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1. Introduction

Quantum groups have played a key role in many areas of mathematics and mathe-
matical physics since their introduction by Drinfeld [9] and Jimbo [14] in the 1980s.
In the late 1990s Andruskiewitsch and Schneider initiated a powerful program for
classifying pointed Hopf algebras [2] which lead to far reaching generalizations of
quantum groups, namely Drinfeld doubles of pre-Nichols algebras.

Quantum symmetric pairs in the above frameworks have become the subject of
intense research. The general construction of quantum symmetric pairs in the set-
ting of quantized enveloping algebras of finite dimensional semisimple Lie algebras
was given by Letzter [20]. The Kac-Moody setting was treated in [17]. Quantum
symmetric pairs in the setting of Drinfeld doubles of pre-Nichols algebras were
defined in [18]. In those settings the quantum symmetric pairs having Iwasawa
decompositions were characterized in [17-20].

Quantum symmetric pair coideal subalgebras B, depend on a set of parameters
¢ = (¢;)ier, and are defined in terms of generators B; for ¢ € I in the ambient Hopf
algebra. The generators B; satisfy deformed quantum Serre relations, see [17, Sec. 7;
21, Sec. 7]. One of the outstanding problems in the area of quantum symmetric
pairs is to determine explicit, conceptual formulas for the deformed quantum Serre
relations. The goal of this paper is the following:

Metatheorem. The deformed quantum Serre relations for a quantum symmet-
ric pair coideal subalgebra are obtained from the usual quantum Serre relations by
replacing all monomaials by multivariate orthogonal polynomials.

While in the present paper we only establish the Metatheorem in the so
called quasi-split Kac—-Moody setting, we expect that this phenomenon holds in
full generality. Our proof is based on a result from [18] that (quantum) symmetric
pair coideal subalgebras are isomorphic to star products on partial bosonizations of
pre-Nichols algebras.

In [21] Letzter developed a method to obtain the deformed quantum Serre rela-
tions from coproducts. She applied her method to obtain explicit relations for all
quantum symmetric pairs of finite type. Letzter’s method was extended to the
Kac-Moody setting in [17] and applied in the case of Cartan matrices (ai;)i jer
with |a;;| < 3. Recall that quantum symmetric pairs depend on an involutive dia-
gram automorphism 7 : I — I. In the case (i) = j # i the corresponding deformed
quantum Serre relations were explicitly determined by Letzter’s method in [3, The-
orem 3.6]. In the case 7(i) = i # j Letzter’s method gets substantially harder.
Nonetheless, recently, de Clercq used Letzter’s method to produce involved com-
binatorial formulas for deformed quantum Serre relations in the Kac-Moody case
for (i) = i # j [7]. However, the connection to orthogonal polynomials is not
immediate.

In the quasi-split Kac-Moody setting the deformed quantum Serre relations
in the case 7(i) = ¢ # j were first derived in [6] in terms of so called divided
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powers. The divided powers are univariate polynomials and play an important
role in the theory of canonical bases for quantum symmetric pairs [4]. However, an
interpretation of :divided powers in terms of orthogonal polynomials is not known.
In the quasi-classical limit, formulas for the corresponding deformed Serre relations
were recently obtained by Stokman in [23].

In the present paper we give an explicit expression of deformed quantum Serre
relations for quasi-split quantum symmetric pairs in terms of bivariate continuous
g-Hermite polynomials. Our proofs are shorter than those in previous approaches
and are based on a direct relation between the star products of [18] and multivariate
orthogonal polynomials.

The classical Hermite polynomials are the polynomials given by the recurrence
relation

Hpi1(x) = 2¢Hy, (x) — 2nH,— (),

where Ho(x) = 1. They have two types of g-analogs, the continuous and discrete
g-Hermite polynomials [16, §14.26-29]. The continuous ¢g-Hermite polynomials [16,
§14.6] satisfy the recurrence relation

Hyp1(2;q) = 20Hy, (25q9) — (1 — ¢")Hp—1(x;q),

where Hy(x;¢) = 1. They appear in a number of diverse situations. For instance,
recently Borodin and Corwin used them in the study of the dynamic asymmet-
ric simple exclusion process [5]. Motivated by It6’s complex bivariate orthogonal
Hermite polynomials [13], Ismail and Zhang [12] defined and studied two versions
of bivariate g-Hermite polynomials Hy, ,(x,y |q) (without additional parameters).
They satisfy Hp, o(z,y) = 2™, Hon(z,y) = y™.

In this paper we define and study a completely different (two-parameter) family
of bivariate continuous ¢-Hermite polynomials H,, (21, 22; ¢, 7). They satisfy

Hpo(z,y5q,7) = Hy(z;9) and  Ho (2, y59,7) = Hu(y; q)
and are recursively defined by
Hy1,0(2,954,7) = 20Hp n(2,y5¢,7) — (1 = ") Hype1.0 (2,954, 7)
—q"(1 = q")rHmn—1(x,y;9,7).

We establish algebraic and analytic properties of these polynomials. On the alge-
braic side, we prove that they are explicitly given by

min(m,n) ’26

R (—1)*¢) (g; Q)on (g5 @)
Homin(2:330,7) = ,;J (@ Dm—r (@ On—k (3 Qn

and in particular, they are symmetric with respect to x and y: Hy, n(x,y;¢,7) =
Hy m(y, x5 ¢, 7). We show that their generating function is given by

i Honin @4 457) gy _ (156000
oo (G Dm(aD)n |(se??, te?; q)oc|?
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We derive an operator formulation and a backward difference equation for these
polynomials (see Theorem 2.7). On the analytic side we prove that they are orthog-
onal with respect to the measure

(€240 /1 ) o |

(1—2?)(1—y?)

We believe that these polynomials will find application outside the realm of Hopf
algebras and quantum symmetric pairs.

With the above notation we can now express the deformed quantum Serre

relations for quasi-split quantum symmetric pairs in the case 7(i) = i # j. For
w(z,y) =3,  brsz"y® € K[z, y], set

zw(x,y) = Z brsx” zy®.
T8

dxdy on [0,1] x [0,1], where 2z = cos(2«), y = cos(203).

The following theorem is derived from the algebraic properties of bivariate continu-
ous ¢-Hermite polynomials. The theorem holds for general deformation parameters
q including roots of unity.

Theorem (Corollaries 4.10 and 4.14). Let i,j € I and 7(i) =i # j. Then the
generators B;, B; of the quantum symmetric pair coideal subalgebra B. satisfy the
relation

Bj ~ wlfaij*E,e(BhBi) =0,

1—a;; [1
— aij
qi

R
> (1) '

=0

where

. 1 e —1/2 —
wm,n<$>y) = (2bi)_m_nHm,n(bixa biy; qz2? q; I]) and bz = 5(@71 —4q; 1)61' 1/2(]1' 1/2'

This relation can also be written as

1—a;; , 1— aij
> (-1 ' Wi—q,;—¢(Bi)Bjve(B;) = 0,
£=0 qi

where

1 9 B 1 2
wm(x) = (2bi)mHm(bix§Qi)7 ’Um(iZ?) - (2bi)mHm(bzx7Qi )

The paper is organized as follows. Section 2 contains background material on
multivariate orthogonal polynomials and the statements of our results on bivariate
continuous ¢g-Hermite polynomials. Section 3 contains the proof of these results. In
Sec. 4 we recall the isomorphism theorem from [18] identifying quantum symmetric
pair coideal subalgebras with star products on partial bosonizations of pre-Nichols
algebras. Then we use the algebraic facts on the bivariate continuous g-Hermite
polynomials to derive the defining relations of quantum symmetric pair coideal
subalgebras of quantum groups in the quasi-split Kac-Moody case.

2140016-4



Bivariate q-Hermite polynomials and deformed Serre relations

2. Orthogonal Polynomials

In this section, we provide a brief review of the theory of orthogonal polynomials in
a single variable and introduce the Hermite and continuous ¢-Hermite polynomials
as examples. We then recall the definition of multivariate orthogonal polynomials
and introduce a bivariate analog of the continuous ¢g-Hermite polynomials.

2.1. Classical orthogonal polynomsials

A sequence of orthogonal polynomials on the real line is a sequence po(x), p1(x), ...
of complex-valued polynomials with degp,(z) = n for all n > 0, which satisfy the
orthogonality condition

/ Do) Pr (@A) = By
R

for some positive Borel measure p on R and sequence of positive constants {¢p, 152 .
An elementary argument shows that any sequence of orthogonal polynomials
automatically satisfies a three-term recursion relation of the form

;cpn(w) = O‘npn-i-l(x) + ﬁnpn(w) + Vnpn—l(w)a (2'1)

for some sequence of constants {a,}°2 o, {Bn}oy and {y,}22,, with p_1(z) := 0.
The values are related to the moments of p(z) and the leading coefficients of the
pn(x)’s. Conversely, for any sequences {a, }52 o, {Bn}o2 and {7, }22, with 3, real
and a7, positive, the sequence of polynomials defined recursively by (2.1) will
be orthogonal polynomials for some Borel measure p(z). This result is known as
Favard’s theorem and is a consequence of the spectral theorem applied to the semi-
infinite Jacobi matrix defined by the three-term recursion relation [11].

The most fundamental examples of orthogonal polynomials are the classical
orthogonal polynomials of Hermite, Laguerre and Jacobi. These polynomials satisfy
the additional property that they are eigenfunctions of a second-order differential
equation in the variable x, i.e.

az(x)py, (z) + a1(2)p,, (z) + ao(z)pn (z) = Anpn (@)
for some functions ag(x), a1(z) and az(x) and sequence of complex numbers
{An}22,. Each sequence of classical orthogonal polynomials satisfies a Rodrigues-
type recurrence relation and has a nice generating function formula. For example
consider the classical Hermite polynomials H,,(z) defined by

2l (Cqym
H,(z) =n! mgo m@x)wm. (2.2)

Example 2.1. The Hermite polynomials H,, (z) have the following properties [16]:

e orthogonality relation:

/ Hm(x)Hn(x)efxzd:c = /72" -
R
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e three-term recursion relation:
1
xH,(z) = §Hn+1(x) +nH,_1(x).
e second-order differential equation:
H!(z) — 2zH] (z) = —2nH,(x).

e generating function:

2wt—t? o~ Hn(z) n
e = nZ:O Tt .
e Rodrigues-type recurrence relation:
o n x2 d " 7x2
H,(z)=(-1)"e <@) e
The classical orthogonal polynomials naturally generalize when we replace the
differential operator with a second-order difference or ¢-difference operator, in which
we obtain the various families obtained from the Askey and ¢-Askey scheme, such as
the Wilson, Racah, Hahn, Meixner, Meixner—Pollaczek, Krawtchouk and Charlier
polynomials and their g-analogues. As before, each such sequence of orthogonal
polynomials satisfies a three-term recursion relation, a differential, difference, or g-
difference equation, a Rodrigues-type recurrence relation, and has a nice generating
function formula. In this paper, we will be particularly interested in the continuous
g-Hermite polynomials H,,(x; q) defined for x = cos(d) by

y (@0)n i(n=2k)0 _ ind {q”,O 2.9]
Hn €y = — e et = '™ :q, ne—2i ' 2.3
o kZ:O (¢ Dk @k 200 | © 54 (2.3)

Here (a; q)y, is the g-Pochhammer symbol and 2¢g {a_’b iq, z} is the g-hypergeometric

function defined, respectively, by

E a,b —  (4:0)u(b;q)n
(a;9)n = [ (1 —ag®) and .0 iq, 2| = —
! kl;[o ! i { - } rg(q;q)n(—l)"q(z)

We also have the infinite g-Pochhammer symbol (a;q)oe = lim, o (a;q), which
has a useful series expansion we will rely on later in this paper

, T ~ ad¥) = = (‘U"q@)an
(a3 @)oo = kl;lo(l q’) = 7;) o (2.4)

Note that in terms of the Chebyshev polynomials of the first kind T}, (), this
may be rewritten as

Hy(r;q) := Z ((q;—q)nTn%(fE)»

= (4 O)k(@ Dk
so that in particular H, (z;¢) is a polynomial in x of degree n for all n.
Example 2.2. The continuous ¢g-Hermite polynomials H,,(x; q) satisty the follow-
ing properties [16]:
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orthogonality relation:

|(62w§Q)00|2 270m n

[1Hm(w;q)Hn($;q) Ao dz = T (2.5)

three-term recursion relation:

20H, (x;q) = Hnp1(259) + (1 — ¢")Hno1(259). (2.6)

e (forward) g-difference equation:

2" V(1 q")

DoHy(x:q) = -

e generating function:

o Hu(z39) ,, 1
Z (G Dn T [(s€;q)oo|? (2.8)

Rodrigues-type recurrence relation:
q_l)nq}ln(n—l) Vl_w2 (D n |(e2i0;q)00|2
2 (G V1 — a2

Remark 2.3. In the ¢-difference equation above, D, is the g-difference operator
found in [16, Eq. (1.16.4)], given by

n=0

(o) = ( (2.9)

Dyf(x) = 5‘15’; f), z = cos(0),
where
0 /() = F(a"/2e™) = f(q71/%e"),
so that in particular 6,z = —1¢71/2(1 — g)(e — e=%) for = cos 6.

2.2. Multivariate orthogonal polynomaials

The theory of multivariate orthogonal polynomials on R? is considerably more com-
plicated than the single variable situation and far less complete. Even so, the basics
of the theory remain the same as long as the definitions are taken appropriately.
Some useful introductory references are [10, 25].

For simplicity, we will adopt the vector notation & = (x1,...,24) and 7 =
(n1,...,nq) and will write |7Z| to mean ny + - - - +ng. We will also use the monomial
notation 2" for the product z*x%? - - xh.

Definition 2.4. A sequence of orthogonal polynomials in d variables is a sequence
p7(Z) of polynomials in variables 1, ..., x4 such that

(1) for all m the polynomials {pz(Z) : |7i] < m} define a basis for the space of
polynomials of total degree at most m
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(2) there exists a positive Borel measure g on RY with finite moments
Jga |27 dp(E) < oo satisfying

[ @ pal@au@) =0 for jil 17,

In other words, polynomials of different total degrees are orthogonal, but dif-
ferent polynomials with the same total degree may not be. In particular, one may
have to perform a change of basis

Pae) = Y anpal@
|| =] 7]
to get a sequence of orthogonal polynomials satisfying the more intuitive orthogo-
nality condition

/R P (Z)pr (F)dp(Z) = 0 when 7 # 7, (2.10)

to apply for all m and 7.

A sequence of orthogonal polynomials again gives rise to a three-term recur-
sion relation, except that the summands are in terms of the total degree and can
involve multiple polynomials with the same total degree. Specifically, there will

exist constants o .5, Bi,m,j» Vi,m,; such that forall j =1,...,d
:Ejpﬁ<f) = Z Qi m me Z ﬁn m,ij( ) + Z 'yﬁ,ﬁz,jpﬁ‘z<f)-
[m]=]7]+1 || =] || =[7i]—1

An analog of Favard’s theorem has also been proved [24], i.e. for sufficiently nice
sequences of constants, the sequence of polynomials defined by the three-term recur-
sion relation will be orthogonal with respect to some measure 1 on R?. As mentioned
above, we can then change our basis so that the orthogonal polynomials satisfy the
simple orthogonality condition (2.10), but this in turn will completely change the
original recurrence relations and the new orthogonal polynomials may lose other
desirable properties such as having monomial leading coefficients.

In the next section, we will construct two dimensional analogs of the continu-
ous g-Hermite polynomials defined above, which we will hereafter refer to as the
bivariate continuous g-Hermite polynomials

Hppn(z,95q,7)

k

min(m,n
_ (‘qu(z)(% Qo (¢ q)nr" . .
N Z (q;q)m*k(Q%Q)nfk(q;q)k Hm—k(%@Z)Hn—k(y,q). (2.11)

ko

Note that
Hpo(z,y5q,7) = Hy(2;9) and  Hopn(2,y59,7) = Ha(y; q).

Moreover
Hon(2,954,0) = Hy(259) Hn (35 9),

2140016-8
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s0 Hyy o (2,93 ¢, ) may be thought of as a deformation of the family of orthogonal
polynomials H,, (x;q)H, (y; q) with deformation parameter r.

Remark 2.5. Our bivariate continuous g-Hermite polynomials are very different
from those constructed by Ismail and Zhang [12], which were motivated by the
complex bivariate orthogonal Hermite polynomials introduced by It6 [13].

Remark 2.6. We do not define the bivariate continuous g-Hermite polynomials
with (2.11). Instead, we define them in the next section in terms of a symmetry
condition and a three-term recursion relation reminiscent of the recursion relation
for the one variable case. We then prove that the resulting sequence satisfies (2.11).

In the next section we will prove several important properties of these polyno-
mials, including orthogonality, recurrence relations, g-difference equations, and a
generating function formulation. We summarize these properties here for the con-
venience of the reader.

Theorem 2.7. The bivariate continuous q-Hermite polynomials Hp, n(z,y;q,7)
satisfy the following properties:

e Orthogonality relation:
(€20 /15 q)oc |?
(1—2?)(1—y?)

where here x = cos(2a), y = cos(23) and

dSCdy = Cm,nam,ﬁzan,:ﬁv

1 1
/ / Hyon (7,95 q,7)Hy (7, 95.q,7)
—1J-1

o2 (—1)%q(3) (5902 (45 9)2 b
B ) R U U MR T L)

j+k+t=n

o Three-term recursion relations:
20H (2, Y¢,7) = Hngr,n (2, 454,7) + (1= ¢ ) Hin—1,0(2, 930, 7)
+q" (1 = q")rHmn-1(2,y;4,7),
2yHmn (2, y:¢,7) = Hmns1(,450,7) + (L= ¢") Him -1 (2, 5.4,7)
+¢"(1 = ¢")rHm-1.n(2, y:¢,7).

e (Generating function:

o0

Z Hoyn (@, 43¢,7) guyn _ (r86@)oo
wio (G Dm(@a)n |(se,te?; q)oo|?
e Operator formulation:
1
Honon (€, 954,7) = ——m— 10 - Hon (5. 9) Hn (y; 0)-
(7qT+_1(12_q)2TDq,xDq,y;q)oo
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o Additional relations:

2~ m—1 1—qm
Dq,m 'Hm,n(xay;an) = 1 (q )Hm—l,n(l’ay;Qa \/674),
n—1
2¢ = (1—q"
Dy,y - Hm,n(xa Y;q,7) = #Hm’"l(xv Y: 4, \/a’l’)

3. Generating Function, Recursion Relations and Orthogonality

In this section, we define the bivariate continuous g-Hermite polynomials and prove
the properties stated in Theorem 2.7. Excepting the initial definition of the bivari-
ate continuous ¢-Hermite polynomials below, we will write H,, »(z,y) in place of
Hy, n(x,y;q,7) throughout this section for sake of brevity.

3.1. The bivariate continuous q-Hermite polynomials

As a two-dimensional analog of the continuous g-Hermite polynomials, we consider
the following sequence of bivariate polynomials.

Definition 3.1. The bivariate continuous g-Hermite polynomials are the unique
sequence of orthogonal polynomials H,, ,(x,y; ¢, r) defined for all integers m,n > 0
satisfying the symmetry condition

Hupn(2,935¢,7) = Hom (y, 230, 7) (3.1)
as well as the three-term recursion relation
20Hpn (2,95 ¢,7) = Hin1,0(2,95¢,7) + (1= ¢ ) Hin—1,n(2, y;¢,7)
+q"(1 = q")rHmpn—1(2,y54,7), (3.2)
with Hoo(z,y;¢,7) =1 and H_1o(z,y;q,7) = Ho,—1(z,y;¢,7) = 0.

Note in particular H,, »(z,y;¢,7) is a polynomial of bidegree (m,n), and that

Huo(z,y39,7) = Hp(259).
Mimicking the generating function in the single-variable case (2.8), we consider
the function

z,Y - Y )Y Hp, o (x,y)s™t"
P = UVim.n , where ¥y, p =
s,t 2 s,t s,t (4 Q)m(a: @)n

m,n=0

Note that the recursion relation above tells us

€, 1 x,y Z,y
25177/}m,n( y) = - merl,n 7"/)m+1,n
st s s, t gs,t
x,y x,y
+ Swmfl,n ( ) + Tt’l/)m,nfl ( )
s, qs,t

2140016-10
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Summing this, we find
T,y 1 T,y x,y z,Y z,y
2x1) =—|v - + 59 + rty ;
s, 1 S s, 1 qs,t s, 1 qs,t
which simplifies to the homogeneous ¢-difference equation

T,y 2xs —s2 —1 z,Y
w(qs,t)_< rst—1 >¢<s,t>'

(2;68—52 — 1) _ (- @+ Va?—T)s)(1 — (& — Va? —1)s)

rst —1 1—rst

Factoring

and using the fact that (¢z;¢)e(l — ) = (2; ¢)oo, we see that the general solution
of this g-difference equation is

LY\ _ (T‘St;q)oo T,y
Y <5”5> (@ + Va2 = 1)s;q)ee((x — Va2 — l)s;q)oow((),t)
_ _Ust@oe (T s
B |<€i93;q)oo|2w<0,t>7 f (0)-

Finally by symmetry and the choice that Hoo(z,y) = 1, or alternatively by using
(2.8), we obtain a generating function formula for the polynomials H,, ,(x,y) with
x = cos(f) and y = cos(¢)

w(évy) _ i Hyn(®:y) mpn _ (r$Lid)ec (3.3)

st (6 Q)m (@ @)n |(se?, te'; q)oo|?

m,n=0

The generating function equation also allows us to express our bivariate con-
tinuous ¢g-Hermite polynomials in terms of the continuous ¢g-Hermite polynomials
in a single variable. By applying (2.8) along with the series expansion for the ¢-
Pochhammer symbol (2.4) for (rst; q)s we see

(rst; q)oo - i (_1)kq(§)rksm+ktm+k

|(se™®, tei®; q)oo]® (¢ D)k(@5 D) (a5 @)n Hon (@) Hn (0).

k,m,n=0
Comparing similar powers of s and ¢, we find

min(m,n)
(

~1)5¢) (g5 Q) (@3 Q)
= (@ Dm—r(G Dn—rk (@ Ok

Hppo(2,y) = Hopr(25q) Ho -k (y59). (3.4)
3.2. Orthogonality

By Xu’s extension of Favard’s theorem [24], we expect a sequence of multivariate
polynomials with n variables which satisfies a sufficiently nice three-term recursion
relation to be orthogonal with respect to some inner product defined by a measure
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on R™. This is indeed the case for the bivariate continuous g-Hermite polynomials
we defined, as we prove in the following theorem.

Theorem 3.2. The bivariate continuous q-Hermite polynomials satisfy the orthog-
onality relation

(24D /1 q)oc
1—u?)(1—17)

1 1
/ / Hypy o (w, 05 q,7) Hyz i (u, 03 ¢, 7)
—1J-1

dudv = Cm,n(sm,ﬁz(;n,ﬁa

where here u = cos(2a), v = cos(25) and

22 (—1*¢) (¢; 9)2,(: 9)2 Jmn
q) (:9)i(q:9);(a; Dr(a: 0)7 '

Cm,n = (

X it k+l=m
j+k+e=n

Remark 3.3. Note that (a, 3) — (cos(2a), cos(23)) defines a fourfold cover from
the diamond region D with vertices (0,0),(7/2,7/2),(n/2,—7/2) and (7,0) to
the triangular T with vertices (—1,—1),(—1,1), and (1,1). Furthermore, the map
6 =a+ f and ¢ = o — 3 maps D to the square region [0, 7]%. Thus if I,,, ;7.7 is
the integral in Theorem 3.2, we have by symmetry

2i(a+8) /.. 2
|(e /T7q)00| dud’l}

Inmm =2 Hpy oo (u,v5q,7)H m(u, v; ¢, 7
wims =2 [ Hol050.0) Hi s v5.) R

- 2// Hopo (1w, 05,4, 7) Hys i (0, 05.4,7) [ (€2 /1 ) oo |2dd 3
D

_ / / o (03 0, 7) Ho o (1, 03 0, 7)) (€2 /7 @) o 0,
0 0

where here u = cos(2a), v = cos(26), § = o+ (3 and ¢ = « — 3. Thus the
orthogonality expression above is equivalent to

/ / Hop o (w, 03¢, 7) Hy (0, v5.¢,7) (€% /73 0) 0| 2d0d S = €O 70,72, (3.6)
0 0

for u = cos(0 + ¢) and v = cos(d — ¢).
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Remark 3.4. If we define a new sequence of polynomials

7 Hm’n(I,y) - Hn,m(x,y) ifm < n,
Hm:’ﬂ(way) = )
Hm,n(%y) + Hn,m(w,y) itfm>n

then the new sequence satisfies the more intuitive orthogonality statement that
™ s . . i
/ / Hm,n(ua’U;QaT)Hﬁl,ﬁ<uav;q»r)|<€210/r;q)oo|2d9d¢ = Cm,n(sm,ﬁz(sn,ﬁ
o Jo
for some constants ¢, , > 0, but will no longer have monomial leading coefficients.

Proof. To prove Theorem 3.2, we will use the generating function formula for the
bivariate continuous g-Hermite polynomials to deduce an orthogonality condition.
We will also make use of the Askey—Wilson integral [1, Theorem 10.8.1]

x 2i6. 2 )
/ [(e*"Y; @) oo | g0 — 47 (abed; @)oo 3.7)

_x |(ae?? bet?  cet? dei?; q) oo | (ab, ac,ad, be,bd, cd, q; @)oo
However, we require this integral in a slightly modified form. Note that the function

(€% /15 @)oo |?
|(a€iz’ beiz7 Ceiz7 deiz; q)oo |2

flz) =

is 2m-periodic and holomorphic on the domain Im(z) > Inmax(|al,|b],|c], |d]).
Therefore by the Cauchy residue theorem, as long as r > max(|al, |b], |¢|, |d|)? we
have no poles in the rectangle [—m, 7] x [—(i/2) In(r), 0] and so

T

j fO)d6 = | f(0—(i/2)nr)do

(1/2)Inr (1/2)Inr
Jri/ flr —ix)dx — Z/ f(=m —ix)dx
0 0

_ [ f(0—(i/2)Inr)dz.

-7

Consequently for r > max(|al, |b], |c|,|d])? we see that

/7r (€% /7: @)oo |? J— Am(abedr?; q) oo
_x |(act? bei?  cet® det?; q) oo |? (abr, acr, adr, ber, bdr, cdr, q; ) oo

Using this, assume max(|s|, |t], 3], [{])? < r and consider the integral

r=ttsesian = [ [To(07) e (25) 16 oo
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We calculate

T e ~7. 20 /.. 2
I — / / (T5t7T$t7 q)oo|(€ /Taq)OO| __ d9d¢
0 0

|(ei(0+¢)5, ei(gfﬁb)t, ei(9*¢)§7 ei(0+¢)t; q)oo |2

/ / (rst T§t~'q)oo|( 20 [1: @) oo |2 0

el(e‘f‘d’)s ei(0— ¢)t ei(0— ¢)3 61(9+¢)t q) |

. 2r / (rst, r5t, 72 s5tt; @)oo do
(49 (rst,rs3, rste2d rte=2% rtt, r3t; q)oo

B 21 (r2s5tt; q) oo /” 1 "
(rs3,7tt, q; @)oo Jo  (rste?i rste=2i¢; q)o,

_2m(r2s5t oo~ /’T (rst)™(rst)" 2i6(m—n) 15
(rs3, 1tt,4; @)oo 5 oo (G Dm (e Dn

_27r TSStthoZ rstst
(rss,rtt, q; q) oo

n=0 n

_ op? Z (_1)kq('§)(T,Sg')i+k+é(Ttt~)j+k+é

(@9 47, (@Dia9);(5 k(g9

o0

= N T (sE)™ ()",

oo (G DR(49)7

where the ¢, »’s are given by (3.5). Furthermore, using the explicit series expression
for 1/)(2?) in terms of the continuous bivariate ¢g-Hermite polynomials, we see

_mi:; f:

0m,n=

sTESE"

m,n,m,n

) (@ On (@3 Q)i (¢ @)7

for

= [ [ Hon0) Hi o, (€ fri ) Pl
Combining this with our previous expression for I, we find that

Im,n,ﬁz,ﬁ = (Sm,iﬁén,ﬁcm,n .

We prove below that the constants ¢, , are positive when r and ¢ are real. This
proves the statement of Theorem 3.2. O

3.3. Complex interpretation

The swapping of the variables u and v in the inner product expression of Theo-
rem 3.2 is somewhat startling! However, it is quite natural when viewed in terms
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of an inner product on the 2-torus
2= {(z,w) €C?: |2z| = |w| = 1}.

To see what we mean specifically, consider the complex functions 6., ,,(z, w) defined
on T? by

min(m,n) Y (1;) ) '
Omm(z,w) = Z ((( : 1) q (qvc,I)mk(qv(J);l ’f‘kZm_k’wn_k

k=0

k—m k—n
"0 k- g "0 ko
><2¢0{ g, 2] 2¢0{ 14, 4" w QD

These are complex bivariate trigonometric polynomials on T2. Note in particular
O (€?,69) = Hyp n(2,y), for 2 = cos(f) and y = cos(¢).

With this in mind the inner product expression of Theorem 3.2 becomes
/ O (20, 20)075, 7 (20, 2) | (22 /75 @)oo |2 d| 2| d|w] = o Om.7:0m 75- (3.9)
T2

In this way, we can see that the inner product expression from Theorem 3.2 is
actually a Hermitian inner product on L?(T?). In particular, when r and ¢ are real
the coefficients ¢y, ,, are necessarily positive as they are Hermitian inner products
of polynomials with respect to an absolutely continuous positive measure whose
support contains a dense open subset of T?2.

3.4. Additional properties

Equation (3.4) combined with the g-difference equation for the Hermite polyno-
mials (2.7) immediately tells us a simple operator identity relating the polynomi-
als Hy, n(x,y) to Hy(x;9)Hp(y; ). Specifically, we can write H,, »(z,y) as a cer-
tain differential operator of infinite order acting on the product H,,(x;q¢)H, (x;q),
namely

1
Hyyn(z,y5q,7) = — “Hy(2;9)Hn(y;9).  (3.10)
(_q 2 71(Tq) rDg2Dqy;q )

To see this, note that

Ds,sz(iZ?;q) = L *l(mkf(k)fk)m

so that

= k()R (¢ D) (g Dn
(1—q)? (6 QD)m—r (T Qn—t

2140016-15
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Therefore

min(m,n) (7 mTﬂfl(

D

k=0

s

1_Tq)QTDq,qu,y)k
(4 q)k

Hm,n(x»y) 'Hm($§Q)Hn(y§Q)

(Tq) 7Dy 2Dy, y) ,Hm(x;q)Hn(y;Q)

= ORI
! Hy (1) Ho (45 9)
= - Hy (25 9) Hn (Y5 q).
(7q 2 1(qu)2TDq,qu,y;Q)oo

Note that the second equality is due to the fact that D’C Dk o H(750)H(y; q) is
zero for k > min(m,n), so all the additional terms appearing in the sum are just
Zero.

The generating function formula (3.3) along with the operator formula (3.10)
combined with properties of the continuous ¢-Hermite polynomials in the single-
variable case, immediately guarantee certain nice recurrence relations for the bivari-
ate continuous ¢g-Hermite polynomials. We list some of these in the next proposition.

Proposition 3.5. The bivariate continuous q-Hermite polynomials satisfy the fol-
lowing equations:

2" (1—q™)
Dq,m 'Hm,n(xay;an) = 1 —q Hm—l,n<$>y;Q7 \/aT)a (311)
2T (1 — ¢q")
q ! —q
Dy - Hnn(z,y5q,7) = THm,nfl(xvy;qv Var). (3.12)

Proof. The forward difference equations follow from the operator relation (3.10).
In detail, define

1

Lk(qar) =
(—¢*/271(75%)?r D2 Da.ys @)

and notice that Ly(q,7) = Lr—1(q,/qr). Therefore by (3.10)
) - Hon (2 4)Hn (Y3 9)
=q < : q) (1 =4¢"™) Lmin(q,7) - Hm1(z;0)Ha(y; q)

(i

— ¢ (l—q) (1= ™) Hpm—1,n(x, y5 4, /a7).

Dq,z : Hm,n(xv y) Dq achJrn(CL T

(1=q")Lmsn-1(9,/qr) - Hm-1(x;¢)Hn(y; q)

The proof of the other difference equation is similar. O
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4. Defining Relations for Quantum Symmetric Pairs

We now explain how bivariate continuous ¢-Hermite polynomials appear in the
theory of quantum symmetric pairs.

4.1. Quasi-split quantum symmetric pairs

Let g be a symmetrizable Kac—-Moody algebra with generalized Cartan matrix
(@ij)ijer where I is a finite set. Let {d; |i € I} be a set of relatively prime positive
integers such that the matrix (d;a;;) is symmetric. Let II = {«; |7 € I} be the set
of simple roots for g and let Q = ZII be the root lattice. Consider the symmetric
bilinear form (-,-) : @ X @ — Z defined by (o, a;) = dia;; for all i,j € I. Let
g = [g,9] be the derived subalgebra of g. We now recall the definition of the
corresponding quantized enveloping algebra.

Let K be a field of characteristic zero and let ¢ € K* such that ¢®% # 1 for
all ¢ € I. Recall the symmetric g-numbers, g-factorials and g-binomial coefficients
defined by

n !

" —q | n [n],
=2 9 i —11,..-[21.11 S [ S
= Tl = e Rt 7] =
for any m,n € N with m < n, see for instance in [22, 1.3.3]. We abbreviate ¢; = ¢%
for any ¢ € I. For any ¢,j € I let S;;(z,y) denote the noncommutative polynomial
in variables x,y given by

Sij(@,y) = Z (=" n

n=0

1—(1»;]'
|:1 _a’ij:| l—a;;—mn,, .n
YTy,

qi
Define U, (g’) to be the K-algebra with generators E;, Fj, K for i € I and defining
relations

Kin = KjKi, KlE] = q_(ai’aj)EjKi, KZFJ = q_(ai’aj)FjKi,

Ki—K!
EiF; — F;E; = 6ij————, (4.1)
qi — 4q;
Si;(Ei, Ej) = Si(Fi, Fj) = 0 (4.2)

for all 4, j € I. The relations (4.2) are known as the quantum Serre relations. If ¢
is not a root of unity, then Uy(g') is the quantized universal enveloping algebra of
g’ for the deformation parameter ¢ as defined in [22]. If ¢ is a root of unity, then
U,(g') is the big quantum group of g’ at ¢, defined and studied by De Concini and
Kac [8]. In either case U,(g’) is a Hopf algebra with coproduct A defined for all
i€l by

AE)=E;®1+ K, ®E;,, A(F;)=F ®KZ-_1 +1®F, AK;)=K;,®K,.

Let 7 : I — I be a bijection such that a, ;) = ai; for all i,j € I. The diagram
automorphism 7 gives rise to a Lie algebra automorphism 7 : g’ — g’ denoted
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by the same symbol. Let w : g’ — g’ be the Chevalley involution as defined in
[15, (1.3.4)]. Consider the involutive Lie algebra automorphism 6 = 7 o w of g’ and
let ¢ = {x € ¢’ | 8(x) = x} denote the corresponding pointwise fixed Lie subalgebra.
The theory of quantum symmetric pairs provides quantum group analogs of the
universal enveloping algebra U (¥') as coideal subalgebras of U, (g’). More precisely,
let Hy C Uy(g') denote the Hopf subalgebra generated by the elements K; K ;(1) for

alli € I. Let ¢ = (¢;)ier € (K*)! be a family of parameters such that
ci = ¢y foralli € I with a;-¢;y = 0. (4.3)
We define B, to be the subalgebra of U,(g') generated by Hy and the elements
B; =F,— ¢;E,(z)K; ' foralliel. (4.4)
By definition the coproduct A of U,(g’) satisfies
AB)) =B @K'+ 1@ F, — ¢; K, () K; ' @ B,y K

and hence B is a right coideal subalgebra of Uy,(g’), that is A(B.) C Be @ Uq(g').
We call B a quasi-split quantum symmetric pair coideal subalgebra of U,(g).

Remark 4.1. The condition (4.3) on the parameters ¢ guarantees that the subal-
gebra B has many desirable properties, see [17, (5.9); 18, Proposition 3.1].

Remark 4.2. For ¢ not a root of unity, quantum symmetric pairs of Kac-Moody
type were defined in [17] depending on a pair (X, 7) where 7: I — [ is a diagram
automorphism and X is a subset of I satisfying the admissibility conditions given
in [17, Definition 2.3]. Following [6] we call a quantum symmetric pair quasi-split if
X = (. In the present paper we only consider quasi-split quantum symmetric pairs.

The definition of quantum symmetric pairs in [17] involves a second parameter
family s = (s;)ier. The corresponding coideal subalgebras B¢ are isomorphic as
algebras for all s under a map which maps generators to generators, see [17, The-
orem 7.1]. In this paper we are only concerned with the defining relations of Be g
and we hence restrict to the case s; =0 for all 7 € I.

4.2. The x-product on Hyg x U™

We now recall a method devised in [18] to describe the algebra B in terms of gener-
ators and relations. Let U~ denote the subalgebra of U, (g’) generated by all F; for
i € I. The algebra U~ is Q-graded with UZ,, = spang {F;, --- [, | Y01, ai; = p}
for all 4 € QT = NII, and UZ, = {0} otherwise. For any i € I let of o -

U~ — U~ denote the linear maps uniquely determined by the property that
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oI (F;) = 0F(F;) = & for all j € I and
07 (f9) = ¢“0f (f)g + 0 (9), (45)

0f (fg9) = 0F(f)g +a“ ) foF (9), (4.6)

forall f € UZ,, g € UZ,. Consider the semidirect product Hg x U~ which is the
subalgebra of U,(g’) generated by Hy and U~. The algebra B, is a deformation of
Hyx U™.

Theorem 4.3. (1) [18, Theorem 4.7, Lemma 5.2] There exists an associative prod-
uct x on Hyg x U™ which is uniquely determined by the following properties:

hxg=hg, gxh=gh forallhe Hy, ge U™, (4.7)

alisany)
Fixg=Fg— Czqi_lKT@)K;laf(i) (9) foralliel,geU~. (4.8)

(2) [18, Corollary 5.8] There is a uniquely determined isomorphism of algebras
Y Be — (Hg x U™, %)
such that Y¥(h) = h for all h € Hy and ¢(B;) = F; for alli € I.

Remark 4.4. Property (4.8) in Theorem 4.3 can be replaced by the property

g* F, = gF, — Cr(iyg'*r®)

—0f (K;K-} foralliel,geU~. (4.9)
qi — 4q;

1 7(1) 7(3)
The resulting algebra structure on Hy x U~ coincides with the algebra structure
obtained in Theorem 4.3(1).

Remark 4.5. The coefficient in (4.8) differs from the corresponding coefficient in
[18, (4.25)]. This is due to the fact that we follow standard conventions (4.1) while
[18] works with E;F; — F;E; = 6;;(K; — K; '). Moreover, our convention for the
coefficient ¢; differs from [18] by a sign. The conventions in the present paper follow
[17] but we additionally allow ¢ to be a root of unity.

Set V7~ = @,; KF; and let T(V ™) denote the corresponding tensor algebra.
By [18] the first part of the above theorem also holds when U~ is replaced by
T (V). More precisely, there exists an associative product ® on Hp x T'(V ™) which
is uniquely determined by (4.7) and (4.8) or (4.9) for allh € Hy, g€ T(V™), 1€ I
with * replaced by ®. By construction, the canonical projection gives rise to an
algebra homomorphism

n:(Hyx T(V7),®) = (Hox U™, %)
of deformed algebras.

Proposition 4.6 ([18, Proposition 5.9]). The kernel of the algebra homomor-
phism 1 is generated by the quantum Serre polynomials S;;(F;, F;) € T(V ™) for
ijel
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Proposition 4.6 and the second part of Theorem 4.3 together provide an effective
method to obtain the defining relations for the algebra B¢. Indeed, the algebra
Hy x T(V™) is generated over Hy by the elements F; for ¢ € I subject only to the
relations KjK;(;.)Fi = q_(o‘f_o‘ﬂi)’O”)FinK;; . The additional relations in B are
obtained by rewriting the quantum Serre polynomials S;;(F;, F;) in terms of the
deformed product @ on T(V 7).

For any noncommutative polynomial 7(z1,...,2,) = > as2j ...x;, inn
variables with coefficients a; = a;,, .. ;,.) € Hg and any elements uy,...,u, €
Hy x T(V™) we write

r(un @ Sup) =Y ajuy, @ ®uy,. (4.10)
J

If 7(i) # {¢,7} then (4.8) implies that S,;(F;, F;) = S;;(F; € F;). Hence it remains
to consider the two cases 7(i) =i and 7(i) = j.

4.3. Deformed quantum Serre relations for 7(i) =i

All through this section, we fix i,j € I with 7(¢) = ¢ # j. In this case (4.8) and
(4.9) for ® become

F;®g=Fig+cd(g), g®F=gF;+cdf(g), (4.11)

2
Ciq;

p— For any polynomial w(z,y) = Zns brsx"y® € K[z, y] and any
Ui, Uz, uz € Hy X jﬁ(‘lgi) set

where ¢ = —

uz N w(ug @ ug) = Z brstd” ® uz ® us®s. (4.12)

]

Lemma 4.7. For any m,n € N there exists a uniquely determined polynomaial
Wi (T,y) = 32, brsz"y® € K[z, y] such that

1;;71};}_};;1 = }:}' % 71)n1,71(1:% <9 }:;).

Proof. By (4.11) the noncommutative monomial F/"F;F]* can be written as a
noncommutative polynomial with respect to the product ® on 7'(V ). This poly-
nomial is homogeneous of degree one in F; and hence can be written in the form
F; ~ wpy, . (F; ® F;) for some polynomial wy, ,(z,y) as in the lemma. The poly-
nomial wy, »(z,y) is uniquely determined because the subalgebra of (T'(V ™), ®)
generated by Fj, Fj is a free algebra. O

It remains to determine the polynomials wy, ,(x,y) in the above Lemma. To this
end observe that OF (F") = 0F(F") = (n),2 E"! where we use the non-symmetric
quantum integer (n), defined by (n), = 1+p+---+ p"~! for any p € K. Hence
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the first equation in (4.11) and (4.6) imply that
Fy @ (F"EjF') = F" VB + o(m) g F" 7 FGFY + oq; ™™ (n) g P FyFP

(2

for m,n € N\{0}. In view of Lemma 4.7 the above formula implies that the poly-
nomials wy, »(z,y) satisfy the recursion

TWm,n (T,Y) = Wit 1,0 (2, Y) + (M) g2 W1, (2, y)

2m+aw

+eq; (n)g2 Winn—1(2, y) (4.13)

for all m,n € N\{0}. Similarly, using the second equation in (4.11) and (4.5) we
obtain

YWm n ($7 y) = wm,n-&-l(xa y) + C(n)qi2 wm,n—1<x7 y)
+ cqf"ﬂ“j (M) g2 Win—1,n (2, y)- (4.14)
The recursions (4.13), (4.14) also hold for m = 0 or n = 0 if we set w_1,(z,y) =
ws —1(x,y) = 0 for all s,¢ € N. Moreover, woo(x,y) = 1 as F; ~ 1 = F;. The
symmetry of the recursions (4.13) and (4.14) implies that

Winn (T, y) = wpm(y,x) for all m,n € N. (4.15)

Recall the bivariate ¢-Hermite polynomials Hy, . (x,y;q,7) from Sec. 3.1 which
depend on two parameters ¢,r. The recursions (4.13), (4.14) imply that up to

rescaling, Wy, »(x,y) coincides with H,, (2, y;¢?,q;").

Proposition 4.8. The polynomials wp, »(z,y) are given by

Hm,n(bi:E? blyv %2’ q;l”)
(2b;) ’

(4.16)

wm,n(xv y) =

__1)6_—1/2 ~1/2.

where b; = %(qi —q; e :

Remark 4.9. The factor b; may lie in a quadratic extension of the field K. However,
the right-hand side of (4.16) is still a well-defined polynomial in K[z, y] because if
x'y’ appears in H,, ,,(z,y) with nonzero coefficient then i + j = m + n mod 2.

Proof of Proposition 4.8. For a square root b of a nonzero element in K and
m,n € N define a new polynomial 7, ,(z,y) € K[z, y] by

oo (2,9) = (26)™ " (5, b 1),

The recursion (4.13) for wy, , is equivalent to

2m
|
2wrm,n(w’y) = rm-‘rl,n(w’y) + deb? q:]2 -1 Tm_l»"(w’y)

i

2n
2 2m+a;; 45 — 1
+4Cb ql 7 7'2771

i

"m,n—1 (LL', y)
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2
Recall that ¢ = ——%:7 and hence the above recursion can be rewritten as
4eigqib® om
200 (4) = P10 9) (1~ By ()
(¢ —a; )
4ciq;b? i

171_12(]? ]qum(l - q?n)’rm,nfl(xv y)

(¢ —aq; )
For b = 1(q; fqifl)ci_lmqi_l/2 the above recursion coincides with the recursion (3.2)

for Hp,n(z,y;62,4;). Moreover, ro o(z,y) = 1 and 7y, n(7,y) = rpm(y, ) for all
m,n € N by (4.15). Hence rp, »(2,y) = Hm (2,95 62, ¢;) for this choice of b. O

For any polynomial w(z,y) = >°, brs2"y® € Klz,y] and any ui,uz,uz € Be
set

u N w(ug, ug) = g brsul uzus € B,

T8

in analogy to the notation (4.12). Combining Theorem 4.3(2), Proposition 4.6,
Lemma 4.7 and Proposition 4.8 we are now able to write down the deformed quan-
tum Serre relations satisfied by the generators B;, B; of B.. Recall that in this
section, we always assume that i = 7(i) # J.

Corollary 4.10. The generators B;, B; of B satisfy the relation
1—a;

_1)¢ I

(-1 [ )

where the polynomial wy, »(x,y) € Kz, y] is given by (4.16).

170,1‘]‘

By~ wl—a,-j—é,f(Bi, Bi) =0, (4.17)

£=0 qi

With b; as in Proposition 4.8 we define univariate polynomials wy, (z) € K[z] by

() = W 0(2.) = g Hon i ) (4.18)

for all m € N. By (4.13) the polynomials w,, (x) satisfy the recursion
Win11(2) = 2w () — (M) g2 wi—1(2). (4.19)

Note that the polynomials w,,(x) depend on a choice of i € I, but we do not
make this explicit in the notation.

Example 4.11. For small values of m the polynomials w,,(z) are given by

wo(r) =1, wi(z) =2z, wi(x)=2>—¢c, ws(x)=2a>—(1+ (2)g2)c,

wy(r) =zt —c(1 + (2)g2 + (3)<1?)$2 + 02(3)q?.

Remark 4.12. Define w(™ (z) € K[z] by

w(n)(w) _ w"(x) _ Hn(bzxM]?)
g, (b0l
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In terms of the divided powers w(™ (z) the recursion (4.19) can be rewritten as

[m]g, w™ (z) = zw™ Y (z) — g 2w™=D (z). (4.20)

qi

Interestingly, this recursion appeared for non-quasi-split quantum symmetric pairs
in [4, (5.8)].

Using Egs. (4.16) and (3.4) we can express Wy, , (x, y) in terms of the univariate
polynomials w,, (x). Additionally using the relations

2. 2
2. 2\ vk k(RED)/2(, o —1\K[p! (@%50)n _ mn—m) |
9 )k =(—1)"q q—q k] =q
( e = (1) ( )" k], D O m),
for n > m, we obtain
min(m,n) g k(mantay—1)—EEED | m n \
wm,n<$>y) = Z (_1) cq; ! 2 [k]qlwm—k<$)wn—k(y)
P k k|
qi qi
With this relation we calculate
1—a;j 1— i 1—ay;
Sy [ ] W1y ) = 3 U a
n=0 n qi n=0
min(liaijfnwn) (_1)kckq*k(k+l)/2
X 1 W1—a;;—n—k(T)Wn—k (Y).
2o g —n Ky g,
Setting ¢ = n + k and m = k we obtain
1—aq; . 1— aij
Z (71) wlfaijfn,n(xvy)
n=0 n .
qi
1—aij
1-— Q4
- (1)6[ ; ]‘| wl*aij*l(x)
£=0 qi
Le/2] / 2ml!
m_ —m(m+1)/2 [ m]qi
X c"q, We—om (Y). 4.21
PO N = T

i

In view of Eq. (4.21) it is natural to consider a second family of polynomials
vp(2) € K[z] defined for all n € N by

ln/2] |

—k(k n [2K],,

Un(z) = Z qui (k+1)/2 [2k‘| [k]!q Wn— 2k ().
k=0 a -7
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The polynomials v, (z) can also be interpreted in terms of continuous g-Hermite
polynomials. The proof of the first part of the following proposition is adapted from
a similar calculation in the proof of [4, Lemma 5.10].

Proposition 4.13. The polynomials v, (x) satisfy v—1(x) = 0, vo(x) = 1 and the
TeCursion

Vm41(T) = 2o (x) + cqi_2(m)q;zvm,1(x) (4.22)

for all m € N. The polynomial v,,(x) is given by

U () = (2bi)mHm(bix;qi_2), (4.23)

— —-1/2 —1/2
e P,

where as before b; = %(Qz —q; i i

Proof. A direct calculation using (4.19) gives

2o, (x) + cq[2(m)q;zvm_1(x)

(4.19) /2] —k(k+1)/2 m [2k]' )
= Z qui i (W —2k+1 () + ¢(m — Qk)qizwm_zk_l(.fﬂ))
qi

[
= 2k |, [Klg,
L(m—1)/2] !
_ m—1| [2k]
+clmlg, g™ cg D2 o wme 12k ()
‘ ,;0 2k | (K],
. L(m+1)/2] qu;k(kﬂ)/?[m];i
= Wm+1(T
Pt [m~+1-2k]}, [K].,
X ([mA1=2k]g, + (g, (7" 407" ))wpm 120 (@)
= Um+1()
which proves the recursion (4.22). Using ¢ = 7% the recursion (4.22) can be

rewritten as

Cigi —2m
U1 () = 2o, (2) + 7@7_1 5 (g M D1 (2).
(@i —a;)
Now Eq. (4.23) follows by comparison with the recursion (2.6). m|
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Combining Corollary 4.10 with Eq. (4.21) we are able to express the deformed
quantum Serre relations in terms of univariate continuous g-Hermite polynomials.

Corollary 4.14. Leti,j € I with 7(i) =i # j. The generators B;, Bj of Be satisfy
the relation

1—aij

Y 1-— Q5

> (-1 W1—a;;—¢(Bi)Bjve(B;) = 0, (4.24)

(=0 ¢

- qi

where the polynomials Wy, (x) and vy (z) in Klz] are given by (4.18) and (4.23),

respectively.

A resummation shows that (4.24) can alternatively be written as

ij(*l)e [1 _;ij] V1—a,,—¢(Bi)Bjwe(B;) = 0. (4.25)
£=0 q

Remark 4.15. To make the relation between the polynomials w,, (z) and vy, (x)
even clearer, we write wy, (x; ¢;, ¢) and vy, (2; ¢;, ¢) for the polynomials given by the
recursions (4.19) and (4.22), respectively, with w_1(x; ¢;,¢) = v_1(2;qi,¢) = 0 and
wo (x5 qi, ¢) = vo(x; ¢i, ¢) = 1. Then we have

Om (345, ¢) = Wi (234, ", —q; %¢) (4.26)
for all m € N.

Remark 4.16. Corollary 4.14 can be used to calculate the deformed quantum
Serre relation satisfied by the generators B;, B; explicitly in the case 7(i) = i for
small values of —a;;. Using the expressions for w,, (z) in Example 4.11 and (4.26)
one obtains

1—aq;
1 —ai; —a;;—n
S [io] s
n=0 qi
0 if Qi = 0,
—¢i¢; B if a;; = —1,
= ¢ —[212.qici(BiB; — B; By) if s — -2,

—([3]3, + Dgici(B?B; + B; BY)
+4]q, ([27, + DaiciBiB; Bi — [3]3, (¢ic:)* By if aj; = 3.

In slightly different conventions, these formulas first appeared in [19, Lemma 2.2;
21, Theorem 7.1] for ¢ not a root of unity.

Remark 4.17. In [6, Eq. (3.9)] the relation (4.24) is expressed in terms of so-called
wdivided powers for ¢ not a root of unity. Similarly to (4.24) and (4.25), the «divided
powers allow two equivalent expressions for the deformed quantum Serre relation
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in the case 7(i) = ¢ # j. It would be interesting to establish a relation between the
wdivided powers of [6] and the continuous g-Hermite polynomials.

Remark 4.18. Assume that K = k(q) is a field of rational functions in a variable

q over some field k of characteristic zero. Let — : K — K denote the bar involution
sending a rational function g(q) € K to g(q) = g(¢~'). The map — extends to an
involutive k-algebra automorphism — : K[z] — K[z] by action on the coefficients.

In this setting Eq. (4.26) can be rewritten as

O () = Wm(2) ife= —q; %c.

In the case € = —¢q; %¢ the above formula and the equivalence of the relations (4.24)
and (4.25) show that relation (4.24) is preserved under the k-linear map given by
B; — B, B; — Bj; and q — ¢~ '. This provides the essential step in the proof
that the algebra B, has a bar-involution in the quasi-split case, as first observed in
[6, Proposition 3.7]. Note that the existence of the bar-involution on B, also follows
from the general theory in [18] without the need to have a presentation of B in
terms of generators and relations. This will be discussed elsewhere.

4.4. Deformed quantum Serre relations for (i) = j

The deformed quantum Serre relations for 7(i) = j were determined in [3, Theo-
rem 3.6] based on Letzter’s method [21] involving coproducts. In this subsection we
offer an alternative proof in the quasi-split case based on the star product method
from [18]. Throughout we fix distinct 4,7 € I with 7(i) = j. In this case formula
(4.8) for ® becomes

Fi®g=Fg+vKK; '0Fg), Fj®g=Fjg+vKK; 0 g)

for all g € U™, where v; = —qéi];il and v; = —qc_ﬂf;:, Hence F* = Fi®” and
. n_ popn (n=1)(ai;—2) n—17- 7-—1
F;® F' = FyF" + v;q, (n)qlei KiK. (4.27)

By induction on m one moreover gets

FP™ @ FjF" = FI'F P 4 5igl C 9 (m) o F LK KL

(2

Inserting (4.27) into the above equation we obtain

F'FFP = FP™ @ Fy @ FE" — 3307 (m) n PV RG]

. qugnfl)(aij72) (n)q? F;@(menfl)Kin,l. (428)
Using the relation
‘ ¢
> o(=1r l ] " = (% ¢?), forall L €N (4.29)
n
n=0 q
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one shows that

1—a;;
J 1—ai; (2 -1 2; 2V Cass
Z(—U"[ ] (1 g )y = BB )
n
q

i -1 ’
n—0 . ! ¢ qi — 4q;
1—aij 1, —2. -2
1 —ag; =2 ¢ (4 74 i-ay
}j(—l)”[ . ] g ) = == T (4.31)
n=0 qi ¢ g

Recall the notation (4.10). The formulas (4.30), (4.31) and Eq. (4.28) imply the
relation

0 (¢ d?)

Sij(Fi, Fy) = Sij(Fy @ Fy) 4y - =2t prCes) g et
qi — 4;
l—a;, —2. -2
T v q; (qz 7qi1 )1*111‘1‘ F;@(*aij)Kin—l
qi — 4q;

in T (V). Using again Theorem 4.3(2) and Proposition 4.6 one obtains the following
result.

Theorem 4.19. Let i,j € I with 7(i) = j and i # j and set m = 1 — a;;. Then
the relation

a7 (g2 g2 0. (g 272
Si(B;, By) = w&m—ll{j&_l N ciqi(q; 7_6111 Q)WB{”_lKin_l
(4 —q; ) (4 —q; )
holds in Be.
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