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Abstract
We prove a general theorem for constructing integral quantum cluster algebras

*1/ 2], namely, that under mild conditions the integral forms of quantum

over Zlq
nilpotent algebras always possess integral quantum cluster algebra structures. These
algebras are then shown to be isomorphic to the corresponding upper quantum

cluster algebras, again defined over Zg*'/?

. Previously, this was only known for
acyclic quantum cluster algebras. The theorem is applied to prove that, for every
symmetrizable Kac—Moody algebra g and Weyl group element w, the dual canonical
SJorm Ay(ny (w))Z[ g+1] Of the corresponding quantum unipotent cell has the property
that Ag(ni(w)) 417 @1 Z[qTY/?] is isomorphic to a quantum cluster alge-
bra over Z[qil/ 2] and to the corresponding upper quantum cluster algebra over

Zlg*V).
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1. Introduction

1.1. Problems for integral quantum cluster algebras

Cluster algebras were introduced by Fomin and Zelevinsky in [7] and have been
applied to a number of diverse areas such as representation theory, combinatorics,
Poisson and algebraic geometry, and mathematical physics. Their quantum coun-
terparts, introduced by Berenstein and Zelevinsky in [2], are similarly the topic of
intensive research from various standpoints. In the uniparameter quantum case, it is
desirable to work over the minimal ring of definition, namely, over

A2 = Z[g*/?, (1.1)

where ¢ is the quantum parameter. We will refer to such structures as integral quan-
tum cluster algebras. Two fundamental problems that are being investigated are:
(1) Given an algebra R over the rational function field ¥1/2 := Q(¢'/?) and an
integral form R 41,2 of R over A2 (i.e., R 2 R 41/2 ® 41,2 F/2), when is
R 41/2 isomorphic to an integral quantum cluster algebra?
(2) When is the quantum cluster algebra A in Problem (1) equal to the correspond-
ing upper quantum cluster algebra U defined over #4'/2?
The best known result on Problem (1) is a theorem of Kang, Kashiwara, Kim, and Oh
[23, Corollary 11.2.8] that the dual canonical forms over #'/2 of the quantum unipo-
tent cells for all symmetric Kac—Moody algebras possess integral quantum cluster
algebra structures. Berenstein and Zelevinsky in [2] proved the equality A = U in the
acyclic case. Such an equality was proved by Muller in [35] for (quantum) cluster
algebras that are source-sink decomposable in the case when all frozen variables are
inverted. We are not aware of any affirmative solutions of Problem (2) for nonacyclic
quantum cluster algebras when frozen variables are not inverted. A recent result of
GeiB, Leclerc, and Schroer ([10, Section 6]) establishes an equality of the form

A® 412 Qg =U® 412 Qlg™/?]

under the assumptions that A is connected Zso-graded with homogeneous cluster
variables and that such an equality holds on the classical level.

1.2. Main results
In the following, we provide affirmative answers to both Problems (1) and (2) in wide
generality. As an application, affirmative answers to Problems (1) and (2) are obtained
for the dual canonical forms of the quantum unipotent cells for all symmetrizable
Kac—-Moody algebras.

For an iterated skew polynomial extension

R:=FY2[x1][x2:62.85] -+ [xn: On. S N]
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and 1 < j <k < N, denote by Ry ] the ¥ '/2-subalgebra generated by x;,..., xk,
and set Ry := Ry k.

Definition

An iterated skew polynomial extension R is called a quantum nilpotent algebra or a

CGL (Cauchon-Goodearl-Letzter) extension if it is equipped with a rational action of

an ¥ '/2-torus # by % !/2-algebra automorphisms such that:

6)) The elements x1,...,xy are J-eigenvectors.

(i)  For every k € [2, N], 8 is a locally nilpotent 8 -derivation of the algebra
Ri_;.

(iii)  For every k € [1, N], there exists hx € J such that 6 = (hg-)|g,_, and the
hy-eigenvalue of xg, to be denoted by Ag, is not a root of unity.

A CGL extension is called symmetric if it has the same properties when its gen-
erators are adjoined in the opposite order. We will assume throughout Sections [, 5,
6, and 7 that the 0 -eigenvalues of x; belong to qZ/ 2 for j <k, where we abbreviate
7]2:= Z%. Recall that a nonzero element p € R is called prime if Rp = pR and the
ring R/Rp is a domain.

THEOREM ([ 14, Theorem 4.3])

For each CGL extension R and k € [1, N, the algebra Ry has a unique (up to rescal-
ing) homogeneous prime element yj which does not belong to Ry_. It either equals
Xy or has the property that

Yk — Ypk)Xk € Ri—1

for some p(k) € [1,k —1].

In the following, we will work with this choice of sets of homogeneous prime
elements (and not with arbitrary % '/2-rescalings of them). For a symmetric CGL
extension the theorem can be applied to the interval subalgebras R[,x).kx] to obtain
that each of them has a unique (up to rescaling) homogeneous prime element y[, ),k
which does not belong to the smaller interval subalgebras. An % '/2-rescaling of the
generators of a CGL extension R leads to another CGL extension presentation of R.
The generators x; can be always rescaled so that

Viptok1 = 4" Xpr 5k —4¢" [ | P (1.2)
i

for some m,m’ € Z/2 and n; € Z>o, where the product is over all homogeneous
prime elements of R[, ).k from the theorem that are different from y[,x) k] (see
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Sections 3.3-3.4 and [14]). In the following we will assume that this normalization is
made. Denote

Ryi2:=AY2(x;.....xn) CR.

THEOREM A
Let R be a symmetric CGL extension for which R 41,2 is an A2 form of R, that is,
R12 ® 4172 F12 =R, If the sequence of homogeneous prime elements y1,...,yN

lies in R 4172, then there exists a quantum cluster algebra A over A2 such that
R~=A=U,

where U is the corresponding upper quantum cluster algebra over £'/2. For all k €
[, N] and n € Zs¢ for which p"(k) is well defined (as in the previous theorem),
q"xy and q’"/y[pn(k)’k] are cluster variables of A for some m,m’ € /2.

We prove a more general result in Theorem 4.8 which deals with integral forms
of multiparameter and arbitrary characteristic CGL extensions and quantum cluster
algebras. In Section 4.3 we illustrate the theorem with various examples which are
not connected Zxo-graded, including all quantized Weyl algebras, and with quantum
cluster algebras over I ,[g+1/2].

For each symmetrizable Kac-Moody algebra g and a Weyl group element w, De
Concini, Kac, and Procesi in [5] and Lusztig in [34] defined a quantum Schubert cell
algebra U~ [w] which is a subalgebra of the quantized universal enveloping algebra
Uy, (g) defined over Q(g). The quantum unipotent cells of Geil3, Leclerc, and Schréer

in [9] are Q(g)-algebras A, (n4 (w)) which are anti-isomorphic to U~ [w]. Denote
A= Z[gF). (1.3)

The dual canonical forms A4(ny(w))4 are A-forms of A,(ny(w)) which are
obtained by transporting the Kashiwara-Lusztig dual canonical forms U~ [w]} of
U~ [w].

THEOREM B

Let g be an arbitrary symmetrizable Kac—Moody algebra, and let w be a Weyl group
element. For the dual canonical form Ag(m4(w))x of the corresponding quantum
unipotent cell, there exists a quantum cluster algebra A over A2 such that

Ag(ni(w)) , @4 A2 =A=U,

where U is the associated upper quantum cluster algebra defined over A'/2.
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Further details about the structure of the quantum cluster algebra A are given in
Theorem 7.3.

The following special cases of parts of the theorem were previously proved: Qin
in [37] proved that A, (n4(w))4 ®.4 42 = A for symmetric Kac-Moody algebras
g and adaptable Weyl group elements w. Kang, Kashiwara, Kim, and Oh in [23]
proved this isomorphism for symmetric Kac—-Moody algebras g and all Weyl group
elements w. In Sect. 6 of [10], GeiB, Leclerc, and Schroer proved that

A® 12 Q[qil/z] =U® 12 Q[qil/z]

for symmetric Kac—-Moody algebras g and all Weyl group elements w; however, the
fact that A = U is new even for simple cases like g = sl,,. For nonsymmetric Kac—
Moody algebras g the results in the theorem are all new, including the existence of a
nonintegral quantum cluster structure on A4 (N4 (W)) 4 @4 Q(q'?).

The previous approaches to integral quantum cluster structures (see [4], [19],
[23], [26], [36], [37]) obtained monoidal categorifications of quantum cluster alge-
bras. At the same time they also relied on extensive knowledge of categorifications
which are available for concrete families of algebras. The power of Theorem A for
the construction of integral quantum cluster structures lies in its flexibility to adjust
to different situations and in the mild assumptions in it: one needs to verify the nor-
malization condition (1.2), that R 41,2 is an A1/2_form of R and that the sequence of
homogeneous prime elements yq, ..., yny belongsto R 41/2.

We expect that Theorem B can be also applied to obtain an integral version of the
Main Theorem of [17] on the construction of quantum cluster structures on quantum
double Bruhat cells.

1.3. Notation and conventions
Throughout this article, K denotes an infinite field of arbitrary characteristic. For
integers j <k,set[j,k]:={J,...,k}. As above, Z/2 := Z%.

An N x N matrix t = (#;) over a commutative ring D is multiplicatively skew-
symmetric if t jxty; = tgr = 1 forall j, k € [1, N]. Such a matrix gives rise to a skew-
symmetric bicharacter Q; : Z x Z¥ — D* for which

Qilej,ex) =tjx, VYj.kel[l,N], (1.4)

where eq, ..., ey are the standard basis vectors for ZV . (We denote the group of units
of D by D*.) When we have need for formulas involving ZN . we view its elements
as column vectors. The transpose of an N-tuple m = (m;,...,my) is denoted m” .
Given an algebra A over a commutative ring D and elements ay, ...,a; € A, we write
D{ay,...,ax) to denote the unital D-subalgebra of A generated by {a,...,ax}.
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2. Quantum cluster algebras
We now outline notation and conventions for quantum cluster algebras. To connect
with the results of [13], [15], we describe a multiparameter setting which extends the
uniparameter case originally developed by Berenstein and Zelevinsky in [2]. To allow
for integral forms, we work over a commutative domain rather than over a field.

Fix a commutative domain D contained in K and a positive integer N. Let ¥ be
a division algebra over D. A toric frame (of rank N) for ¥ (over D) is a mapping

M:ZVN — F
such that
M(f)M(g) = (L OM(f +g), VfgeZ", 2.1
where
. Q, is a D*-valued skew-symmetric bicharacter on Z¥ arising from a multi-
plicatively skew-symmetric matrix r € My (D) as in (1.4),
. the elements in the image of M are linearly independent over D, and

. FractD(M(ZN)) = ¥ .

The matrix r is uniquely reconstructed from the toric frame M and will be denoted
by r(M). The elements M(ey),..., M(ey) are called cluster variables. Fix a subset
ex C [1, N], to be called the set of exchangeable indices; the remaining indices, those
in [1, N]\ex, will be called frozen.

An integral N x ex matrix B will be called an exchange matrix if its princi-
pal part (the ex x ex submatrix) is skew-symmetrizable. If the principal part of B is
skew-symmetric, then it is represented by a quiver whose vertices are labelled by the
integers in [1, N]. For j, k € [1, N], there is a directed edge from the vertex j to the
vertex k if and only if (B) jk > 0 and the number of such directed edges equals (B) k-
In particular, the quiver has no edges between any pair of vertices in [1, N]\ex.

A quantum seed for ¥ (over D) is a pair (M, B) consisting of a toric frame M
for ¥ and an exchange matrix B compatible with r(M) in the sense that

Qany(b*,ej) =1, Vkeex,je[l,N,k#j  and
Qr(M)(bk,ek) are not roots of unity, Vk € ex,

where b* denotes the kth column of B.

The mutation in direction k € ex of a quantum seed (M, E) is the quantum seed
(e (M), g (§)), where g (M) is described below and pig (E) is the N x ex matrix
(b; j) with entries (see [7])

b — —bij ifi:korj =k,
otherwise.

bix|bi; +bix|bi;
bij + | lk‘ k_/2 lk‘ k_/l
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If the principal part of Bis skew-symmetric, then py (§) has the same property and
the pair of quivers corresponding to B and Wk (E) are obtained from each other by
quiver mutation at the vertex k (see [0, Sections 2.1 and 2.7] for details). Correspond-
ing to the column b¥ of B are D-algebra automorphisms ppx 4 of F such that (see
[2, Proposition 4.2] and [15, Lemma 2.8])

ME(ex) + ME(ey + eb®) if j =k,
pbk,e(MEe(ej))z{MEe(e_) ¢ ifj;ﬁk
e\&j s

where Ec = EB is the N x N matrix with entries

8ij if j #k,
(Eo)ij =1—1 ifi =j =k,
max (0, —eb;r) ifi #j =k.

The toric frame g (M) is defined as
px (M) := ppr (ME, IN 7

It is independent of the choice of € and, paired with g (§), forms a quantum seed
over K (see [15, Proposition 2.9]; see also [15, Corollary 2.11], and compare with [2,
Proposition 4.9] for the uniparameter case.) By [15, Proposition 2.9 and (2.22)], the
entries of r(ug(M)) = ur(r(M)) are products of powers of the entries of r(M), so
r(uxg(M)) € My (D). It follows that ug (M) is a toric frame for ¥ over D, so that
(e (M), g (E)) is a quantum seed over D.

Fix a subset inv of the set [1, N]\ex of frozen indices—the corresponding cluster
variables will be inverted. The quantum cluster algebra A(M, B, inv)p is the unital D-
subalgebra of ¥ generated by the cluster variables of all seeds obtained from (M, B )
by iterated mutations and by {M (ex)~! | k € inv}. To each quantum seed (M, §) and
choice of inv, one associates the mixed quantum torus/quantum affine space algebra

DT s B iny) = D(M(ex)™". M(e;) | k eexUinv, j € [1, N]\(ex U inv))
Cc¥. (2.2)

The intersection of all such subalgebras of # associated to all seeds that are obtained
by iterated mutation from the seed (M, §) is called the upper quantum cluster algebra
of (M, B ) and is denoted by U(M, B, inv)p. The corresponding Laurent phenomenon
(see [15, Theorem 2.15]) says that

A(M, B.inv)p € U(M, B, inv)p. 2.3)
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If K is the quotient field of D, then ¥ is also a division algebra over K, and the
above constructions may be performed over K. The corresponding quantum cluster
algebras over K are just the K-subalgebras of & generated by the quantum cluster
algebras over D:

A(M,B.inv)x = K-A(M, B, inv)p.

The uniparameter quantum cluster algebras of Berenstein and Zelevinsky in [2]
come from the above axiomatics when the following two conditions are imposed:
(1)  The base ring is taken to be

D= e)%1/2 — Z[qzl:l/Z].

So, D* = (Al/l)* — :tqZ/Z.
2) The toric frame of one seed (and thus of any seed) has a multiplicatively skew-
symmetric matrix r € My (D) of the form

r= (qmij/Z)l?Yj:l for some m;; € Z.

3. Quantum nilpotent algebras

Quantum nilpotent algebras are iterated skew polynomial algebras over a base field,
which we take to be K in this section. We use the standard notation S[x; 8, §] for
a skew polynomial ring, or Ore extension; it denotes a ring generated by a subring
S and an element x satisfying xs = 6(s)x + §(s) for all s € S, where 6 is a ring
endomorphism of S and § is a (left) 8-derivation of S. The ring S[x; 6, ] is a free left
S-module, with the nonnegative powers of x forming a basis. For all skew polynomial
rings S[x; 0, 8] considered in this paper, we assume that 0 is an automorphism of S.
Moreover, we work in the context of algebras over a commutative ring D, so our
coefficient rings S will be D-algebras, the maps 6 will be D-algebra automorphisms,
and the maps § will be D-linear #-derivations. Under these assumptions, S[x;#,d] is
naturally a D-algebra. Throughout the present section, D = K.

3.1. CGL extensions
We focus on iterated skew polynomial extensions

R :=K[x1][x2:02,82] -+~ [xn;On,SN], (3.1
where K[x1] = K[x;;idg, 0]. Set
Ry :=K(x1,....xk) =K[x1][x2;602,82] -+ [xx: 6. 8]  fork € [0, N];

in particular, Ry = K.
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Definition 3.1

An iterated skew polynomial extension (3.1) is called a quantum nilpotent algebra or
a CGL extension (see [31, Definition 3.1]) if it is equipped with a rational action of a
K-torus # by K-algebra automorphisms such that:

(1) The elements x1,...,xy are J-eigenvectors.
(i))  For every k € [2, N], 8 is a locally nilpotent 6 -derivation of the algebra
Ry_1.

(iii)  For every k € [1, N], there exists hx € J such that 6 = (hg-)|g,_, and the
hy-eigenvalue of xg, to be denoted by A, is not a root of unity.
Conditions (i) and (iii) imply that

Ok (x;) = Akjx; forsome Ax; e K*,V1<j <k <N.

We then set Agx =1 and A i = )u,:jl for j < k. This gives rise to a multiplica-
tively skew-symmetric matrix A := (Ax;) € My (K*) and the corresponding skew-
symmetric bicharacter €2 from (1.4). The elements /i € # interact with the skew
derivations §; as follows (see [15, (3.15)]):

(hk')o(sk =/\k8k0(/’lk-), Vk e [I,N]. (32)
The length of R is N and its rank is given by (cf. [14, (4.3)])
tk(R) := {k € [1, N]| 8k =0} € Zo. (3.3)

Denote the character group of the torus # by X(#¢). The action of # on R gives
rise to an X(H)-grading of R, and the #-eigenvectors are precisely the nonzero
homogeneous elements with respect to this grading. The J-eigenvalue of a nonzero
homogeneous element ¥ € R will be denoted by y,,; this equals its X(F)-degree
relative to the X (#)-grading.

By [31, Proposition 3.2 and Theorem 3.7], every CGL extension R is an #-
Unique Factorization Domain (or #-UFD), meaning that each nonzero J#-prime
ideal of R contains a homogeneous prime element. (A prime element of a domain R
is a nonzero element p € R such that Rp = pR—i.e., p is a normal element of R—
and the ring R/ Rp is a domain.) A recursive description of the sets of homogeneous
prime elements of the intermediate algebras Ry of a CGL extension R was obtained in
[14]. To state the result, we require the standard predecessor and successor functions,
p = py and s = sy, of a function 71 : [1, N] — Z, defined as follows:

p(k) :=max{j <k |n(j)=nk)},

(3.4)
s(k) :=min{j >k | n(j) = n(k)},
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where max@ = —oo and min@ = +oo. Corresponding order functions O :
[1, N] = Zs are defined by

O—(k) := max{m € Z> } p" (k) # —oo},

(3.5)
O (k) := max{m € Zxg } s™ (k) # +oo}.

THEOREM 3.2 ([14, Theorem 4.3])
Let R be a CGL extension of length N and rank tk(R) as in (3.1). There exist a
function n: [1, N]| = Z whose range has cardinality tk(R) and elements

Cx € Rk—1 forallk €2, N] with p(k) # —o0

such that the elements y1,...,yN € R, recursively defined by

Xk — k. if p(k) # —o0,
V= {y”( ) ,fp # (3.6)
Xk if p(k) = —o0,
are homogeneous and have the property that, for every k € [1, N],
Wi ljellkls() >k} (3.7)

is a list of the homogeneous prime elements of Ry up to scalar multiples.

The elements y1,...,yN € R with these properties are unique. The function n
satisfying the above conditions is not unique, but the partition of [1, N| into a disjoint
union of the level sets of 1 is uniquely determined by the presentation (3.1) of R, as
are the predecessor and successor functions p and s. The function p has the property
that p(k) = —oc if and only if §; = 0.

The statement of Theorem 3.2 is upgraded as in [15, Theorem 3.6 and following
comments]. In the setting of the theorem, the rank of R is also given by (see [14,

4.3)D

tk(R) = |{j € [1.N]|s(j) > N}|. (3.8)
Definition 3.3
Denote by < the reverse lexicographic order on ZJEVO:
(my,....mly) < (my,...,my) iff there exists
(3.9
nell,N] withm), <mp,my, | =mu41,....my=my.

A CGL extension R as in (3.1) has the K-basis

{xf:zx'lnl...xlmv’\’ |f=(m1,...,mN)T€ZQO .
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We say that a nonzero element b € R has leading term tx/ and leading coefficient t
where 1 € K* and f € ZY, if

b=ix/+ Y ex®
gczly.g<f

for some g € K, and we set lc(b) := ¢ and 1t(b) := txt.

The leading terms of the prime elements yj in Theorem 3.2 are given by

It(yx) = XpOo—(o) (k) " Xp(k) Xk » Vk €[1,N]. (3.10)

mj

The leading terms of reverse-order monomials x%” -+-x7 | involve symmetriza-

tion scalars in K* defined by

= ] r™. vr=@m,...myTez?. (3.11)
1<j<k<N
Namely,
Te(xy™ - x™) =8,\((m1,...,mN)T)x;"‘ cex
Y(mi,....my)T eZVN. (3.12)

3.2. Symmetric CGL extensions
Given an iterated skew polynomial extension R as in (3.1), denote its interval subal-
gebras

Ry :=K{x; | j<i<k), Vjke[l,N]

in particular, R[; ¢ = K if j £ k.

Definition 3.4

A CGL extension R as in Definition 3.1 is called symmetric provided that the follow-
ing hold.

1) Foralll<j <k <N,

Sk (xj) € Rpj41,k-1]-
(i) ~ Forall j €[1, N], there exists &} € J# such that
h;f < Xk =/\,:j1xk =Ajxxk, Vke[j+1,N],

and 7 - xj = A7x; for some A7 € K* which is not a root of unity.
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Under these conditions, R has a CGL extension presentation with the variables
X in descending order (see [14, Corollary 6.4]):

R=K[xn][xn-1:08_1.8n_1]--[x1:07,87]. (3.13)

PROPOSITION 3.5 ([15, Proposition 5.8])
Let R be a symmetric CGL extension of length N. Ifl € [1, N] with O+ () =m > 0,
then

A’l — S(l) —"'—Aasmfl(l) —A,s(l) _A‘Sz(l) —"‘—A,syn(l). (3.14)

Definition 3.6
Define the following subset of the symmetric group Sy :

En:={0€Sy|o(k)=maxo([l.k—1])+1or
o(k) =mino([1,k —1]) — 1, Vk € [2, N]}. (3.15)

In other words, E y consists of those ¢ € Sy such that o ([1, k]) is an interval for all
k € [2, N]. The following subset of &y will also be needed:

'y :={0;,j|1<i<j<N}, where

o =li+ 1. jij+1.,.. . Ni—1i-2...1]. (3.16)

If R is a symmetric CGL extension of length N, then for each 0 € E y there is a
CGL extension presentation (see [14, Remark 6.5], [15, Proposition 3.9])

R = Ko )] [Xo@): 0Ly S1tiy] -~ o) By Sty ) (3.17)

Moreover, if 1 <i <k < N, then the subalgebra R[;x] of R is a symmetric CGL
extension, to which Theorem 3.2 applies. In the case k = s™ (i) we have the follow-
ing.

PROPOSITION 3.7 ([15, Theorem 5.1])

Assume that R is a symmetric CGL extension of length N, and assume that i € [1, N|
and m € Z>q are such that s™ (i) € [1, N). Then there is a unique homogeneous prime
element y[; ym ()] € R[j gm ()] such that

A YVism@) € Riismi)—11 and Yiismiy) € Rii+1,5m))-

(1) It(yp,sme)) = XiXs@) - Xsm(i)-

The elements y[; ¢m ;)] € R will be called interval prime elements. Certain com-
binations of the homogeneous prime elements from Proposition 3.7 play an important
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role in the mutation formulas for quantum cluster variables of symmetric CGL exten-
sions. They are given in the following theorem, where we denote

. N
el sl ()] = €j +es(_i)+"'+esl(j)€Z s
Vj €[1,N],I € Zso such that s' (j) € [1, N]. (3.18)

and where we set y[(;),i1 == 1.

THEOREM 3.8 ([15, Corollary 5.11])
Assume that R is a symmetric CGL extension of length N, and assume thati € [1, N]
and m € Z~¢ are such that s (i) € [1, N]. Then

Uli,sm(i)] *= Vii,sm—1 ()] VIs(@),s™M ()]
— Qa(€i, es(i),sm=1)D V[s(@),sm=1 )] Vlis™ ()] (3.19)

is a nonzero homogeneous normal element of R[j 11 gm(i)—1] which is not a multiple
of Vis(iy.sm=1(y) fm = 2.

The form and properties of the elements u[; ¢ ;)] mainly enter into the proofs of
the mutation formulas for symmetric CGL extensions. However, an explicit normal-
ization condition for the leading coefficients of these elements is required (see (3.28)
and Proposition 3.10).

3.3. Rescaling of generators
Assume that R is a CGL extension of length N as in (3.1). Given scalars fq, ...ty €
K*, one can rescale the generators x; of R in the fashion

Xj—t;jxj, VYjel[l,N], (3.20)
meaning that R is also an iterated Ore extension with generators #;x;; in fact,
R =K[t1x1][tax2;02,1282] --- [tn XN ON . ENSN]. 3.21)

This is also a CGL extension presentation of R, and if (3.1) is a symmetric CGL
extension, then so is (3.21).

By rescaling as in (3.20), (3.21) does not affect the #-action or the matrix A,
but various elements computed in terms of the new generators are correspondingly
rescaled, such as the homogeneous prime elements from Theorem 3.2 and Proposi-
tion 3.7. These transform as follows:

0—(k)

m
= (T tww)ye  and  ypman— ([Trwe)vesmor 622
1=0 =0
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Consequently, the homogeneous normal elements (3.19) transform via
Ui sm ()] > (t lsz(l-) e tszm—l (l.)lsm (l-))u[,-,sm(i)]. (3.23)

3.4. Normalization conditions

In order for the homogeneous prime elements y; from Theorem 3.2 to function as
quantum cluster variables, some normalizations are required. Throughout this section,
assume that R is a symmetric CGL extension of length N as in Definitions 3.1 and 3.4.
Assume also that the following mild conditions on scalars are satisfied.

Condition (A)

The base field K contains square roots vi; = ~/Ag; of the scalars Ay; for 1 </ <k <
N such that the subgroup of K* generated by the vg;s contains no elements of order 2.
Then set vgg := 1 and vg; := vl_kl for k <[, so that v := (vg;) is a multiplicatively
skew-symmetric matrix.

Condition (B)
There exist positive integers d,,, for n € n([1, N]), such that

d d .
A0 =200 Yk, e[1,N] with p(k), p(l) # —oc.
In view of Proposition 3.5, this is equivalent to the condition

A = AN Vi, 1 e[l, N] with s(k),s(l) # +oo.

Remark 3.9

Note that Condition (B) is always satisfied if all Ay = ¢™* for some my € Z and
q € K (which has to be a nonroot of unity due to assumption (iii) in Definition 3.1).
This is the setting of Theorem A in the Introduction.

In parallel with (3.11), define

(=] vi'™, Vf=0m,...my"ez". (3.24)
1<j<k<N
Then set
eji=ejtep;)+ - te,0-0;) and (3.25)

¥ =8(@))y;. VjellLN].

We analogously normalize the homogeneous prime elements described in Propo-
sition 3.7:
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Viismiy) 7= 8 (€li,sm @) Vii,sm @)
Vi €[1, N],m € Z> such that s (i) € [1, N]. (3.26)
A final normalization, for the leading coefficients of the elements u[; ¢m(;)], is

needed in order to establish mutation formulas for the quantum cluster variables y .
Fori €[1,N] and m € Zx¢ such that s (i) € [1, N], write

(s m (1)) = T 5m (i) 615 O,
s (i)—1
Ti,sm(i)] € K*, f[i,sm(i)] € Z ZZQE‘]' C Zgo. (3.27)
J=1+1
We will require the condition
Ti,s ()] = 8y(—e; + f[i,s(i)])» Vi e [1, N] such that S(i) 7é —+00. (3.28)

This can always be achieved after a suitable rescaling of the x s, as follows.

PROPOSITION 3.10 ([15, Propositions 6.3, 6.1])

Let R be a symmetric CGL extension of length N, satisfying Condition (A).

(1) There exist N -tuples (t1,....tn) € (K*)V such that, after the rescaling (3.20),
condition (3.28) holds.

(i) If (3.28) holds, then

Tli,sm ()] = Sv (€[si).sm 1) v (—€i + fiismiy)
foralli € [1,N] and m € Zxo with s™ (i) € [1, N].
3.5. Quantum cluster algebra structures for symmetric CGL extensions
We present in this subsection the setting and statements of Theorem 5 of [13] and
Main Theorem II of [15]. Recall the notation on quantum cluster algebras from Sec-

tion 2. There is a right action of Sy on the set of toric frames for a division algebra
F, given by re-enumeration,

(M -7)(ex) == M(ex(r)).
r(M 1) jk =0(M)c(j),etk).  TESN.J.k €[L.N].

(3.29)

Fix a symmetric CGL extension R of length N such that Conditions (A) and (B)
hold. Define the multiplicatively skew-symmetric matrix v as in Condition (A), with
associated bicharacter 2, as in (1.4), and define a second multiplicatively skew-
symmetric matrix r = (rg;) by

rej = Qy(ex.ej), Vk,je[l,N]. (3.30)
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Let y,,...,yx be the sequence of normalized homogeneous prime elements given
in (3.25). (We recall that each of these is a prime element in some of the subalgebras
R;, but not necessarily in the full algebra R = Ry .) There is a unique toric frame
M : ZN — Fract(R) whose matrix is r(M) :=r and such that M(e;) := ¥, for all
k €[1, N] (see [15, Proposition 4.6]).

Next, consider an arbitrary element 0 € By C Sy (recall (3.15)). For any k €
[1, N], we see that

. .

o) Mo ([1,4]) = {{p @E).....p@E).o®)} o) al). oo
{o(k).s(o(k)).....s"(a(k))} ifa(l) =a(k),

for some n € Z>¢. Corresponding to o, we have the CGL extension presentation

(3.17), whose A-matrix is the matrix A, with entries (A4);j := Ag()o(;). Analo-

gously we define the matrix v, and denote by r, the corresponding multiplicatively

skew-symmetric matrix derived from v, by applying (3.30) to the presentation (3.17).

Explicitly (cf. (3.31)),

(co)kj = [ [{vir | i € ([1,k]),n@0) = no k). L € o ([1, j1),n(1) = no(j)}. (3.32)

Lety,1,---, VN be the sequence of normalized prime elements given by applying
(3.25) to the presentation (3.17). By [15, Proposition 4.6], there is a unique toric frame
M, : ZN — Fract(R) whose matrix is r(M) := r, and such that, for all k € [1, N],

_ Fipn if o (1) <o (k).
Mo (ex) =T = {_“’ o (3.33)
Viok)sn @y i o(l)=o(k),

in the two cases of (3.31), respectively. The last equality is proved in [15, Theo-
rem 5.2].

Recall that the set P(N) := {k € [1, N] | s(k) = +o0o} parametrizes the set of
homogeneous prime elements of R, that is,

{ Vk | ke P(N )} is a list of the homogeneous prime elements of R
up to scalar multiples (Theorem 3.2). Define
ex:=[1,N]\ P(N)={l €[1,N] | s(l) # 4o00}.

Since | P(N)| = rk(R), the cardinality of the set ex is N —rk(R). For ¢ € E y, define
the set

ex, = {l € [1, N]| 3k > [ with no (k) = no (1)}

of the same cardinality. Finally, recall the notation y,, from Definition 3.1.
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In [15, Theorem 8.2] we reindexed all toric frames M, in such a way that the
right action in Theorem 3.11(c) was trivialized and the exchangeable variables in all
such seeds were parametrized just by ex, rather than by ex;. We omit the reindexing
here to simply the exposition. This affects the upper cluster algebra in the following
way: When considering the quantum seed (M, Eg), the set ex must be replaced by
eX, in relations such as (2.2).

THEOREM 3.11 ([15, Theorem 8.2])

Let R be a symmetric CGL extension of length N and rank tk(R) as in Definitions 3.1

and 3.4. Assume that Conditions (A), (B) hold, and assume that the sequence of gen-

erators X1,...,xn of R is normalized (rescaled) so that condition (3.28) is satisfied.

Then the following hold:

(a) Forallo € Ey (see (3.15)) and | € exy, there exists a unique vector bé ezN
such that XMyl = 1 and

Q, (bl ej)=1, Vje[l,N].j#] and
; 5 . (3.34)

Qo (o e1)” = Ainy=19G )

Denote by By € My x|ex|(Z) the matrix with columns b(l,, | € ex,. Let B :=
B ]

(b)  Forall o € Ep, the pair (M, By) is a quantum seed for Fract(R). The prin-
cipal part of §g is skew-symmetrizable via the integers dy k), k € exy from
Condition (B).

(c) All such quantum seeds are mutation equivalent to each other up to the Sy -
action. They are linked by the following one-step mutations. Let 6,6’ € E N
be such that

o' =(o(k),o(k+1)oo=00(k,k+1)

forsomek € [1,N —1]. If n(a(k)) # n(a(k + 1)), then Mg = My - (k,k + 1)
in terms of the action (3.29). If n(o(k)) = n(o(k + 1)), then My = i (My).

(d) The CGL extension R equals the quantum cluster and upper cluster algebras
associated to M, l?, :

R=AM,B,2)x =UM.,B,o)k.
In particular, A(M, §, Pk and UM, E, @)k are affine and Noetherian, and
morve precisely A(M, B, @)k is generated by the cluster variables in the seeds

parametrized by the finite subset I'y of En (recall (3.16)).
(e) Let inv be any subset of the set P(N) of frozen variables. Then

Rly;' | k einv] = A(M, B, inv)x = U(M, B,inv).
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4. Integral quantum cluster structures on quantum nilpotent algebras

We introduce integral forms of CGL extensions and show that the quantum cluster
algebra structure on a symmetric CGL extension R satisfying the hypotheses of The-
orem 3.11 passes to appropriate integral forms of R. Throughout the section, let R be
a CGL extension of length N as in Definition 3.1, with associated torus J#, scalars
Ak; and A, and other notation as in Section 3. Let D C K be a unital subring of K,
and write D* for the group of units of .

4.1. Integral forms of CGL extensions

Definition 4.1

We say that the D-subalgebra D(x, ..., xy) of R is a D-form of the CGL presentation
(3.1)—and therefore that (3.1) has a D-form—provided this subalgebra is an iterated
skew polynomial extension of the form

D{x1,...,xN) =D[x1][x2;62,82] -+ [xn; On . SN], 4.1)
where we let 0y (resp., §x) also denote the restriction of the original 8 (resp., §x) to
a D-algebra automorphism (resp., O -derivation) of D(xy,..., xr—1).

Remark 4.2

(a) The CGL presentation (3.1) has a D-form if and only if
. AjeD*forl1 < j <k <N;
. 8 maps D(xy, ..., xx_1) into itself for each k € [2, N].

(b) Whether (3.1) has a D-form depends on the choice of I as well as the choice
of CGL presentation (3.1). For instance, if N =2 and é,(x;) € K\ D, then (3.1)
does not have a D-form. However, if y = 6,(x;), then R has the CGL presentation
K[x1][y~'x2; 02, y718,], which does have a D-form.

(c) Evenif (3.1) has a D-form, the homogeneous prime elements y1, ..., yx from
Theorem 3.2 need not belong to D(xy,...,xx). For instance, if R is the quantized
Weyl algebra

AL(K) =K(x1, x2 | x1x2 = gxpx1 + 1)

with ¢ € K* transcendental over the prime field of K and D = (Z-1x)[g*!], then the
above CGL presentation has a D-form, but D({x, x,) does not contain the element
y2=x1x2+(g— 17"

The problems indicated in Remark 4.2 can typically be corrected by rescaling the
generators X as in Section 3.3, as we now show.
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When working with a D-subalgebra R’ = D(xy,...,xy) of R, we adapt previous
notation and write

Ry :=D(x1,...,xg) and [j,k]3=D(xj,---7xk), Vj<kel[l,N].

PROPOSITION 4.3

Assume that K = FractD, and assume that Aij € D* for 1 < j <k < N. Then there

existty,...,txy € D\ {0} such that

(a) Rp :=D(t1x1,...,tnxn) is a D-form of the CGL presentation (3.21),

(b) the elements yi,...,yN from Theorem 3.2 for the presentation (3.21) all lie
in R]D).

Proof
Set R’ := Ry, for the proof. We induct on N. The case N = 1 holds trivially by taking
th=1.

Now assume that N > 1, and assume that there exist t1,...,7y—1 € D\ {0} such
that the algebra R, _, :=D(f;x1,...,ty—1Xn—1) satisfies conditions (a) and (b). In
particular, R;v_l is a D-form of the CGL presentation

Ry_1 =K[t1x1][t2X2; 02, 282] - - [tN—1XN—1: ON—1, N 16N —1]. 4.2)

Since )L?\:/]l e D forall j €1, N — 1], the automorphism @ restricts to an automor-
phism of Ry _;.
Write 8y (t1x1),...,6n (tN—1xN—1) as K-linear combinations of monomials

(tix)™ - (Iv—ixy—y) V!

in the standard PBW (Poincaré-Birkhoff-Witt) basis for the presentation (4.2), and let
k; fori € I be alist of the nonzero coefficients that appear. Choose a nonzero element
b € D such that bk;, bAyk; € D for all i. Set

P b if p(N) = —o0,
M T ow = Db if p(N) # —oo.

Since bk; € D for all i, we have béy (¢jx;) € R§V—1 for all j € [I, N — 1], and so
b8y maps R _, into itself. Similarly, 7y 8y maps R);_, into itself. Therefore, R’ =
R, _,(tyxn) is an Ore extension Ry _, [ty xn:0n.tnSn] and (a) holds.

It remains to show that the element yy for the CGL presentation (3.21) lies in
R'.If p(N) = —o0, then yy = tyxn, and we are done. Now assume that p(N) #
—o00. Then yny = y,wv)xXxn — cn, where cy € Ry_1 and y,(y) is the p(N)th y-



20 GOODEARL and YAKIMOV

element for (3.21). By our induction hypotheses, y,(n) € R)y_;. From [14, Proposi-
tion 4.7(b)], we have
O_(N)
(Av = Dby (ypvy) = tnSn (vpv) = [] Anpmawny(An — Dew.

m=1

Since Ay, pm(ny € D* for all m € [1, O_(N)] and by (yp(wvy) € R)y_,» we conclude
that cy € Ry _;. Therefore, yy € R’, as required. O

LEMMA 4.4
If the CGL presentation (3.1) has a D-form, then A, € D* for all k € [2, N] such that

p(k) # —oo.

Proof
If k € [2,N] and p(k) # —oo, then 6 # O (recall Theorem 3.2). Choose i €
[1,k — 1] such that 8 (x;) # 0, and choose a monomial x/, for some f =

(mi,....me_)T € Zgl, which appears with a nonzero coefficient in &g (x;). In
view of (3.2), hg.6k(x;) = AgAki0r(x;). Since all monomials in xp,...,xy are

hy-eigenvectors, it follows that he.x” = AgAgix/. On the other hand, hx.x/ =
O (x7) = 1—[1;;11 Afj/xf, and consequently

k—1
M =Agt [T re] eD,
j=1
since all Ax; € D* (Remark 4.2(a)). O

When R is symmetric and (3.1) has a D-form, the alternative CGL extension
presentations of R given in (3.17) also have D-forms, as we now show.

LEMMA 4.5

Assume that Rp = D(x1,...,xn) is a D-form for (3.1), and assume that R is a sym-
metric CGL extension.

(a) For 1< j <k <N, the algebra (Rp)|, k] is a D-form for the CGL presenta-

tion
Rijey = Klxj][xj 4150541, 8 41] -+ [xe: O Sk (4.3)
(b) Foreach o € E y, the algebra Ry is a D-form for the CGL presentation (3.17)
of R.
Proof

Set R’ := Ryp.
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(a) The symmetry assumption on R implies that the K-subalgebra R[; x} of R
is itself a CGL extension of the form (4.3), as noted following Definition 3.6. For
[ €[j +1,k], closure of both R[;; 1} and R;_, under 9111 and §; implies that REj,l—l]
is closed under Qlil and §;. It follows that Rfj,k] is an iterated Ore extension of the
form D[x;] - [xk;: Ok, 8k], as required.

(b) We first consider the reverse CGL extension presentation (3.13). As shown in

[14, Section 6.2] (where 9]’.*, 8; are denoted 0;., 8'.), we have

j
Gj(xk) =/\jkxk and 8;()(]() = —)ijSk(xj), Vi<j<k<N.

Consequently, D(x;11,...,xx) is stable under (9;)*1 and §7 foreach j € [I, N —1].
This allows us to write R’ as an iterated Ore extension in the form

R =Dxn]lxn—1:0y_1. 8y 1]+ [x1:07. 7], (4.4)

which shows that R’ is a D-form for (3.13).

Now let o be an arbitrary element of E y, and consider the corresponding CGL
extension presentation (3.17) of R. As indicated in [14, Remark 6.5], the automor-
phisms 6 and skew derivations &'/ appearing in (3.17) are restrictions of either 6,
§j or 07, §7. Combined with the results of the previous paragraph, we conclude that
R’ is an iterated Ore extension of the form

"

D[XJ(I)][XU(2)§ 92,/(2)7 85(2)] t [xcr(N); GU(N)’ Z(N)]-

Therefore, R’ is a D-form for (3.17). O
LEMMA 4.6

Assume that the CGL presentation (3.1) has a D-form Rp = D(x1,...,xy) which
contains the elements y1,...,ynN from Theorem 3.2.

(a) For each k € [1, N], the element yy, is normal in (Rp)k.
(b)  Forany subset I C [1, N], the multiplicative set generated by D* U{y; | i € I}
is a denominator set in Rp.

Proof
Set R' := Rp.

(a) By [14, Corollary 4.8], yx quasicommutes with those x s such that j < s(k)
according to the rule

0_(k) .
VEX; =( I1 lj,p*"(k)) Xj V-
m=0

Since the A j ymx)’s all lie in D*, it follows that yx R, = R yk.
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(b) It suffices to show that D* y}f, the multiplicative set generated by D* U {y;},
is a denominator set in R’ for each k € [1, N]. By part (a), D* y}:] is a denominator set
in R}

Since yr is homogeneous (with respect to the X(H)-grading on R), it is an
eigenvector for each h € # and, thus, for O ,...,60x. The leading term of yj is
X p0— () (k) * ** X p(k) Xk » and $O

O_(k)
00 = (T Apmao )k for1<k<i=N.

m=0

Consequently, 6;(D* y,? = D* y,Ij for all [ > k. It therefore follows from [I1,
Lemma 1.4], by induction on [, that D* y,? is a denominator set in R; for [ =
k+1,...,N. O

PROPOSITION 4.7

Assume that R is a symmetric CGL extension, and assume that the CGL presentation

(3.1) has a D-form Ry = D(xy,...,xN) which contains the elements y1,...,VN.

(a) The elements y[; ym ;)] of Proposition 3.7 all belong to Ryp.

(b) The elements u[; ym ;)] of Theorem 3.8 all belong to Rp, and their leading
coefficients m[; sm ;] belong to .

(©) The elements yq.k, for 0 € 8 and k € [1, N, all belong to Rp.

Proof
Set R’ := Rp.

(a) We first recall that, by the case t = id of [ 15, Theorem 5.3], yy is a scalar mul-
tiple of V[pO—® (k) k] for all k € [1, N]. However, these elements both have leading
coefficient 1, so they are equal. Taking k = s (i), we obtain

V[i,sm ()] = Vs (i)s Vi e [1, N] with p(l) = —0Q. (45)

This verifies that yj; sm(;)] € R’ whenever p(i) = —oo.

We next show, by induction on i, that all y[; ym ()] € R’. The case i = 1 follows
from the previous result, since p(1) = —oo. Now assume that i > 1, and assume
that ypjem(jy € R for all j € [1,i — 1] and m € [0, 04(j)]. If p(i) = —o0, we
are done by the previous result, so we may assume that p(i) = j € [1,i — 1]. Set
k = s™(i) = s™*1(j). By the induction hypothesis, y(; ] € R’. According to [15,
Theorem 5.1(d)],

YLikl = X Viik) =€
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for some ¢’ € R[j41,k]- Since R[; ] (resp., Rfj,k]) is a free right module over R[; 11 k]

’
[j+1.k

YIi.k] € R’. This concludes the induction step.
(b) Since all values of the bicharacter 2 lie in D*, the formula (3.19) together
with part (a) yields uf; gm(;)) € R'. Consequently, its leading coefficient, 5[ sm )],

(resp., R ) with basis {l,xj,sz-, ...}, the assumption y[;x] € R’ implies that

must lie in D.

(c) Fix 0 € E 5. We proceed by induction on k € [1, N] to show that ysx € R'.
The case k = 1 holds trivially, since y5,1 = X5(1)- Now let k > 1, and assume that
Yo,j € R forall j e[l,k—1].

If p(o(k)) ¢ o([1,k—1]), then y5 x = Xg(x), and we are done. Assume now that
p(o(k)) =o(l) for some [ € [1,k — 1]. Then y,; € R’ by induction, and

Yok = Yo Xok) — €, 07 ¢ € Ro(1,k—1])- (4.6)

By [15, Theorem 5.3], one of the following cases holds:
D) ok) >0(1), yor = AVpmow).ck)), M = max{n € Zxo | p"(0(k)) €
o([1,k])},
() ok) <o(l), Yoxr = AVotk)sm (k)] M = max{n € Zxo | s"(o(k)) €
o([L.kD},
for some A € K*.
Case (i). By the definition (3.15) of E y,

o(k) =maxo([1,k]) and  of([lLk—1]) S [l,0(k)—1].
As p(o(k))=0(l) € o([1,k]), we also have m > 1, and so
Yip™ (o (k)0 ()] = VIp™ (o (k)),pla (k)] ¥a (k) — . 0#ce Ripm (o (k)).0(k)—11-
Comparing terms in R[1 ¢ (k)] = R[1,0(k)—1]Xo (k) + K[1,0(k)—1]» We find that
Yo. = AY[pm (o (k). p(o (k))]-

Since Ic(Y[pm (o (k)), p(ek)]) = 1 and y5; € R’, we find that A € D. In view of part (a),
we conclude that

Yok = AV[pm (o k).ok)] € R

Case (ii). Now o (k) =mino ([1,k]) and o ([1,k —1]) C [o(k) + 1, N]. If m = 0,
we would have ys x = AYo(k),0(k)] = AXo(k)» contradicting (4.6). Thus, m > 0. By
[15, Theorem 5.1(d)],

Ylo (k). (@ ()] = Xo () Vis@k).sm @) =€ 07 ¢ € Rigk)+1.5m (o (k))]-

We may rewrite Y4 x in the form
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Yok = I Xo ()Y — C

where y € K* arises from Qg(k) (Vo,1) = Yo, and

T= "8 4y Vo) + ¢ € R k—1)) S Rio(k)+1.071-

Now Y, is a homogeneous element of R’ and R’ is a D-form for (3.17). Moreover,
Yo, has leading coefficient 1 with respect to the presentation (3.17), so 9:; ) (Vo.1)
must be a D*-multiple of y, ;. Hence, u € D*.

Comparing terms in R k), N] = Xo (k) R[o(k)+1,N] + R[o(k)+1,n], We find that

1 Yo = AVis ). (@ ()]

Since 1c(Y[s(o (k). (o (k))]) = 1 while y5; € R” and u € D*, we obtain that A € D,
and therefore, yox = AY[o(k),s7 (k)] € R’ in view of part (a). This concludes the
second case of the inductive step. ([

4.2. Quantum cluster algebra structures on integral forms

For integral forms of appropriately normalized symmetric CGL extensions, we have
the following exact analogue of Theorem 3.11. Fix a symmetric CGL extension R of
length N such that Conditions (A) and (B) hold. Set ¥ := Fract(R), and let D be a
commutative domain whose field of fractions is K. Define toric frames M, : ZV —
F , multiplicatively skew-symmetric matrices r, € My (K), and sets ex, C [1, N]
as in Section 3.5. (Recall the notation M = M4, r = rjy, €x = eX;q.) Provided the
matrices ry have entries from D*, the frames M, also qualify as toric frames over D,
and we shall view them as such.

THEOREM 4.8

Let R be a symmetric CGL extension of length N as in Definitions 3.1, 3.4, and
assume that Conditions (A), (B), and (3.28) hold. Let D be a (commutative) domain
with quotient field Fract(D) = K such that the scalars vy in Condition (A) all lie
in D*. Assume that the CGL presentation (3.1) has a D-form Rp = D{xy,...,xn)
which contains the homogeneous prime elements y1, ..., yn from Theorem 3.11.

(a) For each 0 € By, let By be the N x |ex| integer matrix determined as in
Theorem 3.11(a). Then the pair (M, Eg) is a quantum seed for ¥ := Fract(R) =
Fract(Rp) over D, and the principal part of Eg is skew-symmetrizable via the integers
dnk), k € exg from Condition (B).

(b) All the quantum seeds (M, Eg) from part (a) are mutation equivalent to each
other up to the Sy -action. They are linked by sequences of one-step mutations of the
following kind. Suppose that 0,0’ € E y are such that

o' =(o(k),o(k +1))oco=00(k.k+1)
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for some k € [I,N —1]. If n(o(k)) # n(o(k + 1)), then My» = My - (k,k + 1) in
terms of the action (3.29). If n(o(k)) = n(o(k + 1)), then Mg = g (My).

(c) The algebra Ry equals the quantum cluster and upper cluster algebras over
D associated to M, B, &:

Rp =AM, B,2)p =UM, B,2)p.

In particular, A(M, B, D) is a finitely generated D-algebra, and it is Noetherian if
D is Noetherian. In fact, A(M, B, ) is generated by the cluster variables in the
seeds parametrized by the finite subset 'y of E n (recall (3.16)).

(d) For any subset inv of the set P(N) of frozen variables, there are equalities

Rply;' |k einv] = A(M, B.inv)p = U(M, B, inv)p.

Proof
(a) We already have from Theorem 3.11(a) that (M, Ea) is a quantum seed for &
over K and that the principal part of §U is skew-symmetrizable via the d; k), k € ex,.
The entries of r(My) = ry, given in (3.32), lie in D* due to the assumption that all
vi; € D*. Since K = Fract(ID), we have FractD(M,(Z")) = Fract K(M,(Z")) =
F, and so (Mg, §g) is also a quantum seed for ¥ over .

(b) This is immediate from Theorem 3.11(c).

(c) and (d) These are proved below. O

4.3. Examples

Example 4.9

Consider a uniparameter quantized Weyl algebra R = A%**(K), for a nonroot of unity
g € K* and a skewsymmetric matrix & = (a;;) € M, (Z). This algebra is presented
by generators v, wq, ..., Uy, W, and relations

wiw; =q“w;w; (alli, ),
viv; =q' v (i < j),
in]‘ :q_ai_fwjvi (l<]), (47)

viw; =q' % wiv; (> ),

vjwj =1+qw;v;+(g—1Y ww (all j).
I<j

The torus # = (K*)" acts rationally on R with

(0t1,...,00).0; = v; and (o1,...,00).w; =ai_1w,-
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for (ay,...,a,) € # and i € [1,n]. With the variables vy, wy, ..., v,, W, in the listed
order, R is a CGL extension, but that presentation is not symmetric. There is a sym-
metric CGL extension presentation with the variables in the order wy,, ..., wy,vy,...,
vy, and D(w,,...,w1,v1,...,V,) is a D-form for this presentation, where D =
(Z-1x)[g*"]. However, the homogeneous prime elements yi,..., y2, from The-
orem 3.2 do not lie in this D-form (see Remark 4.2(c)). This can be rectified by
rescaling the generators as in Proposition 4.3. One such rescaling leads to the CGL
presentation

R=K[(g—Dwn]-[(g = Dw1:6n][v1; Ons1.8n41] - [Vn: O2n. 820),  (4.8)

and D{(¢ — Dwy,...,(g — Dwy,v1,...,v,) is a D-form for this presentation which
contains all the yys.

If either R or a D-form of R is Zxo-graded, then in view of the final relations
in (4.7) all the generators v;, w; must be homogeneous of degree 0. Thus, R and its
D-forms have no nontrivial Zso-gradings.

Example 4.10
Let R = AP*(K) and # = (K*)" as in Example 4.9, and take the symmetric CGL
presentation (4.8). Set D = (Z-1g)[g*!]. Then

D((g — Dwp,....(g — Dwy, v1,...,0n)

is a D-form for the presentation (4.8) which contains the homogeneous prime ele-
ments Y1, ..., V2, from Theorem 3.2.

The CGL presentation (4.8) satisfies Condition (B) with all d; = 1, and to obtain
Condition (A) we just need to assume that K contains a square root of g. Choose one,
and label it ¢'/2. The condition (3.28), however, only holds after a further rescal-
ing of the generators. Namely, write R as an iterated Ore extension with variables
X1,...,X2, Where

-

(q - l)wn-i-l—i ifi e [19’1]’
(=1)igGn=D12y, . ifi en+1,2n].

In order to express the relations among these x;s in a convenient form, we use the
following notation:

I"':'=2n+1-1 (forl€[l,2n]) and
Cij i=ang1—in+1—; (fori,j €[l,n]).

Then R has the presentation with generators xy, ..., X2, and defining relations
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xixj =qUx;x; (i.j €[1,n]),

xix; =q' 9 xix; (n<i<j<2n),

xix;=q “ixjx; (j<n<i<j <2n),

xix;=q' Vix;x; (j<n<j <i<2n), 4.9)

XjrXj = (_1)n+1—jq(n—j)/2(q —1)+qgx;x;

+@-D Y DTGP (jellin)).

1<j<l<n

With the presentation (4.9), R is a symmetric CGL extension satisfying the
required hypotheses (A), (B), and (3.28) of Theorem 4.8. It has a D-form

AL*(D) :=D(x1,...,X24), (4.10)

where we now take I) = (Z-1g)[g*'/?]. There are two possibilities for D (recall

(1.1)):
D~ AY2 =7Z[¢"?] if charK =0,
Dx=TF,lg'/? if charK = p.

The scalars vg; from Condition (A) all lie in D*, as do the nonzero coefficients of the
homogeneous prime elements yq, ..., y2, from Theorem 3.11. Therefore,

A% (D) = A(M, B,@)p = U(M. B, 2)p

by Theorem 4.8. The matrix r = r(M) of the initial toric frame has the form

1 s€12 ... ¢Cla—1  ¢Cln 1 | 1 s17]
€21 1 ce. g€2m—1 gCon 1 | R
sénl gCn2 ... ¢Cn.n—1 1 s7Uog7b o g7l g
r—=
1 1 1 S 1 1 1 1|’
1 1 S S 1 1 1 1
| s s e s s 1 r - 1 1 |

where s := ¢'/2. The quiver of the initial seed is acyclic, namely, it equals
1 2 o oon—1 n

TNy 7 NG

2n

2n—1 -+ n+2 n+1
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where the top vertices are mutable and the bottom ones are frozen.

Next, we illustrate Theorem 4.8 with a CGL extension which is not Zxo-graded
connected and whose quiver is not acyclic.

Example 4.11
Recall the notation % '/2 := Q(q'/?). Let R be the #'/2-algebra with generators
X1,...,Xe and relations

Xox1 =qx1xX2,  x3xp=qxixz+ (1—¢q)x3,  X3x2 = qxaxs,

xax1 =qxixs + (1—q*)x2x3,  xax2 =gxoxs + (¢ — 1)x3,

X4X3 = ({X3X4,

Xsx1=¢ 'X1Xs,  XsXp=¢ 'XoXs,  XsX3=¢ 'X3Xs,

Xsx4=q 'xa4xs5+ (g — 1),

x6x1=¢q 'x1x6 + (¢~ — @)x2yxs + (1 — q)x3x2,

XeX2 =q 'xox6 + (¢ — ¢ ")x3yxs,

X6X3=q 'x3x6 + (q — 1)y, X6X4 =q ' X4Xe, X6X5 = (X5X6,
where

yi=x4xs —q(1—q)*.

The algebra R is a symmetric CGL extension for the torus # := ((%'/2)*)? acting
so that, for the corresponding grading by X () = Z2, the variables x1,..., x¢ have
degrees

4,3), (3,2), (2,1), (1,0), (—1,0), (-2,-1).
The h-elements for this CGL extension are
hy=hs=(q.q""), hs=he=(q'.q)eX.

Consequently, A = g for k € [3,6]. The (nonunique) elements 1, /h, € # can also
be chosen so that A, = ¢ for k = 1, 2. Obviously Conditions (A) and (B) hold.
Denote by R 41,2 the #4'/2_subalgebra of R generated by x, ..., xs. The homo-

geneous prime elements yi, ..., y¢ belong to R 41,2 and are given by
-1.2
V1= X1, Y2 = X2, y3=X1X3+4qg X3,
-1,2 -1,2 2
Ya=XpXa—q X3,  ys=XaXaXs—q x3x5—q(1—q)°x2,

Y6 = X1X3X6 +q ' x3x6 —qx1y> — (1 + ¢~ ")xox3yx5 + ¢ x3x2.
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(The element y is precisely the interval prime element y[3 51.) Consequently, the 7-
function from Theorem 3.2 is given by n(1) = n(3) = n(6) =1 and n(2) = n(4) =
n(5) = 2. Hence, the predecessor function p maps 6 — 3+ 1 and 5+ 4+ 2. So,
ex = [1,4]. One easily verifies that the condition (3.28) is satisfied. The matrix of the
initial toric frame for R 41,2 from Theorem 4.8 is given by

(1 st s g2 g7 1]
s 1 1 sb 1 s
e | S 1 1 s2 1 2
I S S S Y C Al
s 1 1 s2 1 s
D B S e N

1

\ 4
6 — 3 ——= 5
where the vertices 5, 6 are frozen and the rest are mutable. Theorem 4.8 implies that
R 41,2 is isomorphic to the corresponding cluster and upper cluster algebras over

412 where the two frozen variables are not inverted. All statements in the example
hold if 4!/2 and /2 are replaced by F,[g*1/?] and F,(¢'/?), respectively.

Remark 4.12

The algebras in Examples 4.9-4.11 do not come from quantum unipotent cells in any
symmetrizable Kac-Moody algebra, because the algebras in those examples are Z-
graded but they are not Zxo-graded connected algebras, while all quantum unipotent
cells are Z>¢-graded connected algebras. In particular, these examples concern appli-
cations of Theorem 4.8 that are not covered by [23] or the results in Section 7 of this

paper.

Remark 4.13

There are also simple examples of symmetric CGL extensions R which cannot
be “untwisted” into a uniparameter form. More precisely, there are such R for
which no twist of R relative to a K*-valued cocycle on a natural grading group
turns R into a uniparameter CGL extension. For instance, this is true of the mul-
tiparameter quantized Weyl algebra A,?’P(K) when the parameters in the vector
0 = (41....,qn) generate a noncyclic subgroup of K* (see [16, Example 5.10]).
One can show that the quantized Weyl algebras A,,Q ’P(K) have integral forms over
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subrings Z[qfl/ z . ,q,:_L 1 2] of K. Theorem 4.8 can be applied to prove that the
integral forms are isomorphic to quantum cluster algebras over Z[qfl/ z . ,q,jf 1 2].

4.4. Proof of parts (c), (d) of Theorem 4.8

For the first part of this section, we assume only that K = Fract(ID). The normalization
assumptions in Theorem 4.8 will be invoked only in the proof of parts (c), (d) of the
theorem. In the following lemma and proposition, divisibility refers to divisibility
within the ring Rp.

LEMMA 4.14
Assume that (3.1) has a D-form Rp = D{(xy,...,xy). Let d € D\{0} and u,v €
Rp\{0} such that d | uv. If 1c(v) € D*, then d | u.

Proof
Let It(x) = bx/ and It(v) = cx&, where b,c € D\{0} and f,g € Z¥,. By assump-
tion, ¢ € D* and uv = dw for some w € Rp\{0}. We proceed by induction on f
with respect to <. If f =0, we have u = b and bcx® = lt(uv) = d lt(w). In this
case, d | bc, whence d divides b = u, because c is a unit in D.

Now assume that f > 0. In view of [15, (3.20)], we have

Abc =1c(uv) =d Ic(w)

for some A € D which is a product of A ;s. By assumption, A is a unit in D, whence
b = de for some e € D. Now u = dex’ + u’, where either u’ = 0 or It(u'") = bp'xt’
with b’ € D and f’ < f. In the second case,

w'v=uv—dex"v=dw—ex'v).

By induction, d | u’, and thus d | u. This verifies the induction step. O

PROPOSITION 4.15
Assume that (3.1) has a D-form Rp = D{xy,...,xn) which contains y1,...,yn. If
Y is the multiplicative set generated by D* U {y1,..., yN}, then

Rp[Y 1N R = Ryp. 4.11)
Recall from Lemma 4.6(b) that Y is a denominator set in Ryp.
Proof

If r € Rp[Y '] N R, then r = ay~! for some a € Rp and y € Y. Since r € KRy, we
also have r = d b for some d € D\{0} and b € Rp. Now da = by. Since Ic(y;) =
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1 forall j €[1, N], we see via [15, (3.20)] that Ic(y) € D*. By Lemma 4.14, b = db’
for some b’ € Rp. Thus, a = b’y, and therefore r = ay~! = b’ € Rp. O

From now on, assume that R is a symmetric CGL extension, and assume that
(3.1) has a D-form Rp = D(xq,...,xy) which contains yq,..., yy. For each ¢ €
E n, we have the CGL presentation (3.17) for R, and Rp is a D-form of this pre-
sentation by Lemma 4.5(b). Let ys.1,...,Ys,n be the (unnormalized) sequence of
homogeneous prime elements from Theorem 3.11 for the presentation (3.17), and let
Es denote the multiplicative set generated by

D* U {ya,l [l €[l,N].s5(l) # +oo} =D* U{J/a,l |l € exq},

where s, is the successor function for no. (By [15, Corollary 5.6(b)], no can be
chosen as the n-function for the presentation (3.17).) By Proposition 4.7(c) and
Lemma 4.6(b), E; is a denominator set in Rp.

PROPOSITION 4.16
The ring Rp equals the following intersection of localizations:

Rp= () RolE;"]. (4.12)

oel'n

Proof

Let T denote the right-hand side of (4.12). Since, by [15, Theorem 8.19(d)],
Moery RIE;'] = Nyery RUKE;) '] = R we have T C R. On the other hand,
Eiq is contained in the denominator set Y of Proposition 4.15, and so 7' C Rp[Y _1].
Proposition 4.15 thus implies that 7 € Ry, yielding (4.12). O

COROLLARY 4.17
Ifinv is any subset of [1, N]\ex, then

Ro[y;' |k einv]= () RolE;'lly;" |k €inv]. (4.13)
oel'y
Proof
This follows from Proposition 4.16 in the same way that [15, Theorem 8.19(e)] fol-
lows from [15, Theorem 8.19(d)]. O

Proof of Theorem 4.8(c), 4.8(d)
Note that the scalars 8, ( f) from (3.24), for f € Z¥, lie in D* because of our assump-
tion that all vg; € D*. Hence, by invoking Proposition 4.7(a), the normalized ele-
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ments y ; and y|; gm(y) from (3.25) and (3.26) belong to Rp. By (3.33), we thus have
Yox € Rpforallo € Ey and k € [1, N].
We next show that

Rp=D(y,, |0 €.k €[1,N]). (4.14)

The proof is parallel to that for the corresponding statement in [15, Theorem 8.2(b)].
For each j € [1, N], there is an element o € I'y with o(1) = j. By (3.33), y,; is a
D*-multiple of yf; ;1 = x;, and so x; € D*y, ;. Therefore, all x;s lie in the right-
hand side of (4.14), and the equation is established. Since all the y; , = M (ex) are
cluster variables, it follows that Ry € A(M, B, @)p.

We have A(M, B, 2)p C UM, B, @)p by the Laurent phenomenon (2.3), and

UM.B.o)pC () DT, 3,.0)

OEBN

= () D5k To |k cexoj €1 N]\exo),

OEE N

where ex, appears instead of ex for the indexing reasons explained before Theo-
rem 3.11. Since D(Yf’}c,ya’j | k € exo,j € [1,N]\exs) € Rp[E;!] for each o €
E §, we obtain that

UM.B.@)pC () RolE;").

OEEN
In view of Proposition 4.16, we have the following sequence of inclusions:

Ry CAM.B.2)p CUM.B.2)p S (| RulE,"]=Ro. (4.15)

gel'n

All the inclusions in (4.15) must be equalities, which establishes the first part of The-

orem 4.8(c). The finite generation statements concerning A(M, B ,9)p now follow

from (4.14). If D is Noetherian, then the iterated Ore extension Ry is Noetherian by
standard skew polynomial ring results. This concludes the proof of part (c).

Part (d) is proved analogously, using Corollary 4.17 in place of Proposition 4.16.

O

5. Quantum Schubert cell algebras, canonical bases, and quantum function
algebras

5.1. Quantized universal enveloping algebras
Fix a (finite) index set / = [1,7], and consider a Cartan datum (A, P,I1, PV, I1Y)
consisting of the following:



INTEGRAL QUANTUM CLUSTER STRUCTURES 33

@) A generalized Cartan matrix A = (aij)i jer such that a;; =2 for i € I,
—a;jj € Lo fori # j € I, and there exists a diagonal matrix D = diag(d;);er
with relatively prime entries d; € Z~¢ for which DA is symmetric.

(i) A free abelian group P (weight lattice).

(iii) A subset I1 ={w; |i € I} C P (set of simple roots).

(iv)  The dual group PV := Homgz(P,Z) (coweight lattice).

(v)  Two linearly independent subsets [TV = {h; |i € I} C PV (set of simple
coroots) such that (h;, ;) =a;; fori,j €I, and {w; € P |i € I} (set of
fundamental weights) such that (h;, w;) = §;;.

Let g be the symmetrizable Kac—-Moody algebra over QQ corresponding to this

Cartan datum. Denote

0 ::@ZO{,’ Cc P, Q+:=@Zzoa,~,

iel iel
and denote
Py:={yeP|(hiy) €Zso.Viel},
Piy={yeP|(hiy)e€lso.Vicl}.

Set h:= Q ®z PV. There exists a Q-valued nondegenerate symmetric bilinear form
(,) on h* = Q ®yz P such that

2(ai, jb)
(o, 0)

(hi, ) = and (i o) =2d; foriel,ueh®. 5.1
Set ||y||? := (v, y) for y € h*. Denote by W the Weyl group of g acting by isometries
on (h*,(-,-)). Denote by s; its generators, by £ : W — Zx the length function on
W, and by > the Bruhat order on W. We will also denote by (-, -) the transfer of this
bilinear form to b, satisfying (h;,h;) = (a;,«j)/d;dj foralli, j € I.

Let U, (g) be the quantized universal enveloping algebra of g over the rational
function field Q(g). It has generators qh, e, fi fori € I, h € PV, and the following
relations for h,h' € PV,i,j € I:

qO — 1’ q q qh+h ,
qheiq_h — q(h,(xi)ei’ qhﬁq_h — q—(h,ot,')‘fi’
dih; _ q_dihi

g7
ei fj— fiei =8ijq_7_17

1—a;;

aijj 1 ii—k . .
Z( l)k[ ] T je,k:O, i #7j,
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1—a;;

§:<1V[ Y] T =, i

where
. q; —4;
gi = q". [n]; := ﬁ [n]i!:=(1];---[n];  and

nl . [n]i
[k],- T k)il — k)

for k <n in Z>o and i € I. The algebra U,(g) is a Hopf algebra with coproduct,
antipode, and counit such that

—n

Agh=q"®q"  Ae)=e®1+q¢%" e,
AR = fi®q ™4 + 1 fi,
S =q7" S =—q"e,  S(fi)=—fighM,
€g" =1 el)=e(f)=0
forh € PY,i € I. The Hopf algebra U, (g) is Q-graded with
dege; = «;, deg fi = —o;, degqh =0. (5.2)

For a Q-graded subalgebra R of U,(g), its graded components will be denoted by
R,, where y € Q. For a homogeneous x € U;(g),, set wtx := y. Define the torus

= (Q@))".

For y =) nja; € Q, let t > t¥ denote the character of # given by (r;)icr —
rl" ! This identifies the rational character lattice of J# with Q. The torus J acts
on Uy (g) by

t-x=1t"x forxeUy(g),.y€0. (5.3)

Let A4 C Q4 be the set of positive roots of g. For w € W, denote the following
Lie subalgebras of the Kac-Moody algebra g,

- @ gt®, ne(w):= @ g*, (5.4)

aEA acANw=l(-Ay)

where, for @ € A, the g*¥s are the corresponding root spaces in g. Let b be the
corresponding Borel subalgebras of g. Denote by U, (n+) and U, (h) the unital subal-
gebras of U, (g) generated by {e; |[i € I},{f; |i €1} and {q" | h € PV}, respectively.
Denote the Hopf subalgebras Uy (b4 ) := Uy (n+) Uy, (h) of Uy (g).
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Consider the Q(g)-linear antiautomorphisms * and ¢ of U, (g) defined by
ef=e¢, £r= 1 " =q7" and
ple) = fi, o(fi)i=e, (p(qh);z qh

fori € I, h € PY. Their composition ¢* := ¢ o * = * o ¢ is the Q(g)-linear auto-
morphism of Uy (g) satisfying

o) =fi. ¢*(fi)=e. and ¢*(¢")=q7".

Denote by ¢ + ¢ the automorphism of the field Q(g) given by g = ¢~ '. The bar
involution x — X of U, (g) is its Q(g)-skewlinear automorphism such that cx =¢ x
for c € Q(q), x € Uy(g), and 7,- = fi,e; =e;, q_h: q_h fori € I, h € PV. Denote
the Q(g)-skewlinear antiautomorphism @ of Uy (g),

P(x0) = 9(X) = p(x), Vx € Uyg).

A Uy (g)-module V is called integrable if e; and f; act locally nilpotently on V
and

V=PV, withdimV, <oo,where V, ={veM |q"-v=q""v Vhe PV}
nepP

The category Oin(g) consists of the integrable U;(g) modules whose nontrivial
graded subspaces have weights in | J;(1; + Q) for finitely many fi1,...,un € P
(depending on the module). It is a semisimple monoidal category with respect to the
tensor product of U, (g)-modules and with simple objects given by the irreducible
highest weight modules V(i) with highest weights u € Py.

For V' € Oiy(g) its restricted dual module with respect to the antiautomorphism
¢ is a module in Qi (g) defined by

D,V = @ Vi, where V;j is the dual Q(¢)-vector space of V.
nepP

The U, (g)-action on D,V is given by (x - £, v) = (§,0(x)-v) forve V, e D,V.

Denote by {7; | i € I} the generators of the braid group of W. For w € W, let
Ty :=T;, ---T;, for a reduced expression s;, ---s;,, of w. We will denote by the
same notation Lusztig’s braid group action (see [34]) on Uy (g) and on the modules in
O (g). We will follow the conventions of [20].

5.2. Two bilinear forms
Consider the Q(g)-linear skew derivations e of Uy (n_),

(hiy

(f)=8j. and €] (xy)=el(x)y +q; " xel ()
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foralli,j el, x € Uj(n-)y,, y € Us(n_). The Kashiwara—Lusztig nondegenerate,
symmetric bilinear form (—, —)gz : U;(n=) x Uz(n—-) — Q(g) is the unique bilinear
form such that

(lvl)KL: 1 and
(fix. k=" —q) " (x.e]/ () gy Viel.x.yeUyno).

Remark 5.1
The Lusztig form uses the scalars (1 —¢;?)~! instead of (¢; ' —g;)™"' (see [33,
(1.2.13)(@)]). For the Kashiwara form (g;' — ¢;)~' is replaced by 1, and e/
are replaced by the skew derivations e; of U,(n_) satisfying e;(xy) = e;(x)y +
q(‘)‘i’y)xeg (y) (see [24, (3.4.4) and Proposition 3.4.4]).

The use of the above form leads to minimal rescaling of dual PBW generators,

quantum minors, and cluster variables.

Let d € Z~¢ be such that (PY, PY) C Z/d. The Rosso-Tanisaki form (see [20,
Section 6.12])

(= =)rr : Ug(b-) x Uy (b+) = Q(q ")
is the Hopf algebra pairing satisfying
R = (AX), Y @) X Vrr = (x @ X, AD))gps  (5.5)

for x,x" € Uy (b-), y,y’ € Uy (b4), and normalized by

(firep)rr =8ij(qi —a)™h (@ q" ke = g ®,

(fi,qh)RT = (qh, ei)rr =0
foralli,j €I, he PY.Its restrictions to Uy (n_) x Uy(b4) and Uy (b_) x Uy(ny)

take values in Q(¢g). The above two forms are related by (see, e.g., [29, Lemma 3.8]
or [39, Proposition 8.3])

Xk = (0" (X)) g ¥X. X €Uy(n0). (5.6)

5.3. Integral forms and canonical bases

Recall the notation (1.3). The (divided power) integral forms Uy (n4) 4 of Uy (ny) are
the #-subalgebras generated by ei(k) = ef‘/[k]i! (resp., fl-(k) = fik/[k],- Dforiel,
k € Zo. We have ¢*(Uy(n-)4) = Uy(ny) 4. The dual integral form Ug(n-) of
Uy (n_) is the A-subalgebra

Ug(no)y ={x e Uy(no) | (x.Uy(n-)a),, C A}
={x e Usm) | (x.Ug(ny)p) oy C A} (5.7)
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Kashiwara in [24] defined a lower global basis B' of Uy(n_)4 and an upper
global basis B* of Uy(n_)% . The basis B* is defined from B°Y as the dual basis
with respect to the form (—, —)g;. Lusztig in [33] defined related canonical and dual
canonical bases of Uy (n4) 4 and a dual integral form of U, (n4).

5.4. Quantum Schubert cell algebras, dual integral forms, and CGL extensions
To each w € W, De Concini, Kac, and Procesi in [5] and Lusztig in [34, Section 40.2]
associated quantum Schubert cell subalgebras of U;(n+). Given a reduced expression

W= S .. Siy (5.8)
define
Wk 1= 8ip =" Sigs Wjk] “= Si; * Sig s w;,i = (wSk)_l,
w[__i,lk] = (w[j,k])_l eWw
for 0 < j <k < N. Denote the roots and root vectors

ﬂk = wfk—l(aik)s f/gk = uj:lll—l (ﬁk) € Uq(n—)Av
) - (5.9)
€gy = T';:Il—l (eik) € Uq (n+)a4>
for k € [1, N]. The algebras U, (n4+(w)) are the unital Q(g)-subalgebras of U, (n4)
generated by eg,,...,eg, and fg,,..., fa, . respectively. These definitions are inde-

pendent of the choice of reduced expression of w. Furthermore,
Uq (n:I: (w)) =U;(ne) N Tuj—ll (Uq (n:F)),
Ug(ng) = (Ug(nx) N T (Ug(n2))) Ug (ne(w)).

This was conjectured in [1, Conjecture 5.3] and proved in [28] and [38].
Note that the algebras considered in [5] (see also [20]) are

U [w] = #(Ug (n£(w))).

(5.10)

We use U, (n4(w)) instead, to avoid making all algebras here anti-isomorphic to the
ones in [9]. The #A-algebra

Ug(n—(w)) ; := Uy (n—(w)) N Ug(n_) 3%

is called the dual integral form of Uz(n_(w)). Define the dual PBW generators of
Ug(n—(w))
1 1
fﬂk = * *
(fﬂk,eﬂk)RT (QD (eﬂk)7§0 (eﬂk))KL

f5, = ¢*(eg) = (43, — i) [ (5-11)
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for k € [1, N]. Note that ¢* (eg, ) differs from fg, by a unit of A, namely, p*(eg, ) =

(—=4i) [ [;(—aq:)™ fp,» where n; € Zx¢ are such that B = Y n;a; (see, e.g., [20,
Equation 8.14(9)]). The inner products between the dual PBW monomials and the
divided-power PBW monomials are given by (see, e.g., [20, Sections 8.29-8.30])

PIR(%
((fﬂ*l)ml ...(fﬁ*N)mN’eﬂll ...eﬂ[C’ )RT
N
= [T Smenca ™ D2, Vmy i € Zo, (5.12)
k=1

) l
where eé:) = eﬂ’;/[lk]ik.

THEOREM 5.2 ((Kimura) [27, Proposition 4.26, Theorems 4.25 and 4.27])
The algebras Ug(n—(w))}y have the following decompositions as free A-modules:

U)o = €A™ (f )™

= @ A-d. (5.13)

deBPNU, (n—(w))
The Levendorskii—Soibelman straightening law takes on the form
* rx _ _(Br.Bj) £x r*
Totg; =47 g, T,

- > b )" )
k—j—1

bm € A, (5.14)
foralll1 <j<k<N.
Remark 5.3
Recall (5.3), and denote
ti=(q" —qi)icr € X. (5.15)

The objects associated to U, (n4) used by Geil3, Leclerc, and Schréer in [9] are pre-
cisely the images under the isomorphism

(1) 0 9™ 1 Ug(n_) —> Uy(ny)

of the objects associated to U, (n—) which we consider. Firstly, [9] uses the canonical
basis @(B'") = ¢*(B'") of U,(n4) and the PBW generators eg, = @(f, ). They
use the bilinear form (—, —) on U, (n4) defined by
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0. Y) = (@* WM. 170" ). Y.y €Uynyg), (5.16)

leading to the following:

(D The dual canonical basis of U;(ny) constructed from the canonical basis
?(B"%) = ¢*(B'°%) and the bilinear form (5.16), thus giving the basis (z-) o
@™ (B);

(2)  The dual PBW generators e;k = eg, [(ep,.ep,) = (1) o <p*(fﬂ*;c) of
Ug(ny(w));

(3)  The dual integral forms (z-) 0 o*(Uy (n-) %) ={y € Uy (n4) | (x, Ug(ny) ) C
A} of Uy (n) and (1) 0 ¢* (Uy (n—(w))%) of Uy (n (w)).

For a reduced expression (5.8) of w € W and k € [1, N|, fix elements 7, ;" € #
such that (cf. (5.3))

Bj _  (Bk.Bj) j nd

t q 77 for j €[1,k] a

© (5.17)
(t,f)ﬂl q—(ﬂk,ﬂz) forl € [k, N];

such 7, t; exist but are not unique since the restriction of the form (-,-) to Q is
degenerate when g is not finite-dimensional. Note that the algebras U, (n—(w))}; are
preserved by the automorphisms (t-), (7).

LEMMA 5.4
Let w e W, let (5.8) be a reduced expression of w, and let t;, € H satisfy (5.17).
(a) For k € [1, N], the algebra Uy (n—(w<x))}, is an Ore extension

Uy (n—(w<i)) 2 Uy (n-(wei—1)) 5 [ S5 2 (1) 8.

where 8y is the locally nilpotent (ty-)-derivation of Uy(n—(w<k—1))}, given
by

Sr(x):= fé’;x - q(ﬂk"””)xfﬂi for homogeneous x € Uy (n+(w5k_1));.

The ty -eigenvalue of fﬁ’; equals ql-zk , which is not a root of unity.
(b) The algebra

Uy (n-(w)) = Q@)f5 1 55 2. 8] [ S, tw). o8] (5.18)

is a symmetric CGL extension. The algebra

Uy (no(w) ' = AU IS5 (28] [ £, n) 6] (5.19)

with the generators fﬂ"‘1 ey fﬂ*N is an A-form of the CGL extension (5.18).
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(©) The interval subalgebras of Uy(n—(w))}, are

(Ug(n- (w));)[j,k]

=T, (Ua(n-(uyp) ) forl=j=ksN. (520

Proof
Part (a) follows from (5.13) and (5.14).

(b) The facts that U, (n—(w)) is a CGL extension and that U, (n—(w))}, with the
generators fﬂ*1 ey fﬂ*N is an #A-form of it follow by iterating (a). Its symmetricity is
proved analogously to (a).

(c) Applying twice (5.13) and using (5.11), we obtain

Ualn-) )y = €D A U™ ()™

=74 (D A )"

Mj,....Mp €L>0

which proves (5.20). O

An important feature of the normalization of (—, —)g; is that there are no addi-
tional scalars in Lemma 5.4(c) due to the braid group action.

5.5. The quantum function algebra of g
Consider the full dual Q(g)-vector space U, (g)* which is canonically a unital algebra
using the coproduct and counit of U, (g). It is a U, (g)-bimodule by

(x-c-y,z):=(c,yzx) forceUs(9)*, x,y,z € Ug). (5.21)

For aright U, (g)-module V, let V¥ be the left U, (g)-module structure on the vector
space V such that

x-v=v-¢(x) forveV,xeUig).

For each pu € P, there exists a unique irreducible right U, (g)-module V"(1) such
that V()% = V(). Analogously to Oy (g), one defines an (O-type category of inte-
grable right U, (g)-modules; it is denoted by Qi (g°F).
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Kashiwara defined in [25, Section 7] the quantized coordinate ring A,(g) of the
Kac—Moody group of g as the unital subalgebra of U, (g)* consisting of those f €
Uy (g)* such that

Ug(9) - f € Om(g) and S - Uqg(9) € Oin(g™).

Kashiwara also proved in [25, Proposition 7.2.2] a quantum version of the Peter—Weyl
theorem that there is an isomorphism of Uy (g)-bimodules

4@ = P Ve V. (5.22)
wePy
For M € Oin(g), ve M, and £ € D, M, define the matrix coefficient
cev € Ug(9)* given by (cev, x) :=(§,x-v) VxeUy(g). (5.23)
It follows from (5.22) that

Ag(@) = {cev | M € Oie(g).v € M. € DM }

= @ {cev [V E€V(1).§ € DV ()]}

M€P+

This is the form in which quantum function algebras were defined in the finite-
dimensional case (see [32]). The algebra A,4(g) is P x P-graded by

Ag@uw ={cev | E€ (V) CDV.v eV, V €Oimlg)}. Yu,veP. (524

6. Homogeneous prime ideals of 4, (n(w))

6.1. The algebras Ag(ny) and Ag(ny(w))
It follows from the first identity in (5.5) and the nondegeneracy of the form that the
map

1:Ug(n2) = Uy (by)™ given by

(6.1)
([‘(x)9 y) = (xv y)RTv Vx € Uq(n—)fy € Uq(b-i-)y

is an injective algebra homomorphism. Here U, (b4)* denotes the unital algebra
which is the full dual of the Hopf algebra U, (b4) over Q(g).

Following Geil}, Leclerc, and Schréer in [9, Section 4.2], denote the subalgebra
Ag(ng) C Uy(b4)* consisting of those f € Uy (b4)* such that
(i)  f(xq") = f(x)forall x € Uy(ny), he PV, and
(i)  f(x)=O0forall x € Us(ny), and y € Q4 \S for a finite subset S of Q4.
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The properties
(th’ th,)RT = (x, Y)RTq_(h’h/)’ (Uq(n—)—y’ Uq(n+)8)RT =0,
for x e Uy(n-), y € Uy(ng), h,h' € PV, y # 6§ in Q4 (see [20, Equation 6.13(1)])
and the nondegeneracy of (—, —)gr imply that A;(ny) :=¢(U;z(n-)). Thus,
LU (ns) — Ag(ny) (6.2)

is an algebra isomorphism. Following [9, Section 7.2], define A,(ny(w)) :=
t(Ug(n—(w))). Hence, ¢ restricts to the algebra isomorphism

LUy (ne(w)) —> Ag(ny (w)). (6.3)

Using the isomorphism ¢, transport the isomorphisms Ty, : Uy (n—) N T, 1 (Uy(n2)) —
Tw(Uy(m=)) N Ug(n-) to such maps on A4(n4). Denote the integral forms over 4

Agp) s = 1(Ug(no)y) and  Ag(ng(w)),, :=1(Uy (n_(w));)
of Ag(n4) and A4 (ny (w)). The algebra A, (ny(w)) is O -graded by
Ay (n+(w))y = L(Uq(n_(w))_y), VyeQy.

In other words, the isomorphism (6.3) is not J-equivariant, but satisfies ¢(¢ - u) =
17V i(u) fort € K, u € Uy(n_(w)).

Remark 6.1
By using the bilinear form (5.16), in [9] the algebra A, (n.) is identified with U, (n4)
via the isomorphism

W Uy(ng) — Ag(ny),
(), y'q"):= (. ¥k, Y.y €Uy(ny).he PV.

W fits in the commutative diagram

Ag(ng)
[/ ’\\I/
(t)og

Upno) > Ug(ng)

in terms of ¢ € H given by (5.15). This and Remark 5.3 imply that A,(ny).4 and
t(B") are precisely the integral form of A4(n4) and the dual canonical basis of
Ag4(ny) considered in [9]. However, the braid group action of [9] on A4(n4) is a
conjugate of ours by an element of the torus # and involves extra scalars compared
to our formulas.
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6.2. An algebra isomorphism
For u € P4, fix a highest weight vector v, of V(u). For w € W, define the extremal
weight vector

Uy 1= Tuj,ll Uy € V(W)wp-
Denote the associated Demazure modules
Vit (1) := Ug (ba)vuy S V().
Let
Ewpn € V()35 C Dp(V(1))  besuchthat  (§uyu, vwu) = 1.

For u,w € W and pu € P4, using the notation (5.23), define the quantum minors
Aupwp = Ceypvun € Aq(9)
which are equivalently given by [2, (9.10)] and [9, (3.5)]. It is well known that
w 1(v,ﬂX)v,,)— » 1vM(X)T 21Uy (6.4)

for all i, v € P4. This implies that

Avpwp Duv,wy = Du(utv),w(utv)s YH,VE Py, (6.5)

Following Joseph [21, Section 9.1.6], denote the subalgebra
A7 @)= @ {cev. | §€ Do (VW)
HEPy
of A4(g). By [8, Lemma 2.1(i)], the multiplicative set
Ey :={Awuulme Py}
is a denominator set in A; (g). Denote the subsets
Ty = @D {ctv, | £ € D (V). 6 LV, ()} C 47 (0).
HEP

By the proofs of Theorems 6.2 and 6.4 below, they are completely prime ideals of
4% ().

The P x P-grading (5.24) of A,4(g) extends to a P x P-grading of the localiza-
tion Al‘; (9)[E,]. For a graded subalgebra R C A(‘IIr (9)[E,"], denote the subalgebra

RO = @ Rv,O’
veP
noting that Ry is naturally P-graded. It is easy to show that every element of

(A} (@[Ey" Do has the form cg,, Ayl , for some p € Py, £ € Dp(V()); i
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particular, this algebra is Q-graded. The following theorem was proved in the finite-
dimensional case in [40].

THEOREM 6.2
For all symmetrizable Kac—Moody algebras g and w € W, there exists a Q-graded
surjective homomorphism ry, (A;I" (@)[E, Do = Ag(ny(w)) such that

(Vo (Ce, Db ) ¥4") = (€. yvwp) 6.6)

foruwe Py, € Dy(V()), y € Uy(by), h € PV. Its kernel equals (J . [E,'])o-
We will need the following lemma.

LEMMA 6.3 ([40, Lemma 3.2])

Let H be a Hopf algebra over K, and let A be an H -module algebra equipped with a
right H -action. For every algebra homomorphism 0 : A — K, the map ¢ : A — H*,
given by

y(a)(h) =6(a-h),
is an algebra homomorphism.

Proof of Theorem 6.2
Equation (6.4) implies that

Ow:Af(9) > Q(g)  givenby
ew(c‘gvu):: (gvau), VM€P+75:€D¢(V(/’L))’

is an algebra homomorphism. We apply the lemma to it and to the right action (5.21)
of Uy (b4) on A; (g). It shows that the map ¥, : A;(g) — U,y (b4 )™, given by

(Ww(cévu),Y) =(, yvwu), VYmeEPLE€ D¢(V(u)),y e U,(by),
is an algebra homomorphism. The element vy, (Ay,y,;,) is a unit of Uy (b4)* because
(Vw(Bup). yd") = (g™, ¥y e Ugni).he PV

Hence, 1, extends to A (9)[Ey,"], v ((AF (9)[E, Do) C Ag(ny), and the restric-
tion of ¥y, to (A;I|r (@)[E, o is given by (6.6). From now on we will denote by
Yy this restriction. The formula (6.6) implies at once that the kernel of i, equals
(JH[E5" o and

(Im g, Uy (ns w))y) =0, Vy € (Uy(ny) N T L (Ug(n4)),,. v € 0+ \{0}.
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For each y € Q4 such that U, (ny (w)), # 0, there exists € P such that the pair-
ing

(Vao(Wywn)* x Ug(n (), givenby £y > (£, yvup)
is nondegenerate. This, the second equality in (5.10), and the fact that
(U (n-(w)), Uy (14 () y) g = 0,
Vy € (Ug(ni) N T L (Ug(ny))),. v € Q4 \{0},
imply that Im yr,, = A4(ny(w)). O

THEOREM 6.4

In the setting of Theorem 6.2, there exists a (Q-graded) homomorphism ,, :
(A;(G)[EJI])O — Uy (b-)* such that

(Vo (Ct0, Api ) ¥4") = (£, Y Vu)

for we Py, £ € Dy(V(w)), y € Ug(b-), h € PV. Its kernel equals (J;;[Ey'])o.
Its image is contained in the image of the antiembedding Uy (ny(w)) — (Uy(b-))*
coming from the second component of the Rosso—Tanisaki form.

The proof of the theorem is analogous to that of Theorem 6.2.

6.3. The prime spectrum of Ag(n4(w))

The fact that Oy, (g) is a braided monoidal category gives rise to R-matrix commuta-
tion relations in A, (g) (see [21, Proposition 9.1.5]). Particular cases of those are the
relations

AwppX =qi((w“’v)_(“”'))waM,M mod Juﬂ):’

Vx €A (g)vy. € Py vy €P. (6.7)

Foru € W, u € P4, denote the unipotent quantum minors
Dupwp = Yw (AuM,MA;L,M) € Aq(ny(w)).

They are alternatively defined as the elements of Ay (14 (w))u—w)u C Ag(n) such
that

(Duu,wu,th) = (Eup, Xvyu), VYxe Uq+(g)’h ePY, (6.8)

which implies that they are precisely the elements of A, (ny (w)) defined in [9, (5.3)-
(5.4)]. Set

W=*=lueW|u<uw).
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For u € W=Y, denote the ideals

Ly () := Y (I [Ey']),)  of Ag(ny(w)).
It follows from (6.5) and (6.7) that

(wuuv)=(.v)

Duu,,w,u,Duv,wv =4 u(p+v),w(+v), Yu,ve Py,

and that

((w+u)p,wtx)

Dypwpx =q XDyywy mod Iy (u),

V€ Py, homogeneous x € Ay (ny(w)).

We have I, (1) = 0; thus,

((w+1)p,wtx)

Dywux =q XDy,

Vu € Py homogeneous x € Ag(ny(w)). (6.9)
Denote the multiplicative sets

Ey(u) = qZ{Du,u,wu |pe Py} in Aq(n+(w))~

Analogously to (5.3), we use the O 1 -grading of A, (n(w)) to construct an action of
the torus # on it.

THEOREM 6.5

For all symmetrizable Kac—Moody algebras g and w € W, the following hold:

(a) The graded prime ideals of Aq(n4(w)) are the ideals I,,(u) for u € W=".
The map u > I, (u) is an isomorphism of posets from W=" with the Bruhat
order to the set of graded prime ideals of Ag(n4(w)) with the inclusion order.

(b)  All prime ideals of Ag(n4(w)) are completely prime and

Spec A4 (n+ (w)) = I_l Spec,, A4 (n+ (w)),

uew=w

where Spec, Ag(ny(w)) :={g € Spec Ag(ny(W)) | ezt - F) = TwW)}.

The following hold for u € W=%:

(c) Iy(u) N Ey(u) = & and the localization Ry, = (Ag(ngy(w))/ 1y (1)) X
[Ew )~ is an H -simple domain.

(d)  Forue W=", the center Z(Ry ) is a Laurent polynomial ring over Q(q),
and there is a homeomorphism

=

Mu: Spec Z(Ry,w) — Spec,, Aq(ny(w)),
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where for § € Spec Z(Ry,w), nu(g) is the ideal of Aq(ny(w)) containing
Ly (u) such that 1y (§)/ T (u) = § Ruw N (Ag(ny(w))/ Ty (u)).

Denote for brevity the algebra
AS = (AT @IER"), S AT (@IEL".
Itis Q-graded by
(A = (A;(G)[EJI])V,O forve Q

in terms of the P x P-grading (5.24) of A;‘ (9)[E;;"]. Define the commuting (inner)
automorphisms 7}, € Aut(A;)) for u € P4 by

Al
Ty (€) i= Ay 1 Dwpu -

For each i € I, define the automorphism «; € Aut(A;IF (9)) by ki (c) := ¢ - g%"i and
the locally nilpotent (right skew) «; -derivation d; of A;I" (g) by 9;(c) := ¢~ f; in terms
of the second action in (5.21). It easy to check that k; 0; ;" ! = 4;9;. Following Joseph
in [21, Section A.2.9], for ¢ € A} (g)\{0} set

degi (C) = max{n S Z>0 ’ a:l (C) 3& 0}
and
Oy (c) =207 -+ 07N () #0

where ny,...,n1 € Zx are recursively defined by ny := deg;, (8;’::11 8:'1\’,\7 (c)) in
terms of the reduced expression (5.8). Set 9, (0) := 0.

Proof
We carry out the proof in four steps as follows:

Step 1: For allu € W=", the ideals I,,(u) of A;(ny(w)) are completely prime.
The image of Vy, is an iterated skew polynomial extension and, thus, is a domain.
Similarly one shows that the image of v, is also a domain. Therefore, (Jujf[E,; Mo
are completely prime ideals of A} . By direct extension and contraction arguments one
gets that JujE are completely prime ideals of A;’ (g) for u € W and that the same is true
for the ideals (JF[E,'])o of A]. The remaining part of the proof of the statement
of Step 1 uses elements of Gorelik’s and Joseph’s proofs in [18] and [21] of related
facts in the finite-dimensional case. We prove the stronger fact that there exists an
embedding

Ag (0 )/ T ) = A5/ (T [EL M),
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which we construct next. For a linear map t on a Q(g)-vector space V and ¢t € Q(g),
denote by &.(¢) the generalized ¢-eigenspace of t. Using the first action (5.21), one
shows that, for all i € I, w € W such that £(s;w) < f(w) andve P, € P4, t €

Q(),
if ce&u(t)NAf (g then 97(c)e&u (1qgWr=Givivina)

where n := deg; (¢); the proof of this is analogous to [ 18, Lemma 6.3.1]. By induction
on the length of w, this implies that

AY = P H2y].  where
v€04

_ —1
(ADRY] = Plee Ay |c e g™ V) Ve Py},
veQ

(6.10)

and that, fory € Q4+, A € P4,
o Buia €ADRY] = (01 (cewn)) A3 €(ADRY]L (61D

The base of the induction for w = 1 follows from (6.7) applied to J;” = 0, which
gives that 7{'(c) = ¢%¥¢ for all ¢ € (A} (9)[ET)v,0. v € —Q 4; that is,

ANy = P {cew, 874 [ E € (V(Damy)" € Dp(V(V))}.
AePy

Vye Q4. (6.12)
Furthermore, we have

(VES )= D Ayl (6.13)
yeQ s \(0}

By (6.7), applied to J,, the right-hand side is contained in the left one. Because
of (6.10) it remains to show that (J;F[E;;'])o N A} [0] = 0. Assume the opposite,
that (J,F[E; )0 N AF[0] # 0. By putting elements over a common denominator,
each element of A}, can be represented in the form cg ,,, A;i , forsome A e Py, &€
D, (V(1)). Choose a nonzero element of this form in (J,} [E,'])o N A [0]. By (6.11),
@ (cg,v/l))A;,l)L € (A7)[0]. Hence, (6.12) implies that 07 _1(cg,) =rcg, v, for
some r € Q(7)*. The definition of 37 _, gives that

(& £ fiNva) #0 forsomeny,...,ny € Zso

2
standard presentation of Demazure modules (see [21, Lemma 4.4.3(v)]). This contra-

dicts with cg,,, AL € (JF[E'])o and proves (6.13).

in terms of the reduced expression (5.8). However, f;" -+ f ¥ v; € V,f (1) by the
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Since i, € Aut(A}), A}[0] is a subalgebra of A . Theorem 6.2, (6.10), and
(6.13) imply that

Ag(nyw))/ L) = AL /(T 1ER ) o + (1 [ES),)
= AF[0]/ (AL 101N (I [EL'),) = An /(I [Ex']),-

Step 2: For all u € W=¥, I,(u) N E,(u) = @. Denote by G™" the minimal
Kac—Moody group associated to g (see [30, Section 7.4] for details). Let H be the
Cartan subgroup of G™", and let N and N_ be the subgroups of G™" generated
by its one-parameter unipotent subgroups for positive and negative roots, respectively.
Denote by !Bf“ and B_ the associated Borel subgroups of G™". Denote by N, (w)
the unipotent subgroup of N _‘;’i“ corresponding to ny (w). By [27, Theorem 4.44], we
have the specialization isomorphism

Ag(ny (w)) , ® C=C[Ny(w)] (6.14)

for the map 4 — C given by g — 1. By [39, Proposition 9.7], I, (1) N Ag(n4(w)) 4
is an A-form of I, (u). The definitions of J,; and [, (1) in terms of Demazure mod-
ules imply that, under the specialization isomorphism (6.14), I, (u) N Ag(n4(w)) 4
is mapped to functions that vanish on the nonempty set

N(w) N B_uBTw, (6.15)

which is isomorphic to the open Richardson variety in the flag scheme of G™" cor-
responding to the pair u < w € W. Let u € Py. Analogously to the quantum sit-
uation, using special representatives of w € W in the normalizer of H in G™n,
one defines the generalized minor A, w,wu» Which is a strongly regular function on
G™n_ It is well known that, under the specialization isomorphism (6.14), the element
Duyy,wp € Eyw (1) corresponds to the restriction of Ay woawp O er“i". This function is
nowhere-vanishing on the set (6.15). Therefore, the specializations Iy, (4) and Ey, (1)
are disjoint, so 1, (u) N Ey(u) = @.
For the next step, we denote for brevity

ce =Y (cep, Ayl 2) € Ag(ni(w))  for§ € Dy(V(X)). A € Py
For ¢ € Spec A;(n4(w)) and A € P, denote
Cy(M)={veP|Fe(V(h))" CDy(V(X)) suchthatcg ¢ ¢}.

Since cg,, =1 ¢ &, wA € Cg(1). Denote by Mg (1) the set of maximal elements of
Cgq(A) with respect to the partial order v < V" if vV —v € Q.

Step 3: For every § € Spec Ag(ny(w)), there exists a unique u € W=" such
that Mg(A) = {ul} for all A € Py. This step is similar to [21, Proposition 9.3.8].
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Let A € Py, and let v € Mg(A), so there exists £ € (V(1)*), such that ¢ ¢ . The
R-matrix commutation relations in A,4(g) (see, e.g., [21, Proposition 9.1.5]) and the
homomorphism from Theorem 6.2 imply that

—(v+wAi,y)

cex =¢q xcg mod ¢, VxeAq(n+(w))y,yeQ+.

Take any other pair A’ € P, and v' € Mg(A") going with §’ € (V(A")*),/ such that
cgr ¢ &. Applying the last relation twice gives

cecy = q—(v-i-w)k,v’—wk/)—(v—w/l,v/-‘rw)k’)cé/cé mod 5‘
Since Ag4(ny(w))/d is a prime ideal and the images of c¢ and g/ are nonzero normal
elements, they are regular. Therefore, the power of ¢ above must equal 0, and thus,

A A)— (v =0. (6.16)

It follows from [21, Lemma A.1.17] that v = uy(A) for some u, € W; that is,
Mg(A) = {upA}. (Note that u, is nonunique for A € P4\ P;y.) It follows from
the inclusion relations for Demazure modules (see [21, Proposition 4.4.5]) and the
definition of J, that u) € W=¥ for A € P4. Applying (6.16) one more time gives
that uy = uy, for A,A’ € P4, and that, for A € Py, A’ € P, , the element u; can
be chosen so that uy = uy.

Step 4: Completion of proof. By Step 3,

|_| Spec;, Ag(n4(w)), where
uew=v 6.17)

Spec), Aq(nt(w)) :={g € Spec Ay (ny(w)) | Mg(X) = {ul},VA € Py }.

Steps 1, 2, and 3 and the fact that dim V' (1), = 1 imply the following:

(*)  For all u € W=, we have I, (u) € Spec;, A;(ny(w)), all ideals in
Spec), Ag(n4(w)) contain I, (u), and the stratum Spec,, A4(n4(w)) con-
tains no other Q4 -graded prime ideals.

Therefore, {I,(w) | u € W="} exhaust all Q4-graded prime ideals of
A;r(mr(w)). For uy <up in W=, we have I, (w) C I,,,(w) because Vi, (W) 2
Vi, (A). Step 2 and the inclusion relations between Demazure modules (see [21,
Proposition 4.4.5]) imply that there are no other inclusions between these ideals. This
proves part (a).

All prime ideals of A4 (n4(w)) are completely prime by [12, Theorem 2.3]. It
follows from (*) and the definition of Mg(A) that the stratum Spec, A4 (n4(w)),
defined in part (b) of the theorem, coincides with Spec;, A4 (n4(w)) and equals

Spec Aq (n4 (w))

{¢ €Spec Aq(n+(w)) | ¢ 2 1w ). § N Ey(u) = 2}.
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The second statement in part (b) follows from (6.17) or, equivalently, from [3, Sec-
tion I1.2.1].

The properties (*) imply that the ring (A4 (n4(w))/ Ly (w))[Ey(w)™1] is H-
simple, since the stratum Spec], A, (n4(w)) has a unique Qy-graded ideal. This and
Step 2 prove part (c). Part (d) now follows from [3, Lemma I1.3.7, Proposition I1.3.8,
and Theorem 11.6.4]. O

6.4. The homogeneous prime elements of Ag(n4(w))
Denote the support of w as

Swy:={iell|si<w)={iel|i=iforsomek €[l,N]},

where the second formula is in terms of a reduced expression (5.8).

COROLLARY 6.6
The homogeneous prime elements of Ag(n4(w)) up to scalar multiples are

Do ww, fori € 8(w). (6.18)

Proof

Theorem 6.5(i) implies that the height one O 1 -graded prime ideals of A, (ny(w))
are [ (s;) for i € 8(w). Since A;(ny(w)) = U;(n—(w)) is a CGL extension
(Lemma 5.4), it is an H#-UFD; thus, its height one Q4-graded prime ideals are
principal, and their generators are precisely the homogeneous prime elements
of Ay(ny(w)). Applying Theorem 6.5(c) for u = 1 and taking into account that
Iy (1) = 0 gives that 1,,(s;) N Ey (1) # @ for i € §(w). However, Ey, (1) consists
of monomials in the elements (6.18). Hence, each of the (completely prime) ideals
Iy(si), i € 8(w), is generated by one of the elements in (6.18). The two sets have
the same number of elements and D, waw,; € 1w (si). Hence,

Ly (s7) :Dwi,wwiAq(n-l—(w))v Vi € $(w),

and the set (6.18) exhausts all homogeneous prime elements of A, (ny(w)) up to
scalar multiples. O

7. Integral cluster structures on A, (ny(w))

7.1. Statements of main results

Recall the notation (1.1). Throughout the section, g denotes an arbitrary symmetriz-
able Kac-Moody algebra, and w denotes a Weyl group element. We fix a reduced
expression (5.8). Set
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Uq (n_(w))ll/z =0 (“—(w));, R4 A2,
Aq (n+(w))A1/2 1= Ag(ns (w))A ®a A2,

and extend ¢ to an algebra isomorphism

L Uq(n_(w)):"l/2 = Ag (n+(w))Al/2. (7.1

For k € [1, N], denote

e i= a0 ) = 42 @5t — i) € Ag(ng () g1or (72)
and recall (5.11). For j <k €1, N], set
alj, k] := || (wijp — D |>/4 € /2. (7.3)

By applying ¢ to (5.18) and extending the scalars from Q(g) to Q(q'/?), we
see that A4 (ny(w)) Qg(g) Q(g"/?) is a symmetric CGL extension on the generators
L(fB*l), e L(fB*N). It follows from Lemma 5.4(a) that the scalars A;, A of the CGL
extension are given by

A =qi,. Af=gq;>. Vke[l.N]. (7.4)

Lemma 5.4(b) implies that A, (n4(w)),41/2 with the generators xi,...,xy is an
A!/2form of the symmetric CGL extension A, (n4(w)) ®q(g) Q(g'/?). It follows
from (5.14) that the scalars

v i=qPePI2 1< <k <N,

satisfy Condition (A) in Section 3.4. Lemma 5.4(c) implies that the interval subalge-
bras of Ag(ny(w))41/2 are

-1

(A0 ) g12) o = Tkt (Ag s uia) orz). V7 <Kin[LN]. (7.5

—1
Wej—1

Our first main theorem on quantum Schubert cells is the following.

THEOREM 7.1

Let g be a symmetrizable Kac—Moody algebra, and let w € W with a reduced expres-

sion (5.8). Consider the A"?-form Ag(yp(w)) 41/2 of the symmetric CGL extension

Ay (ny(w)) ®qg) Q(g'/?) with the generators xy, ..., xy given by (7.2).

(a) The sequence of prime elements from Theorem 3.2 of A4(ni(w)) ®q(q)
Q(q'/?) with respect to the generators xi, ..., Xy is

O_(k
yk:qi(k ()“)/szik,wSkwik» k=1,...,N.
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The corresponding sequence of normalized prime elements is

ykzqa[l’k]Dwik,wskwik, k=1,...,N.

Moreover, y1,...,YN.V1:+---.Yn € Ag(np(W)) 41/2.
(b)  The n-function n:[1, N] — Z of Ag(n4(w)) ®qq) Qg'/?) from Theorem 3.2
is given by
n(k):=ir, Vke[l,N]. (7.6)

(c) The normalized interval prime elements of Ag(ny(W)) 41/2 are

- — galjk] — galjk]
Ykl =4 Dw_; ywij werwi, =4 Tw_yy Dy wiy sy,

forall j <k in[l,N] suchthati; = iy.

In the rest of this section we will use the notation (3.4) for the predecessor and
successor functions p and s and the notation (3.5) for the functions O4 associated to
the n-function (7.6). Equation (6.9) and Theorem 7.1 imply that, for k > j,

Dwik,wgkwik Dwij ,ngwij
_ q_((w5k+1)wika(wsj_l)w'ij)Dw

i W= Wi, Dwikswgkwik )

and thus there is a unique toric frame M¥ : ZV — Fract(4,(n4 (w))ll/z) with clus-
ter variables

MY (ex) = ¢ Dy ;. Yk E[LN]
and matrix r¥ with
(), = q—((w5k+1)wik>(w5j_l)wij )/2, Vi<j<k<AN. 1.7
We will use a quantum cluster algebra in which the exchangeable variables are
ex(w) := {k € [1, N]| s(k) # oc}. (7.8)

The number of elements of this set is N — |§(w)|. We will index the columns of the
exchange matrices of this quantum cluster algebra (of sizes N x (N — |8 (w)]|)) by
the elements of the set ex(w).

PROPOSITION 7.2
The matrix BY of size N x (N — |8 (w)|) with entries
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1 if j = pk),
(BY)je = ai,i,  ifj <k <s(j) <s(k),
_aijik lfk<j<S(k)<S(j),

0 otherwise,

is compatible with v, and more precisely, its columns (§w)k, k € ex(w), satisfy

Qw ((Ew)k,el) = qij"’ = (A;)Sk’/z and

> (B*)ji(ws; — i, =0 (7.9)
J

forall k € ex(w), [ € [1, N] (recall (7.4)).

The next theorem relates the integral quantum cluster algebra and upper quantum
cluster algebra with initial seed (M™, B¥) (both defined over #'/2) to the algebra

Ag(ny () 12

THEOREM 7.3

In the setting of Theorem 7.1 the following hold:

@)  Ag(ny(w)) g2 =AMY BY @) 412 =UMY, BY, D) 41/2.

(b) Foreacho € E N C Sy, the quantum cluster algebra A(M ", B, D) 4172 has
a seed with cluster variables

M(lyﬂ (e1) = qa[j’k]Dij_lw,'k W<k @ = qa[j’k] Twsk_l Dwik W[/ KDy s

where j and k are the minimum and maximum of {m € o ([1,1]) | im = iz@)}-
The initial seed (M", B W) equals the seed corresponding to 0 =idy € By.

(c) The seeds in (b) are linked by sequences of one-step mutations of the following
kind: Suppose that 0,0’ € B are such that o' = (o(k),o0(k + 1)) o0 =
oo(k,k+1) forsomek €[1,N—1]. If n(o(k)) # n(o(k + 1)), then M }; =
MY - (k,k + 1) in terms of the action (3.29). If n(o (k)) = n(o(k + 1)), then
Mg = pe(Mg).

We illustrate Theorem 7.3 and the constructions in Sections 5.4, 6.1, and 7.1 with
two examples of quantum unipotent cells in nonsymmetric Kac—-Moody algebras g: a
finite-dimensional one and an affine one.

Example 7.4
Let g be of type B;, and let w be the longest Weyl group element s1525152. The
corresponding root sequence (5.9) is
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B1=ai, B2 = s1(a2) = a1 + az, B3 = s152(1) = a1 + 203, and
Ba = s15251(02) = 2.

The root vectors fg,, 1 <k <4, satisfy

T8 I8y :quﬂlfﬂz’ Js S8 = Jp1 JBs + g +qfﬂ2

fﬂ3fﬂ2 zquﬂzfﬂy fﬂ4fﬂ1 =C]_ fﬁ1f54—(1_ fﬂz’
fﬁ4fﬂ2:fﬂzfﬂ4_(q_l+q)fﬂ3’ fﬂ4fﬂ3:q2fﬂ3fl34'

Note that the scalar in the right-hand side of the second equation is not in #4. The CGL
extension U, (n—(w)) = Uy (n_) is the C(q)-algebra with these generators and rela-
tions. Its n-function from Theorem 3.2 is given by (1) = n(3) =1, n(2) = n(4) = 2.
The generators of the integral form U, (n—)*, of the CGL extension U, (n—) (cf. (5.11)
and Lemma 5.4(b)) are

T, =k S, Whereci=c3= ¢ —q*ca=ca=q ' —q.
They satisfy
fﬁifﬂi = quﬂlfﬂr fﬂifﬂt = fﬂ*l fﬂt _q_l(q_z _qz)(fﬁ»;)z’
I e =TI ts, T =4 S S~ @ =) S,
A R CRl VR W Sl G

Recall the isomorphism (7.1). The rescaled generators of Agz(ni(w))41/2 =
Ag(ny) 4172 are

Xp = c,/ct(fﬁ’;), where ¢} = ¢} =q.c) = c, =q"/2.
The algebra A4, (n4) 41/2 is the Al 2—algebra with generators x1, ..., x4 and relations
X2x1 = g*x1x2, x3x1 = x1x3 — (2 — q*)x3, X3X2 = g% x2X3,
xax1=q *x1x4—q (7> — q*)x2, Xax2 = X2x4 — (¢~ — q)x3,

2
X4X3 = (¢ X3X4.

By Theorem 7.3, Ag4(ny)41/2 has the structure of a quantum cluster algebra over
A'/2 with initial cluster variables

- - = -2.2 = -1
Y1 =Xx1, Yo = X2, Y3 =X1X3—4g "X, Y4 =X2X4—q X3

(where the third and fourth variables are frozen) and mutation matrix
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0 -1
~ 2 0
B =

-1 1

0 -1

Example 7.5
Let g be the twisted affine Kac—Moody algebra of type A(z), whose Dynkin diagram

1S

o0& o

Qo oy

Following the standard convention from [22, Chapters 6 and 8], we label its simple
roots by {0, 1} instead of {1,2}. We have (ag, o) =2, (¢1,1) =8,do =1, dy =4,
go = ¢, and ¢, = g*. Consider the Weyl group element w = s¢51505150. The corre-
sponding root sequence (5.9) is

B1 = ao, B2 = 4ag + oy, B3 =3ap + oy,
Ba =8ap + 31, Bs = 5a9 + 20;.

The root vectors fg, , 1 <k <5, given by (5.9), satisfy the relations

221 =6142122, 321 =q22123 +azy, ) =q42223,

zaz1 =q 124 + #‘2
q9°—q

abc(g® —1) )

@21

2 4
Z523 = (" 2325 + Cz4, Z5Z4 = ( Z4Zs,

3 8 4 4
z3, Z4Zy =q° 2224 + bz3, 2423 =( Z3Zs,

Z5Zp = Z2Z —}—723
5 = 245 2 ’
q4 q ’

2
zZ5z1 =¢" 2125 +

with a = ¢ = —¢?[4]; and b = —¢*(¢~' — q)3/[4],, where the g-integers [n], =
(q" —q™™)/(g—q~!). Note that b ¢ A. The CGL extension U, (n—(w)) is the C(g)-
algebra with these generators and relations. Its n-function from Theorem 3.2 is given
by n(1) =n3) = n(5) =0, n(2) = n(4) = 1. The generators of the integral form
Uy (n—(w))} of the CGL extension Uy (n—(w)) (cf. (5.11) and Lemma 5.4(b)) are

-1

fé; =ckfp, Whereci=c3=cs=q ' —q,co=ca=q *—q".

They satisfy the relations (7.10) for a = ¢ = q(¢*> — 1),b = g %(¢% — 1) € 4, and
furthermore, U, (n—(w))}; is the A-algebra with these generators and relations. Recall
the isomorphism (7.1). The rescaled generators of A4 (ny(w))41/2 are

1/2 .7 I 2

/ * / / /
X =cpt(fg ). Wwheree; =c3=cs5=¢q """ c;=c,=¢q".
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They satisfy the relations (7.10) fora =c =¢> —1,b =¢% — 1 € A C A/, and
furthermore, A4(n4)41/2 is the #4'/2-algebra with these generators and relations. By
Theorem 7.3, A, (n) 41/2 has the structure of a quantum cluster algebra over A!/2
with initial cluster variables

_ _ _ a _
Y1 =X1, Yo = X2, y3=q(X1X3+WxZ) =(gxi1X3—(q lxz,

_ b _
V4= q4(x2x4 + P _qwx;) =q*xoxg —q x5,

abc(1—¢q%) c
q%(q*>—1)°(g® - 1)

= @’ x1x3X5 — qx2X5 —q ' [3]gx3 — qx1x4

- 3 a 3
Ys=4q (X1X3x5 + 55— X2X5 + X3 + x1x4)
5 g2 —q* 3 q2 4

(where the fourth and fifth variables are frozen) and mutation matrix

0 —4 1
1 0 -1
B=|-1 4 o0
0 -1 1
0 0 -1

7.2. Proof of Theorem 7.1
Ifuq,uy € Ware such that £(uquz) = £(u1) +£(u2), then we have the decomposition

Ag(ny(uiuz)), = Ag(ny (”1))AT1;1—11 (Ag (ny (u2))) -

This follows by applying the isomorphism ¢ to the dual PBW basis (5.13) of
Ug(n—(u1uz))}. The next lemma shows the equality of the unipotent quantum
minors in Theorem 7.1(c) and that they belong to the correct integral forms.

LEMMA 7.6
If uy,uy € W are such that £(uquz) = £(uy) + £(uz), then

-1 -1
Duypuyusp = Tu;‘ Dypusp € TulflAq (n4(2)) 4

C Ag(ny(uuz)), Ve Py (7.11)

Proof

It was proved in [9, Proposition 6.3] that W~ (D, 4,,) € ¢ - 9*(B"P) in the notation
of Remarks 5.3 and 6.1. Theorem 5.2 and the commutative diagram in Remark 6.1
imply that Dy, € L(B') C Ag(ny(u1)) 4.
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The equality (7.11) can be derived from [9, Proposition 7.1] and Remark 6.1, but
it also has a direct proof as follows. For all yx € Uy (n4(ug)),k =1,2,and h € P,
we have

(Dulu,uluzu’leu_l—ll (J’2)61h)
= (Sulun leu_l_ll (yZ)Uuluzu) = (5,“ Tufl (yl)yZvuzp,)

= (0 Y2Vur)€ (V1) = (D ¥2)6(01) = (7 (D puan) ¥2) e (1)
= (T_l—ll L_I(Du,uzu)y Tu_l—ll J’2)RT€()’1) = <Tu_1—11 D,u,uz;u )’ITu_l—ll (yz)qh>v

u

where the sixth equality uses (5.12). O

Proof of Theorem 7.1
We have

1 -1

-1 Vo = Vuepi @iy

Uw,'k)z w2l

_ -1 -
e Vw1 = Twziﬂ (ei, T,
and eg’k Vw_s_mw; = 0 for m > 1. Hence,

my __
(Dwik,wﬁkwik s yleﬂk> - Sml (Dwik,wﬁp(k)wik ) YI>

for all y; € Uj(ny(w<k—1)), m € Zo. It follows from (5.12) and (7.5) that in
Ag(p (W) = (Ag(n- (W) 41/2)[1,4] C Ag(n4(w)) 4 We have

Dwik:wgkwik = Dwik,wﬁp(k)wikt(fﬂz) mod Aq(n-i-(wsk—l))A‘ (7.12)

Therefore,

O—_(k)+1)/2
g{0-®+1/2p

Wi W<k Dy

O—_(p(k))+1)/2
= ql(k (pE)+D)/ Dwik’wsp(k)wikxk mod Aq(n+(w§k—1))A1/2

for all k € [1, N]. Part (b) and the first statement in part (a) now follow from Corol-
lary 6.6.
We have w<; @i, = W<k—1(@i, — i) = W<pk) @i, — Pk Iterating this gives

a[l.k] = |w<x @i, — @i, |2/4 = 1B po—wry + -+ + Bl?

=(0-() + Dl [?/4+ D BprgyBomw)/2-

0<l<m=<0_(k)

Therefore,
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- _ -1
Ve = ( [1 ”p1<k)pm<k))yk
0<l<m=<0-_(k)

_ l_[ q(ﬁpz(k),ﬂpm(k))/Z)q(O—(k)H)IIaik "2/4Dwik’
0<l<m=<0_(k)

W<k

— ¢Kp
'k

sW<f

which proves the second statement in part (a).
It follows from Lemma 7.6 that yi,..., YN, V...., ¥y € Ag(ny(w)) 41/2. Part
(c) follows from (7.5) and part (b). O

7.3. Proof of Theorem 7.3

Proof of Proposition 7.2
Extend BY to an (N +r) x (N — 8 (w)) matrix whose rows are indexed by [—r, —1] L
[1, N] and columns by ex(w) by setting

~ 1 ifiy =i and p(k) = —o0,
(BY)—ik = .
0 otherwise,
fori € [1,r], k € ex(w).
Denote for simplicity b jx := (B) jx. We apply [2, Theorem 8.3 and Section 10.1]
to the double word 1,...,r,—iy,...,ix, which gives

N
> bjesign(j — D ((wej i, wew;,) — (w1, @4))
j=1

+ Y boik((ws; — Doy, @) = 2811y (7.13)
i=1

for all k € ex(w), [ € [1, N]. The graded nature of the seed corresponding to the
double word (cf. [2, Definition 6.5]) means that

N r
Y bjpwejmi, + Y bigwi =0, (7.14)
i=1 i=1
N r
Y bpwi; + Y boigwi =0 (7.15)
j=1 i=1

for all k € ex(w). Subtracting (7.14) from (7.13) gives the second identity in (7.9).
The linear combination (7.13) + ((7.14), w;,) — ((7.15), w<; @y, ) yields the identity
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N
> bjesign(j = D((w<; + Dy, (wey — D wy,) = 280k
j=1

for all k € ex(w), [ € [1, N], which is precisely the first identity in (7.9) in view of
(7.7). 0

PROPOSITION 7.7

In the setting of Theorem 7.1, the AY?-form Ag(ny(w))41/2 of the symmetric CGL
extension Ay (ny(w)) ®q(q) Q(q'/?) with the generators x1, ..., xn from (7.2) satis-
fies all conditions in Theorem 4.8.

Proof

The scalars vy; are integral powers of ¢'/? and thus are units of A!/2. Obviously
Condition (A) is satisfied for the base field K = Q(g!/2). Recall from Lemma 5.4(a)
and (7.4) that

Ak = qizk = ¢2%x = gllvik I* fork e [1,N]

and from Theorem 7.1(b) that n(k) = iy for k € [1, N]. Therefore, Condition (B)
is satisfied for the positive integers {d; | i € 1} from (5.1). The homogenous prime
elements yj,..., yn belong to A;(n4(w)) 41,2 by Theorem 7.1(a).

It remains to show that the condition (3.28) holds. Because of (7.5) and
Lemma 7.6 it is sufficient to consider the case when i = 1 and s(i) = N. Since
the n-function of the CGL extension Ag4(n(w)) is given by Theorem 7.1(b), this
means thati; =iy =i and iy #i fork € [2, N — 1]. It is well known that for g = sl,
and[ >n e€Z-y

@ -1
e T "Vnw, =81nVnw,.

For k € [2, N — 1], T, 'vy, is a highest weight vector for the copy of Uy (sl,) inside
U, (g) generated by e;,, fi,, hi, of highest weight (s;w;, h;, ) = —a;,; w;, . Hence,
forl > —aj,i,

i - - - / —1p— -
e,gk) ) Twzlllc T’ lvwi = w:lllil (ei(k) ) Ekln lvwi) = 51,—aiki Tl lvwi .
Seta:=(—aji,....—Qin_si) € levo—z. Iterating this and using (7.12) and the identity
T 200, = —q; 10y, gives

_1 .
_ 3 —q; ifa=(s,...,In-1),
D.. R XN,B(IZ)“‘E(ZN Dy _ i

(Dw; ww; —q; X1 85 ﬁN—1> 0 ifa;(lz,...,lN_l),
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with respect to the reverse lexicographic order (3.9). It follows from (5.12) and (7.2)
that

itai i tD/2\  —a;; —Qjp_qi
x2 --.xN_l .

N1 2

lt(Dwi,wwi _qi_lxlxN) = —6],-_1<1_[ qik *
k=2

By a straightforward calculation with powers of g, one obtains from this that the

condition (3.28) is satisfied. O

Theorem 7.3 follows by combining Theorems 4.8 and 7.1 and Propositions 7.2
and 7.7.
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