pedestrians in RGB-D data.

Input: f is a list containing features.
α is the inconsistency coefficient.

Output: C is a list containing cluster identifiers for each pedestrian.
distt = {} // matrix of pairwise Euclidean distances between observations.
Z = {} // matrix containing hierarchical clustering tree.
for t = 1 to T do

distt ← L2NORM ( f n,t )
Z ← LINKAGE (distt )
C ← CLUSTER (Z ,α )

end

Return C

3.1 Pedestrian Detector Module

We use an off-the-shelf pedestrian detector (YOLO) that has state-of-the-art object detection per-
formance (81.3% average precision) with a reasonable frame rate (40–90 frames per second on a
GPU) [103, 104]. Although RoboGEM itself is unsupervised, YOLO is deep learning-based. How-
ever, we did not train YOLO, as its pre-trained model produced sufficient results. YOLO divides
images in a grid that generates a class probability map and bounding boxes with class confidences.
Then, it performs regression on these data to infer the bounding box coordinates.

However, during algorithm development, we found that P performs poorly with people at far
distances. For example, when people are far away from the robot, P generates a pedestrian patch
that covers a wide field-of-view around many people. Therefore, we preprocessed the pedestrian
detection instances by excluding any bounding boxes with a width ≥ w×(0.75), where w is the
total image width.

3.2 Pedestrian Motion Estimation Module

In the next step of RoboGEM, V estimates pedestrian motion using optical flow. Optical flow is
ideal for group detection tasks, as it can provide a quantitative measure of pedestrian velocity
[43].

Using this feature, we group people that walk in similar directions, including moving and sta-
tionary pedestrians. The performance of optical flow is highly dependent on the degree of ego-
motion of the sensor, as it is often subject to large amounts of noise while the sensor is in motion.
Thus, we require a method that provides dense optical flow vectors while reducing noise.

We use FlowNet 2.0, a neural network-based optical flow algorithm that has been used for mo-
tion segmentation and action recognition [58]. It uses a stacked FlowNet architecture, and incorpo-
rates image warping to achieve smooth motion fields. This enables us to decrease the noise caused
by sensor motion and better detect people’s motion.

Given two consecutive images as input from time t to t + 1, FlowNet 2.0 computes the partial
derivative of image pixels with respect to the spatiotemporal coordinates. It generates an image
representation where each pixel is a velocity vector vt = 〈vt

x ,v
t
y〉. This enables RoboGEM to dis-

cern between people that are not walking in the same direction by computing the magnitude and
orientation of these vectors.

3.3 Group Detection Module

In the final step, RoboGEM performs human group detection. It computes features using joint
motion and proximity estimation. As previously mentioned, people walking in groups tend to walk
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in similar directions, in close proximity, and with similar motion patterns. Additionally, we observe
that people walking in groups are walking at similar distances from the robot and, therefore, should
have similar sized pedestrian BBs.

Given a sequence of spatiotemporal images, RoboGEM runs P . Then, it estimates flow vectors
within bn,t and stores them in vt (bn,t ). RoboGEM estimates the mean of the x and y components
of the velocity vectors vt

x (bn,t ) and vt
y (bn,t ), denoted as μx and μy , respectively. The direction of

pedestrian motion is estimated using Equation (1), and the magnitude is estimated using Equa-
tion (2).

vt
θ ← tan−1

μt
y

μt
x

(1)

| |vt | | ←
√

(μt
x )2 + (vμt

y )2 (2)

μt
x is the mean x component of velocity at time t .
μt

y is the mean y component of velocity at time t .

We perform a similar procedure on depth images to estimate proximity from the robot to pedes-
trians. However, in this case, we must consider which pixel values correspond to the distance from
the pedestrian to the robot as some pixels are from the background; therefore, we use the mean of
the pixel values in bn,t as a distance measure. In order to delineate between people that are close
to the robot from those that are far away, we use the width and height of the BB, which are bn,t

w

and bn,t
h

, respectively.
The final feature is the proximity between people on the image plane. This feature uses the

raw bn,t
x and bn,t

y positions as they are the centroids of the pedestrian BB. Although this feature
can perform poorly when one person walks in front of another person, this feature combined
with the depth feature increases the robustness of RoboGEM. Once all features are computed,
we normalize them between 0 and 1 and then concatenate all the features into a single vector
f n,t = 〈f n,1, f n,2, . . . , f n,T 〉.

As the overarching goal of our work is to detect human groups using methods that require no
training, RoboGEM leverages the hidden structure in data. One such method is hierarchical clus-
tering, which discriminates a group of objects into sets of clusters of similar likeness. Hierarchical
clustering is classified into one of two types: divisive and agglomerative.

Divisive clustering follows a top-down approach, by first grouping all observed objects into one
cluster. Then, it iteratively divides clusters into smaller ones until all of the objects are assigned to
its own cluster or when a termination condition is reached. Alternatively, hierarchical clustering
analysis (HCA) performs the opposite operation by employing a bottom-up approach in an ag-
glomerative fashion. Objects are first treated as separate clusters and iteratively merged until all
objects are merged until a termination condition is reached.

We employ HCA because it is most suitable for our problem, as we start with atomic units that
are represented by individual pedestrian detection instances and aim to cluster them into human
groups. Also, it does not require large amounts of the data, is simple to implement, and does not
require that the number of groups is defined a priori.

RoboGEM computes the pairwise L2-norm between observations in f n,t , which yields a matrix
distt (see Equation (3)). It groups distt into a binary HCA tree by linking observations with close
proximity using average linkage. The distance between two clusters L is defined in Equation (4).

distt ← �
�
�

(
f j,t − f k,t

)
�
�
�2

(3)
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L(C j,t ,Ck,t ) =
1

|C j,t | |Ck,t |

∑
f j,t ∈C j,t

∑

f k,t ∈Ck,t

dist ( f j,t , f k,t ) (4)

where j � k
f j,t is a feature vector for person j.
f k,t is a feature vector for person k .

C j,t is cluster j.
Ck,t cluster k .

Then, it prunes the hierarchical tree to partition the observations into clusters. There are two
methods for pruning, which include identifying the number of maximum clusters (similar to k-
means) or by finding natural divisions in the observations.

Due to the challenges of predicting the amount of people entering and leaving the robot’s field-
of-view, we find natural divisions in the data using an inconsistency coefficient α , which is a thresh-
old for each link in the hierarchical tree. It compares the height of the clusters represented in a tree
with the average height in a level within the tree. Therefore, a high α corresponds to dissimilar
observations and a low α corresponds to more similar observations. In order to choose an α that
provides the best accuracy of groups, we conducted a pilot experiment using simulated data and
experimented with alpha values ranging from 0 to 4 in increments of 0.1. We found that α = 0.1
had the best results while α ≥ 1 had the worst results. Thus, we report our findings using α = 0.1.

Pruning the hierarchical clustering tree provides a vectorCn,t ∈ RN , which holds a group num-
ber or cluster identifiers forbn,t . Then, we perform pruning on the clusters to detect groups. For ex-
ample, supposeCn,t = 〈1, 2, 2, 3〉. Pedestrian at index 0 has a group identifier of 1. Pedestrian at in-
dex 1 has a group identifier of 2. Pedestrian at index 2 has a group identifier of 2, and the pedestrian
at index 3 has a group identifier of 3. Therefore, pedestrian at index 1 and 2 are in a group because
they have the same group identifier. In this case, we must remove clusters with a f requency < 2;
therefore, the resulting Cn,t = 〈2, 2〉. To accomplish this, we use the frequency of unique identi-
fiers inCn,t and remove pedestrians fromCn,t that have identifier with a f requency < 2 as groups
are two or more people. Then, we compute the merged BB of groups, denoted as M . The final
representation of groups includes the groups’ BB and their group identifier.

4 EXPERIMENTS

4.1 Data Collection

To evaluate RoboGEM, we required a pedestrian dataset consisting of spatiotemporal RGB-D im-
ages captured from an egocentric viewpoint of a mobile robot. Furthermore, we were interested in
evaluating our algorithm on data that consisted of candid human groups. While many ego-centric
pedestrian datasets exist (cf. Caltech [36], INRIA [31], and Daimler [41]), they do not work for
our intended purpose because they do not simultaneously contain depth information and ego-
centric motion. Moreover, previous datasets are often captured in spaces where social gatherings
of pedestrians are sparse. Also, other datasets such as University of Texas (UT)Interaction [111],
Collective Activity [26], Collective Activity Extended [34], Volleyball Activity [57], and Nursing
Home [35] are not adequate for our evaluation because they do not contain group annotations.
There are many public group detection datasets (i.e., Crowds-By-Example [80] and BIWI Walking
pedestrians [98]); however, these are datasets captured from a stationary, exo-centric perspective,
which is not representative of robot vision, they do not contain depth data, and the pedestrians
are represented as a point instead of a bounding box as done in RoboGEM. To the best of our
knowledge, there is one publicly available egocentric group detection dataset, Structural Groups
[24]; however, it does not contain depth data and spatiotemporal observations of groups.
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Instead, we sought to evaluate RoboGEM on a dataset that encompasses real-world challenges
that robots might encounter when operating in public, crowded spaces. Thus, we acquired a chal-
lenging real-world dataset that was captured “in-the-wild”; therefore, we had no control over what
people did or how they behaved, which is important for robots working in everyday settings. Some
challenges that appear in our dataset include variable lighting, occlusion, chaotic motion trajec-
tories, and motion blur. These challenges provide a useful benchmark because a robot might be
expected to work in both indoor and outdoor environments, where lighting conditions can change
dynamically as the robot navigates from one position to another. Furthermore, a robot’s vision can
be suddenly occluded or blurred, where the robot needs to estimate the state of its surroundings.
Most importantly, we are interested in challenges involving a mobile robot navigating around
groups of pedestrians, which are highly unpredictable.

Thus, we collected our own RGB-D pedestrian dataset. We mounted a ZED stereo camera at
human height on a Double Telepresence Robot (see Figure 1). The ZED was configured to cap-
ture video at approximately 20 frames per second, at a resolution of 640×360. The robot collected
data while being teleoperated using the Double mobile application. Consistent with other popular
robot vision datasets [5, 74], we acquired our data in discontinuous segments to capture a wide
range of real-world conditions. The collection site consisted of a large, outdoor public park across
several different locations to diversify lighting conditions, degree of crowdedness, and to capture
varied motion patterns. The robot roamed around the park moving through corridors, on side-
walks, and through large crowds during the daytime where people were observed walking, eating,
and viewing local nearby landmarks.

In total, our dataset consists of 16,827 RGB-D images, representing 1.5 hours of video. The total
number of groups between frames in our dataset is 5,423 (not unique groups). A member of our
team labeled 14,710 images with bounding boxes around groups. In order to detect groups, we
adopt the definition of groups used by Linder et al. [83]. This definition states that groups are two
or more people in close proximity to each other with a common motion goal.

In order to validate our labels, a second member of our team labeled 2,000 randomly selected
images from our dataset. We employed a validation method in concert with other leading methods
in the field (e.g., the Microsoft Common Objects in COntext (MS COCO)dataset [82]). We computed
the precision and recall of both team members’ labels, which is comparable to COCO’s expert [82].
The precision is 0.83 and the recall is 0.79 at an Intersection-over-Union (IoU) of 0.4, where IoU is
a ratio that measures the overlap of a predicted box and a groundtruth box (see Section 4.2 for a
detailed discussion).

4.2 Experimental Setup

We evaluate RoboGEM by comparing it to three methods: (1) an extension of RoboGEM(RoboGEM:
HC+LDA-L1, (2) Spencer’s group detector (Spencer:SVM) [83], and (3) the group detection method
developed by Solera et al. (Solera:G-MITRE) [121].

Experiments were conducted on a Dell Inspiron Intel Core i7 laptop, with 16 GB of RAM,
1 TB Hard Drive (HDD), with a NVIDIA GeForce GTX960M GPU. The machine ran Ubuntu 14.04
Linux and all algorithm development was completed in MATLAB.

We performed two steps to ensure a consistent evaluation among all methods. First, we gener-
ated pedestrian bounding boxes using the same pedestrian detector for all methods, YOLO [104,
105]. Second, we merged the pedestrian bounding boxes to form group bounding boxes. Then, we
followed the evaluation protocol described in Section 4.3.

4.2.1 Comparison to RoboGEM Extension (RoboGEM:HC+LDA-L1). To create the first compara-
tor method, we extend upon RoboGEM by using a post-processing method, Linear Discrimi-
nant Analysis based on L1-norm maximization (LDA-L1). We choose this method for comparison
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because it minimizes the within-cluster dispersion of groups, while also maximizing the between-
cluster dispersion of groups to improve clustering performance; therefore, in situations when
RoboGEM did not perform well, we expect LDA-L1 to improve its performance.

First, RoboGEM is used to estimate groups, then LDA-L1 is applied. This yields local optimal
projection vectors for groups [146]. The goal of traditional LDA is to reduce feature dimensionality
by learning a set of projection vectors W = [w1,w2, . . . ,wn] ∈ Rk (k < N ) that constitute a low-
dimensionality linear subspace. Unlike traditional LDA, LDA-L1 is more robust to outliers and
uses a greedy search method to obtain N − 1 local optimal projection vectors. To summarize, we
address the following optimization problem using the following notation that is consistent with
Ref. [146]:

w∗ = arg max
w

F (w ) subject to wTw = 1, (5)

where F (w ) is the objective function as follows:

F (w ) =

∑C
i=1 Ni

�
�
�
wT (x i − x )��

�1∑C
i=1

∑
j ∈Ci

�
�
�
wT (x j − x i )��

�1

(6)

w∗ is one projection vector, which is the local optimal solution of F.
w is the columns ofW .

x i is the ith group mean vector.
x is the global mean (i.e., mean of all features) vector of f t .

x j is the sample vector projected onW .
C is the number of groups.

Ci is the ith member of a group.

We useW to project the features f t onto a linear subspace and find the hierarchical clusters of
these projected features. We refer readers to Zhong and Zhang’s work [146] for a detailed descrip-
tion of the LDA-L1 method and for a proof of convergence.

4.2.2 Comparison to Spencer Group Detector (Spencer:SVM). Second, we compared RoboGEM
to the state-of-the-art supervised group detection method used in the Spencer project [8, 84, 86,
131]. The system pipeline of this approach includes pedestrian detection, group detection, and
group tracking. Although the Spencer pipeline includes group tracking functionality, to facilitate
a fair comparison, we only used its group detection method in our evaluation. This represents an
important test, however, as the detector’s performance greatly impacts how well the group tracker
performs. Additionally, to our knowledge, this is the most comparable method in the literature
and shares our definition of groups (a collective of individuals in close proximity with a common
motion goal [83]).

This approach uses RGB-D data and 2D laser scanner data to compute velocity, Euclidean dis-
tance, and orientation features. In contrast to our method, this approach uses supervised learning
to detect groups. In addition, our dataset did not contain 2D laser scans; therefore, to make a fair
comparison to RoboGEM, we re-implemented Spencer to accept depth images. We used the same
pedestrian detector that is used in RoboGEM to detect pedestrians [103]. Then, we use optical
flow to estimate velocity and orientation. Following the approach used by Linder et al. [83], we
compute the pairwise difference in bounding box x position, bounding box y position, velocity,
and orientation between all pedestrians. Then, we trained an SVM to learn a pairwise social re-
lation between all pedestrians on our dataset using the aforementioned features. This generates
a social relation score between 0 and 1. Then, we constructed a social network graph where each
node is a pedestrian and the edges are weighted by the pedestrians social relation score. Similar to
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Ref. [83], we disregard edges with a score less then 0.5. Finally, we compute connected components
in the graph to detect groups using the Depth First Search algorithm.

4.2.3 Comparison to Solera (Solera:G-MITRE). Finally, we compared RoboGEM to the group
detection method by Solera et al. [121]. This method employs correlation clustering and a struc-
tured SVM. They propose a loss function that models clustering constraints for crowds of people.
Because this method models large crowds, it becomes computationally expensive; therefore, the
authors use a spanning tree representation in their G-MITRE loss function and then find the con-
nected components in these graphs to detect groups.

To evaluate Solera on our dataset, we needed to transform our data into a format compatible
with their codebase.1 The method requires a unique pedestrian ID for all people in our dataset, so
we first ran a pedestrian detector (YOLO) to generate pedestrian bounding boxes. Then, we ran a
pedestrian tracker [138] to generate pedestrian IDs. Next, we generated a clusters file where each
line contains the pedestrian IDs for a group. Also, we generated a trajetories file that contains
the frameID, pedestrian ID, x, and y coordinates indicating where each pedestrian is located in a
image. Finally, we converted our bounding boxes to a single point on the ground plane, which is
located at the bottom center of the bounding boxes.

To keep our data consistent with the dataset used by Solera et al. (Crowds-By-Example) [80],
and match their system’s expectations, we normalized the x and y coordinates in our dataset to
match the scale of the x and y coordinates in their dataset.

We inputted the cluster and trajectory files into Solera, which generated group clusters where
each group is represented by a set of pedestrian IDs.2

4.3 Evaluation Metrics

We measure group detection performance using three metrics: (1) accuracy versus Intersection-
over-Union (IoU), (2) log-average miss rate versus false positives per image (FPPI), and (3) accuracy
versus depth threshold [20, 103, 106]. We use these metrics because they evaluate our method’s
accuracy and how the accuracy is affected by the detection distance range. For example, pedes-
trians that are far away from the robot have small bounding boxes that have high false-positive
rates. Therefore, we conducted experiments to investigate the impact of detection range on group
detection performance.

4.3.1 Accuracy vs. Intersection of Union. In the first experiment, IoU measures how closely
RoboGEM matches the ground truth, or how well it was able to match the performance of hu-
man annotators (see Equation (7)) [36].

B ∩GT
B ∪GT ≥ δ

0 ≤ δ ≤ 1
(7)

B is a rectangular bounding box predicted by a detector.
GT is a ground truth rectangular bounding box.

δ is the IoU threshold.

1http://imagelab.ing.unimore.it/group-detection/.
2One aspect of the code that we modified was the maximum number of iterations for convergence, which was originally
set to 300; however, we changed this parameter to 700 because we found that any number of iterations less than 700 did
not generate groups.
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We predict paired BB fromGT to B using the Jonker-Volgenant algorithm [64]. This is a greedy
algorithm that is used to search for the best matching pair of ground truth and experimental BB,
which yield the highest IoU score.

ACC =
TP +TN

TP +TN + FP + FN
(8)

ACC is the accuracy.
TP is the total number of true positives.
TN is the total number of true negatives.
FP is the total number of false positives.
FN is the total number of false negatives.

This enables us to apply a threshold δ to IoU in order to ensure a fair assessment of the overlap
between the predicted and ground truth BB. A true positive, TP , corresponds to a detection with
an IoU that does not exceed δ . Otherwise, the detection is considered a false positive, FP .

When the ground truth does not contain a bounding box and RoboGEM does not detect a group
in the same area, this represents a true negative, TN . IoU is normalized between values of 0 and
1, and is characterized by two extremes. For instance, an IoU value of 0 equates to zero percent
overlap between the algorithm’s predicted bounding box and the ground truth bounding box. In the
opposite extreme, an IoU value of 1 equates to perfect overlap between the algorithm’s predicted
box, and that of the ground truth. In order to evaluate a correct detection, we use the IoU value
as a threshold. For example, if the IoU is set to 1, only predicted boxes that have perfect overlap
with the ground truth is considered a correct detection. However, in the context of pedestrian
detection, people are often treated as non-rigid or deformable objects, where an IoU ≥ 0.4 is the
standard value for a predicted box to be considered a correct detection [36].

4.3.2 Log-Average Miss Rate vs. False Positives-Per-Image. The second metric that we use in our
evaluation is log-average miss rate versus FPPI. This metric is similar to average precision, but is
a more stable and informative assessment of performance [36]. It is computed by averaging the
miss rate at nine FPPI rates evenly spaced in log space [36]. Hence, lower curves indicate better
performance.

4.3.3 Accuracy vs. Depth Threshold. The third evaluation metric is accuracy versus depth
threshold. As pedestrians move further from the robot, it becomes challenging to detect them.
For instance, Linder et al. [83] ignored detection instances greater than 12 meters due to anno-
tation challenges, extreme occlusions, and increased inaccuracy of sensor calibration. Therefore,
we conducted experiments to evaluate the accuracy of RoboGEM at various depth thresholds for
a fixed IoU of 0.4, or the standard criterion used in pedestrian detection.

We normalized the depth maps between 0 and 1 on a per-image basis and applied depth thresh-
olds from 0 to 0.40 (about 8 meters) in 0.05 increments to the depth map. This gives us a compa-
rable distance threshold to Linder et al. [83] at about 10 meters (the ZED depth range is from 0.5–
20 meters). We use these depth thresholds because they range from using all of the bounding box
data to a strict selection of pedestrians that are close to the robot. If the mean of the depth map
within bz ≥ threshold , we consider these pedestrian detection instances in our algorithm; other-
wise, we do not consider the pedestrian detection.

4.4 Results

Figure 3 presents our results, which compares the three comparator methods against RoboGEM.
Figure 3 (left) shows accuracy at various IoU thresholds within the range of 0.4 and 1, where higher
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Fig. 3. Results of Spencer:SVM; Solera:G-MITRE; RoboGEM:HC; and RoboGEM:HC+LDA-L1. Accuracy vs.

IoU (higher is better), Log-Average Miss Rate vs. FPPI (lower is better), and Accuracy at Fixed IoU = 4 vs.

Depth Threshold (higher is better).

Table 1. The Results with an IoU Threshold of 0.4 on Our Dataset

Method

Accuracy ↑
(IoU = 0.4,

Depth = 0.0)

Accuracy ↑
(IoU = 0.4,

Depth = 0.4)

Precision ↑
(IoU = 0.4,

Depth = 0.0)

Recall ↑
(IoU = 0.4,

Depth = 0.0)

Spencer:SVM 0.27 0.40 0.34 0.16
Solera:G-MITRE 0.07 0.07 0.11 0.04
RoboGEM:HC+LDA-L1 0.36 0.45 0.33 0.24

RoboGEM:HC 0.37 0.45 0.34 0.24

We measure accuracy at depth thresholds of 0 and 0.4. Precision and recall are measured with a depth threshold of 0,
which includes all pedestrians, regardless of distance and is thus most reflective of our algorithm’s overall clustering
performance. For all metrics, higher is better.

is better. As expected, the performance of all the methods degrade as IoU increases because the
overlap criterion becomes more strict. Our results show that RoboGEM outperforms Spencer:SVM
[8, 84, 86] and RoboGEM:HC+LDA-L1 in detection accuracy by 10% and 1%, respectively (as shown
in Table 1). Also, Spencer:SVM outperforms Solera:G-MITRE by 20%. This suggests that both ver-
sions of RoboGEM are superior to both Spencer [84] and Solera [121].

Figure 3 (center) shows results for log-average miss rate with varying FPPI where lower is bet-
ter. RoboGEM:HC and RoboGEM:HC+LDA-L1 have similar miss rate performance, and they both
outperform Spencer:SVM. RoboGEM:HC, RoboGEM:HC+LDA-L1, and Spencer:SVM have compa-
rable precision. This indicates that there is a high false-positive rate, consistent with the findings
in Linder et al. [84]. RoboGEM:HC and RoboGEM:HC+LDA-L1 have similar recall performance,
both outperforming Spencer:SVM and Solera:G-MITRE. This suggests that RoboGEM is 50% better
at recalling groups when compared to Spencer:SVM and Solera.

Figure 3 (right) shows accuracy results at a fixed IoU threshold of 0.4, with varying depth
thresholds from 0 to 0.4 in increments of 0.05 where higher numbers are better. In general, as
the depth threshold increases to 0.4 (about 10 meters), the performance of all methods improve;
RoboGEM:HC and RoboGEM:HC+LDA-L1 outperform Spencer:SVM and Solera:G-MITRE. Addi-
tionally, Solera:G-MITRE does not rely on depth data. As a result, its performance is constant at an
accuracy of 0.07 while RoboGEM:HC, RoboGEM:HC+LDA1, and Spencer:SVM accuracies increase
as the depth threshold increases.
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Fig. 4. Examples of successful group detections. The green and blue boxes show the ground truth and pre-

dicted labels, respectively.

Fig. 5. Examples of unsuccessful group detections. The green and blue boxes show the ground truth and

predicted labels, respectively. Images (a) and (b) show false negatives, where groups existed but went unde-

tected by RoboGEM. Image (c) depicts a false positive, where there is not a group but RoboGEM detected

one.

5 DISCUSSION

In this article, we introduced RoboGEM, an unsupervised robot-centric human group detection al-
gorithm. Figures 4 and 5 show example successful and unsuccessful group detections. Our method
outperformed two state-of-the-art supervised methods, Spencer [83] by 10% and Solera [121] by
30%. Furthermore, RoboGEM is 50% better at recalling groups than Spencer, and substantially bet-
ter at recalling groups than Solera. All of the methods presented have a low precision rate (high
false-positive rate), which is consistent with the findings presented by Linder et al. [84]. There-
fore, RoboGEM has a comparable precision rate to the state-of-the-art. Also, as the depth threshold
increases to 0.4, our method performed with an overall higher accuracy.

In contrast to related work, which uses fixed sensors and/or supervised learning, our work ex-
plores how unsupervised methods can be used to address challenging problems in noisy environ-
ments. Although our implementation used stereo images, our approach is generalizable to other
RGB-D sensors, as well as in indoor and outdoor settings. RoboGEM is simple to implement and
was developed for robot-vision in real-world environments. Furthermore, our contributions in-
clude the following: an unsupervised group detection algorithm, an evaluation of our approach
on an egocentric real-world dataset, where both pedestrians and the robot were in motion at the
same time, and we showed that our method outperforms two top-performing algorithms.

Our work has several implications for the HRI community. It shows that unsupervised group
detection methods have the potential to outperform supervised methods using noisy, real-world
data. This work can help encourage others to investigate human-robot teaming in real-world envi-
ronments rather than exploring problems in well-controlled spaces. For instance, our method can
be used in healthcare settings where robots are responsible for working with clinicians to care for
patients [109]. This can help the robot understand how it can appropriately enter and exit team
interactions.

In addition, our method can be used when a robot needs to help a group complete a collab-
orative task. This task might consist of coordinating with a team in which our method is used
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to detect where the robot’s team members move over time. It can be used in conjunction with
group activity recognition methods [4, 9, 25, 27, 34, 118]. Also, RoboGEM can be incorporated
into existing pipelines, like the Spencer project [131], to improve group detection performance.
Furthermore, our method can be used in autonomous driving systems to give them a high-level
understanding of group motion on the road.

Recently, researchers have used deep learning to address vision problems such as pedestrian
detection [104]. Such approaches are beneficial because they can learn on large datasets. However,
training for long periods of time to achieve improved accuracy remains a challenge. As a result,
there is a tradeoff between our approach, which uses hand engineered features to detect groups
without training, and those that are more data-driven and require training on large datasets. As
such, there are exciting opportunities to apply deep learning to the group detection problem, which
may result in improved group detection.

As robots become more integrated into our daily lives, they are expected to work alongside
groups of people in teams. However, when robots cannot effectively detect its team members,
it can potentially cause confusion among the team and teams working in close proximity to it.
As a result, this situation can negatively impact a robot’s performance in a team. As a result,
robot group detection algorithms that perform poorly can cause people to lose trust in the robot,
which is an important area of research [53, 87]. Alternatively, a robot with more accurate group
detection algorithms can work alongside its team more fluently because the interaction is not
negatively impacted by poor robot perception. Robots can effectively detect their team members
and coordinate their actions with the team to accomplish their shared goals. This can preserve
trust in human-robot teams and can potentially increase trust between humans and robots.

In the future, we look forward to improving RoboGEM in order to investigate collective group
motion. To approach this direction of exploration, we plan to use probabilistic reasoning to de-
tect and track people over time. Furthermore, we will incorporate odometry data to be used in a
motion model to reason about a pedestrian’s movement relative to the robot’s movement. We are
also considering using more accurate sensors, such as LIDAR, for more precise motion estimation
as our observation aligns with Ref. [84] that the depth measurements are often imprecise. For ex-
ample, this alternative sensor may be better to cover farther ranges. Finally, we plan to use this
extension to investigate how robots can use this knowledge to interact and work in teams with
groups. Additionally, prior work has shown great potential in group activity recognition; there-
fore, combining group detection with group activity recognition is another exciting area of future
exploration [4, 9, 25, 27, 34, 118].

Group detection is an important problem in robotics and requires further attention in order to
improve group tracking performance. Also, by designing more accurate group perception methods,
robots can better predict pedestrians motion intentions. This can enable robots to employ safer and
more socially aware navigation in crowded environments. By incorporating egocentric vision and
unsupervised learning in our algorithmic design, we hope that our method can be easily used in
other robotics problems such as navigation, human-robot teaming, and coordination.
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