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Abstract

We prove a general theorem for constructing integral quantum cluster algebras

over ZŒq˙1=2�, namely, that under mild conditions the integral forms of quantum

nilpotent algebras always possess integral quantum cluster algebra structures. These

algebras are then shown to be isomorphic to the corresponding upper quantum

cluster algebras, again defined over ZŒq˙1=2�. Previously, this was only known for

acyclic quantum cluster algebras. The theorem is applied to prove that, for every

symmetrizable Kac–Moody algebra g and Weyl group element w, the dual canonical

form Aq.nC.w//ZŒq˙1� of the corresponding quantum unipotent cell has the property

that Aq.nC.w//ZŒq˙1� ˝
ZŒq˙1� ZŒq

˙1=2� is isomorphic to a quantum cluster alge-

bra over ZŒq˙1=2� and to the corresponding upper quantum cluster algebra over

ZŒq˙1=2�.
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1. Introduction

1.1. Problems for integral quantum cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky in [7] and have been

applied to a number of diverse areas such as representation theory, combinatorics,

Poisson and algebraic geometry, and mathematical physics. Their quantum coun-

terparts, introduced by Berenstein and Zelevinsky in [2], are similarly the topic of

intensive research from various standpoints. In the uniparameter quantum case, it is

desirable to work over the minimal ring of definition, namely, over

A1=2 WD ZŒq˙1=2�; (1.1)

where q is the quantum parameter. We will refer to such structures as integral quan-

tum cluster algebras. Two fundamental problems that are being investigated are:

(1) Given an algebra R over the rational function field F 1=2 WD Q.q1=2/ and an

integral form RA1=2 of R over A1=2 (i.e., RŠ RA1=2 ˝A1=2 F 1=2), when is

RA1=2 isomorphic to an integral quantum cluster algebra?

(2) When is the quantum cluster algebra A in Problem (1) equal to the correspond-

ing upper quantum cluster algebra U defined over A1=2?

The best known result on Problem (1) is a theorem of Kang, Kashiwara, Kim, and Oh

[23, Corollary 11.2.8] that the dual canonical forms over A1=2 of the quantum unipo-

tent cells for all symmetric Kac–Moody algebras possess integral quantum cluster

algebra structures. Berenstein and Zelevinsky in [2] proved the equality A D U in the

acyclic case. Such an equality was proved by Muller in [35] for (quantum) cluster

algebras that are source-sink decomposable in the case when all frozen variables are

inverted. We are not aware of any affirmative solutions of Problem (2) for nonacyclic

quantum cluster algebras when frozen variables are not inverted. A recent result of

Geiß, Leclerc, and Schröer ([10, Section 6]) establishes an equality of the form

A ˝A1=2 QŒq˙1=2�D U ˝A1=2 QŒq˙1=2�

under the assumptions that A is connected Z�0-graded with homogeneous cluster

variables and that such an equality holds on the classical level.

1.2. Main results

In the following, we provide affirmative answers to both Problems (1) and (2) in wide

generality. As an application, affirmative answers to Problems (1) and (2) are obtained

for the dual canonical forms of the quantum unipotent cells for all symmetrizable

Kac–Moody algebras.

For an iterated skew polynomial extension

R WD F 1=2Œx1�Œx2I�2; ı2� � � � ŒxN I�N ; ıN �
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and 1 � j � k �N , denote by RŒj;k� the F 1=2-subalgebra generated by xj ; : : : ; xk ,

and set Rk WDRŒ1;k�.

Definition

An iterated skew polynomial extension R is called a quantum nilpotent algebra or a

CGL (Cauchon-Goodearl-Letzter) extension if it is equipped with a rational action of

an F 1=2-torus H by F 1=2-algebra automorphisms such that:

(i) The elements x1; : : : ; xN are H -eigenvectors.

(ii) For every k 2 Œ2;N �, ık is a locally nilpotent �k-derivation of the algebra

Rk�1.

(iii) For every k 2 Œ1;N �, there exists hk 2 H such that �k D .hk �/jRk�1
and the

hk-eigenvalue of xk , to be denoted by �k , is not a root of unity.

A CGL extension is called symmetric if it has the same properties when its gen-

erators are adjoined in the opposite order. We will assume throughout Sections 1, 5,

6, and 7 that the �k-eigenvalues of xj belong to qZ=2 for j � k, where we abbreviate

Z=2 WD Z1
2

. Recall that a nonzero element p 2R is called prime if Rp D pR and the

ring R=Rp is a domain.

THEOREM ([14, Theorem 4.3])

For each CGL extension R and k 2 Œ1;N �, the algebra Rk has a unique (up to rescal-

ing) homogeneous prime element yk which does not belong to Rk�1. It either equals

xk or has the property that

yk � yp.k/xk 2Rk�1

for some p.k/ 2 Œ1; k � 1�.

In the following, we will work with this choice of sets of homogeneous prime

elements (and not with arbitrary F 1=2-rescalings of them). For a symmetric CGL

extension the theorem can be applied to the interval subalgebras RŒp.k/;k� to obtain

that each of them has a unique (up to rescaling) homogeneous prime element yŒp.k/;k�

which does not belong to the smaller interval subalgebras. An F 1=2-rescaling of the

generators of a CGL extension R leads to another CGL extension presentation of R.

The generators xk can be always rescaled so that

yŒp.k/;k� D qmxp.k/xk � qm0
Y

i

p
ni

i (1.2)

for some m;m0 2 Z=2 and ni 2 Z�0, where the product is over all homogeneous

prime elements of RŒp.k/;k� from the theorem that are different from yŒp.k/;k� (see
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Sections 3.3–3.4 and [14]). In the following we will assume that this normalization is

made. Denote

RA1=2 WD A1=2hx1; : : : ; xN i �R:

THEOREM A

Let R be a symmetric CGL extension for which RA1=2 is an A1=2-form of R, that is,

RA1=2 ˝A1=2 F 1=2 ŠR. If the sequence of homogeneous prime elements y1; : : : ; yN

lies in RA1=2 , then there exists a quantum cluster algebra A over A1=2 such that

RŠ A D U;

where U is the corresponding upper quantum cluster algebra over A1=2. For all k 2
Œ1;N � and n 2 Z>0 for which pn.k/ is well defined (as in the previous theorem),

qmxk and qm0
yŒpn.k/;k� are cluster variables of A for some m;m0 2 Z=2.

We prove a more general result in Theorem 4.8 which deals with integral forms

of multiparameter and arbitrary characteristic CGL extensions and quantum cluster

algebras. In Section 4.3 we illustrate the theorem with various examples which are

not connected Z�0-graded, including all quantized Weyl algebras, and with quantum

cluster algebras over FpŒq
˙1=2�.

For each symmetrizable Kac–Moody algebra g and a Weyl group element w, De

Concini, Kac, and Procesi in [5] and Lusztig in [34] defined a quantum Schubert cell

algebra U�Œw� which is a subalgebra of the quantized universal enveloping algebra

Uq.g/ defined over Q.q/. The quantum unipotent cells of Geiß, Leclerc, and Schröer

in [9] are Q.q/-algebras Aq.nC.w// which are anti-isomorphic to U�Œw�. Denote

A WD ZŒq˙1�: (1.3)

The dual canonical forms Aq.nC.w//A are A-forms of Aq.nC.w// which are

obtained by transporting the Kashiwara–Lusztig dual canonical forms U�Œw�_
A

of

U�Œw�.

THEOREM B

Let g be an arbitrary symmetrizable Kac–Moody algebra, and let w be a Weyl group

element. For the dual canonical form Aq.nC.w//A of the corresponding quantum

unipotent cell, there exists a quantum cluster algebra A over A1=2 such that

Aq

�
nC.w/

�
A

˝A A1=2 Š A D U;

where U is the associated upper quantum cluster algebra defined over A1=2.
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Further details about the structure of the quantum cluster algebra A are given in

Theorem 7.3.

The following special cases of parts of the theorem were previously proved: Qin

in [37] proved that Aq.nC.w//A ˝A A1=2 Š A for symmetric Kac–Moody algebras

g and adaptable Weyl group elements w. Kang, Kashiwara, Kim, and Oh in [23]

proved this isomorphism for symmetric Kac–Moody algebras g and all Weyl group

elements w. In Sect. 6 of [10], Geiß, Leclerc, and Schröer proved that

A ˝A1=2 QŒq˙1=2�D U ˝A1=2 QŒq˙1=2�

for symmetric Kac–Moody algebras g and all Weyl group elements w; however, the

fact that A D U is new even for simple cases like g D sln. For nonsymmetric Kac–

Moody algebras g the results in the theorem are all new, including the existence of a

nonintegral quantum cluster structure on Aq.nC.w//A ˝A Q.q1=2/.

The previous approaches to integral quantum cluster structures (see [4], [19],

[23], [26], [36], [37]) obtained monoidal categorifications of quantum cluster alge-

bras. At the same time they also relied on extensive knowledge of categorifications

which are available for concrete families of algebras. The power of Theorem A for

the construction of integral quantum cluster structures lies in its flexibility to adjust

to different situations and in the mild assumptions in it: one needs to verify the nor-

malization condition (1.2), that RA1=2 is an A1=2-form of R and that the sequence of

homogeneous prime elements y1; : : : ; yN belongs to RA1=2 .

We expect that Theorem B can be also applied to obtain an integral version of the

Main Theorem of [17] on the construction of quantum cluster structures on quantum

double Bruhat cells.

1.3. Notation and conventions

Throughout this article, K denotes an infinite field of arbitrary characteristic. For

integers j � k, set Œj; k� WD ¹j; : : : ; kº. As above, Z=2 WD Z1
2

.

An N �N matrix t D .tkj / over a commutative ring D is multiplicatively skew-

symmetric if tjktkj D tkk D 1 for all j; k 2 Œ1;N �. Such a matrix gives rise to a skew-

symmetric bicharacter �t W ZN �ZN ! D� for which

�t.ej ; ek/D tjk; 8j; k 2 Œ1;N �; (1.4)

where e1; : : : ; eN are the standard basis vectors for ZN . (We denote the group of units

of D by D�.) When we have need for formulas involving ZN , we view its elements

as column vectors. The transpose of an N -tuple m D .m1; : : : ;mN / is denoted mT .

Given an algebra A over a commutative ring D and elements a1; : : : ; ak 2A, we write

Dha1; : : : ; aki to denote the unital D-subalgebra of A generated by ¹a1; : : : ; akº.
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2. Quantum cluster algebras

We now outline notation and conventions for quantum cluster algebras. To connect

with the results of [13], [15], we describe a multiparameter setting which extends the

uniparameter case originally developed by Berenstein and Zelevinsky in [2]. To allow

for integral forms, we work over a commutative domain rather than over a field.

Fix a commutative domain D contained in K and a positive integer N . Let F be

a division algebra over D. A toric frame (of rank N ) for F (over D) is a mapping

M W ZN �! F

such that

M.f /M.g/D�r.f;g/M.f C g/; 8f;g 2 ZN ; (2.1)

where
� �r is a D�-valued skew-symmetric bicharacter on ZN arising from a multi-

plicatively skew-symmetric matrix r 2MN .D/ as in (1.4),
� the elements in the image of M are linearly independent over D, and
� FractDhM.ZN /i D F .

The matrix r is uniquely reconstructed from the toric frame M and will be denoted

by r.M/. The elements M.e1/; : : : ;M.eN / are called cluster variables. Fix a subset

ex � Œ1;N �, to be called the set of exchangeable indices; the remaining indices, those

in Œ1;N �nex, will be called frozen.

An integral N � ex matrix eB will be called an exchange matrix if its princi-

pal part (the ex � ex submatrix) is skew-symmetrizable. If the principal part of eB is

skew-symmetric, then it is represented by a quiver whose vertices are labelled by the

integers in Œ1;N �. For j; k 2 Œ1;N �, there is a directed edge from the vertex j to the

vertex k if and only if .eB/jk > 0 and the number of such directed edges equals .eB/jk .

In particular, the quiver has no edges between any pair of vertices in Œ1;N �nex.

A quantum seed for F (over D) is a pair .M; eB/ consisting of a toric frame M

for F and an exchange matrix eB compatible with r.M/ in the sense that

�r.M /.b
k; ej /D 1; 8k 2 ex; j 2 Œ1;N �; k ¤ j; and

�r.M /.b
k; ek/ are not roots of unity; 8k 2 ex;

where bk denotes the kth column of eB .

The mutation in direction k 2 ex of a quantum seed .M; eB/ is the quantum seed

.�k.M/;�k.eB//, where �k.M/ is described below and �k.eB/ is the N � ex matrix

.b0
ij / with entries (see [7])

b0
ij WD

´
�bij if i D k or j D k;

bij C jbik jbkj Cbik jbkj j

2
otherwise:
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If the principal part of eB is skew-symmetric, then �k.eB/ has the same property and

the pair of quivers corresponding to eB and �k.eB/ are obtained from each other by

quiver mutation at the vertex k (see [6, Sections 2.1 and 2.7] for details). Correspond-

ing to the column bk of eB are D-algebra automorphisms �bk ;˙ of F such that (see

[2, Proposition 4.2] and [15, Lemma 2.8])

�bk ;�

�
ME�.ej /

�
D

´
ME�.ek/CME�.ek C �bk/ if j D k;

ME�.ej / if j ¤ k;

where E� DE
eB
� is the N �N matrix with entries

.E�/ij D

8
ˆ̂<
ˆ̂:

ıij if j ¤ k;

�1 if i D j D k;

max.0;��bik/ if i ¤ j D k:

The toric frame �k.M/ is defined as

�k.M/ WD �bk ;�ME� W ZN �! F :

It is independent of the choice of � and, paired with �k.eB/, forms a quantum seed

over K (see [15, Proposition 2.9]; see also [15, Corollary 2.11], and compare with [2,

Proposition 4.9] for the uniparameter case.) By [15, Proposition 2.9 and (2.22)], the

entries of r.�k.M//D �k.r.M// are products of powers of the entries of r.M/, so

r.�k.M// 2 MN .D/. It follows that �k.M/ is a toric frame for F over D, so that

.�k.M/;�k.eB// is a quantum seed over D.

Fix a subset inv of the set Œ1;N �nex of frozen indices—the corresponding cluster

variables will be inverted. The quantum cluster algebra A.M; eB; inv/D is the unital D-

subalgebra of F generated by the cluster variables of all seeds obtained from .M; eB/
by iterated mutations and by ¹M.ek/

�1 j k 2 invº. To each quantum seed .M; eB/ and

choice of inv, one associates the mixed quantum torus/quantum affine space algebra

DT.M; eB;inv/ WD D
˝
M.ek/

˙1;M.ej /
ˇ̌
k 2 ex [ inv; j 2 Œ1;N �n.ex [ inv/

˛

� F : (2.2)

The intersection of all such subalgebras of F associated to all seeds that are obtained

by iterated mutation from the seed .M; eB/ is called the upper quantum cluster algebra

of .M; eB/ and is denoted by U.M; eB; inv/D. The corresponding Laurent phenomenon

(see [15, Theorem 2.15]) says that

A.M; eB; inv/D � U.M; eB; inv/D: (2.3)
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If K is the quotient field of D, then F is also a division algebra over K, and the

above constructions may be performed over K. The corresponding quantum cluster

algebras over K are just the K-subalgebras of F generated by the quantum cluster

algebras over D:

A.M; eB; inv/K D K � A.M; eB; inv/D:

The uniparameter quantum cluster algebras of Berenstein and Zelevinsky in [2]

come from the above axiomatics when the following two conditions are imposed:

(1) The base ring is taken to be

D D A1=2 D ZŒq˙1=2�:

So, D� D .A1=2/� D ˙qZ=2.

(2) The toric frame of one seed (and thus of any seed) has a multiplicatively skew-

symmetric matrix r 2MN .D/ of the form

r D .qmij =2/Ni;j D1 for some mij 2 Z:

3. Quantum nilpotent algebras

Quantum nilpotent algebras are iterated skew polynomial algebras over a base field,

which we take to be K in this section. We use the standard notation SŒxI�; ı� for

a skew polynomial ring, or Ore extension; it denotes a ring generated by a subring

S and an element x satisfying xs D �.s/x C ı.s/ for all s 2 S , where � is a ring

endomorphism of S and ı is a (left) � -derivation of S . The ring SŒxI�; ı� is a free left

S -module, with the nonnegative powers of x forming a basis. For all skew polynomial

rings SŒxI�; ı� considered in this paper, we assume that � is an automorphism of S .

Moreover, we work in the context of algebras over a commutative ring D, so our

coefficient rings S will be D-algebras, the maps � will be D-algebra automorphisms,

and the maps ı will be D-linear � -derivations. Under these assumptions, SŒxI�; ı� is

naturally a D-algebra. Throughout the present section, D D K.

3.1. CGL extensions

We focus on iterated skew polynomial extensions

R WD KŒx1�Œx2I�2; ı2� � � � ŒxN I�N ; ıN �; (3.1)

where KŒx1�D KŒx1I idK; 0�. Set

Rk WD Khx1; : : : ; xki D KŒx1�Œx2I�2; ı2� � � � ŒxkI�k ; ık� for k 2 Œ0;N �I

in particular, R0 D K.
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Definition 3.1

An iterated skew polynomial extension (3.1) is called a quantum nilpotent algebra or

a CGL extension (see [31, Definition 3.1]) if it is equipped with a rational action of a

K-torus H by K-algebra automorphisms such that:

(i) The elements x1; : : : ; xN are H -eigenvectors.

(ii) For every k 2 Œ2;N �, ık is a locally nilpotent �k-derivation of the algebra

Rk�1.

(iii) For every k 2 Œ1;N �, there exists hk 2 H such that �k D .hk �/jRk�1
and the

hk-eigenvalue of xk , to be denoted by �k , is not a root of unity.

Conditions (i) and (iii) imply that

�k.xj /D �kjxj for some �kj 2 K�;81� j < k �N:

We then set �kk WD 1 and �jk WD ��1
kj

for j < k. This gives rise to a multiplica-

tively skew-symmetric matrix � WD .�kj / 2 MN .K�/ and the corresponding skew-

symmetric bicharacter �� from (1.4). The elements hk 2 H interact with the skew

derivations ık as follows (see [15, (3.15)]):

.hk �/ ı ık D �kık ı .hk �/; 8k 2 Œ1;N �: (3.2)

The length of R is N and its rank is given by (cf. [14, (4.3)])

rk.R/ WD
®
k 2 Œ1;N �

ˇ̌
ık D 0

¯
2 Z>0: (3.3)

Denote the character group of the torus H by X.H /. The action of H on R gives

rise to an X.H /-grading of R, and the H -eigenvectors are precisely the nonzero

homogeneous elements with respect to this grading. The H -eigenvalue of a nonzero

homogeneous element u 2 R will be denoted by �u; this equals its X.H /-degree

relative to the X.H /-grading.

By [31, Proposition 3.2 and Theorem 3.7], every CGL extension R is an H -

Unique Factorization Domain (or H -UFD), meaning that each nonzero H -prime

ideal of R contains a homogeneous prime element. (A prime element of a domain R

is a nonzero element p 2R such that Rp D pR—i.e., p is a normal element of R—

and the ring R=Rp is a domain.) A recursive description of the sets of homogeneous

prime elements of the intermediate algebrasRk of a CGL extensionR was obtained in

[14]. To state the result, we require the standard predecessor and successor functions,

p D p� and s D s� , of a function � W Œ1;N �! Z, defined as follows:

p.k/ WD max
®
j < k

ˇ̌
�.j /D �.k/

¯
;

s.k/ WD min
®
j > k

ˇ̌
�.j /D �.k/

¯
;

(3.4)
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where max∅ D �1 and min∅ D C1. Corresponding order functions O˙ W
Œ1;N �! Z�0 are defined by

O�.k/ WD max
®
m 2 Z�0

ˇ̌
pm.k/¤ �1

¯
;

OC.k/ WD max
®
m 2 Z�0

ˇ̌
sm.k/¤ C1

¯
:

(3.5)

THEOREM 3.2 ([14, Theorem 4.3])

Let R be a CGL extension of length N and rank rk.R/ as in (3.1). There exist a

function � W Œ1;N �! Z whose range has cardinality rk.R/ and elements

ck 2Rk�1 for all k 2 Œ2;N � with p.k/¤ �1

such that the elements y1; : : : ; yN 2R, recursively defined by

yk WD
´
yp.k/xk � ck if p.k/¤ �1;

xk if p.k/D �1;
(3.6)

are homogeneous and have the property that, for every k 2 Œ1;N �,
®
yj

ˇ̌
j 2 Œ1; k�; s.j / > k

¯
(3.7)

is a list of the homogeneous prime elements of Rk up to scalar multiples.

The elements y1; : : : ; yN 2 R with these properties are unique. The function �

satisfying the above conditions is not unique, but the partition of Œ1;N � into a disjoint

union of the level sets of � is uniquely determined by the presentation (3.1) of R, as

are the predecessor and successor functions p and s. The function p has the property

that p.k/D �1 if and only if ık D 0.

The statement of Theorem 3.2 is upgraded as in [15, Theorem 3.6 and following

comments]. In the setting of the theorem, the rank of R is also given by (see [14,

(4.3)])

rk.R/D
ˇ̌®
j 2 Œ1;N �

ˇ̌
s.j / > N

¯ˇ̌
: (3.8)

Definition 3.3

Denote by � the reverse lexicographic order on ZN
�0:

.m0
1; : : : ;m

0
N /� .m1; : : : ;mN / iff there exists

n 2 Œ1;N � with m0
n <mn;m

0
nC1 DmnC1; : : : ;m

0
N DmN :

(3.9)

A CGL extension R as in (3.1) has the K-basis
®
xf WD x

m1

1 � � �xmN

N

ˇ̌
f D .m1; : : : ;mN /

T 2 ZN
�0

¯
:
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We say that a nonzero element b 2R has leading term txf and leading coefficient t

where t 2 K� and f 2 ZN
�0 if

b D txf C
X

g2ZN
�0

;g�f

tgx
g

for some tg 2 K, and we set lc.b/ WD t and lt.b/ WD txf .

The leading terms of the prime elements yk in Theorem 3.2 are given by

lt.yk/D xpO�.k/.k/ � � �xp.k/xk ; 8k 2 Œ1;N �: (3.10)

The leading terms of reverse-order monomials xmN

N � � �xm1

1 involve symmetriza-

tion scalars in K� defined by

S�.f / WD
Y

1�j <k�N

�
�mj mk

jk
; 8f D .m1; : : : ;mN /

T 2 ZN : (3.11)

Namely,

lt.xmN

N � � �xm1

1 /D S�

�
.m1; : : : ;mN /

T
�
x

m1

1 � � �xmN

N ;

8.m1; : : : ;mN /
T 2 ZN : (3.12)

3.2. Symmetric CGL extensions

Given an iterated skew polynomial extension R as in (3.1), denote its interval subal-

gebras

RŒj;k� WD Khxi j j � i � ki; 8j; k 2 Œ1;N �I

in particular, RŒj;k� D K if j � k.

Definition 3.4

A CGL extension R as in Definition 3.1 is called symmetric provided that the follow-

ing hold.

(i) For all 1� j < k �N ,

ık.xj / 2RŒj C1;k�1�:

(ii) For all j 2 Œ1;N �, there exists h�
j 2 H such that

h�
j � xk D ��1

kj xk D �jkxk ; 8k 2 Œj C 1;N �;

and h�
j � xj D ��

jxj for some ��
j 2 K� which is not a root of unity.
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Under these conditions, R has a CGL extension presentation with the variables

xk in descending order (see [14, Corollary 6.4]):

RD KŒxN �ŒxN �1I��
N �1; ı

�
N �1� � � � Œx1I��

1 ; ı
�
1 �: (3.13)

PROPOSITION 3.5 ([15, Proposition 5.8])

Let R be a symmetric CGL extension of length N . If l 2 Œ1;N � with OC.l/Dm> 0,

then

��
l D ��

s.l/ D � � � D ��
sm�1.l/

D ��1
s.l/ D ��1

s2.l/
D � � � D ��1

sm.l/: (3.14)

Definition 3.6

Define the following subset of the symmetric group SN :

„N WD
®
� 2 SN

ˇ̌
�.k/D max�

�
Œ1; k � 1�

�
C 1 or

�.k/D min�
�
Œ1; k � 1�

�
� 1;8k 2 Œ2;N �

¯
: (3.15)

In other words, „N consists of those � 2 SN such that �.Œ1; k�/ is an interval for all

k 2 Œ2;N �. The following subset of „N will also be needed:

�N WD ¹�i;j j 1� i � j �N º; where

�i;j WD Œi C 1; : : : ; j; i; j C 1; : : : ;N; i � 1; i � 2; : : : ; 1�: (3.16)

If R is a symmetric CGL extension of length N , then for each � 2„N there is a

CGL extension presentation (see [14, Remark 6.5], [15, Proposition 3.9])

RD KŒx�.1/�Œx�.2/I� 00
�.2/; ı

00
�.2/� � � � Œx�.N /I� 00

�.N /; ı
00
�.N /�: (3.17)

Moreover, if 1 � i � k � N , then the subalgebra RŒi;k� of R is a symmetric CGL

extension, to which Theorem 3.2 applies. In the case k D sm.i/ we have the follow-

ing.

PROPOSITION 3.7 ([15, Theorem 5.1])

Assume that R is a symmetric CGL extension of length N , and assume that i 2 Œ1;N �
andm 2 Z�0 are such that sm.i/ 2 Œ1;N �. Then there is a unique homogeneous prime

element yŒi;sm.i/� 2RŒi;sm.i/� such that

(i) yŒi;sm.i/� …RŒi;sm.i/�1� and yŒi;sm.i/� …RŒiC1;sm.i/�.

(ii) lt.yŒi;sm.i/�/D xixs.i/ � � �xsm.i/.

The elements yŒi;sm.i/� 2R will be called interval prime elements. Certain com-

binations of the homogeneous prime elements from Proposition 3.7 play an important



INTEGRAL QUANTUM CLUSTER STRUCTURES 13

role in the mutation formulas for quantum cluster variables of symmetric CGL exten-

sions. They are given in the following theorem, where we denote

eŒj;sl .j /� WD ej C es.j / C � � � C esl .j / 2 ZN ;

8j 2 Œ1;N �; l 2 Z�0 such that sl.j / 2 Œ1;N �; (3.18)

and where we set yŒs.i/;i� WD 1.

THEOREM 3.8 ([15, Corollary 5.11])

Assume that R is a symmetric CGL extension of length N , and assume that i 2 Œ1;N �
and m 2 Z>0 are such that sm.i/ 2 Œ1;N �. Then

uŒi;sm.i/� WD yŒi;sm�1.i/�yŒs.i/;sm.i/�

���.ei ; eŒs.i/;sm�1.i/�/yŒs.i/;sm�1.i/�yŒi;sm.i/� (3.19)

is a nonzero homogeneous normal element of RŒiC1;sm.i/�1� which is not a multiple

of yŒs.i/;sm�1.i/� if m� 2.

The form and properties of the elements uŒi;sm.i/� mainly enter into the proofs of

the mutation formulas for symmetric CGL extensions. However, an explicit normal-

ization condition for the leading coefficients of these elements is required (see (3.28)

and Proposition 3.10).

3.3. Rescaling of generators

Assume that R is a CGL extension of length N as in (3.1). Given scalars t1; : : : ; tN 2
K�, one can rescale the generators xj of R in the fashion

xj 7�! tjxj ; 8j 2 Œ1;N �; (3.20)

meaning that R is also an iterated Ore extension with generators tjxj ; in fact,

RD KŒt1x1�Œt2x2I�2; t2ı2� � � � ŒtNxN I�N ; tN ıN �: (3.21)

This is also a CGL extension presentation of R, and if (3.1) is a symmetric CGL

extension, then so is (3.21).

By rescaling as in (3.20), (3.21) does not affect the H -action or the matrix �,

but various elements computed in terms of the new generators are correspondingly

rescaled, such as the homogeneous prime elements from Theorem 3.2 and Proposi-

tion 3.7. These transform as follows:

yk 7�!
�O�.k/Y

lD0

tpl .k/

�
yk and yŒi;sm.i/� 7�!

� mY

lD0

tsl .i/

�
yŒi;sm.i/�: (3.22)
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Consequently, the homogeneous normal elements (3.19) transform via

uŒi;sm.i/� 7�! .ti t
2
s.i/ � � � t2

sm�1.i/
tsm.i//uŒi;sm.i/�: (3.23)

3.4. Normalization conditions

In order for the homogeneous prime elements yk from Theorem 3.2 to function as

quantum cluster variables, some normalizations are required. Throughout this section,

assume thatR is a symmetric CGL extension of lengthN as in Definitions 3.1 and 3.4.

Assume also that the following mild conditions on scalars are satisfied.

Condition (A)

The base field K contains square roots �kl D
p
�kl of the scalars �kl for 1� l < k �

N such that the subgroup of K� generated by the �kl s contains no elements of order 2.

Then set �kk WD 1 and �kl WD ��1
lk

for k < l , so that � WD .�kl/ is a multiplicatively

skew-symmetric matrix.

Condition (B)

There exist positive integers dn, for n 2 �.Œ1;N �/, such that

�
d�.l/

k
D �

d�.k/

l
; 8k; l 2 Œ1;N � with p.k/;p.l/¤ �1:

In view of Proposition 3.5, this is equivalent to the condition

.��
k/

d�.l/ D .��
l /

d�.k/ ; 8k; l 2 Œ1;N � with s.k/; s.l/¤ C1:

Remark 3.9

Note that Condition (B) is always satisfied if all �k D qmk for some mk 2 Z and

q 2 K (which has to be a nonroot of unity due to assumption (iii) in Definition 3.1).

This is the setting of Theorem A in the Introduction.

In parallel with (3.11), define

S�.f / WD
Y

1�j <k�N

�
�mj mk

jk
; 8f D .m1; : : : ;mN /

T 2 ZN : (3.24)

Then set

ej WD ej C ep.j / C � � � C epO�.j /.j / and

yj WD S�.ej /yj ; 8j 2 Œ1;N �:
(3.25)

We analogously normalize the homogeneous prime elements described in Propo-

sition 3.7:
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yŒi;sm.i/� WD S�.eŒi;sm.i/�/yŒi;sm.i/�;

8i 2 Œ1;N �;m 2 Z�0 such that sm.i/ 2 Œ1;N �: (3.26)

A final normalization, for the leading coefficients of the elements uŒi;sm.i/�, is

needed in order to establish mutation formulas for the quantum cluster variables yk .

For i 2 Œ1;N � and m 2 Z�0 such that sm.i/ 2 Œ1;N �, write

lt.uŒi;sm.i/�/D �Œi;sm.i/�x
fŒi;sm.i/� ;

�Œi;sm.i/� 2 K�; fŒi;sm.i/� 2
sm.i/�1X

j D1C1

Z�0ej � ZN
�0: (3.27)

We will require the condition

�Œi;s.i/� D S�.�ei C fŒi;s.i/�/; 8i 2 Œ1;N � such that s.i/¤ C1: (3.28)

This can always be achieved after a suitable rescaling of the xj s, as follows.

PROPOSITION 3.10 ([15, Propositions 6.3, 6.1])

Let R be a symmetric CGL extension of length N , satisfying Condition (A).

(i) There existN -tuples .t1; : : : ; tN / 2 .K�/N such that, after the rescaling (3.20),

condition (3.28) holds.

(ii) If (3.28) holds, then

�Œi;sm.i/� D S�.eŒs.i/;sm.i/�/
�2S�.�ei C fŒi;sm.i/�/

for all i 2 Œ1;N � and m 2 Z�0 with sm.i/ 2 Œ1;N �.

3.5. Quantum cluster algebra structures for symmetric CGL extensions

We present in this subsection the setting and statements of Theorem 5 of [13] and

Main Theorem II of [15]. Recall the notation on quantum cluster algebras from Sec-

tion 2. There is a right action of SN on the set of toric frames for a division algebra

F , given by re-enumeration,

.M � �/.ek/ WDM.e�.k//;

r.M � �/jk D r.M/�.j /;�.k/; � 2 SN ; j; k 2 Œ1;N �:
(3.29)

Fix a symmetric CGL extension R of length N such that Conditions (A) and (B)

hold. Define the multiplicatively skew-symmetric matrix � as in Condition (A), with

associated bicharacter �� as in (1.4), and define a second multiplicatively skew-

symmetric matrix r D .rkj / by

rkj WD��.ek ; ej /; 8k; j 2 Œ1;N �: (3.30)
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Let y1; : : : ; yN be the sequence of normalized homogeneous prime elements given

in (3.25). (We recall that each of these is a prime element in some of the subalgebras

Rl , but not necessarily in the full algebra R D RN .) There is a unique toric frame

M W ZN ! Fract.R/ whose matrix is r.M/ WD r and such that M.ek/ WD yk for all

k 2 Œ1;N � (see [15, Proposition 4.6]).

Next, consider an arbitrary element � 2 „N � SN (recall (3.15)). For any k 2
Œ1;N �, we see that

��1��.k/\ �
�
Œ1; k�

�
D

´
¹pn.�.k//; : : : ; p.�.k//; �.k/º if �.1/� �.k/;

¹�.k/; s.�.k//; : : : ; sn.�.k//º if �.1/� �.k/;
(3.31)

for some n 2 Z�0. Corresponding to � , we have the CGL extension presentation

(3.17), whose �-matrix is the matrix �� with entries .�� /ij WD ��.i/�.j /. Analo-

gously we define the matrix �� and denote by r� the corresponding multiplicatively

skew-symmetric matrix derived from �� by applying (3.30) to the presentation (3.17).

Explicitly (cf. (3.31)),

.r� /kj D
Y®

�il

ˇ̌
i 2 �

�
Œ1; k�

�
; �.i/D ��.k/; l 2 �

�
Œ1; j �

�
; �.l/D ��.j /

¯
: (3.32)

Let y�;1; : : : ; y�;N be the sequence of normalized prime elements given by applying

(3.25) to the presentation (3.17). By [15, Proposition 4.6], there is a unique toric frame

M� W ZN ! Fract.R/ whose matrix is r.M� / WD r� and such that, for all k 2 Œ1;N �,

M� .ek/ WD y�;k D
´
yŒpn.�.k//;�.k/� if �.1/� �.k/;

yŒ�.k/;sn.�.k//� if �.1/� �.k/;
(3.33)

in the two cases of (3.31), respectively. The last equality is proved in [15, Theo-

rem 5.2].

Recall that the set P.N/ WD ¹k 2 Œ1;N � j s.k/ D C1º parametrizes the set of

homogeneous prime elements of R, that is,

®
yk

ˇ̌
k 2 P.N/

¯
is a list of the homogeneous prime elements of R

up to scalar multiples (Theorem 3.2). Define

ex WD Œ1;N � nP.N/D
®
l 2 Œ1;N �

ˇ̌
s.l/¤ C1

¯
:

Since jP.N/j D rk.R/, the cardinality of the set ex is N � rk.R/. For � 2„N , define

the set

ex� D
®
l 2 Œ1;N �

ˇ̌
9k > l with ��.k/D ��.l/

¯

of the same cardinality. Finally, recall the notation �u from Definition 3.1.
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In [15, Theorem 8.2] we reindexed all toric frames M� in such a way that the

right action in Theorem 3.11(c) was trivialized and the exchangeable variables in all

such seeds were parametrized just by ex, rather than by ex� . We omit the reindexing

here to simply the exposition. This affects the upper cluster algebra in the following

way: When considering the quantum seed .M� ; eB� /, the set ex must be replaced by

ex� in relations such as (2.2).

THEOREM 3.11 ([15, Theorem 8.2])

Let R be a symmetric CGL extension of lengthN and rank rk.R/ as in Definitions 3.1

and 3.4. Assume that Conditions (A), (B) hold, and assume that the sequence of gen-

erators x1; : : : ; xN of R is normalized (rescaled) so that condition (3.28) is satisfied.

Then the following hold:

(a) For all � 2„N (see (3.15)) and l 2 ex� , there exists a unique vector bl
� 2 ZN

such that �M� .bl
� / D 1 and

�r�
.bl

� ; ej /D 1; 8j 2 Œ1;N �; j ¤ l and

�r�
.bl

� ; el/
2 D ��

min ��1�.�.l//
:

(3.34)

Denote by eB� 2MN �jexj.Z/ the matrix with columns bl
� , l 2 ex� . Let eB WD

eBid.

(b) For all � 2„N , the pair .M� ; eB� / is a quantum seed for Fract.R/. The prin-

cipal part of eB� is skew-symmetrizable via the integers d�.k/, k 2 ex� from

Condition (B).

(c) All such quantum seeds are mutation equivalent to each other up to the SN -

action. They are linked by the following one-step mutations. Let �;� 0 2 „N

be such that

� 0 D
�
�.k/; �.kC 1/

�
ı � D � ı .k; kC 1/

for some k 2 Œ1;N �1�. If �.�.k//¤ �.�.kC1//, thenM� 0 DM� � .k; kC1/

in terms of the action (3.29). If �.�.k//D �.�.kC 1//, then M� 0 D �k.M� /.

(d) The CGL extension R equals the quantum cluster and upper cluster algebras

associated to M , eB , ∅:

RD A.M; eB;∅/K D U.M; eB;∅/K:

In particular, A.M; eB;∅/K and U.M; eB;∅/K are affine and Noetherian, and

more precisely A.M; eB;∅/K is generated by the cluster variables in the seeds

parametrized by the finite subset �N of „N (recall (3.16)).

(e) Let inv be any subset of the set P.N/ of frozen variables. Then

RŒy�1
k j k 2 inv�D A.M; eB; inv/K D U.M; eB; inv/K:
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4. Integral quantum cluster structures on quantum nilpotent algebras

We introduce integral forms of CGL extensions and show that the quantum cluster

algebra structure on a symmetric CGL extension R satisfying the hypotheses of The-

orem 3.11 passes to appropriate integral forms of R. Throughout the section, let R be

a CGL extension of length N as in Definition 3.1, with associated torus H , scalars

�kj and �k , and other notation as in Section 3. Let D � K be a unital subring of K,

and write D� for the group of units of D.

4.1. Integral forms of CGL extensions

Definition 4.1

We say that the D-subalgebra Dhx1; : : : ; xN i ofR is a D-form of the CGL presentation

(3.1)—and therefore that (3.1) has a D-form—provided this subalgebra is an iterated

skew polynomial extension of the form

Dhx1; : : : ; xN i D DŒx1�Œx2I�2; ı2� � � � ŒxN I�N ; ıN �; (4.1)

where we let �k (resp., ık) also denote the restriction of the original �k (resp., ık) to

a D-algebra automorphism (resp., �k-derivation) of Dhx1; : : : ; xk�1i.

Remark 4.2

(a) The CGL presentation (3.1) has a D-form if and only if
� �kj 2 D� for 1� j < k �N ;
� ık maps Dhx1; : : : ; xk�1i into itself for each k 2 Œ2;N �.

(b) Whether (3.1) has a D-form depends on the choice of D as well as the choice

of CGL presentation (3.1). For instance, if N D 2 and ı2.x1/ 2 K n D, then (3.1)

does not have a D-form. However, if 
 D ı2.x1/, then R has the CGL presentation

KŒx1�Œ

�1x2I�2; 


�1ı2�, which does have a D-form.

(c) Even if (3.1) has a D-form, the homogeneous prime elements y1; : : : ; yN from

Theorem 3.2 need not belong to Dhx1; : : : ; xN i. For instance, if R is the quantized

Weyl algebra

A
q
1.K/D Khx1; x2 j x1x2 D qx2x1 C 1i

with q 2 K� transcendental over the prime field of K and D D .Z�1K/Œq˙1�, then the

above CGL presentation has a D-form, but Dhx1; x2i does not contain the element

y2 D x1x2 C .q � 1/�1.

The problems indicated in Remark 4.2 can typically be corrected by rescaling the

generators xk as in Section 3.3, as we now show.
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When working with a D-subalgebraR0 D Dhx1; : : : ; xN i ofR, we adapt previous

notation and write

R0
k WD Dhx1; : : : ; xki and R0

Œj;k� WD Dhxj ; : : : ; xki; 8j � k 2 Œ1;N �:

PROPOSITION 4.3

Assume that K D FractD, and assume that �kj 2 D� for 1� j < k �N . Then there

exist t1; : : : ; tN 2 D n ¹0º such that

(a) RD WD Dht1x1; : : : ; tNxN i is a D-form of the CGL presentation (3.21),

(b) the elements y1; : : : ; yN from Theorem 3.2 for the presentation (3.21) all lie

in RD.

Proof

Set R0 WDRD for the proof. We induct onN . The caseN D 1 holds trivially by taking

t1 D 1.

Now assume that N > 1, and assume that there exist t1; : : : ; tN �1 2 D n ¹0º such

that the algebra R0
N �1 WD Dht1x1; : : : ; tN �1xN �1i satisfies conditions (a) and (b). In

particular, R0
N �1 is a D-form of the CGL presentation

RN �1 D KŒt1x1�Œt2x2I�2; t2ı2� � � � ŒtN �1xN �1I�N �1; tN �1ıN �1�: (4.2)

Since �˙1
Nj 2 D for all j 2 Œ1;N � 1�, the automorphism �N restricts to an automor-

phism of R0
N �1.

Write ıN .t1x1/; : : : ; ıN .tN �1xN �1/ as K-linear combinations of monomials

.t1x1/
m1 � � � .tN �1xN �1/

mN �1

in the standard PBW (Poincaré-Birkhoff-Witt) basis for the presentation (4.2), and let

�i for i 2 I be a list of the nonzero coefficients that appear. Choose a nonzero element

b 2 D such that b�i ; b�N �i 2 D for all i . Set

tN WD
´
b if p.N/D �1;

.�N � 1/b if p.N/¤ �1:

Since b�i 2 D for all i , we have bıN .tjxj / 2 R0
N �1 for all j 2 Œ1;N � 1�, and so

bıN maps R0
N �1 into itself. Similarly, tN ıN maps R0

N �1 into itself. Therefore, R0 D
R0

N �1htNxN i is an Ore extension R0
N �1ŒtNxN I�N ; tN ıN � and (a) holds.

It remains to show that the element yN for the CGL presentation (3.21) lies in

R0. If p.N/D �1, then yN D tNxN , and we are done. Now assume that p.N/¤
�1. Then yN D yp.N /xN � cN , where cN 2 RN �1 and yp.N / is the p.N/th y-
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element for (3.21). By our induction hypotheses, yp.N / 2R0
N �1. From [14, Proposi-

tion 4.7(b)], we have

.�N � 1/bıN .yp.N //D tN ıN .yp.N //D
O�.N /Y

mD1

�N;pm.N /.�N � 1/cN :

Since �N;pm.N / 2 D� for all m 2 Œ1;O�.N /� and bıN .yp.N // 2R0
N �1, we conclude

that cN 2R0
N �1. Therefore, yN 2R0, as required.

LEMMA 4.4

If the CGL presentation (3.1) has a D-form, then �k 2 D� for all k 2 Œ2;N � such that

p.k/¤ �1.

Proof

If k 2 Œ2;N � and p.k/ ¤ �1, then ık ¤ 0 (recall Theorem 3.2). Choose i 2
Œ1; k � 1� such that ık.xi / ¤ 0, and choose a monomial xf , for some f D
.m1; : : : ;mk�1/

T 2 Zk�1
�0 , which appears with a nonzero coefficient in ık.xi /. In

view of (3.2), hk :ık.xi / D �k�kiık.xi /. Since all monomials in x1; : : : ; xN are

hk-eigenvectors, it follows that hk :x
f D �k�kix

f . On the other hand, hk :x
f D

�k.x
f /D

Qk�1
j D1 �

mj

kj
xf , and consequently

�k D ��1
ki

k�1Y

j D1

�
mj

kj
2 D�;

since all �kj 2 D� (Remark 4.2(a)).

When R is symmetric and (3.1) has a D-form, the alternative CGL extension

presentations of R given in (3.17) also have D-forms, as we now show.

LEMMA 4.5

Assume that RD D Dhx1; : : : ; xN i is a D-form for (3.1), and assume that R is a sym-

metric CGL extension.

(a) For 1� j < k �N , the algebra .RD/Œj;k� is a D-form for the CGL presenta-

tion

RŒj;k� D KŒxj �Œxj C1I�j C1; ıj C1� � � � Œxk I�k; ık�: (4.3)

(b) For each � 2„N , the algebraRD is a D-form for the CGL presentation (3.17)

of R.

Proof

Set R0 WDRD.
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(a) The symmetry assumption on R implies that the K-subalgebra RŒj;k� of R

is itself a CGL extension of the form (4.3), as noted following Definition 3.6. For

l 2 ŒjC1; k�, closure of bothRŒj;l�1� andR0
l�1

under �˙1
l

and ıl implies thatR0
Œj;l�1�

is closed under �˙1
l

and ıl . It follows that R0
Œj;k�

is an iterated Ore extension of the

form DŒxj � � � � Œxk I�k; ık�, as required.

(b) We first consider the reverse CGL extension presentation (3.13). As shown in

[14, Section 6.2] (where ��
j , ı�

j are denoted � 0
j , ı0

j ), we have

��
j .xk/D �jkxk and ı�

j .xk/D ��jkık.xj /; 81� j < k �N:

Consequently, Dhxj C1; : : : ; xN i is stable under .��
j /

˙1 and ı�
j for each j 2 Œ1;N �1�.

This allows us to write R0 as an iterated Ore extension in the form

R0 D DŒxN �ŒxN �1I��
N �1; ı

�
N �1� � � � Œx1I��

1 ; ı
�
1 �; (4.4)

which shows that R0 is a D-form for (3.13).

Now let � be an arbitrary element of „N , and consider the corresponding CGL

extension presentation (3.17) of R. As indicated in [14, Remark 6.5], the automor-

phisms � 00
j and skew derivations ı00

j appearing in (3.17) are restrictions of either �j ,

ıj or ��
j , ı�

j . Combined with the results of the previous paragraph, we conclude that

R0 is an iterated Ore extension of the form

DŒx�.1/�Œx�.2/I� 00
�.2/; ı

00
�.2/� � � � Œx�.N /I� 00

�.N /; ı
00
�.N /�:

Therefore, R0 is a D-form for (3.17).

LEMMA 4.6

Assume that the CGL presentation (3.1) has a D-form RD D Dhx1; : : : ; xN i which

contains the elements y1; : : : ; yN from Theorem 3.2.

(a) For each k 2 Œ1;N �, the element yk is normal in .RD/k .

(b) For any subset I � Œ1;N �, the multiplicative set generated by D� [¹yi j i 2 I º
is a denominator set in RD.

Proof

Set R0 WDRD.

(a) By [14, Corollary 4.8], yk quasicommutes with those xj s such that j < s.k/

according to the rule

ykxj D
�O�.k/Y

mD0

�j;pm.k/

��1

xjyk :

Since the �j;pm.k/’s all lie in D�, it follows that ykR
0
k

DR0
k
yk .
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(b) It suffices to show that D�yN
k

, the multiplicative set generated by D� [ ¹ykº,

is a denominator set in R0 for each k 2 Œ1;N �. By part (a), D�yN
k

is a denominator set

in R0
k

.

Since yk is homogeneous (with respect to the X.H /-grading on R), it is an

eigenvector for each h 2 H and, thus, for �kC1; : : : ; �N . The leading term of yk is

xpO�.k/.k/ � � �xp.k/xk , and so

�l.yk/D
�O�.k/Y

mD0

�l;pm.k/

�
yk; for 1� k < l �N:

Consequently, �l.D�yN
k
/ D D�yN

k
for all l > k. It therefore follows from [11,

Lemma 1.4], by induction on l , that D�yN
k

is a denominator set in R0
l

for l D
kC 1; : : : ;N .

PROPOSITION 4.7

Assume that R is a symmetric CGL extension, and assume that the CGL presentation

(3.1) has a D-form RD D Dhx1; : : : ; xN i which contains the elements y1; : : : ; yN .

(a) The elements yŒi;sm.i/� of Proposition 3.7 all belong to RD.

(b) The elements uŒi;sm.i/� of Theorem 3.8 all belong to RD, and their leading

coefficients �Œi;sm.i/� belong to D.

(c) The elements y�;k , for � 2„N and k 2 Œ1;N �, all belong to RD.

Proof

Set R0 WDRD.

(a) We first recall that, by the case � D id of [15, Theorem 5.3], yk is a scalar mul-

tiple of yŒpO�.k/.k/;k� for all k 2 Œ1;N �. However, these elements both have leading

coefficient 1, so they are equal. Taking k D sm.i/, we obtain

yŒi;sm.i/� D ysm.i/; 8i 2 Œ1;N � with p.i/D �1: (4.5)

This verifies that yŒi;sm.i/� 2R0 whenever p.i/D �1.

We next show, by induction on i , that all yŒi;sm.i/� 2 R0. The case i D 1 follows

from the previous result, since p.1/ D �1. Now assume that i > 1, and assume

that yŒj;sm.j /� 2 R0 for all j 2 Œ1; i � 1� and m 2 Œ0;OC.j /�. If p.i/ D �1, we

are done by the previous result, so we may assume that p.i/ D j 2 Œ1; i � 1�. Set

k D sm.i/ D smC1.j /. By the induction hypothesis, yŒj;k� 2 R0. According to [15,

Theorem 5.1(d)],

yŒj;k� D xjyŒi;k� � c0
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for some c0 2RŒj C1;k�. SinceRŒj;k� (resp.,R0
Œj;k�

) is a free right module overRŒj C1;k�

(resp., R0
Œj C1;k�

) with basis ¹1;xj ; x
2
j ; : : : º, the assumption yŒj;k� 2 R0 implies that

yŒi;k� 2R0. This concludes the induction step.

(b) Since all values of the bicharacter �� lie in D�, the formula (3.19) together

with part (a) yields uŒi;sm.i/� 2 R0. Consequently, its leading coefficient, �Œi;sm.i/�,

must lie in D.

(c) Fix � 2„N . We proceed by induction on k 2 Œ1;N � to show that y�;k 2 R0.

The case k D 1 holds trivially, since y�;1 D x�.1/. Now let k > 1, and assume that

y�;j 2R0 for all j 2 Œ1; k � 1�.
If p.�.k// … �.Œ1; k� 1�/, then y�;k D x�.k/, and we are done. Assume now that

p.�.k//D �.l/ for some l 2 Œ1; k � 1�. Then y�;l 2R0 by induction, and

y�;k D y�;lx�.k/ � c; 0¤ c 2R�.Œ1;k�1�/: (4.6)

By [15, Theorem 5.3], one of the following cases holds:

(i) �.k/ > �.1/, y�;k D �yŒpm.�.k//;�.k/�, m D max¹n 2 Z�0 j pn.�.k// 2
�.Œ1; k�/º,

(ii) �.k/ < �.1/, y�;k D �yŒ�.k/;sm.�.k//�, m D max¹n 2 Z�0 j sn.�.k// 2
�.Œ1; k�/º,

for some � 2 K�.

Case (i). By the definition (3.15) of „N ,

�.k/D max�
�
Œ1; k�

�
and �

�
Œ1; k � 1�

�
�

�
1; �.k/� 1

�
:

As p.�.k//D �.l/ 2 �.Œ1; k�/, we also have m� 1, and so

yŒpm.�.k//;�.k/� D yŒpm.�.k//;p.�.k//�x�.k/ � c0; 0¤ c0 2RŒpm.�.k//;�.k/�1�:

Comparing terms in RŒ1;�.k/� DRŒ1;�.k/�1�x�.k/ CRŒ1;�.k/�1�, we find that

y�;l D �yŒpm.�.k//;p.�.k//�:

Since lc.yŒpm.�.k//;p.�.k//�/D 1 and y�;l 2R0, we find that � 2 D. In view of part (a),

we conclude that

y�;k D �yŒpm.�.k//;�.k/� 2R0:

Case (ii). Now �.k/D min�.Œ1; k�/ and �.Œ1; k�1�/� Œ�.k/C1;N �. IfmD 0,

we would have y�;k D �y�.k/;�.k/� D �x�.k/, contradicting (4.6). Thus, m > 0. By

[15, Theorem 5.1(d)],

yŒ�.k/;sm.�.k//� D x�.k/yŒs.�.k//;sm.�.k//� � c0; 0¤ c0 2RŒ�.k/C1;sm.�.k//�:

We may rewrite y�;k in the form
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y�;k D ��1x�.k/y�;l �ec;

where � 2 K� arises from � 00
�.k/

.y�;l/D �y�;l and

ec D ��1ı00
�.k/.y�;l/C c 2R�.Œ1;k�1�/ �RŒ�.k/C1;N �:

Now y�;l is a homogeneous element of R0 and R0 is a D-form for (3.17). Moreover,

y�;l has leading coefficient 1 with respect to the presentation (3.17), so � 00
�.k/

.y�;l/

must be a D�-multiple of y�;l . Hence, � 2 D�.

Comparing terms in RŒ�.k/;N � D x�.k/RŒ�.k/C1;N � CRŒ�.k/C1;N �, we find that

��1y�;l D �yŒs.�.k//;sm.�.k//�:

Since lc.yŒs.�.k//;sm.�.k//�/ D 1 while y�;l 2 R0 and � 2 D�, we obtain that � 2 D,

and therefore, y�;k D �yŒ�.k/;sm.�.k//� 2 R0 in view of part (a). This concludes the

second case of the inductive step.

4.2. Quantum cluster algebra structures on integral forms

For integral forms of appropriately normalized symmetric CGL extensions, we have

the following exact analogue of Theorem 3.11. Fix a symmetric CGL extension R of

length N such that Conditions (A) and (B) hold. Set F WD Fract.R/, and let D be a

commutative domain whose field of fractions is K. Define toric frames M� W ZN !
F , multiplicatively skew-symmetric matrices r� 2 MN .K/, and sets ex� � Œ1;N �

as in Section 3.5. (Recall the notation M D Mid, r D rid, ex D exid.) Provided the

matrices r� have entries from D�, the frames M� also qualify as toric frames over D,

and we shall view them as such.

THEOREM 4.8

Let R be a symmetric CGL extension of length N as in Definitions 3.1, 3.4, and

assume that Conditions (A), (B), and (3.28) hold. Let D be a (commutative) domain

with quotient field Fract.D/ D K such that the scalars �kl in Condition (A) all lie

in D�. Assume that the CGL presentation (3.1) has a D-form RD D Dhx1; : : : ; xN i
which contains the homogeneous prime elements y1; : : : ; yN from Theorem 3.11.

(a) For each � 2 „N , let eB� be the N � jexj integer matrix determined as in

Theorem 3.11(a). Then the pair .M� ; eB� / is a quantum seed for F WD Fract.R/ D
Fract.RD/ over D, and the principal part of eB� is skew-symmetrizable via the integers

d�.k/, k 2 ex� from Condition (B).

(b) All the quantum seeds .M� ; eB� / from part (a) are mutation equivalent to each

other up to the SN -action. They are linked by sequences of one-step mutations of the

following kind. Suppose that �;� 0 2„N are such that

� 0 D
�
�.k/; �.kC 1/

�
ı � D � ı .k; kC 1/
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for some k 2 Œ1;N � 1�. If �.�.k//¤ �.�.k C 1//, then M� 0 D M� � .k; k C 1/ in

terms of the action (3.29). If �.�.k//D �.�.kC 1//, then M� 0 D �k.M� /.

(c) The algebra RD equals the quantum cluster and upper cluster algebras over

D associated to M , eB , ∅:

RD D A.M; eB;∅/D D U.M; eB;∅/D:

In particular, A.M; eB;∅/D is a finitely generated D-algebra, and it is Noetherian if

D is Noetherian. In fact, A.M; eB;∅/D is generated by the cluster variables in the

seeds parametrized by the finite subset �N of „N (recall (3.16)).

(d) For any subset inv of the set P.N/ of frozen variables, there are equalities

RDŒy
�1
k j k 2 inv�D A.M; eB; inv/D D U.M; eB; inv/D:

Proof

(a) We already have from Theorem 3.11(a) that .M� ; eB� / is a quantum seed for F

over K and that the principal part of eB� is skew-symmetrizable via the d�.k/, k 2 ex� .

The entries of r.M� /D r� , given in (3.32), lie in D� due to the assumption that all

�kl 2 D�. Since K D Fract.D/, we have FractDhM� .ZN /i D FractKhM� .ZN /i D
F , and so .M� ; eB� / is also a quantum seed for F over D.

(b) This is immediate from Theorem 3.11(c).

(c) and (d) These are proved below.

4.3. Examples

Example 4.9

Consider a uniparameter quantized Weyl algebraRDA
q;˛
n .K/, for a nonroot of unity

q 2 K� and a skewsymmetric matrix ˛ D .aij / 2 Mn.Z/. This algebra is presented

by generators v1;w1; : : : ; vn;wn and relations

wiwj D qaijwjwi .all i; j /;

vivj D q1Caij vj vi .i < j /;

viwj D q�aijwj vi .i < j /;

viwj D q1�aijwj vi .i > j /;

vjwj D 1C qwj vj C .q � 1/
X

l<j

wlvl .all j /:

(4.7)

The torus H D .K�/n acts rationally on R with

.˛1; : : : ; ˛n/:vi D ˛ivi and .˛1; : : : ; ˛n/:wi D ˛�1
i wi
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for .˛1; : : : ; ˛n/ 2 H and i 2 Œ1; n�. With the variables v1;w1; : : : ; vn;wn in the listed

order, R is a CGL extension, but that presentation is not symmetric. There is a sym-

metric CGL extension presentation with the variables in the order wn; : : : ;w1; v1; : : : ;

vn, and Dhwn; : : : ;w1; v1; : : : ; vni is a D-form for this presentation, where D D
.Z�1K/Œq˙1�. However, the homogeneous prime elements y1; : : : ; y2n from The-

orem 3.2 do not lie in this D-form (see Remark 4.2(c)). This can be rectified by

rescaling the generators as in Proposition 4.3. One such rescaling leads to the CGL

presentation

RD K
�
.q � 1/wn

�
� � �

�
.q � 1/w1I�n

�
Œv1I�nC1; ınC1� � � � ŒvnI�2n; ı2n�; (4.8)

and Dh.q � 1/wn; : : : ; .q � 1/w1; v1; : : : ; vni is a D-form for this presentation which

contains all the yks.

If either R or a D-form of R is Z�0-graded, then in view of the final relations

in (4.7) all the generators vi , wj must be homogeneous of degree 0. Thus, R and its

D-forms have no nontrivial Z�0-gradings.

Example 4.10

Let R D A
q;˛
n .K/ and H D .K�/n as in Example 4.9, and take the symmetric CGL

presentation (4.8). Set D D .Z�1K/Œq˙1�. Then

D
˝
.q � 1/wn; : : : ; .q � 1/w1; v1; : : : ; vn

˛

is a D-form for the presentation (4.8) which contains the homogeneous prime ele-

ments y1; : : : ; y2n from Theorem 3.2.

The CGL presentation (4.8) satisfies Condition (B) with all di D 1, and to obtain

Condition (A) we just need to assume that K contains a square root of q. Choose one,

and label it q1=2. The condition (3.28), however, only holds after a further rescal-

ing of the generators. Namely, write R as an iterated Ore extension with variables

x1; : : : ; x2n where

xi WD
´
.q � 1/wnC1�i if i 2 Œ1; n�;
.�1/i�nq.i�n�1/=2vi�n if i 2 ŒnC 1; 2n�:

In order to express the relations among these xi s in a convenient form, we use the

following notation:

l 0 WD 2nC 1� l
�
for l 2 Œ1; 2n�

�
and

cij WD anC1�i;nC1�j

�
for i; j 2 Œ1; n�

�
:

Then R has the presentation with generators x1; : : : ; x2n and defining relations
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xixj D qcij xjxi

�
i; j 2 Œ1; n�

�
;

xixj D q1Cci0j 0xjxi .n < i < j � 2n/;

xixj D q�ci0j xjxi .j � n < i < j 0 � 2n/;

xixj D q1�ci0j xjxi .j � n < j 0 < i � 2n/;

xj 0xj D .�1/nC1�jq.n�j /=2.q � 1/C qxjxj 0

C .q � 1/
X

1�j <l�n

.�1/l�jq.l�j /=2xlxl 0

�
j 2 Œ1; n�

�
:

(4.9)

With the presentation (4.9), R is a symmetric CGL extension satisfying the

required hypotheses (A), (B), and (3.28) of Theorem 4.8. It has a D-form

Aq;˛
n .D/ WD Dhx1; : : : ; x2ni; (4.10)

where we now take D D .Z�1K/Œq˙1=2�. There are two possibilities for D (recall

(1.1)):

D Š A1=2 D ZŒq1=2� if charK D 0;

D Š FpŒq
1=2� if charK D p:

The scalars �kl from Condition (A) all lie in D�, as do the nonzero coefficients of the

homogeneous prime elements y1; : : : ; y2n from Theorem 3.11. Therefore,

Aq;˛
n .D/D A.M; eB;∅/D D U.M; eB;∅/D

by Theorem 4.8. The matrix r D r.M/ of the initial toric frame has the form

r D

2
66666666666664

1 sc12 � � � sc1;n�1 sc1n 1 1 � � � 1 s�1

sc21 1 � � � sc2;n�1 sc2n 1 1 � � � s�1 s�1

:::
:::

:::
:::

:::
:::

:::
:::

scn1 scn2 � � � scn;n�1 1 s�1 s�1 � � � s�1 s�1

1 1 � � � 1 s 1 1 � � � 1 1

1 1 � � � s s 1 1 � � � 1 1
:::

:::
:::

:::
:::

:::
:::

:::

s s � � � s s 1 1 � � � 1 1

3
77777777777775

;

where s WD q1=2. The quiver of the initial seed is acyclic, namely, it equals
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where the top vertices are mutable and the bottom ones are frozen.

Next, we illustrate Theorem 4.8 with a CGL extension which is not Z�0-graded

connected and whose quiver is not acyclic.

Example 4.11

Recall the notation F 1=2 WD Q.q1=2/. Let R be the F 1=2-algebra with generators

x1; : : : ; x6 and relations

x2x1 D qx1x2; x3x1 D qx1x3 C .1� q/x2
2 ; x3x2 D qx2x3;

x4x1 D qx1x4 C .1� q2/x2x3; x4x2 D qx2x4 C .q � 1/x2
3 ;

x4x3 D qx3x4;

x5x1 D q�1x1x5; x5x2 D q�1x2x5; x5x3 D q�1x3x5;

x5x4 D q�1x4x5 C .q � 1/3;

x6x1 D q�1x1x6 C .q�1 � q/x2yx5 C .1� q/x2
3x

2
5 ;

x6x2 D q�1x2x6 C .q � q�1/x3yx5;

x6x3 D q�1x3x6 C .q � 1/y2; x6x4 D q�1x4x6; x6x5 D qx5x6;

where

y WD x4x5 � q.1� q/2:

The algebra R is a symmetric CGL extension for the torus H WD ..F 1=2/�/2 acting

so that, for the corresponding grading by X.H /Š Z2, the variables x1; : : : ; x6 have

degrees

.4; 3/; .3; 2/; .2; 1/; .1; 0/; .�1; 0/; .�2;�1/:

The h-elements for this CGL extension are

h3 D h4 D .q; q�1/; h5 D h6 D .q�1; q/ 2 H :

Consequently, �k D q for k 2 Œ3; 6�. The (nonunique) elements h1; h2 2 H can also

be chosen so that �k D q for k D 1; 2. Obviously Conditions (A) and (B) hold.

Denote by RA1=2 the A1=2-subalgebra of R generated by x1; : : : ; x6. The homo-

geneous prime elements y1; : : : ; y6 belong to RA1=2 and are given by

y1 D x1; y2 D x2; y3 D x1x3 C q�1x2
2 ;

y4 D x2x4 � q�1x2
3 ; y5 D x2x4x5 � q�1x2

3x5 � q.1� q/2x2;

y6 D x1x3x6 C q�1x2
2x6 � qx1y

2 � .1C q�1/x2x3yx5 C q�2x3
3x

2
5 :
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(The element y is precisely the interval prime element yŒ3;5�.) Consequently, the �-

function from Theorem 3.2 is given by �.1/D �.3/D �.6/D 1 and �.2/D �.4/D
�.5/D 2. Hence, the predecessor function p maps 6 7! 3 7! 1 and 5 7! 4 7! 2. So,

ex D Œ1; 4�. One easily verifies that the condition (3.28) is satisfied. The matrix of the

initial toric frame for RA1=2 from Theorem 4.8 is given by

r D

2
66666664

1 s�1 s�1 s�2 s�1 1

s 1 1 s�1 1 s

s 1 1 s�2 1 s2

s2 s s2 1 s2 s4

s 1 1 s�2 1 s

1 s�1 s�2 s�4 s�1 1

3
77777775

;

where s WD q1=2. The quiver of the initial quantum seed of RA1=2 is

1 2 4

6 3 5

where the vertices 5, 6 are frozen and the rest are mutable. Theorem 4.8 implies that

RA1=2 is isomorphic to the corresponding cluster and upper cluster algebras over

A1=2 where the two frozen variables are not inverted. All statements in the example

hold if A1=2 and F 1=2 are replaced by FpŒq
˙1=2� and Fp.q

1=2/, respectively.

Remark 4.12

The algebras in Examples 4.9–4.11 do not come from quantum unipotent cells in any

symmetrizable Kac–Moody algebra, because the algebras in those examples are Z-

graded but they are not Z�0-graded connected algebras, while all quantum unipotent

cells are Z�0-graded connected algebras. In particular, these examples concern appli-

cations of Theorem 4.8 that are not covered by [23] or the results in Section 7 of this

paper.

Remark 4.13

There are also simple examples of symmetric CGL extensions R which cannot

be “untwisted” into a uniparameter form. More precisely, there are such R for

which no twist of R relative to a K�-valued cocycle on a natural grading group

turns R into a uniparameter CGL extension. For instance, this is true of the mul-

tiparameter quantized Weyl algebra AQ;P
n .K/ when the parameters in the vector

Q D .q1; : : : ; qn/ generate a noncyclic subgroup of K� (see [16, Example 5.10]).

One can show that the quantized Weyl algebras AQ;P
n .K/ have integral forms over
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subrings ZŒq˙1=2
1 ; : : : ; q

˙1=2
n � of K. Theorem 4.8 can be applied to prove that the

integral forms are isomorphic to quantum cluster algebras over ZŒq˙1=2
1 ; : : : ; q

˙1=2
n �.

4.4. Proof of parts (c), (d) of Theorem 4.8

For the first part of this section, we assume only that K D Fract.D/. The normalization

assumptions in Theorem 4.8 will be invoked only in the proof of parts (c), (d) of the

theorem. In the following lemma and proposition, divisibility refers to divisibility

within the ring RD.

LEMMA 4.14

Assume that (3.1) has a D-form RD D Dhx1; : : : ; xN i. Let d 2 Dn¹0º and u;v 2
RDn¹0º such that d j uv. If lc.v/ 2 D�, then d j u.

Proof

Let lt.u/ D bxf and lt.v/D cxg , where b; c 2 Dn¹0º and f;g 2 ZN
�0. By assump-

tion, c 2 D� and uv D dw for some w 2 RDn¹0º. We proceed by induction on f

with respect to �. If f D 0, we have u D b and bcxg D lt.uv/ D d lt.w/. In this

case, d j bc, whence d divides b D u, because c is a unit in D.

Now assume that f � 0. In view of [15, (3.20)], we have

�bc D lc.uv/D d lc.w/

for some � 2 D which is a product of �k;j s. By assumption, � is a unit in D, whence

b D de for some e 2 D. Now uD dexf C u0, where either u0 D 0 or lt.u0/D b0xf 0

with b0 2 D and f 0 � f . In the second case,

u0v D uv � dexf v D d.w � exf v/:

By induction, d j u0, and thus d j u. This verifies the induction step.

PROPOSITION 4.15

Assume that (3.1) has a D-form RD D Dhx1; : : : ; xN i which contains y1; : : : ; yN . If

Y is the multiplicative set generated by D� [ ¹y1; : : : ; yN º, then

RDŒY
�1�\RDRD: (4.11)

Recall from Lemma 4.6(b) that Y is a denominator set in RD.

Proof

If r 2RDŒY
�1�\R, then r D ay�1 for some a 2RD and y 2 Y . Since r 2 KRD, we

also have r D d�1b for some d 2 Dn¹0º and b 2RD. Now daD by. Since lc.yj /D



INTEGRAL QUANTUM CLUSTER STRUCTURES 31

1 for all j 2 Œ1;N �, we see via [15, (3.20)] that lc.y/ 2 D�. By Lemma 4.14, b D db0

for some b0 2RD. Thus, aD b0y, and therefore r D ay�1 D b0 2RD.

From now on, assume that R is a symmetric CGL extension, and assume that

(3.1) has a D-form RD D Dhx1; : : : ; xN i which contains y1; : : : ; yN . For each � 2
„N , we have the CGL presentation (3.17) for R, and RD is a D-form of this pre-

sentation by Lemma 4.5(b). Let y�;1; : : : ; y�;N be the (unnormalized) sequence of

homogeneous prime elements from Theorem 3.11 for the presentation (3.17), and let

E� denote the multiplicative set generated by

D� [
®
y�;l j l 2 Œ1;N �; s� .l/¤ C1

¯
D D� [ ¹y�;l j l 2 ex� º;

where s� is the successor function for �� . (By [15, Corollary 5.6(b)], �� can be

chosen as the �-function for the presentation (3.17).) By Proposition 4.7(c) and

Lemma 4.6(b), E� is a denominator set in RD.

PROPOSITION 4.16

The ring RD equals the following intersection of localizations:

RD D
\

�2�N

RDŒE
�1
� �: (4.12)

Proof

Let T denote the right-hand side of (4.12). Since, by [15, Theorem 8.19(d)],T
�2�N

RŒE�1
� � D

T
�2�N

RŒ.KE� /
�1� D R we have T � R. On the other hand,

Eid is contained in the denominator set Y of Proposition 4.15, and so T �RDŒY
�1�.

Proposition 4.15 thus implies that T �RD, yielding (4.12).

COROLLARY 4.17

If inv is any subset of Œ1;N �nex, then

RDŒy
�1
k j k 2 inv�D

\

�2�N

RDŒE
�1
� �Œy�1

k j k 2 inv�: (4.13)

Proof

This follows from Proposition 4.16 in the same way that [15, Theorem 8.19(e)] fol-

lows from [15, Theorem 8.19(d)].

Proof of Theorem 4.8(c), 4.8(d)

Note that the scalars S�.f / from (3.24), for f 2 ZN , lie in D� because of our assump-

tion that all �kl 2 D�. Hence, by invoking Proposition 4.7(a), the normalized ele-
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ments yj and yŒi;sm.i/� from (3.25) and (3.26) belong to RD. By (3.33), we thus have

y�;k 2RD for all � 2„N and k 2 Œ1;N �.
We next show that

RD D D
˝
y�;k

ˇ̌
� 2 �N ; k 2 Œ1;N �

˛
: (4.14)

The proof is parallel to that for the corresponding statement in [15, Theorem 8.2(b)].

For each j 2 Œ1;N �, there is an element � 2 �N with �.1/D j . By (3.33), y�;1 is a

D�-multiple of yŒj;j � D xj , and so xj 2 D�y�;1. Therefore, all xj s lie in the right-

hand side of (4.14), and the equation is established. Since all the y�;k DM� .ek/ are

cluster variables, it follows that RD � A.M; eB;∅/D.

We have A.M; eB;∅/D � U.M; eB;∅/D by the Laurent phenomenon (2.3), and

U.M; eB;∅/D �
\

�2„N

DT.M� ; eB� ;∅/

D
\

�2„N

D
˝
y˙1

�;k ; y�;j

ˇ̌
k 2 ex� ; j 2 Œ1;N �nex�

˛
;

where ex� appears instead of ex for the indexing reasons explained before Theo-

rem 3.11. Since Dhy˙1
�;k ; y�;j j k 2 ex� ; j 2 Œ1;N �nex� i � RDŒE

�1
� � for each � 2

„N , we obtain that

U.M; eB;∅/D �
\

�2„N

RDŒE
�1
� �:

In view of Proposition 4.16, we have the following sequence of inclusions:

RD � A.M; eB;∅/D � U.M; eB;∅/D �
\

�2�N

RDŒE
�1
� �DRD: (4.15)

All the inclusions in (4.15) must be equalities, which establishes the first part of The-

orem 4.8(c). The finite generation statements concerning A.M; eB;∅/D now follow

from (4.14). If D is Noetherian, then the iterated Ore extension RD is Noetherian by

standard skew polynomial ring results. This concludes the proof of part (c).

Part (d) is proved analogously, using Corollary 4.17 in place of Proposition 4.16.

5. Quantum Schubert cell algebras, canonical bases, and quantum function

algebras

5.1. Quantized universal enveloping algebras

Fix a (finite) index set I D Œ1; r�, and consider a Cartan datum .A;P;…;P_;…_/

consisting of the following:
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(i) A generalized Cartan matrix A D .aij /i;j 2I such that ai i D 2 for i 2 I ,

�aij 2 Z�0 for i ¤ j 2 I , and there exists a diagonal matrixD D diag.di /i2I

with relatively prime entries di 2 Z>0 for which DA is symmetric.

(ii) A free abelian group P (weight lattice).

(iii) A subset …D ¹˛i j i 2 I º � P (set of simple roots).

(iv) The dual group P_ WD HomZ.P;Z/ (coweight lattice).

(v) Two linearly independent subsets …_ D ¹hi j i 2 I º � P_ (set of simple

coroots) such that hhi ; ˛j i D aij for i; j 2 I , and ¹$i 2 P j i 2 I º (set of

fundamental weights) such that hhi ;$j i D ıij .

Let g be the symmetrizable Kac–Moody algebra over Q corresponding to this

Cartan datum. Denote

Q WD
M

i2I

Z˛i � P; QC WD
M

i2I

Z�0˛i ;

and denote

PC WD
®

 2 P

ˇ̌
hhi ; 
i 2 Z�0;8i 2 I

¯
;

PCC WD
®

 2 P

ˇ̌
hhi ; 
i 2 Z>0;8i 2 I

¯
:

Set h WD Q ˝Z P
_. There exists a Q-valued nondegenerate symmetric bilinear form

.�; �/ on h� D Q ˝Z P such that

hhi ;�i D 2.˛i ;�/

.˛i ; ˛i /
and .˛i ; ˛i /D 2di for i 2 I;� 2 h�: (5.1)

Set k
k2 WD .
; 
/ for 
 2 h�. Denote by W the Weyl group of g acting by isometries

on .h�; .�; �//. Denote by si its generators, by ` W W ! Z�0 the length function on

W , and by � the Bruhat order on W . We will also denote by .�; �/ the transfer of this

bilinear form to h, satisfying .hi ; hj /D .˛i ; ˛j /=didj for all i; j 2 I .

Let Uq.g/ be the quantized universal enveloping algebra of g over the rational

function field Q.q/. It has generators qh, ei , fi for i 2 I , h 2 P_, and the following

relations for h;h0 2 P_, i; j 2 I :

q0 D 1; qhqh0 D qhCh0
;

qheiq
�h D qhh;˛i iei ; qhfiq

�h D q�hh;˛i ifi ;

eifj � fj ei D ıij

qdi hi � q�di hi

qi � q�1
i

;

1�aijX

kD0

.�1/k
�
1� aij

k

�

i

e
1�aij �k

i ej e
k
i D 0; i ¤ j;
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1�aijX

kD0

.�1/k
�
1� aij

k

�

i

f
1�aij �k

i fjf
k

i D 0; i ¤ j;

where

qi WD qdi ; Œn�i WD
qn

i � q�n
i

qi � q�1
i

; Œn�i Š WD Œ1�i � � � Œn�i and

�
n

k

�

i

WD Œn�i

Œk�i Œn� k�i
;

for k � n in Z�0 and i 2 I . The algebra Uq.g/ is a Hopf algebra with coproduct,

antipode, and counit such that

�.qh/D qh ˝ qh; �.ei /D ei ˝ 1C qdi hi ˝ ei ;

�.fi /D fi ˝ q�di hi C 1˝ fi ;

S.qh/D q�h; S.ei /D �q�di hi ei ; S.fi /D �fiq
di hi ;

�.qh/D 1; �.ei /D �.fi /D 0

for h 2 P_, i 2 I . The Hopf algebra Uq.g/ is Q-graded with

deg ei D ˛i ; degfi D �˛i ; degqh D 0: (5.2)

For a Q-graded subalgebra R of Uq.g/, its graded components will be denoted by

R
 , where 
 2Q. For a homogeneous x 2 Uq.g/
 , set wtx WD 
 . Define the torus

H WD
�
Q.q/�

�I
:

For 
 D
P
ni˛i 2 Q, let t 7! t
 denote the character of H given by .ri /i2I 7!Q

i r
ni

i . This identifies the rational character lattice of H with Q. The torus H acts

on Uq.g/ by

t � x D t
x for x 2 Uq.g/
 ; 
 2Q: (5.3)

Let �C �QC be the set of positive roots of g. For w 2W , denote the following

Lie subalgebras of the Kac–Moody algebra g,

n˙ WD
M

˛2�C

g˙˛; n˙.w/ WD
M

˛2�C\w�1.��C/

g˙˛; (5.4)

where, for ˛ 2 �C, the g˙˛s are the corresponding root spaces in g. Let b˙ be the

corresponding Borel subalgebras of g. Denote by Uq.n˙/ and Uq.h/ the unital subal-

gebras ofUq.g/ generated by ¹ei j i 2 I º, ¹fi j i 2 I º and ¹qh j h 2 P_º, respectively.

Denote the Hopf subalgebras Uq.b˙/ WDUq.n˙/Uq.h/ of Uq.g/.
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Consider the Q.q/-linear antiautomorphisms � and ' of Uq.g/ defined by

e�
i WD ei ; f �

i WD fi ; .qh/� WD q�h; and

'.ei / WD fi ; '.fi / WD ei ; '.qh/ WD qh

for i 2 I , h 2 P_. Their composition '� WD ' ı � D � ı ' is the Q.q/-linear auto-

morphism of Uq.g/ satisfying

'�.ei /D fi ; '�.fi /D ei ; and '�.qh/D q�h:

Denote by c 7! c the automorphism of the field Q.q/ given by q D q�1. The bar

involution x 7! x of Uq.g/ is its Q.q/-skewlinear automorphism such that cx D c x

for c 2 Q.q/, x 2 Uq.g/, and f i D fi , ei D ei , qh D q�h for i 2 I , h 2 P_. Denote

the Q.q/-skewlinear antiautomorphism ' of Uq.g/,

'.x/ WD '.x/D '.x/; 8x 2 Uq.g/:

A Uq.g/-module V is called integrable if ei and fi act locally nilpotently on V

and

V D
M

�2P

V� with dimV� <1;where V� D ¹v 2M j qh � v D qhh;�iv;8h 2 P_º:

The category Oint.g/ consists of the integrable Uq.g/ modules whose nontrivial

graded subspaces have weights in
S

j .�j C Q/ for finitely many �1; : : : ;�n 2 P
(depending on the module). It is a semisimple monoidal category with respect to the

tensor product of Uq.g/-modules and with simple objects given by the irreducible

highest weight modules V.�/ with highest weights � 2 PC.

For V 2 Oint.g/ its restricted dual module with respect to the antiautomorphism

' is a module in Oint.g/ defined by

D'V WD
M

�2P

V �
� ; where V �

� is the dual Q.q/-vector space of V�:

The Uq.g/-action on D'V is given by hx � �; vi D h�; '.x/ � vi for v 2 V , � 2D'V .

Denote by ¹Ti j i 2 I º the generators of the braid group of W . For w 2W , let

Tw WD Ti1 � � �TiN for a reduced expression si1 � � � siN of w. We will denote by the

same notation Lusztig’s braid group action (see [34]) on Uq.g/ and on the modules in

Oint.g/. We will follow the conventions of [20].

5.2. Two bilinear forms

Consider the Q.q/-linear skew derivations e00
i of Uq.n�/,

e00
i .fj /D ıij ; and e00

i .xy/D e00
i .x/y C q

�hhi ;
i
i xe00

i .y/
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for all i; j 2 I , x 2 Uq.n�/
 , y 2 Uq.n�/. The Kashiwara–Lusztig nondegenerate,

symmetric bilinear form .�;�/KL W Uq.n�/ � Uq.n�/! Q.q/ is the unique bilinear

form such that

.1; 1/KL D 1 and

.fix;y/KL D .q�1
i � qi /

�1
�
x; e00

i .y/
�

KL
; 8i 2 I; x; y 2 Uq.n�/:

Remark 5.1

The Lusztig form uses the scalars .1 � q�2
i /�1 instead of .q�1

i � qi /
�1 (see [33,

(1.2.13)(a)]). For the Kashiwara form .q�1
i � qi /

�1 is replaced by 1, and e00
i

are replaced by the skew derivations e0
i of Uq.n�/ satisfying e0

i .xy/ D e0
i .x/y C

q.˛i ;
/xe0
i .y/ (see [24, (3.4.4) and Proposition 3.4.4]).

The use of the above form leads to minimal rescaling of dual PBW generators,

quantum minors, and cluster variables.

Let d 2 Z>0 be such that .P_;P_/� Z=d . The Rosso–Tanisaki form (see [20,

Section 6.12])

.�;�/RT W Uq.b�/�Uq.bC/! Q.q1=d /

is the Hopf algebra pairing satisfying

.x; yy0/RT D
�
�.x/;y0 ˝ y

�
RT
; .xx0; y/RT D

�
x˝ x0;�.y/

�
RT
; (5.5)

for x;x0 2 Uq.b�/, y;y0 2 Uq.bC/, and normalized by

.fi ; ej /RT D ıij .q
�1
i � qi /

�1; .qh; qh0
/RT D q�.h;h0/;

.fi ; q
h/RT D .qh; ei /RT D 0

for all i; j 2 I , h 2 P_. Its restrictions to Uq.n�/ � Uq.bC/ and Uq.b�/ � Uq.nC/

take values in Q.q/. The above two forms are related by (see, e.g., [29, Lemma 3.8]

or [39, Proposition 8.3])

.x; x0/KL D
�
x;'�.x0/

�
RT
; 8x;x0 2 Uq.n�/: (5.6)

5.3. Integral forms and canonical bases

Recall the notation (1.3). The (divided power) integral forms Uq.n˙/A of Uq.n˙/ are

the A-subalgebras generated by e.k/
i WD ek

i =Œk�i Š (resp., f .k/
i WD f k

i =Œk�i Š) for i 2 I ,

k 2 Z>0. We have '�.Uq.n�/A/ D Uq.nC/A. The dual integral form Uq.n�/
_
A

of

Uq.n�/ is the A-subalgebra

Uq.n�/
_
A D

®
x 2 Uq.n�/

ˇ̌ �
x;Uq.n�/A

�
KL

� A
¯

D
®
x 2 Uq.n�/

ˇ̌ �
x;Uq.nC/A

�
RT

� A
¯
: (5.7)
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Kashiwara in [24] defined a lower global basis Blow of Uq.n�/A and an upper

global basis Bup of Uq.n�/
_
A

. The basis Bup is defined from Blow as the dual basis

with respect to the form .�;�/KL. Lusztig in [33] defined related canonical and dual

canonical bases of Uq.nC/A and a dual integral form of Uq.nC/.

5.4. Quantum Schubert cell algebras, dual integral forms, and CGL extensions

To each w 2W , De Concini, Kac, and Procesi in [5] and Lusztig in [34, Section 40.2]

associated quantum Schubert cell subalgebras ofUq.n˙/. Given a reduced expression

w D si1 : : : siN ; (5.8)

define

w�k WD si1 � � � sik ; wŒj;k� WD sij � � � sik ; w�1
�k WD .w�k/

�1;

w�1
Œj;k� WD .wŒj;k�/

�1 2W

for 0� j � k �N . Denote the roots and root vectors

ˇk WDw�k�1.˛ik /; fˇk
WD T �1

w�1
�k�1

.fik / 2 Uq.n�/A;

eˇk
WD T �1

w�1
�k�1

.eik / 2 Uq.nC/A

(5.9)

for k 2 Œ1;N �. The algebras Uq.n˙.w// are the unital Q.q/-subalgebras of Uq.n˙/

generated by eˇ1
; : : : ; eˇN

and fˇ1
; : : : ; fˇN

, respectively. These definitions are inde-

pendent of the choice of reduced expression of w. Furthermore,

Uq

�
n˙.w/

�
DUq.n˙/\ T �1

w�1

�
Uq.n�/

�
;

Uq.n˙/D
�
Uq.n˙/\ T �1

w�1

�
Uq.n˙/

��
Uq

�
n˙.w/

�
:

(5.10)

This was conjectured in [1, Conjecture 5.3] and proved in [28] and [38].

Note that the algebras considered in [5] (see also [20]) are

U˙
q Œw�D �

�
Uq

�
n˙.w/

��
:

We use Uq.n˙.w// instead, to avoid making all algebras here anti-isomorphic to the

ones in [9]. The A-algebra

Uq

�
n�.w/

�_

A
WDUq

�
n�.w/

�
\Uq.n�/

_
A

is called the dual integral form of Uq.n�.w//. Define the dual PBW generators of

Uq.n�.w//

f �
ˇk

WD 1

.fˇk
; eˇk

/RT

fˇk
D 1

.'�.eˇk
/; '�.eˇk

//KL

'�.eˇk
/D .q�1

ik
�qik /fˇk

(5.11)



38 GOODEARL and YAKIMOV

for k 2 Œ1;N �. Note that '�.eˇk
/ differs from fˇk

by a unit of A, namely, '�.eˇk
/D

.�qik /
Q

i .�qi /
nifˇk

, where ni 2 Z�0 are such that ˇk D
P
ni˛i (see, e.g., [20,

Equation 8.14(9)]). The inner products between the dual PBW monomials and the

divided-power PBW monomials are given by (see, e.g., [20, Sections 8.29–8.30])
�
.f �

ˇ1
/m1 � � � .f �

ˇN
/mN ; e

.l1/

ˇ1
� � � e.lN /

ˇN

�
RT

D
NY

kD1

ımklk
q

mk.mk�1/=2
ik

; 8mk ; lk 2 Z�0; (5.12)

where e.lk/

ˇk
WD e

lk

ˇk
=Œlk�ik .

THEOREM 5.2 ((Kimura) [27, Proposition 4.26, Theorems 4.25 and 4.27])

The algebras Uq.n�.w//
_
A

have the following decompositions as free A-modules:

Uq

�
n�.w/

�_

A
D

M

m1;:::;mN 2Z�0

A � .f �
ˇ1
/m1 � � � .f �

ˇN
/mN

D
M

d2Bup\Uq.n�.w//

A � d: (5.13)

The Levendorskii–Soibelman straightening law takes on the form

f �
ˇk
f �

ˇj
� q.ˇk ;ˇj /f �

ˇj
f �

ˇk

D
X

mD.mj C1;:::;mk�1/2Z
k�j �1
�0

bm.f
�

ˇj C1
/mj C1 � � � .f �

ˇk�1
/mk�1 ;

bm 2 A; (5.14)

for all 1� j < k �N .

Remark 5.3

Recall (5.3), and denote

t WD .q�1
i � qi /i2I 2 H : (5.15)

The objects associated to Uq.nC/ used by Geiß, Leclerc, and Schröer in [9] are pre-

cisely the images under the isomorphism

.t �/ ı '� W Uq.n�/
Š�! Uq.nC/

of the objects associated to Uq.n�/ which we consider. Firstly, [9] uses the canonical

basis '.Blow/ D '�.Blow/ of Uq.nC/ and the PBW generators eˇk
D '.fˇk

/. They

use the bilinear form .�;�/ on Uq.nC/ defined by
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.y; y0/ WD
�
'�.y/; t�1'�.y0/

�
KL
; 8y;y0 2 Uq.nC/; (5.16)

leading to the following:

(1) The dual canonical basis of Uq.nC/ constructed from the canonical basis

'.Blow/D '�.Blow/ and the bilinear form (5.16), thus giving the basis .t �/ ı
'�.Bup/;

(2) The dual PBW generators e�
ˇk

WD eˇk
=.eˇk

; eˇk
/ D .t �/ ı '�.f �

ˇk
/ of

Uq.nC.w//;

(3) The dual integral forms .t �/ı'�.Uq.n�/
_
A
/D ¹y 2 Uq.nC/ j .x;Uq.nC/A/�

Aº of Uq.nC/ and .t �/ ı '�.Uq.n�.w//
_
A
/ of Uq.nC.w//.

For a reduced expression (5.8) of w 2W and k 2 Œ1;N �, fix elements tk ; t
�
k

2 H

such that (cf. (5.3))

t
ˇj

k
D q.ˇk ;ˇj / for j 2 Œ1; k� and

.t�k /
ˇl D q�.ˇk ;ˇl / for l 2 Œk;N �I

(5.17)

such tk , t�
k

exist but are not unique since the restriction of the form .�; �/ to Q is

degenerate when g is not finite-dimensional. Note that the algebras Uq.n�.w//
_
A

are

preserved by the automorphisms .tk �/, .t�
k

�/.

LEMMA 5.4

Let w 2W , let (5.8) be a reduced expression of w, and let tk 2 H satisfy (5.17).

(a) For k 2 Œ1;N �, the algebra Uq.n�.w�k//
_
A

is an Ore extension

Uq

�
n�.w�k/

�_

A
Š Uq

�
n�.w�k�1/

�_

A

�
f �

ˇk
I .tk �/; ık

�
;

where ık is the locally nilpotent .tk �/-derivation of Uq.n�.w�k�1//
_
A

given

by

ık.x/ WD f �
ˇk
x � q.ˇk ;wt x/xf �

ˇk
for homogeneous x 2 Uq

�
nC.w�k�1/

�_

A
:

The tk-eigenvalue of f �
ˇk

equals q2
ik

, which is not a root of unity.

(b) The algebra

Uq

�
n�.w/

�
Š Q.q/Œf �

ˇ1
�
�
f �

ˇ2
I .t2�/; ı2

�
� � �

�
f �

ˇN
I .tN �/; ıN

�
(5.18)

is a symmetric CGL extension. The algebra

Uq

�
n�.w/

�_

A
Š AŒf �

ˇ1
�
�
f �

ˇ2
I .t2�/; ı2

�
� � �

�
f �

ˇN
I .tN �/; ıN

�
(5.19)

with the generators f �
ˇ1
; : : : ; f �

ˇN
is an A-form of the CGL extension (5.18).
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(c) The interval subalgebras of Uq.n�.w//
_
A

are

�
Uq

�
n�.w/

�_

A

�
Œj;k�

D T �1

w�1
�j �1

�
Uq

�
n�.wŒj;k�/

�_

A

�
for 1� j � k �N: (5.20)

Proof

Part (a) follows from (5.13) and (5.14).

(b) The facts that Uq.n�.w// is a CGL extension and that Uq.n�.w//
_
A

with the

generators f �
ˇ1
; : : : ; f �

ˇN
is an A-form of it follow by iterating (a). Its symmetricity is

proved analogously to (a).

(c) Applying twice (5.13) and using (5.11), we obtain

�
Uq

�
n�.w/

�_

A

�
Œj;k�

D
M

mj ;:::;mk2Z�0

A � .f �
ˇj
/mj � � � .f �

ˇk
/mk

D T �1

w�1
�j �1

� M

mj ;:::;mk2Z�0

A �
�
.q�1

ij
� qij /fij

�mj � � �

�
�
.q�1

ik
� qik /T

�1

w�1
Œj;k�1�

fik

�mk

�

D T �1

w�1
�j �1

�
Uq

�
n�.wŒj;k�/

�_

A

�
;

which proves (5.20).

An important feature of the normalization of .�;�/KL is that there are no addi-

tional scalars in Lemma 5.4(c) due to the braid group action.

5.5. The quantum function algebra of g

Consider the full dual Q.q/-vector space Uq.g/
� which is canonically a unital algebra

using the coproduct and counit of Uq.g/. It is a Uq.g/-bimodule by

hx � c � y; zi WD hc; yzxi for c 2 Uq.g/
�; x; y; z 2 Uq.g/: (5.21)

For a right Uq.g/-module V , let V ' be the left Uq.g/-module structure on the vector

space V such that

x � v D v � '.x/ for v 2 V;x 2 Uq.g/:

For each � 2 PC, there exists a unique irreducible right Uq.g/-module V r.�/ such

that V r.�/' Š V.�/. Analogously to Oint.g/, one defines an O-type category of inte-

grable right Uq.g/-modules; it is denoted by Oint.g
op/.
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Kashiwara defined in [25, Section 7] the quantized coordinate ring Aq.g/ of the

Kac–Moody group of g as the unital subalgebra of Uq.g/
� consisting of those f 2

Uq.g/
� such that

Uq.g/ � f 2 Oint.g/ and f �Uq.g/ 2 Oint.g
op/:

Kashiwara also proved in [25, Proposition 7.2.2] a quantum version of the Peter–Weyl

theorem that there is an isomorphism of Uq.g/-bimodules

Aq.g/Š
M

�2PC

V r.�/˝ V.�/: (5.22)

For M 2 Oint.g/, v 2M , and � 2D'M , define the matrix coefficient

c�v 2 Uq.g/
� given by hc�v; xi WD h�; x � vi 8x 2 Uq.g/: (5.23)

It follows from (5.22) that

Aq.g/D
®
c�v

ˇ̌
M 2 Oint.g/; v 2M;� 2D'M

¯

D
M

�2PC

®
c�v

ˇ̌
v 2 V.�/; � 2D'V.�/

¯
:

This is the form in which quantum function algebras were defined in the finite-

dimensional case (see [32]). The algebra Aq.g/ is P �P -graded by

Aq.g/�;� D
®
c�v

ˇ̌
� 2 .V�/

� �D'V;v 2 V� ; V 2 Oint.g/
¯
; 8�;� 2 P: (5.24)

6. Homogeneous prime ideals of Aq.nC.w//

6.1. The algebras Aq.nC/ and Aq.nC.w//

It follows from the first identity in (5.5) and the nondegeneracy of the form that the

map

� W Uq.n�/! Uq.bC/
� given by

˝
�.x/; y

˛
D .x; y/RT ; 8x 2 Uq.n�/; y 2 Uq.bC/;

(6.1)

is an injective algebra homomorphism. Here Uq.bC/
� denotes the unital algebra

which is the full dual of the Hopf algebra Uq.bC/ over Q.q/.
Following Geiß, Leclerc, and Schröer in [9, Section 4.2], denote the subalgebra

Aq.nC/� Uq.bC/
� consisting of those f 2 Uq.bC/

� such that

(i) f .xqh/D f .x/ for all x 2 Uq.nC/, h 2 P_, and

(ii) f .x/D 0 for all x 2 Uq.nC/
 and 
 2QCnS for a finite subset S of QC.
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The properties

.xqh; yqh0
/RT D .x; y/RTq

�.h;h0/;
�
Uq.n�/�
 ;Uq.nC/ı

�
RT

D 0;

for x 2 Uq.n�/, y 2 Uq.nC/, h;h0 2 P_, 
 ¤ ı in QC (see [20, Equation 6.13(1)])

and the nondegeneracy of .�;�/RT imply that Aq.nC/ WD �.Uq.n�//. Thus,

� W Uq.n�/
Š�!Aq.nC/ (6.2)

is an algebra isomorphism. Following [9, Section 7.2], define Aq.nC.w// WD
�.Uq.n�.w///. Hence, � restricts to the algebra isomorphism

� W Uq

�
n�.w/

� Š�!Aq

�
nC.w/

�
: (6.3)

Using the isomorphism �, transport the isomorphisms Tw W Uq.n�/\T �1
w .Uq.n�//!

Tw.Uq.n�//\Uq.n�/ to such maps on Aq.nC/. Denote the integral forms over A

Aq.nC/A WD �
�
Uq.n�/

_
A

�
and Aq

�
nC.w/

�
A

WD �
�
Uq

�
n�.w/

�_

A

�

of Aq.nC/ and Aq.nC.w//. The algebra Aq.nC.w// is QC-graded by

Aq

�
nC.w/

�



WD �
�
Uq

�
n�.w/

�
�


�
; 8
 2QC:

In other words, the isomorphism (6.3) is not H -equivariant, but satisfies �.t � u/ D
t�1 � �.u/ for t 2 H , u 2 Uq.n�.w//.

Remark 6.1

By using the bilinear form (5.16), in [9] the algebra Aq.nC/ is identified with Uq.nC/

via the isomorphism

‰ W Uq.nC/
Š�!Aq.nC/;

˝
‰.y/;y0qh

˛
WD .y; y0/KL; 8y;y0 2 Uq.nC/; h 2 P_:

‰ fits in the commutative diagram

in terms of t 2 H given by (5.15). This and Remark 5.3 imply that Aq.nC/A and

�.Bup/ are precisely the integral form of Aq.nC/ and the dual canonical basis of

Aq.nC/ considered in [9]. However, the braid group action of [9] on Aq.nC/ is a

conjugate of ours by an element of the torus H and involves extra scalars compared

to our formulas.
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6.2. An algebra isomorphism

For � 2 PC, fix a highest weight vector v� of V.�/. For w 2W , define the extremal

weight vector

vw� WD T �1
w�1v� 2 V.�/w�:

Denote the associated Demazure modules

V ˙
w .�/ WDUq.b˙/vw� � V.�/:

Let

�w� 2 V.�/�w� �D'

�
V.�/

�
be such that h�w�; vw�i D 1:

For u;w 2W and � 2 PC, using the notation (5.23), define the quantum minors

�u�;w� WD c�u�;vw�
2Aq.g/;

which are equivalently given by [2, (9.10)] and [9, (3.5)]. It is well known that

T �1
w�1.v� ˝ v�/D T �1

w�1v� ˝ T �1
w�1v� (6.4)

for all �;� 2 PC. This implies that

�u�;w��u�;w� D�u.�C�/;w.�C�/; 8�;� 2 PC: (6.5)

Following Joseph [21, Section 9.1.6], denote the subalgebra

AC
q .g/ WD

M

�2PC

®
c�v�

ˇ̌
� 2D'

�
V.�/

�¯

of Aq.g/. By [8, Lemma 2.1(i)], the multiplicative set

Ew WD ¹�w�;� j � 2 PCº

is a denominator set in AC
q .g/. Denote the subsets

J˙
w WD

M

�2PC

®
c�v�

ˇ̌
� 2D'

�
V.�/

�
; � ? V ˙

w .�/
¯

�AC
q .g/:

By the proofs of Theorems 6.2 and 6.4 below, they are completely prime ideals of

AC
q .g/.

The P �P -grading (5.24) of Aq.g/ extends to a P �P -grading of the localiza-

tion AC
q .g/ŒE

�1
w �. For a graded subalgebra R�AC

q .g/ŒE
�1
w �, denote the subalgebra

R0 WD
M

�2P

R�;0;

noting that R0 is naturally P -graded. It is easy to show that every element of

.AC
q .g/ŒE

�1
w �/0 has the form c�;v�

��1
w�;� for some � 2 PC, � 2 D'.V .�//; in
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particular, this algebra is Q-graded. The following theorem was proved in the finite-

dimensional case in [40].

THEOREM 6.2

For all symmetrizable Kac–Moody algebras g and w 2W , there exists a Q-graded

surjective homomorphism  w W .AC
q .g/ŒE

�1
w �/0 !Aq.nC.w// such that

˝
 w.c�;v�

��1
w�;�/; yq

h
˛
D h�; yvw�i (6.6)

for � 2 PC, � 2D'.V .�//, y 2 Uq.bC/, h 2 P_. Its kernel equals .JC
w ŒE

�1
w �/0.

We will need the following lemma.

LEMMA 6.3 ([40, Lemma 3.2])

Let H be a Hopf algebra over K, and let A be an H -module algebra equipped with a

right H -action. For every algebra homomorphism � WA! K, the map  WA!H�,

given by

 .a/.h/D �.a � h/;

is an algebra homomorphism.

Proof of Theorem 6.2

Equation (6.4) implies that

�w WAC
q .g/! Q.q/ given by

�w.c�v�
/ WD h�; vw�i; 8� 2 PC; � 2D'

�
V.�/

�
;

is an algebra homomorphism. We apply the lemma to it and to the right action (5.21)

of Uq.bC/ on AC
q .g/. It shows that the map  w WAC

q .g/! Uq.bC/
�, given by

˝
 w.c�v�

/; y
˛
WD h�; yvw�i; 8� 2 PC; � 2D'

�
V.�/

�
; y 2 Uq.bC/;

is an algebra homomorphism. The element  w.�w�;�/ is a unit of Uq.bC/
� because

˝
 w.�w�;�/; yq

h
˛
D �.y/qhh;�i; 8y 2 Uq.nC/; h 2 P_:

Hence,  w extends to AC
q .g/ŒE

�1
w �,  w..A

C
q .g/ŒE

�1
w �/0/�Aq.nC/, and the restric-

tion of  w to .AC
q .g/ŒE

�1
w �/0 is given by (6.6). From now on we will denote by

 w this restriction. The formula (6.6) implies at once that the kernel of  w equals

.JC
w ŒE

�1
w �/0 and

˝
Im w ;Uq

�
nC.w/

�
y

˛
D 0; 8y 2

�
Uq.nC/\ T �1

w�1

�
Uq.nC/

��


; 
 2QCn¹0º:



INTEGRAL QUANTUM CLUSTER STRUCTURES 45

For each 
 2QC such that Uq.nC.w//
 ¤ 0, there exists � 2 PC such that the pair-

ing
�
Vw.�/
Cw�

�� �Uq

�
nC.w/

�



given by �; y 7! h�; yvw�i

is nondegenerate. This, the second equality in (5.10), and the fact that
�
Uq

�
n�.w/

�
;Uq

�
nC.w/

�
y

�
RT

D 0;

8y 2
�
Uq.nC/\ T �1

w�1

�
Uq.nC/

��


; 
 2QCn¹0º;

imply that Im w DAq.nC.w//.

THEOREM 6.4

In the setting of Theorem 6.2, there exists a (Q-graded) homomorphism  �
w W

.AC
q .g/ŒE

�1
w �/0 ! Uq.b�/

� such that

˝
 w.c�;v�

��1
w�;�/; yq

h
˛
D h�; y�vw�i

for � 2 PC, � 2 D'.V .�//, y 2 Uq.b�/, h 2 P_. Its kernel equals .J�
w ŒE

�1
w �/0.

Its image is contained in the image of the antiembedding Uq.nC.w//! .Uq.b�//
�

coming from the second component of the Rosso–Tanisaki form.

The proof of the theorem is analogous to that of Theorem 6.2.

6.3. The prime spectrum of Aq.nC.w//

The fact that Oint.g/ is a braided monoidal category gives rise to R-matrix commuta-

tion relations in Aq.g/ (see [21, Proposition 9.1.5]). Particular cases of those are the

relations

�w�;�x D q˙..w�;�/�.�;
//x�w�;� mod J˙
w ;

8x 2AC
q .g/�;
 ;� 2 PC; �; 
 2 P: (6.7)

For u 2W , � 2 PC, denote the unipotent quantum minors

Du�;w� WD w.�u�;��
�1
w�;�/ 2Aq

�
nC.w/

�
:

They are alternatively defined as the elements of Aq.nC.w//.u�w/� � Aq.n/ such

that

hDu�;w�; xq
hi D h�u�; xvw�i; 8x 2 UC

q .g/; h 2 P_; (6.8)

which implies that they are precisely the elements of Aq.nC.w// defined in [9, (5.3)–

(5.4)]. Set

W �w D ¹u 2W j u�wº:
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For u 2W �w , denote the ideals

Iw.u/ WD w

��
J�

u ŒE
�1
w �

�
0

�
of Aq

�
nC.w/

�
:

It follows from (6.5) and (6.7) that

Du�;w�Du�;w� D q.w�;u�/�.�;�/Du.�C�/;w.�C�/; 8�;� 2 PC;

and that

Du�;w�x D q..wCu/�;wt x/xDu�;w� mod Iw.u/;

8� 2 PC;homogeneous x 2Aq

�
nC.w/

�
:

We have Iw.1/D 0; thus,

D�;w�x D q..wC1/�;wt x/xD�;w�;

8� 2 PC;homogeneous x 2Aq

�
nC.w/

�
: (6.9)

Denote the multiplicative sets

Ew.u/ WD qZ¹Du�;w� j � 2 PCº in Aq

�
nC.w/

�
:

Analogously to (5.3), we use the QC-grading of Aq.nC.w// to construct an action of

the torus H on it.

THEOREM 6.5

For all symmetrizable Kac–Moody algebras g and w 2W , the following hold:

(a) The graded prime ideals of Aq.nC.w// are the ideals Iw.u/ for u 2 W �w .

The map u 7! Iw.u/ is an isomorphism of posets from W �w with the Bruhat

order to the set of graded prime ideals of Aq.nC.w// with the inclusion order.

(b) All prime ideals of Aq.nC.w// are completely prime and

SpecAq

�
nC.w/

�
D

G

u2W �w

SpecuAq

�
nC.w/

�
;

where SpecuAq.nC.w// WD ¹J 2 SpecAq.nC.w// j
T

t2H .t � J/D Iw.u/º.

The following hold for u 2W �w :

(c) Iw.u/ \ Ew.u/ D ∅ and the localization Ru;w D .Aq.nC.w//=Iw.u//�
ŒEw.u/

�1� is an H -simple domain.

(d) For u 2W �w , the center Z.Ru;w/ is a Laurent polynomial ring over Q.q/,
and there is a homeomorphism

�u W SpecZ.Ru;w/
Š�! SpecuAq

�
nC.w/

�
;



INTEGRAL QUANTUM CLUSTER STRUCTURES 47

where for J 2 SpecZ.Ru;w/, �u.J/ is the ideal of Aq.nC.w// containing

Iw.u/ such that �u.J/=Iw.u/D JRu;w \ .Aq.nC.w//=Iw.u//.

Denote for brevity the algebra

AC
w WD

�
AC

q .g/ŒE
�1
w �

�
0

�AC
q .g/ŒE

�1
w �:

It is Q-graded by

.AC
w/� WD

�
AC

q .g/ŒE
�1
w �

�
�;0

for � 2Q

in terms of the P � P -grading (5.24) of AC
q .g/ŒE

�1
w �. Define the commuting (inner)

automorphisms ��
w 2 Aut.AC

w/ for � 2 PC by

��
w .c/ WD��1

w�;�c�w�;�:

For each i 2 I , define the automorphism �i 2 Aut.AC
q .g// by �i .c/ WD c � qdi hi and

the locally nilpotent (right skew) �i -derivation @i of AC
q .g/ by @i .c/ WD c �fi in terms

of the second action in (5.21). It easy to check that �i@i�
�1
i D qi@i . Following Joseph

in [21, Section A.2.9], for c 2AC
q .g/n¹0º set

degi .c/ WD max
®
n 2 Z>0

ˇ̌
@n

i .c/¤ 0
¯

and

@�
w.c/ WD @

n1

i1
� � �@nN

iN
.c/¤ 0

where nN ; : : : ; n1 2 Z�0 are recursively defined by nk WD degik
.@

nkC1

ikC1
� � �@nN

iN
.c// in

terms of the reduced expression (5.8). Set @�
w.0/ WD 0.

Proof

We carry out the proof in four steps as follows:

Step 1: For all u 2W �w , the ideals Iw.u/ of Aq.nC.w// are completely prime.

The image of  w is an iterated skew polynomial extension and, thus, is a domain.

Similarly one shows that the image of  �
w is also a domain. Therefore, .J˙

w ŒE
�1
w �/0

are completely prime ideals ofAC
w . By direct extension and contraction arguments one

gets that J˙
u are completely prime ideals ofAC

q .g/ for u 2W and that the same is true

for the ideals .J˙
u ŒE

�1
w �/0 of AC

w . The remaining part of the proof of the statement

of Step 1 uses elements of Gorelik’s and Joseph’s proofs in [18] and [21] of related

facts in the finite-dimensional case. We prove the stronger fact that there exists an

embedding

Aq

�
nC.w/

�
=Iw.u/ ,!AC

w=
�
J�

w ŒE
�1
w �

�
0
;
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which we construct next. For a linear map � on a Q.q/-vector space V and t 2 Q.q/,
denote by E� .t/ the generalized t -eigenspace of � . Using the first action (5.21), one

shows that, for all i 2 I , w 2 W such that `.siw/ < `.w/ and � 2 P , � 2 PC, t 2
Q.q/,

if c 2 E�
�
w
.t/\AC

q .g/�;�; then @n
i .c/ 2 E�

�
si w
.tq.w�;�/�.si w�;�Cn˛i //;

where n WD degi .c/; the proof of this is analogous to [18, Lemma 6.3.1]. By induction

on the length of w, this implies that

AC
w D

M


2QC

.AC
w/Œ2
�; where

.AC
w/Œ2
� WD

M

�2Q

®
c 2 .AC

w/�
ˇ̌
c 2 E�

�
w
.q�.w�1�C2
;�//;8� 2 PC

¯
;

(6.10)

and that, for 
 2QC, � 2 PC,

c�;v�
��1

w�;� 2 .AC
w/Œ2
� )

�
@�

w�1.c�;v�
/
�
��1

�;� 2 .AC
1 /Œ2
�: (6.11)

The base of the induction for w D 1 follows from (6.7) applied to J�
1 D 0, which

gives that ��
1 .c/D q.�;�/c for all c 2 .AC

q .g/ŒE
�1
1 �/�;0, � 2 �QC; that is,

.AC
1 /Œ2
�D

M

�2PC

®
c�;v�

��1
�;�

ˇ̌
� 2

�
V.�/��


�� �D'

�
V.�/

�¯
;

8
 2QC: (6.12)

Furthermore, we have
�
JC

w ŒE
�1
w �

�
0

D
M


2QCn¹0º

AC
w Œ2
�: (6.13)

By (6.7), applied to JC
w , the right-hand side is contained in the left one. Because

of (6.10) it remains to show that .JC
w ŒE

�1
w �/0 \ AC

w Œ0� D 0. Assume the opposite,

that .JC
w ŒE

�1
w �/0 \ AC

w Œ0� ¤ 0. By putting elements over a common denominator,

each element of AC
w can be represented in the form c�;v�

��1
w�;�

for some � 2 PC, � 2
D'.V .�//. Choose a nonzero element of this form in .JC

w ŒE
�1
w �/0 \AC

w Œ0�. By (6.11),

.@�
w�1.c�;v�

//��1
�;�

2 .AC
1 /Œ0�. Hence, (6.12) implies that @�

w�1.c�;v�
/D rc��;v�

for

some r 2 Q.t/�. The definition of @�
w�1 gives that

h�; f n1

i1
� � �f nN

iN
v�i ¤ 0 for some n1; : : : ; nN 2 Z�0

in terms of the reduced expression (5.8). However, f n1

i1
� � �f nN

iN
v� 2 V C

w .�/ by the

standard presentation of Demazure modules (see [21, Lemma 4.4.3(v)]). This contra-

dicts with c�;v�
��1

�;�
2 .JC

w ŒE
�1
w �/0 and proves (6.13).
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Since ��
w 2 Aut.AC

w/, A
C
w Œ0� is a subalgebra of AC

w . Theorem 6.2, (6.10), and

(6.13) imply that

Aq

�
nC.w/

�
=Iw.u/ŠAC

w=
��
JC

w ŒE
�1
w �

�
0

C
�
J�

u ŒE
�1
w �

�
0

�

ŠAC
w Œ0�=

�
AC

w Œ0�\
�
J�

u ŒE
�1
w �

�
0

�
,!AC

w=
�
J�

u ŒE
�1
w �

�
0
:

Step 2: For all u 2 W �w , Iw.u/ \ Ew.u/ D ∅. Denote by Gmin the minimal

Kac–Moody group associated to g (see [30, Section 7.4] for details). Let H be the

Cartan subgroup of Gmin, and let Nmin
C and N� be the subgroups of Gmin generated

by its one-parameter unipotent subgroups for positive and negative roots, respectively.

Denote by Bmin
C and B� the associated Borel subgroups of Gmin. Denote by NC.w/

the unipotent subgroup of Nmin
C corresponding to nC.w/. By [27, Theorem 4.44], we

have the specialization isomorphism

Aq

�
nC.w/

�
A

˝C Š C
�
NC.w/

�
(6.14)

for the map A ! C given by q 7! 1. By [39, Proposition 9.7], Iw.u/\Aq.nC.w//A
is an A-form of Iw.u/. The definitions of J�

u and Iw.u/ in terms of Demazure mod-

ules imply that, under the specialization isomorphism (6.14), Iw.u/ \ Aq.nC.w//A
is mapped to functions that vanish on the nonempty set

N.w/\ B�uBmin
C w�1; (6.15)

which is isomorphic to the open Richardson variety in the flag scheme of Gmin cor-

responding to the pair u � w 2 W . Let � 2 PC. Analogously to the quantum sit-

uation, using special representatives of w 2 W in the normalizer of H in Gmin,

one defines the generalized minor �u�;w�, which is a strongly regular function on

Gmin. It is well known that, under the specialization isomorphism (6.14), the element

Du�;w� 2Ew.u/ corresponds to the restriction of �u�;w� to Nmin
C . This function is

nowhere-vanishing on the set (6.15). Therefore, the specializations Iw.u/ and Ew.u/

are disjoint, so Iw.u/\Ew.u/D ∅.

For the next step, we denote for brevity

c� WD w.c�;v�
��1

w�;�/ 2Aq

�
nC.w/

�
for � 2D'

�
V.�/

�
; � 2 PC:

For J 2 SpecAq.nC.w// and � 2 PC, denote

CJ.�/D
®
� 2 P

ˇ̌
9� 2

�
V.�/�

�� �D'

�
V.�/

�
such that c� … J

¯
:

Since c�w�
D 1 … J, w� 2 CJ.�/. Denote by MJ.�/ the set of maximal elements of

CJ.�/ with respect to the partial order � � �0 if �0 � � 2QC.

Step 3: For every J 2 SpecAq.nC.w//, there exists a unique u 2 W �w such

that MJ.�/ D ¹u�º for all � 2 PC. This step is similar to [21, Proposition 9.3.8].



50 GOODEARL and YAKIMOV

Let � 2 PC, and let � 2MJ.�/, so there exists � 2 .V .�/�/� such that c� … J. The

R-matrix commutation relations in Aq.g/ (see, e.g., [21, Proposition 9.1.5]) and the

homomorphism from Theorem 6.2 imply that

c�x � q�.�Cw�;
/xc� mod J; 8x 2Aq

�
nC.w/

�


; 
 2QC:

Take any other pair �0 2 PCC and �0 2MJ.�
0/ going with � 0 2 .V .�0/�/�0 such that

c�0 … J. Applying the last relation twice gives

c�c�0 � q�.�Cw�;�0�w�0/�.��w�;�0Cw�0/c�0c� mod J:

Since Aq.nC.w//=J is a prime ideal and the images of c� and c�0 are nonzero normal

elements, they are regular. Therefore, the power of q above must equal 0, and thus,

.�;�0/� .�; �0/D 0: (6.16)

It follows from [21, Lemma A.1.17] that � D u�.�/ for some u� 2 W ; that is,

MJ.�/ D ¹u��º. (Note that u� is nonunique for � 2 PCnPCC.) It follows from

the inclusion relations for Demazure modules (see [21, Proposition 4.4.5]) and the

definition of JC
w that u� 2W �w for � 2 PCC. Applying (6.16) one more time gives

that u� D u�0 for �;�0 2 PCC and that, for � 2 PC, �0 2 PCC, the element u� can

be chosen so that u� D u�0 .

Step 4: Completion of proof. By Step 3,

SpecAq

�
nC.w/

�
D

G

u2W �w

Spec0
uAq

�
nC.w/

�
; where

Spec0
uAq

�
nC.w/

�
WD

®
J 2 SpecAq

�
nC.w/

� ˇ̌
MJ.�/D ¹u�º;8� 2 PC

¯
:

(6.17)

Steps 1, 2, and 3 and the fact that dimV.�/w� D 1 imply the following:

(*) For all u 2 W �w , we have Iw.u/ 2 Spec0
uAq.nC.w//, all ideals in

Spec0
uAq.nC.w// contain Iw.u/, and the stratum Spec0

uAq.nC.w// con-

tains no other QC-graded prime ideals.

Therefore, ¹Iu.w/ j u 2 W �wº exhaust all QC-graded prime ideals of

AC
q .nC.w//. For u1 � u2 in W �w , we have Iu1

.w/ � Iu2
.w/ because V �

u1
.�/ �

V �
u2
.�/. Step 2 and the inclusion relations between Demazure modules (see [21,

Proposition 4.4.5]) imply that there are no other inclusions between these ideals. This

proves part (a).

All prime ideals of Aq.nC.w// are completely prime by [12, Theorem 2.3]. It

follows from (*) and the definition of MJ.�/ that the stratum SpecuAq.nC.w//,

defined in part (b) of the theorem, coincides with Spec0
uAq.nC.w// and equals

®
J 2 SpecAq

�
nC.w/

� ˇ̌
J � Iw.u/;J \Ew.u/D ∅

¯
:
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The second statement in part (b) follows from (6.17) or, equivalently, from [3, Sec-

tion II.2.1].

The properties (*) imply that the ring .Aq.nC.w//=Iu.w//ŒEu.w/
�1� is H -

simple, since the stratum Spec0
uAq.nC.w// has a unique QC-graded ideal. This and

Step 2 prove part (c). Part (d) now follows from [3, Lemma II.3.7, Proposition II.3.8,

and Theorem II.6.4].

6.4. The homogeneous prime elements of Aq.nC.w//

Denote the support of w as

S.w/ WD ¹i 2 I j si �wº D
®
i 2 I

ˇ̌
i D ik for some k 2 Œ1;N �

¯
;

where the second formula is in terms of a reduced expression (5.8).

COROLLARY 6.6

The homogeneous prime elements of Aq.nC.w// up to scalar multiples are

D$i ;w$i
for i 2 S.w/: (6.18)

Proof

Theorem 6.5(i) implies that the height one QC-graded prime ideals of Aq.nC.w//

are Iw.si / for i 2 S.w/. Since Aq.nC.w// Š Uq.n�.w// is a CGL extension

(Lemma 5.4), it is an H -UFD; thus, its height one QC-graded prime ideals are

principal, and their generators are precisely the homogeneous prime elements

of Aq.nC.w//. Applying Theorem 6.5(c) for u D 1 and taking into account that

Iw.1/ D 0 gives that Iw.si / \ Ew.1/ ¤ ∅ for i 2 S.w/. However, Ew.1/ consists

of monomials in the elements (6.18). Hence, each of the (completely prime) ideals

Iw.si /, i 2 S.w/, is generated by one of the elements in (6.18). The two sets have

the same number of elements and D$i ;w$i
2 Iw.si /. Hence,

Iw.si /DD$i ;w$i
Aq

�
nC.w/

�
; 8i 2 S.w/;

and the set (6.18) exhausts all homogeneous prime elements of Aq.nC.w// up to

scalar multiples.

7. Integral cluster structures on Aq.nC.w//

7.1. Statements of main results

Recall the notation (1.1). Throughout the section, g denotes an arbitrary symmetriz-

able Kac–Moody algebra, and w denotes a Weyl group element. We fix a reduced

expression (5.8). Set
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Uq

�
n�.w/

�_

A1=2 WDUq

�
n�.w/

�_

A
˝A A1=2;

Aq

�
nC.w/

�
A1=2 WDAq

�
nC.w/

�
A

˝A A1=2;

and extend � to an algebra isomorphism

� W Uq

�
n�.w/

�_

A1=2

Š�!Aq

�
nC.w/

�
A1=2 : (7.1)

For k 2 Œ1;N �, denote

xk WD q
1=2
ik
�.f �

ˇk
/D q

1=2
ik
.q�1

ik
� qik /�.fˇk

/ 2Aq

�
nC.w/

�
A1=2 ; (7.2)

and recall (5.11). For j < k 2 Œ1;N �, set

aŒj; k� WD


.wŒj;k� � 1/$ik



2
=4 2 Z=2: (7.3)

By applying � to (5.18) and extending the scalars from Q.q/ to Q.q1=2/, we

see that Aq.nC.w//˝Q.q/ Q.q1=2/ is a symmetric CGL extension on the generators

�.f �
ˇ1
/; : : : ; �.f �

ˇN
/. It follows from Lemma 5.4(a) that the scalars �l , ��

k
of the CGL

extension are given by

�k D q2
ik
; ��

k D q�2
ik
; 8k 2 Œ1;N �: (7.4)

Lemma 5.4(b) implies that Aq.nC.w//A1=2 with the generators x1; : : : ; xN is an

A1=2-form of the symmetric CGL extension Aq.nC.w//˝Q.q/ Q.q1=2/. It follows

from (5.14) that the scalars

�kj WD q.ˇk ;ˇj /=2; 81� j < k �N;

satisfy Condition (A) in Section 3.4. Lemma 5.4(c) implies that the interval subalge-

bras of Aq.nC.w//A1=2 are

�
Aq

�
nC.w/

�
A1=2

�
Œj;k�

D T �1

w�1
�j �1

�
Aq

�
nC.wŒj;k�/

�
A1=2

�
; 8j � k in Œ1;N �: (7.5)

Our first main theorem on quantum Schubert cells is the following.

THEOREM 7.1

Let g be a symmetrizable Kac–Moody algebra, and let w 2W with a reduced expres-

sion (5.8). Consider the A1=2-form Aq.nC.w//A1=2 of the symmetric CGL extension

Aq.nC.w//˝Q.q/ Q.q1=2/ with the generators x1; : : : ; xN given by (7.2).

(a) The sequence of prime elements from Theorem 3.2 of Aq.nC.w// ˝Q.q/

Q.q1=2/ with respect to the generators x1; : : : ; xN is

yk D q
.O�.k/C1/=2
ik

D$ik
;w�k$ik

; k D 1; : : : ;N:
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The corresponding sequence of normalized prime elements is

yk D qaŒ1;k�D$ik
;w�k$ik

; k D 1; : : : ;N:

Moreover, y1; : : : ; yN ; y1; : : : ; yN 2Aq.nC.w//A1=2 .

(b) The �-function � W Œ1;N �! Z of Aq.nC.w//˝Q.q/ Q.q1=2/ from Theorem 3.2

is given by

�.k/ WD ik; 8k 2 Œ1;N �: (7.6)

(c) The normalized interval prime elements of Aq.nC.w//A1=2 are

yŒj;k� D qaŒj;k�Dw�j �1$ik
;w�k$ik

D qaŒj;k�Tw�k�1
D$ik

;wŒj;k�$ik

for all j < k in Œ1;N � such that ij D ik .

In the rest of this section we will use the notation (3.4) for the predecessor and

successor functions p and s and the notation (3.5) for the functions O˙ associated to

the �-function (7.6). Equation (6.9) and Theorem 7.1 imply that, for k > j ,

D$ik
;w�k$ik

D$ij
;w�j $ij

D q
�..w�kC1/$ik

;.w�j �1/$ij
/
D$ij

;w�j $ij
D$ik

;w�k$ik
;

and thus there is a unique toric frame Mw W ZN ! Fract.Aq.nC.w//
_
A1=2/ with clus-

ter variables

Mw.ek/D qaŒ1;k�D$ik
;w�k$ik

; 8k 2 Œ1;N �

and matrix rw with

.rw/kj WD q
�..w�kC1/$ik

;.w�j �1/$ij
/=2
; 81� j < k �N: (7.7)

We will use a quantum cluster algebra in which the exchangeable variables are

ex.w/ WD
®
k 2 Œ1;N �

ˇ̌
s.k/¤ 1

¯
: (7.8)

The number of elements of this set is N � jS.w/j. We will index the columns of the

exchange matrices of this quantum cluster algebra (of sizes N � .N � jS.w/j/) by

the elements of the set ex.w/.

PROPOSITION 7.2

The matrix eBw of size N � .N � jS.w/j/ with entries
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.eBw/jk D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

1 if j D p.k/;

�1 if j D s.k/;

aij ik if j < k < s.j / < s.k/;

�aij ik if k < j < s.k/ < s.j /;

0 otherwise,

is compatible with rw , and more precisely, its columns .eBw/k , k 2 ex.w/, satisfy

�rw

�
.eBw/k; el

�
D q

�ıkl

ik
D .��

k/
ıkl =2 and

X

j

.eBw/jk.w�j � 1/$ij D 0
(7.9)

for all k 2 ex.w/, l 2 Œ1;N � (recall (7.4)).

The next theorem relates the integral quantum cluster algebra and upper quantum

cluster algebra with initial seed .Mw ; eBw/ (both defined over A1=2) to the algebra

Aq.nC.w//A1=2 .

THEOREM 7.3

In the setting of Theorem 7.1 the following hold:

(a) Aq.nC.w//A1=2 D A.Mw ; eBw ;∅/A1=2 D U.Mw ; eBw ;∅/A1=2 .

(b) For each � 2„N � SN , the quantum cluster algebra A.Mw ; eBw ;∅/A1=2 has

a seed with cluster variables

Mw
� .el/D qaŒj;k�Dw�j �1$ik

;w�k$ik
D qaŒj;k�Tw�k�1

D$ik
;wŒj;k�$ik

;

where j and k are the minimum and maximum of ¹m 2 �.Œ1; l�/ j im D i�.l/º.

The initial seed .Mw ; eBw/ equals the seed corresponding to � D idN 2„N .

(c) The seeds in (b) are linked by sequences of one-step mutations of the following

kind: Suppose that �;� 0 2 „N are such that � 0 D .�.k/; �.k C 1// ı � D
� ı .k; kC 1/ for some k 2 Œ1;N � 1�. If �.�.k//¤ �.�.kC 1//, then Mw

� 0 D
Mw

� � .k; k C 1/ in terms of the action (3.29). If �.�.k//D �.�.k C 1//, then

Mw
� 0 D �k.M

w
� /.

We illustrate Theorem 7.3 and the constructions in Sections 5.4, 6.1, and 7.1 with

two examples of quantum unipotent cells in nonsymmetric Kac–Moody algebras g: a

finite-dimensional one and an affine one.

Example 7.4

Let g be of type B2, and let w be the longest Weyl group element s1s2s1s2. The

corresponding root sequence (5.9) is
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ˇ1 D ˛1; ˇ2 D s1.˛2/D ˛1 C ˛2; ˇ3 D s1s2.˛1/D ˛1 C 2˛2; and

ˇ4 D s1s2s1.˛2/D ˛2:

The root vectors fˇk
, 1� k � 4, satisfy

fˇ2
fˇ1

D q2fˇ1
fˇ2

; fˇ3
fˇ1

D fˇ1
fˇ3

C 1� q�2

q�1 C q
f 2

ˇ2
;

fˇ3
fˇ2

D q2fˇ2
fˇ3

; fˇ4
fˇ1

D q�2fˇ1
fˇ4

� q�2fˇ2
;

fˇ4
fˇ2

D fˇ2
fˇ4

� .q�1 C q/fˇ3
; fˇ4

fˇ3
D q2fˇ3

fˇ4
:

Note that the scalar in the right-hand side of the second equation is not in A. The CGL

extension Uq.n�.w//D Uq.n�/ is the C.q/-algebra with these generators and rela-

tions. Its �-function from Theorem 3.2 is given by �.1/D �.3/D 1, �.2/D �.4/D 2.

The generators of the integral form Uq.n�/
_
A

of the CGL extension Uq.n�/ (cf. (5.11)

and Lemma 5.4(b)) are

f �
ˇk

D ckfˇk
; where c1 D c3 D q�2 � q2; c2 D c4 D q�1 � q:

They satisfy

f �
ˇ2
f �

ˇ1
D q2fˇ1

fˇ2
; f �

ˇ3
f �

ˇ1
D f �

ˇ1
f �

ˇ3
� q�1.q�2 � q2/.f �

ˇ2
/2;

f �
ˇ3
f �

ˇ2
D q2f �

ˇ2
f �

ˇ3
; f �

ˇ4
f �

ˇ1
D q�2f �

ˇ1
f �

ˇ4
� q�2.q�2 � q2/f �

ˇ2
;

f �
ˇ4
f �

ˇ2
D f �

ˇ2
f �

ˇ4
� .q�1 � q/f �

ˇ3
; f �

ˇ4
f �

ˇ3
D q2f �

ˇ3
f �

ˇ4
:

Recall the isomorphism (7.1). The rescaled generators of Aq.nC.w//A1=2 D
Aq.nC/A1=2 are

xk D c0
k�.f

�
ˇk
/; where c0

1 D c0
3 D q; c0

2 D c0
4 D q1=2:

The algebra Aq.nC/A1=2 is the A1=2-algebra with generators x1; : : : ; x4 and relations

x2x1 D q2x1x2; x3x1 D x1x3 � .q�2 � q2/x2
2 ; x3x2 D q2x2x3;

x4x1 D q�2x1x4 � q�1.q�2 � q2/x2; x4x2 D x2x4 � .q�1 � q/x3;

x4x3 D q2x3x4:

By Theorem 7.3, Aq.nC/A1=2 has the structure of a quantum cluster algebra over

A1=2 with initial cluster variables

y1 D x1; y2 D x2; y3 D x1x3 � q�2x2
2 ; y4 D x2x4 � q�1x3

(where the third and fourth variables are frozen) and mutation matrix
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eB D

2
664

0 �1
2 0

�1 1

0 �1

3
775 :

Example 7.5

Let g be the twisted affine Kac–Moody algebra of type A.2/
2 , whose Dynkin diagram

is

Following the standard convention from [22, Chapters 6 and 8], we label its simple

roots by ¹0; 1º instead of ¹1; 2º. We have .˛0; ˛0/D 2, .˛1; ˛1/D 8, d0 D 1, d1 D 4,

q0 D q, and q1 D q4. Consider the Weyl group element w D s0s1s0s1s0. The corre-

sponding root sequence (5.9) is

ˇ1 D ˛0; ˇ2 D 4˛0 C ˛1; ˇ3 D 3˛0 C ˛1;

ˇ4 D 8˛0 C 3˛1; ˇ5 D 5˛0 C 2˛1:

The root vectors fˇk
, 1� k � 5, given by (5.9), satisfy the relations

z2z1 D q4z1z2; z3z1 D q2z1z3 C az2; z3z2 D q4z2z3;

z4z1 D q4z1z4 C ab

q4 � q2
z3

3 ; z4z2 D q8z2z4 C bz4
3 ; z4z3 D q4z3z4;

z5z1 D q2z1z5 C abc.q6 � 1/
q2.q2 � 1/2.q8 � 1/z

2
3 ; z5z2 D q4z2z5 C bc

q4 � q2
z3

3 ;

z5z3 D q2z3z5 C cz4; z5z4 D q4z4z5;

(7.10)

with a D c D �q2Œ4�q and b D �q2.q�1 � q/3=Œ4�q , where the q-integers Œn�q D
.qn � q�n/=.q � q�1/. Note that b … A. The CGL extension Uq.n�.w// is the C.q/-
algebra with these generators and relations. Its �-function from Theorem 3.2 is given

by �.1/ D �.3/ D �.5/ D 0, �.2/ D �.4/ D 1. The generators of the integral form

Uq.n�.w//
_
A

of the CGL extension Uq.n�.w// (cf. (5.11) and Lemma 5.4(b)) are

f �
ˇk

D ckfˇk
; where c1 D c3 D c5 D q�1 � q; c2 D c4 D q�4 � q4:

They satisfy the relations (7.10) for a D c D q.q2 � 1/; b D q�2.q8 � 1/ 2 A, and

furthermore,Uq.n�.w//
_
A

is the A-algebra with these generators and relations. Recall

the isomorphism (7.1). The rescaled generators of Aq.nC.w//A1=2 are

xk D c0
k�.f

�
ˇk
/; where c0

1 D c0
3 D c0

5 D q1=2; c0
2 D c0

4 D q2:
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They satisfy the relations (7.10) for a D c D q2 � 1; b D q8 � 1 2 A � A1=2, and

furthermore, Aq.nC/A1=2 is the A1=2-algebra with these generators and relations. By

Theorem 7.3, Aq.nC/A1=2 has the structure of a quantum cluster algebra over A1=2

with initial cluster variables

y1 D x1; y2 D x2; y3 D q
�
x1x3 C a

q2 � q4
x2

�
D qx1x3 � q�1x2;

y4 D q4
�
x2x4 C b

q8 � q16
x4

3

�
D q4x2x4 � q�4x4

3 ;

y5 D q3
�
x1x3x5 C a

q2 � q4
x2x5 C abc.1� q6/

q6.q2 � 1/3.q8 � 1/x
3
3 C c

q2 � q4
x1x4

�

D q3x1x3x5 � qx2x5 � q�1Œ3�qx
3
3 � qx1x4

(where the fourth and fifth variables are frozen) and mutation matrix

eB D

2
666664

0 �4 1

1 0 �1
�1 4 0

0 �1 1

0 0 �1

3
777775
:

7.2. Proof of Theorem 7.1

If u1; u2 2W are such that `.u1u2/D `.u1/C`.u2/, then we have the decomposition

Aq

�
nC.u1u2/

�
A

DAq

�
nC.u1/

�
A
T �1

u�1
1

�
Aq

�
nC.u2/

��
A
:

This follows by applying the isomorphism � to the dual PBW basis (5.13) of

Uq.n�.u1u2//
_
A

. The next lemma shows the equality of the unipotent quantum

minors in Theorem 7.1(c) and that they belong to the correct integral forms.

LEMMA 7.6

If u1; u2 2W are such that `.u1u2/D `.u1/C `.u2/, then

Du1�;u1u2� D T �1

u�1
1

D�;u2� 2 T �1

u�1
1

Aq

�
nC.u2/

�
A

�Aq

�
nC.u1u2/

�
; 8� 2 PC: (7.11)

Proof

It was proved in [9, Proposition 6.3] that ‰�1.D�;u2�/ 2 t � '�.Bup/ in the notation

of Remarks 5.3 and 6.1. Theorem 5.2 and the commutative diagram in Remark 6.1

imply that D�;u2� 2 �.Bup/�Aq.nC.u1//A.
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The equality (7.11) can be derived from [9, Proposition 7.1] and Remark 6.1, but

it also has a direct proof as follows. For all yk 2 Uq.nC.uk//, k D 1; 2, and h 2 P_,

we have
˝
Du1�;u1u2�; y1T

�1

u�1
1

.y2/q
h
˛

D
˝
�u1�; y1T

�1

u�1
1

.y2/vu1u2�

˛
D

˝
��; Tu�1

1
.y1/y2vu2�

˛

D h��; y2vu2�i�.y1/D hD�;u2�; y2i�.y1/D
�
��1.D�;u2�/; y2

�
RT
�.y1/

D
�
T �1

u�1
1

��1.D�;u2�/; T
�1

u�1
1

y2

�
RT
�.y1/D

˝
T �1

u�1
1

D�;u2�; y1T
�1

u�1
1

.y2/q
h
˛
;

where the sixth equality uses (5.12).

Proof of Theorem 7.1

We have

eˇk
vw�k�1$ik

D T �1

w�1
�k�1

.eikT
�1
ik
v$ik

/D T �1

w�1
�k�1

v$ik
D vw�p.k/$ik

and em
ˇk
vw�k�1$i

D 0 for m> 1. Hence,

hD$ik
;w�k$ik

; y1e
m
ˇk

i D ım1hD$ik
;w�p.k/$ik

; y1i

for all y1 2 Uq.nC.w�k�1//, m 2 Z�0. It follows from (5.12) and (7.5) that in

Aq.nC.w�k//A D .Aq.nC.w//A1=2/Œ1;k� �Aq.nC.w//A we have

D$ik
;w�k$ik

�D$ik
;w�p.k/$ik

�.f �
ˇk
/ mod Aq

�
nC.w�k�1/

�
A
: (7.12)

Therefore,

q
.O�.k/C1/=2
ik

D$ik
;w�k$ik

� q
.O�.p.k//C1/=2
ik

D$ik
;w�p.k/$ik

xk mod Aq

�
nC.w�k�1/

�
A1=2

for all k 2 Œ1;N �. Part (b) and the first statement in part (a) now follow from Corol-

lary 6.6.

We have w�k$ik Dw�k�1.$ik � ˛ik /Dw�p.k/$ik � ˇk . Iterating this gives

aŒ1; k�D kw�k$ik �$ik k2=4D kˇpO�.k/.k/ C � � � C ˇkk2

D
�
O�.k/C 1

�
k˛ik k2=4C

X

0�l�m�O�.k/

.ˇpl .k/; ˇpm.k//=2:

Therefore,
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yk D
� Y

0�l�m�O�.k/

��1
pl .k/pm.k/

�
yk

D
� Y

0�l�m�O�.k/

q
.ˇ

pl .k/
;ˇpm.k//=2

�
q.O�.k/C1/k˛ik

k2=4D$ik
;w�k

D qaŒ1;k�D$ik
;w�k

;

which proves the second statement in part (a).

It follows from Lemma 7.6 that y1; : : : ; yN ; y1; : : : ; yN 2 Aq.nC.w//A1=2 . Part

(c) follows from (7.5) and part (b).

7.3. Proof of Theorem 7.3

Proof of Proposition 7.2

Extend eBw to an .N Cr/� .N �S.w//matrix whose rows are indexed by Œ�r;�1�t
Œ1;N � and columns by ex.w/ by setting

.eBw/�i;k WD
´
1 if ik D i and p.k/D �1;

0 otherwise,

for i 2 Œ1; r�, k 2 ex.w/.

Denote for simplicity bjk WD .eB/jk . We apply [2, Theorem 8.3 and Section 10.1]

to the double word 1; : : : ; r;�i1; : : : ; iN , which gives

NX

j D1

bjk sign.j � l/
�
.w�j$ij ;w�l$il /� .$ij ;$il /

�

C
rX

iD1

b�i;k

�
.w�j � 1/$ij ;$i

�
D 2ıkldk (7.13)

for all k 2 ex.w/, l 2 Œ1;N �. The graded nature of the seed corresponding to the

double word (cf. [2, Definition 6.5]) means that

NX

j D1

bjkw�j$ij C
rX

iD1

b�i;k$i D 0; (7.14)

NX

j D1

bjk$ij C
rX

iD1

b�i;k$i D 0 (7.15)

for all k 2 ex.w/. Subtracting (7.14) from (7.13) gives the second identity in (7.9).

The linear combination (7.13) C .(7.14);$il /� .(7.15);w�l$il / yields the identity
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NX

j D1

bjk sign.j � l/
�
.w�j C 1/$ij ; .w�l � 1/$il

�
D 2ıkldk

for all k 2 ex.w/, l 2 Œ1;N �, which is precisely the first identity in (7.9) in view of

(7.7).

PROPOSITION 7.7

In the setting of Theorem 7.1, the A1=2-form Aq.nC.w//A1=2 of the symmetric CGL

extension Aq.nC.w//˝Q.q/ Q.q1=2/ with the generators x1; : : : ; xN from (7.2) satis-

fies all conditions in Theorem 4.8.

Proof

The scalars �kl are integral powers of q1=2 and thus are units of A1=2. Obviously

Condition (A) is satisfied for the base field K D Q.q1=2/. Recall from Lemma 5.4(a)

and (7.4) that

�k D q2
ik

D q2dik D qk˛ik
k2

for k 2 Œ1;N �

and from Theorem 7.1(b) that �.k/ D ik for k 2 Œ1;N �. Therefore, Condition (B)

is satisfied for the positive integers ¹di j i 2 I º from (5.1). The homogenous prime

elements y1; : : : ; yN belong to Aq.nC.w//A1=2 by Theorem 7.1(a).

It remains to show that the condition (3.28) holds. Because of (7.5) and

Lemma 7.6 it is sufficient to consider the case when i D 1 and s.i/ D N . Since

the �-function of the CGL extension Aq.nC.w// is given by Theorem 7.1(b), this

means that i1 D iN D i and ik ¤ i for k 2 Œ2;N �1�. It is well known that for g D sl2

and l � n 2 Z>0

e
.l/
1 � T �1

1 vn$1
D ılnvn$1

:

For k 2 Œ2;N � 1�, T �1
i v$i

is a highest weight vector for the copy of Uq.sl2/ inside

Uq.g/ generated by eik , fik , hik of highest weight hsi$i ; hik i D �aik i$ik . Hence,

for l � �aik i ,

e
.l/

ˇk
� T �1

w�1
�k

T �1
i v$i

D T �1

w�1
�k�1

.e
.l/
ik

� T �1
ik
T �1

i v$i
/D ıl;�aiki

T �1
i v$i

:

Set a WD .�ai1i ; : : : ;�aiN �2i / 2 ZN �2
�0 . Iterating this and using (7.12) and the identity

T �2
i v$i

D �q�1
i v$i

gives

hD$i ;w$i
� q�1

i x1xN ; e
.l2/

ˇ2
� � � e.lN �1/

ˇN �1
i D

´
�q�1

i if aD .l2; : : : ; lN �1/;

0 if a� .l2; : : : ; lN �1/;
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with respect to the reverse lexicographic order (3.9). It follows from (5.12) and (7.2)

that

lt.D$i ;w$i
� q�1

i x1xN /D �q�1
i

�N �1Y

kD2

q
�.a2

ik i
Caiki C1/=2

ik

�
x

�ai2i

2 � � �x�aiN �1i

N �1 :

By a straightforward calculation with powers of q, one obtains from this that the

condition (3.28) is satisfied.

Theorem 7.3 follows by combining Theorems 4.8 and 7.1 and Propositions 7.2

and 7.7.

Acknowledgments. We would like to thank Bernhard Keller for valuable suggestions

and Trey Trampel for helpful comments on the first version of the manuscript. We

would also like to thank one of the anonymous referees whose suggestions were very

helpful to us in improving the exposition and in correcting a mistake in one of the

examples.

Goodearl’s work was partially supported by National Science Foundation (NSF)

grant DMS-1601184. Yakimov’s work was partially supported by NSF grants DMS-

1601862 and DMS-1901830 and by Bulgarian Science Fund grant DN02/05.

References

[1] A. BERENSTEIN and J. GREENSTEIN, Double canonical bases, Adv. Math. 316 (2017),

381–468. MR 3672910. DOI 10.1016/j.aim.2017.06.005. (37)

[2] A. BERENSTEIN and A. ZELEVINSKY, Quantum cluster algebras, Adv. Math. 195

(2005), no. 2, 405–455. MR 2146350. DOI 10.1016/j.aim.2004.08.003. (2, 6, 7,

8, 43, 59)

[3] K. A. BROWN and K. R. GOODEARL, Lectures on Algebraic Quantum Groups,

Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser, Basel, 2002.

MR 1898492. DOI 10.1007/978-3-0348-8205-7. (51)

[4] S. CAUTIS and H. WILLIAMS, Cluster theory of the coherent Satake category, J. Amer.

Math. Soc. 32 (2019), no. 3, 709–778. MR 3981987. DOI 10.1090/jams/918. (5)

[5] C. DE CONCINI, V. G. KAC, and C. PROCESI, “Some quantum analogues of solvable Lie

groups” in Geometry and Analysis (Bombay, 1992), Tata Inst. Fund. Res.,

Bombay, 1995, 41–65. MR 1351503. (4, 37)

[6] S. FOMIN, L. WILLIAMS, and A. ZELEVINSKY, Introduction to cluster algebras:

Chapters 1–3, preprint, arXiv:1608.05735v3 [math.CO]. (7)

[7] S. FOMIN and A. ZELEVINSKY, Cluster algebras, I: Foundations, J. Amer. Math. Soc.

15 (2002), no. 2, 497–529. MR 1887642.

DOI 10.1090/S0894-0347-01-00385-X. (2, 6)



62 GOODEARL and YAKIMOV

[8] S. FRYER and M. YAKIMOV, Separating Ore sets for prime ideals of quantum algebras,

Bull. London Math. Soc. 46 (2017), no. 2, 202–215. MR 3656289.

DOI 10.1112/blms.12006. (43)

[9] C. GEISS, B. LECLERC, and J. SCHRÖER, Cluster structures on quantum coordinate

rings, Selecta Math. (N.S.) 19 (2013), no. 2, 337–397. MR 3090232.

DOI 10.1007/s00029-012-0099-x. (4, 37, 38, 41, 42, 43, 45, 57, 58)

[10] , Quantum cluster algebras and their specializations, J. Algebra 558 (2020),

411–422. MR 4102114. DOI 10.1016/j.jalgebra.2019.04.033. (2, 5)

[11] K. R. GOODEARL, Prime ideals in skew polynomial rings and quantized Weyl algebras,

J. Algebra 150 (1992), no. 2, 324–377. MR 1176901.

DOI 10.1016/S0021-8693(05)80036-5. (22)

[12] K. R. GOODEARL and E. S. LETZTER, Prime factor algebras of the coordinate ring of

quantum matrices, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1017–1025.

MR 1211579. DOI 10.2307/2161210. (50)

[13] K. R. GOODEARL and M. T. YAKIMOV, Quantum cluster algebras and quantum

nilpotent algebras, Proc. Natl. Acad. Sci. USA 111 (2014), no. 27, 9696–9703.

MR 3263301. DOI 10.1073/pnas.1313071111. (6, 15)

[14] , From quantum Ore extensions to quantum tori via noncommutative UFDs,

Adv. Math. 300 (2016), 672–716. MR 3534843. DOI 10.1016/j.aim.2016.03.029.

(3, 4, 9, 10, 12, 20, 21)

[15] , Quantum cluster algebra structures on quantum nilpotent algebras, Memoirs

Amer. Math. Soc. 247 (2017), no. 1169. MR 3633289. DOI 10.1090/memo/1169.

(6, 7, 9, 10, 12, 13, 15, 16, 17, 22, 23, 30, 31, 32)

[16] , “Twist invariants of graded algebras” in Advances in Rings and Modules,

Contemp. Math. 715, Amer. Math. Soc., Providence, 2018, 141–170.

MR 3852386. DOI 10.1090/conm/715/14409. (29)

[17] , The Berenstein–Zelevinsky quantum cluster algebra conjecture, J. Eur. Math.

Soc. (JEMS) 22 (2020), no. 8, 2453–2509. MR 4118613.

DOI 10.4171/JEMS/969. (5)

[18] M. GORELIK, The prime and the primitive spectra of a quantum Bruhat cell translate,

J. Algebra, 227 (2000), no. 1, 211–253. MR 1754232.

DOI 10.1006/jabr.1999.8235. (47, 48)

[19] D. HERNANDEZ and B. LECLERC, Cluster algebras and quantum affine algebras, Duke

Math. J. 154 (2010), no. 2, 265–341. MR 2682185.

DOI 10.1215/00127094-2010-040. (5)

[20] J. C. JANTZEN, Lectures on quantum groups, Grad. Stud. Math. 6, Amer. Math. Soc.,

Providence, 1996. MR 1359532. DOI 10.1090/gsm/006. (35, 36, 37, 38, 42)

[21] A. JOSEPH, Quantum groups and their primitive ideals, Ergeb. Math. Grenzgeb. (3) 29,

Springer, Berlin, 1995. MR 1315966. DOI 10.1007/978-3-642-78400-2. (43,

45, 47, 48, 49, 50)

[22] V. G. KAC, Infinite-Dimensional Lie Algebras, 3rd ed. Cambridge Univ Press, 1990.

MR 1104219. DOI 10.1017/CBO9780511626234. (56)



INTEGRAL QUANTUM CLUSTER STRUCTURES 63

[23] S.-J. KANG, M. KASHIWARA, M. KIM, and S.-J. OH, Monoidal categorification of cluster

algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349–426. MR 3758148.

DOI 10.1090/jams/895. (2, 5, 29)

[24] M. KASHIWARA, On crystal bases of the Q-analogue of universal enveloping

algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118.

DOI 10.1215/S0012-7094-91-06321-0. (36, 37)

[25] , Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73

(1994), 383–413. MR 1262212. DOI 10.1215/S0012-7094-94-07317-1. (41)

[26] M. KASHIWARA, M. KIM, S.-J. OH, and E. PARK, Cluster algebra structures on module

categories over quantum affine algebras, preprint, arXiv:1904.01264v1

[math.QA]. (5)

[27] Y. KIMURA, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52

(2012), no. 2, 277–331. MR 2914878. DOI 10.1215/21562261-1550976. (38,

49)

[28] , Remarks on quantum unipotent subgroups and the dual canonical basis,

Pacific J. Math. 286 (2017), no. 1, 125–151. MR 3582403.

DOI 10.2140/pjm.2017.286.125. (37)

[29] Y. KIMURA and H. OYA, Twist automorphisms on quantum unipotent cells and dual

canonical bases, Int. Math. Res. Not. (IMRN) 2019, art. ID rnz040.

DOI 10.1093/imrn/rnz040. (36)

[30] S. KUMAR, Kac–Moody Groups, Their Flag Varieties and Representation Theory,

Progr. Math. 204, Birkhäuser, Boston, 2002. MR 1923198.

DOI 10.1007/978-1-4612-0105-2. (49)

[31] S. LAUNOIS, T. H. LENAGAN, and L. RIGAL, Quantum unique factorisation domains,

J. London Math. Soc. (2) 74 (2006), no. 2, 321–340. MR 2269632.

DOI 10.1112/S0024610706022927. (9)
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