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1. Introduction

Quantum groups have played a key role in many areas of mathematics and mathe-

matical physics since their introduction by Drinfeld [9] and Jimbo [14] in the 1980s.

In the late 1990s Andruskiewitsch and Schneider initiated a powerful program for

classifying pointed Hopf algebras [2] which lead to far reaching generalizations of

quantum groups, namely Drinfeld doubles of pre-Nichols algebras.

Quantum symmetric pairs in the above frameworks have become the subject of

intense research. The general construction of quantum symmetric pairs in the set-

ting of quantized enveloping algebras of finite dimensional semisimple Lie algebras

was given by Letzter [20]. The Kac–Moody setting was treated in [17]. Quantum

symmetric pairs in the setting of Drinfeld doubles of pre-Nichols algebras were

defined in [18]. In those settings the quantum symmetric pairs having Iwasawa

decompositions were characterized in [17–20].

Quantum symmetric pair coideal subalgebras Bc depend on a set of parameters

c = (ci)i∈I , and are defined in terms of generators Bi for i ∈ I in the ambient Hopf

algebra. The generators Bi satisfy deformed quantum Serre relations, see [17, Sec. 7;

21, Sec. 7]. One of the outstanding problems in the area of quantum symmetric

pairs is to determine explicit, conceptual formulas for the deformed quantum Serre

relations. The goal of this paper is the following:

Metatheorem. The deformed quantum Serre relations for a quantum symmet-

ric pair coideal subalgebra are obtained from the usual quantum Serre relations by

replacing all monomials by multivariate orthogonal polynomials.

While in the present paper we only establish the Metatheorem in the so

called quasi-split Kac–Moody setting, we expect that this phenomenon holds in

full generality. Our proof is based on a result from [18] that (quantum) symmetric

pair coideal subalgebras are isomorphic to star products on partial bosonizations of

pre-Nichols algebras.

In [21] Letzter developed a method to obtain the deformed quantum Serre rela-

tions from coproducts. She applied her method to obtain explicit relations for all

quantum symmetric pairs of finite type. Letzter’s method was extended to the

Kac–Moody setting in [17] and applied in the case of Cartan matrices (aij)i,j∈I

with |aij | ≤ 3. Recall that quantum symmetric pairs depend on an involutive dia-

gram automorphism τ : I → I. In the case τ(i) = j �= i the corresponding deformed

quantum Serre relations were explicitly determined by Letzter’s method in [3, The-

orem 3.6]. In the case τ(i) = i �= j Letzter’s method gets substantially harder.

Nonetheless, recently, de Clercq used Letzter’s method to produce involved com-

binatorial formulas for deformed quantum Serre relations in the Kac–Moody case

for τ(i) = i �= j [7]. However, the connection to orthogonal polynomials is not

immediate.

In the quasi-split Kac–Moody setting the deformed quantum Serre relations

in the case τ(i) = i �= j were first derived in [6] in terms of so called ıdivided
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powers. The ıdivided powers are univariate polynomials and play an important

role in the theory of canonical bases for quantum symmetric pairs [4]. However, an

interpretation of ıdivided powers in terms of orthogonal polynomials is not known.

In the quasi-classical limit, formulas for the corresponding deformed Serre relations

were recently obtained by Stokman in [23].

In the present paper we give an explicit expression of deformed quantum Serre

relations for quasi-split quantum symmetric pairs in terms of bivariate continuous

q-Hermite polynomials. Our proofs are shorter than those in previous approaches

and are based on a direct relation between the star products of [18] and multivariate

orthogonal polynomials.

The classical Hermite polynomials are the polynomials given by the recurrence

relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x),

where H0(x) = 1. They have two types of q-analogs, the continuous and discrete

q-Hermite polynomials [16, §14.26–29]. The continuous q-Hermite polynomials [16,

§14.6] satisfy the recurrence relation

Hn+1(x; q) = 2xHn(x; q) − (1 − qn)Hn−1(x; q),

where H0(x; q) = 1. They appear in a number of diverse situations. For instance,

recently Borodin and Corwin used them in the study of the dynamic asymmet-

ric simple exclusion process [5]. Motivated by Itô’s complex bivariate orthogonal

Hermite polynomials [13], Ismail and Zhang [12] defined and studied two versions

of bivariate q-Hermite polynomials Hm,n(x, y | q) (without additional parameters).

They satisfy Hm,0(x, y) = xm, H0,n(x, y) = yn.

In this paper we define and study a completely different (two-parameter) family

of bivariate continuous q-Hermite polynomials Hm,n(z1, z2; q, r). They satisfy

Hm,0(x, y; q, r) = Hm(x; q) and H0,n(x, y; q, r) = Hn(y; q)

and are recursively defined by

Hm+1,n(x, y; q, r) = 2xHm,n(x, y; q, r) − (1 − qm)Hm−1,n(x, y; q, r)

− qm(1 − qn)rHm,n−1(x, y; q, r).

We establish algebraic and analytic properties of these polynomials. On the alge-

braic side, we prove that they are explicitly given by

Hm,n(x, y; q, r) =

min(m,n)∑

k=0

(−1)kq(
k

2)(q; q)m(q; q)nrk

(q; q)m−k(q; q)n−k(q; q)k
Hm−k(x; q)Hn−k(y; q), (1.1)

and in particular, they are symmetric with respect to x and y: Hm,n(x, y; q, r) =

Hn,m(y, x; q, r). We show that their generating function is given by

∞∑

m,n=0

Hm,n(x, y; q, r)

(q; q)m(q; q)n
smtn =

(rst; q)∞
|(seiθ, teiφ; q)∞|2 ·
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We derive an operator formulation and a backward difference equation for these

polynomials (see Theorem 2.7). On the analytic side we prove that they are orthog-

onal with respect to the measure

|(e2i(α+β)/r; q)∞|2√
(1 − x2)(1 − y2)

dxdy on [0, 1] × [0, 1], where x = cos(2α), y = cos(2β).

We believe that these polynomials will find application outside the realm of Hopf

algebras and quantum symmetric pairs.

With the above notation we can now express the deformed quantum Serre

relations for quasi-split quantum symmetric pairs in the case τ(i) = i �= j. For

w(x, y) =
∑

r,s brsx
rys ∈ K[x, y], set

z � w(x, y) =
∑

r,s

brsx
rzys.

The following theorem is derived from the algebraic properties of bivariate continu-

ous q-Hermite polynomials. The theorem holds for general deformation parameters

q including roots of unity.

Theorem (Corollaries 4.10 and 4.14). Let i, j ∈ I and τ(i) = i �= j. Then the

generators Bi, Bj of the quantum symmetric pair coideal subalgebra Bc satisfy the

relation

1−aij∑

ℓ=0

(−1)ℓ

[
1 − aij

ℓ

]

qi

Bj � w1−aij−ℓ,ℓ(Bi, Bi) = 0,

where

wm,n(x, y) = (2bi)
−m−nHm,n(bix, biy; q2

i , q
aij

i ) and bi =
1

2
(qi − q−1

i )c
−1/2
i q

−1/2
i .

This relation can also be written as

1−aij∑

ℓ=0

(−1)ℓ

[
1 − aij

ℓ

]

qi

w1−aij−ℓ(Bi)Bjvℓ(Bi) = 0,

where

wm(x) =
1

(2bi)m
Hm(bix; q2

i ), vm(x) =
1

(2bi)m
Hm(bix; q−2

i ).

The paper is organized as follows. Section 2 contains background material on

multivariate orthogonal polynomials and the statements of our results on bivariate

continuous q-Hermite polynomials. Section 3 contains the proof of these results. In

Sec. 4 we recall the isomorphism theorem from [18] identifying quantum symmetric

pair coideal subalgebras with star products on partial bosonizations of pre-Nichols

algebras. Then we use the algebraic facts on the bivariate continuous q-Hermite

polynomials to derive the defining relations of quantum symmetric pair coideal

subalgebras of quantum groups in the quasi-split Kac–Moody case.
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2. Orthogonal Polynomials

In this section, we provide a brief review of the theory of orthogonal polynomials in

a single variable and introduce the Hermite and continuous q-Hermite polynomials

as examples. We then recall the definition of multivariate orthogonal polynomials

and introduce a bivariate analog of the continuous q-Hermite polynomials.

2.1. Classical orthogonal polynomials

A sequence of orthogonal polynomials on the real line is a sequence p0(x), p1(x), . . .

of complex-valued polynomials with deg pn(x) = n for all n ≥ 0, which satisfy the

orthogonality condition
∫

R

pm(x)pn(x)dµ(x) = δm,ncn

for some positive Borel measure µ on R and sequence of positive constants {cn}∞n=0.

An elementary argument shows that any sequence of orthogonal polynomials

automatically satisfies a three-term recursion relation of the form

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x), (2.1)

for some sequence of constants {αn}∞n=0, {βn}∞n=0 and {γn}∞n=1, with p−1(x) := 0.

The values are related to the moments of µ(x) and the leading coefficients of the

pn(x)’s. Conversely, for any sequences {αn}∞n=0, {βn}∞n=0 and {γn}∞n=1 with βn real

and αnγn positive, the sequence of polynomials defined recursively by (2.1) will

be orthogonal polynomials for some Borel measure µ(x). This result is known as

Favard’s theorem and is a consequence of the spectral theorem applied to the semi-

infinite Jacobi matrix defined by the three-term recursion relation [11].

The most fundamental examples of orthogonal polynomials are the classical

orthogonal polynomials of Hermite, Laguerre and Jacobi. These polynomials satisfy

the additional property that they are eigenfunctions of a second-order differential

equation in the variable x, i.e.

a2(x)p′′n(x) + a1(x)p′n(x) + a0(x)pn(x) = λnpn(x)

for some functions a0(x), a1(x) and a2(x) and sequence of complex numbers

{λn}∞n=0. Each sequence of classical orthogonal polynomials satisfies a Rodrigues-

type recurrence relation and has a nice generating function formula. For example

consider the classical Hermite polynomials Hn(x) defined by

Hn(x) = n!

⌊n/2⌋∑

m=0

(−1)m

m!(n − 2m)!
(2x)n−2m. (2.2)

Example 2.1. The Hermite polynomials Hn(x) have the following properties [16]:

• orthogonality relation:
∫

R

Hm(x)Hn(x)e−x2

dx =
√

π2nn!δm,n.
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• three-term recursion relation:

xHn(x) =
1

2
Hn+1(x) + nHn−1(x).

• second-order differential equation:

H ′′
n(x) − 2xH ′

n(x) = −2nHn(x).

• generating function:

e2xt−t2 =
∞∑

n=0

Hn(x)

n!
tn.

• Rodrigues-type recurrence relation:

Hn(x) = (−1)nex2

(
d

dx

)n

· e−x2

.

The classical orthogonal polynomials naturally generalize when we replace the

differential operator with a second-order difference or q-difference operator, in which

we obtain the various families obtained from the Askey and q-Askey scheme, such as

the Wilson, Racah, Hahn, Meixner, Meixner–Pollaczek, Krawtchouk and Charlier

polynomials and their q-analogues. As before, each such sequence of orthogonal

polynomials satisfies a three-term recursion relation, a differential, difference, or q-

difference equation, a Rodrigues-type recurrence relation, and has a nice generating

function formula. In this paper, we will be particularly interested in the continuous

q-Hermite polynomials Hn(x; q) defined for x = cos(θ) by

Hn(x; q) :=

n∑

k=0

(q; q)n

(q; q)k(q; q)n−k
ei(n−2k)θ = einθ

2φ0

[
q−n, 0

− ; q, qne−2iθ

]
. (2.3)

Here (a; q)n is the q-Pochhammer symbol and 2φ0

[
a,b
− ; q, z

]
is the q-hypergeometric

function defined, respectively, by

(a; q)n =

n−1∏

k=0

(1 − aqk) and 2φ0

[
a, b

− ; q, z

]
=

∞∑

n=0

(a; q)n(b; q)n

(q; q)n(−1)nq(
n

2)
zn.

We also have the infinite q-Pochhammer symbol (a; q)∞ = limn→∞(a; q)n which

has a useful series expansion we will rely on later in this paper

(a; q)∞ =

∞∏

k=0

(1 − aqk) =

∞∑

n=0

(−1)nq(
n

2)

(q; q)n
an. (2.4)

Note that in terms of the Chebyshev polynomials of the first kind Tn(x), this

may be rewritten as

Hn(x; q) :=

n∑

k=0

(q; q)n

(q; q)k(q; q)n−k
T|n−2k|(x),

so that in particular Hn(x; q) is a polynomial in x of degree n for all n.

Example 2.2. The continuous q-Hermite polynomials Hn(x; q) satisfy the follow-

ing properties [16]:
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• orthogonality relation:
∫ 1

−1

Hm(x; q)Hn(x; q)
|(e2iθ ; q)∞|2√

1 − x2
dx =

2πδm,n

(qn+1; q)∞
. (2.5)

• three-term recursion relation:

2xHn(x; q) = Hn+1(x; q) + (1 − qn)Hn−1(x; q). (2.6)

• (forward) q-difference equation:

DqHn(x; q) =
2q−(n−1)/2(1 − qn)

1 − q
Hn−1(x; q). (2.7)

• generating function:

∞∑

n=0

Hn(x; q)

(q; q)n
sn =

1

|(seiθ; q)∞|2 . (2.8)

• Rodrigues-type recurrence relation:

Hn(x; q) =

(
q − 1

2

)n

q
1
4n(n−1)

√
1 − x2

|(e2iθ ; q)∞|2 (Dq)
n · |(e

2iθ ; q)∞|2√
1 − x2

. (2.9)

Remark 2.3. In the q-difference equation above, Dq is the q-difference operator

found in [16, Eq. (1.16.4)], given by

Dqf(x) =
δqf(x)

δqx
, x = cos(θ),

where

δqf(eiθ) = f(q1/2eiθ) − f(q−1/2eiθ),

so that in particular δqx = − 1
2q−1/2(1 − q)(eiθ − e−iθ) for x = cos θ.

2.2. Multivariate orthogonal polynomials

The theory of multivariate orthogonal polynomials on Rd is considerably more com-

plicated than the single variable situation and far less complete. Even so, the basics

of the theory remain the same as long as the definitions are taken appropriately.

Some useful introductory references are [10, 25].

For simplicity, we will adopt the vector notation �x = (x1, . . . , xd) and �n =

(n1, . . . , nd) and will write |�n| to mean n1 + · · ·+nd. We will also use the monomial

notation x�n for the product xn1

1 xn2

2 · · ·xnd

d .

Definition 2.4. A sequence of orthogonal polynomials in d variables is a sequence

p�n(�x) of polynomials in variables x1, . . . , xd such that

(1) for all m the polynomials {p�n(�x) : |�n| ≤ m} define a basis for the space of

polynomials of total degree at most m
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(2) there exists a positive Borel measure µ on Rd with finite moments∫
Rd |x�n|dµ(�x) < ∞ satisfying

∫

Rd

p�m(�x)p�n(�x)dµ(�x) = 0 for |�m| �= |�n|.

In other words, polynomials of different total degrees are orthogonal, but dif-

ferent polynomials with the same total degree may not be. In particular, one may

have to perform a change of basis

p̃�n(x, y) =
∑

|�m|=|�n|

a�mp�m(�x),

to get a sequence of orthogonal polynomials satisfying the more intuitive orthogo-

nality condition
∫

R

p̃�m(�x)p̃�n(�x)dµ(�x) = 0 when �m �= �n, (2.10)

to apply for all �m and �n.

A sequence of orthogonal polynomials again gives rise to a three-term recur-

sion relation, except that the summands are in terms of the total degree and can

involve multiple polynomials with the same total degree. Specifically, there will

exist constants α�n,�m,j , β�n,�m,j , γ�n,�m,j such that for all j = 1, . . . , d

xjp�n(�x) =
∑

|�m|=|�n|+1

α�n,�m,jp�m(�x) +
∑

|�m|=|�n|

β�n,�m,jp�m(�x) +
∑

|�m|=|�n|−1

γ�n,�m,jp�m(�x).

An analog of Favard’s theorem has also been proved [24], i.e. for sufficiently nice

sequences of constants, the sequence of polynomials defined by the three-term recur-

sion relation will be orthogonal with respect to some measure µ on Rd. As mentioned

above, we can then change our basis so that the orthogonal polynomials satisfy the

simple orthogonality condition (2.10), but this in turn will completely change the

original recurrence relations and the new orthogonal polynomials may lose other

desirable properties such as having monomial leading coefficients.

In the next section, we will construct two dimensional analogs of the continu-

ous q-Hermite polynomials defined above, which we will hereafter refer to as the

bivariate continuous q-Hermite polynomials

Hm,n(x, y; q, r)

=

min(m,n)∑

k=0

(−1)kq(
k

2)(q; q)m(q; q)nrk

(q; q)m−k(q; q)n−k(q; q)k
Hm−k(x; q)Hn−k(y; q). (2.11)

Note that

Hm,0(x, y; q, r) = Hm(x; q) and H0,n(x, y; q, r) = Hn(y; q).

Moreover

Hm,n(x, y; q, 0) = Hm(x; q)Hn(y; q),
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so Hm,n(x, y; q, r) may be thought of as a deformation of the family of orthogonal

polynomials Hm(x; q)Hn(y; q) with deformation parameter r.

Remark 2.5. Our bivariate continuous q-Hermite polynomials are very different

from those constructed by Ismail and Zhang [12], which were motivated by the

complex bivariate orthogonal Hermite polynomials introduced by Itô [13].

Remark 2.6. We do not define the bivariate continuous q-Hermite polynomials

with (2.11). Instead, we define them in the next section in terms of a symmetry

condition and a three-term recursion relation reminiscent of the recursion relation

for the one variable case. We then prove that the resulting sequence satisfies (2.11).

In the next section we will prove several important properties of these polyno-

mials, including orthogonality, recurrence relations, q-difference equations, and a

generating function formulation. We summarize these properties here for the con-

venience of the reader.

Theorem 2.7. The bivariate continuous q-Hermite polynomials Hm,n(x, y; q, r)

satisfy the following properties:

• Orthogonality relation:

∫ 1

−1

∫ 1

−1

Hm,n(x, y; q, r)Hen, em(x, y; q, r)
|(e2i(α+β)/r; q)∞|2√

(1 − x2)(1 − y2)
dxdy = cm,nδm, emδn,en,

where here x = cos(2α), y = cos(2β) and

cm,n =
2π2

(q; q)∞

∑

i+k+ℓ=m
j+k+ℓ=n

(−1)kq(
k

2)(q; q)2m(q; q)2n
(q; q)i(q; q)j(q; q)k(q; q)2ℓ

rm+n.

• Three-term recursion relations:

2xHm,n(x, y; q, r) = Hm+1,n(x, y; q, r) + (1 − qm)Hm−1,n(x, y; q, r)

+ qm(1 − qn)rHm,n−1(x, y; q, r),

2yHm,n(x, y; q, r) = Hm,n+1(x, y; q, r) + (1 − qn)Hm,n−1(x, y; q, r)

+ qn(1 − qm)rHm−1,n(x, y; q, r).

• Generating function:

∞∑

m,n=0

Hm,n(x, y; q, r)

(q; q)m(q; q)n
smtn =

(rst; q)∞
|(seiθ, teiφ; q)∞|2 ·

• Operator formulation:

Hm,n(x, y; q, r) =
1

(−q
m+n

2 −1(1−q
2 )2rDq,xDq,y; q)∞

· Hm(x; q)Hn(y; q).

2140016-9
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• Additional relations :

Dq,x · Hm,n(x, y; q, r) =
2q−

m−1
2 (1 − qm)

1 − q
Hm−1,n(x, y; q,

√
qr),

Dq,y · Hm,n(x, y; q, r) =
2q−

n−1
2 (1 − qn)

1 − q
Hm,n−1(x, y; q,

√
qr).

3. Generating Function, Recursion Relations and Orthogonality

In this section, we define the bivariate continuous q-Hermite polynomials and prove

the properties stated in Theorem 2.7. Excepting the initial definition of the bivari-

ate continuous q-Hermite polynomials below, we will write Hm,n(x, y) in place of

Hm,n(x, y; q, r) throughout this section for sake of brevity.

3.1. The bivariate continuous q-Hermite polynomials

As a two-dimensional analog of the continuous q-Hermite polynomials, we consider

the following sequence of bivariate polynomials.

Definition 3.1. The bivariate continuous q-Hermite polynomials are the unique

sequence of orthogonal polynomials Hm,n(x, y; q, r) defined for all integers m, n ≥ 0

satisfying the symmetry condition

Hm,n(x, y; q, r) = Hn,m(y, x; q, r) (3.1)

as well as the three-term recursion relation

2xHm,n(x, y; q, r) = Hm+1,n(x, y; q, r) + (1 − qm)Hm−1,n(x, y; q, r)

+ qm(1 − qn)rHm,n−1(x, y; q, r), (3.2)

with H0,0(x, y; q, r) = 1 and H−1,0(x, y; q, r) = H0,−1(x, y; q, r) = 0.

Note in particular Hm,n(x, y; q, r) is a polynomial of bidegree (m, n), and that

Hm,0(x, y; q, r) = Hm(x; q).

Mimicking the generating function in the single-variable case (2.8), we consider

the function

ψ

(
x, y

s, t

)
:=

∞∑

m,n=0

ψm,n

(
x, y

s, t

)
, where ψm,n

(
x, y

s, t

)
:=

Hm,n(x, y)smtn

(q; q)m(q; q)n
.

Note that the recursion relation above tells us

2xψm,n

(
x, y

s, t

)
=

1

s

(
ψm+1,n

(
x, y

s, t

)
− ψm+1,n

(
x, y

qs, t

))

+ sψm−1,n

(
x, y

s, t

)
+ rtψm,n−1

(
x, y

qs, t

)
.

2140016-10
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Summing this, we find

2xψ

(
x, y

s, t

)
=

1

s

(
ψ

(
x, y

s, t

)
− ψ

(
x, y

qs, t

))
+ sψ

(
x, y

s, t

)
+ rtψ

(
x, y

qs, t

)
,

which simplifies to the homogeneous q-difference equation

ψ

(
x, y

qs, t

)
=

(
2xs − s2 − 1

rst − 1

)
ψ

(
x, y

s, t

)
.

Factoring
(

2xs − s2 − 1

rst − 1

)
=

(1 − (x +
√

x2 − 1)s)(1 − (x −
√

x2 − 1)s)

1 − rst

and using the fact that (qx; q)∞(1 − x) = (x; q)∞, we see that the general solution

of this q-difference equation is

ψ

(
x, y

s, t

)
=

(rst; q)∞

((x +
√

x2 − 1)s; q)∞((x −
√

x2 − 1)s; q)∞
ψ

(
x, y

0, t

)

=
(rst; q)∞

|(eiθs; q)∞|2 ψ

(
x, y

0, t

)
, for x = cos(θ).

Finally by symmetry and the choice that H0,0(x, y) = 1, or alternatively by using

(2.8), we obtain a generating function formula for the polynomials Hm,n(x, y) with

x = cos(θ) and y = cos(φ)

ψ

(
x, y

s, t

)
:=

∞∑

m,n=0

Hm,n(x, y)

(q; q)m(q; q)n
smtn =

(rst; q)∞
|(seiθ, teiφ; q)∞|2 . (3.3)

The generating function equation also allows us to express our bivariate con-

tinuous q-Hermite polynomials in terms of the continuous q-Hermite polynomials

in a single variable. By applying (2.8) along with the series expansion for the q-

Pochhammer symbol (2.4) for (rst; q)∞ we see

(rst; q)∞
|(seiθ, teiφ; q)∞|2 =

∞∑

k,m,n=0

(−1)kq(
k

2)rksm+ktm+k

(q; q)k(q; q)m(q; q)n
Hm(x)Hn(y).

Comparing similar powers of s and t, we find

Hm,n(x, y) =

min(m,n)∑

k=0

(−1)kq(
k

2)(q; q)m(q; q)nrk

(q; q)m−k(q; q)n−k(q; q)k
Hm−k(x; q)Hn−k(y; q). (3.4)

3.2. Orthogonality

By Xu’s extension of Favard’s theorem [24], we expect a sequence of multivariate

polynomials with n variables which satisfies a sufficiently nice three-term recursion

relation to be orthogonal with respect to some inner product defined by a measure
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on Rn. This is indeed the case for the bivariate continuous q-Hermite polynomials

we defined, as we prove in the following theorem.

Theorem 3.2. The bivariate continuous q-Hermite polynomials satisfy the orthog-

onality relation

∫ 1

−1

∫ 1

−1

Hm,n(u, v; q, r)Hen, em(u, v; q, r)
|(e2i(α+β)/r; q)∞|2√

(1 − u2)(1 − v2)
dudv = cm,nδm, emδn,en,

where here u = cos(2α), v = cos(2β) and

cm,n =
2π2

(q; q)∞

∑

i+k+ℓ=m
j+k+ℓ=n

(−1)kq(
k

2)(q; q)2m(q; q)2n
(q; q)i(q; q)j(q; q)k(q; q)2ℓ

rm+n. (3.5)

Remark 3.3. Note that (α, β) → (cos(2α), cos(2β)) defines a fourfold cover from

the diamond region D with vertices (0, 0), (π/2, π/2), (π/2,−π/2) and (π, 0) to

the triangular T with vertices (−1,−1), (−1, 1), and (1, 1). Furthermore, the map

θ = α + β and φ = α − β maps D to the square region [0, π]2. Thus if Im,n, em,en is

the integral in Theorem 3.2, we have by symmetry

Im,n, em,en = 2

∫∫

T

Hm,n(u, v; q, r)Hen, em(u, v; q, r)
|(e2i(α+β)/r; q)∞|2√

(1 − u2)(1 − v2)
dudv

= 2

∫∫

D

Hm,n(u, v; q, r)Hen, em(u, v; q, r)|(e2i(α+β)/r; q)∞|2dαdβ

=

∫ π

0

∫ π

0

Hm,n(u, v; q, r)Hen, em(u, v; q, r)|(e2iθ/r; q)∞|2dθdφ,

where here u = cos(2α), v = cos(2β), θ = α + β and φ = α − β. Thus the

orthogonality expression above is equivalent to

∫ π

0

∫ π

0

Hm,n(u, v; q, r)Hen, em(u, v; q, r)|(e2iθ/r; q)∞|2dθdφ = cm,nδm, emδn,en, (3.6)

for u = cos(θ + φ) and v = cos(θ − φ).
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Remark 3.4. If we define a new sequence of polynomials

H̃m,n(x, y) =

{
Hm,n(x, y) − Hn,m(x, y) if m < n,

Hm,n(x, y) + Hn,m(x, y) if m ≥ n

then the new sequence satisfies the more intuitive orthogonality statement that

∫ π

0

∫ π

0

H̃m,n(u, v; q, r)H̃ em,en(u, v; q, r)|(e2iθ/r; q)∞|2dθdφ = c̃m,nδm, emδn,en

for some constants c̃m,n > 0, but will no longer have monomial leading coefficients.

Proof. To prove Theorem 3.2, we will use the generating function formula for the

bivariate continuous q-Hermite polynomials to deduce an orthogonality condition.

We will also make use of the Askey–Wilson integral [1, Theorem 10.8.1]

∫ π

−π

|(e2iθ; q)∞|2
|(aeiθ, beiθ, ceiθ, deiθ; q)∞|2 dθ =

4π(abcd; q)∞
(ab, ac, ad, bc, bd, cd, q; q)∞

. (3.7)

However, we require this integral in a slightly modified form. Note that the function

f(z) =
|(e2iz/r; q)∞|2

|(aeiz, beiz, ceiz , deiz; q)∞|2

is 2π-periodic and holomorphic on the domain Im(z) > ln max(|a|, |b|, |c|, |d|).
Therefore by the Cauchy residue theorem, as long as r > max(|a|, |b|, |c|, |d|)2 we

have no poles in the rectangle [−π, π] × [−(i/2) ln(r), 0] and so

∫ π

−π

f(θ)dθ =

∫ π

−π

f(θ − (i/2) ln r)dθ

+i

∫ (1/2) ln r

0

f(π − ix)dx − i

∫ (1/2) ln r

0

f(−π − ix)dx

=

∫ π

−π

f(θ − (i/2) ln r)dx.

Consequently for r > max(|a|, |b|, |c|, |d|)2 we see that

∫ π

−π

|(e2iθ/r; q)∞|2
|(aeiθ, beiθ, ceiθ, deiθ; q)∞|2 dθ =

4π(abcdr2; q)∞
(abr, acr, adr, bcr, bdr, cdr, q; q)∞

. (3.8)

Using this, assume max(|s|, |t|, |s̃|, |t̃|)2 < r and consider the integral

I = I(s, t, s̃, t̃; q, r) =

∫ π

0

∫ π

0

ψ

(
u, v

s, t

)
ψ

(
v, u

s̃, t̃

)
|(e2iθ/r; q)∞|2dθdφ.
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We calculate

I =

∫ π

0

∫ π

0

(rst, rs̃t̃; q)∞|(e2iθ/r; q)∞|2
|(ei(θ+φ)s, ei(θ−φ)t, ei(θ−φ)s̃, ei(θ+φ)t̃; q)∞|2

dθdφ

=
1

2

∫ π

0

∫ π

−π

(rst, rs̃t̃; q)∞|(e2iθ/r; q)∞|2
|(ei(θ+φ)s, ei(θ−φ)t, ei(θ−φ)s̃, ei(θ+φ)t̃; q)∞|2

dθdφ

=
2π

(q; q)∞

∫ π

0

(rst, rs̃t̃, r2ss̃tt̃; q)∞

(rst, rss̃, rst̃e2iφ, rs̃te−2iφ, rtt̃, rs̃t̃; q)∞
dφ

=
2π(r2ss̃tt̃; q)∞

(rss̃, rtt̃, q; q)∞

∫ π

0

1

(rst̃e2iφ, rs̃te−2iφ; q)∞
dφ

=
2π(r2ss̃tt̃; q)∞

(rss̃, rtt̃, q; q)∞

∞∑

m,n=0

∫ π

0

(rst̃)m(rs̃t)n

(q; q)m(q; q)n
e2iφ(m−n)dφ

=
2π2(r2ss̃tt̃; q)∞

(rss̃, rtt̃, q; q)∞

∞∑

n=0

(r2st̃s̃t)n

(q; q)2n

=
2π2

(q; q)∞

∑

i,j,k,ℓ

(−1)kq(
k

2)(rss̃)i+k+ℓ(rtt̃)j+k+ℓ

(q; q)i(q; q)j(q; q)k(q; q)2ℓ

=

∞∑

m,n=0

cm,n

(q; q)2m(q; q)2n
(ss̃)m(tt̃)n,

where the cm,n’s are given by (3.5). Furthermore, using the explicit series expression

for ψ
(

x,y
s,t

)
in terms of the continuous bivariate q-Hermite polynomials, we see

I =
∞∑

m,n=0

∞∑

em,en=0

smtns̃ emt̃en

(q; q)m(q; q)n(q; q) em(q; q)en
Im,n, em,en

for

Im,n, em,en =

∫ π

0

∫ π

0

Hm,n(u, v)H em,en(v, u)|(e2iθ/r; q)∞|2dθdφ.

Combining this with our previous expression for I, we find that

Im,n, em,en = δm, emδn,encm,n.

We prove below that the constants cm,n are positive when r and q are real. This

proves the statement of Theorem 3.2.

3.3. Complex interpretation

The swapping of the variables u and v in the inner product expression of Theo-

rem 3.2 is somewhat startling! However, it is quite natural when viewed in terms
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of an inner product on the 2-torus

T
2 = {(z, w) ∈ C

2 : |z| = |w| = 1}.

To see what we mean specifically, consider the complex functions θm,n(z, w) defined

on T2 by

θm,n(z, w) =

min(m,n)∑

k=0

(
(−1)kq(

k

2)(q; q)m(q; q)n

(q; q)m−k(q; q)n−k(q; q)k
rkzm−kwn−k

× 2φ0

[
qk−m, 0

− ; q, qm−kz−2

]
2φ0

[
qk−n, 0

− ; q, qn−kw−2

])
.

These are complex bivariate trigonometric polynomials on T2. Note in particular

θm,n(eiθ, eiφ) = Hm,n(x, y), for x = cos(θ) and y = cos(φ).

With this in mind the inner product expression of Theorem 3.2 becomes

1

4

∫∫

T2

θm,n(zw, zw)θ em,en(zw, zw)|(z2/r; q)∞|2d|z|d|w| = cm,nδm, emδn,en. (3.9)

In this way, we can see that the inner product expression from Theorem 3.2 is

actually a Hermitian inner product on L2(T2). In particular, when r and q are real

the coefficients cm,n are necessarily positive as they are Hermitian inner products

of polynomials with respect to an absolutely continuous positive measure whose

support contains a dense open subset of T2.

3.4. Additional properties

Equation (3.4) combined with the q-difference equation for the Hermite polyno-

mials (2.7) immediately tells us a simple operator identity relating the polynomi-

als Hm,n(x, y) to Hm(x; q)Hn(y; q). Specifically, we can write Hm,n(x, y) as a cer-

tain differential operator of infinite order acting on the product Hm(x; q)Hn(x; q),

namely

Hm,n(x, y; q, r) =
1

(−q
m+n

2 −1(1−q
2 )2rDq,xDq,y; q)∞

· Hm(x; q)Hn(y; q). (3.10)

To see this, note that

Dk
q,xHm(x; q) =

2k

(1 − q)k
q−

1
2 (mk−(k

2)−k) (q; q)m

(q; q)m−k
Hm−k(x; q),

so that

Dk
q,xDk

q,yHm(x; q)Hn(y; q)

=
22k

(1 − q)2k
q−( m+n

2 k−(k

2)−k) (q; q)m(q; q)n

(q; q)m−k(q; q)n−k
Hm−k(x; q)Hn−k(x; q).
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Therefore

Hm,n(x, y) =

min(m,n)∑

k=0

(−q
m+n

2 −1(1−q
2 )2rDq,xDq,y)k

(q; q)k
· Hm(x; q)Hn(y; q)

=

∞∑

k=0

(−q
m+n

2 −1(1−q
2 )2rDq,xDq,y)k

(q; q)k
· Hm(x; q)Hn(y; q)

=
1

(−q
m+n

2 −1(1−q
2 )2rDq,xDq,y; q)∞

· Hm(x; q)Hn(y; q).

Note that the second equality is due to the fact that Dk
q,xDk

q,yHm(x; q)Hn(y; q) is

zero for k > min(m, n), so all the additional terms appearing in the sum are just

zero.

The generating function formula (3.3) along with the operator formula (3.10)

combined with properties of the continuous q-Hermite polynomials in the single-

variable case, immediately guarantee certain nice recurrence relations for the bivari-

ate continuous q-Hermite polynomials. We list some of these in the next proposition.

Proposition 3.5. The bivariate continuous q-Hermite polynomials satisfy the fol-

lowing equations :

Dq,x · Hm,n(x, y; q, r) =
2q−

m−1
1 (1 − qm)

1 − q
Hm−1,n(x, y; q,

√
qr), (3.11)

Dq,y · Hm,n(x, y; q, r) =
2q−

n−1
1 (1 − qn)

1 − q
Hm,n−1(x, y; q,

√
qr). (3.12)

Proof. The forward difference equations follow from the operator relation (3.10).

In detail, define

Lk(q, r) =
1

(−qk/2−1(1−q
2 )2rDq,xDq,y; q)∞

and notice that Lk(q, r) = Lk−1(q,
√

qr). Therefore by (3.10)

Dq,x · Hm,n(x, y) = Dq,xLm+n(q, r) · Hm(x; q)Hn(y; q)

= q−
m−1

2

(
2

1 − q

)
(1 − qm)Lm+n(q, r) · Hm−1(x; q)Hn(y; q)

= q−
m−1

2

(
2

1 − q

)
(1 − qm)Lm+n−1(q,

√
qr) · Hm−1(x; q)Hn(y; q)

= q−
m−1

2

(
2

1 − q

)
(1 − qm)Hm−1,n(x, y; q,

√
qr).

The proof of the other difference equation is similar.
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4. Defining Relations for Quantum Symmetric Pairs

We now explain how bivariate continuous q-Hermite polynomials appear in the

theory of quantum symmetric pairs.

4.1. Quasi-split quantum symmetric pairs

Let g be a symmetrizable Kac–Moody algebra with generalized Cartan matrix

(aij)i,j∈I where I is a finite set. Let {di | i ∈ I} be a set of relatively prime positive

integers such that the matrix (diaij) is symmetric. Let Π = {αi | i ∈ I} be the set

of simple roots for g and let Q = ZΠ be the root lattice. Consider the symmetric

bilinear form (·, ·) : Q × Q → Z defined by (αi, αj) = diaij for all i, j ∈ I. Let

g′ = [g, g] be the derived subalgebra of g. We now recall the definition of the

corresponding quantized enveloping algebra.

Let K be a field of characteristic zero and let q ∈ K× such that q2di �= 1 for

all i ∈ I. Recall the symmetric q-numbers, q-factorials and q-binomial coefficients

defined by

[n]q =
qn − q−n

q − q−1
, [n]!q = [n]q[n − 1]q · · · [2]q[1]q,

[
n

m

]

q

=
[n]!q

[n − m]!q [m]!q

for any m, n ∈ N with m ≤ n, see for instance in [22, 1.3.3]. We abbreviate qi = qdi

for any i ∈ I. For any i, j ∈ I let Sij(x, y) denote the noncommutative polynomial

in variables x, y given by

Sij(x, y) =

1−aij∑

n=0

(−1)n

[
1 − aij

n

]

qi

x1−aij−nyxn.

Define Uq(g
′) to be the K-algebra with generators Ei, Fi, K

±1
i for i ∈ I and defining

relations

KiKj = KjKi, KiEj = q−(αi,αj)EjKi, KiFj = q−(αi,αj)FjKi,

EiFj − FjEi = δij
Ki − K−1

i

qi − q−1
i

, (4.1)

Sij(Ei, Ej) = Sij(Fi, Fj) = 0 (4.2)

for all i, j ∈ I. The relations (4.2) are known as the quantum Serre relations. If q

is not a root of unity, then Uq(g
′) is the quantized universal enveloping algebra of

g′ for the deformation parameter q as defined in [22]. If q is a root of unity, then

Uq(g
′) is the big quantum group of g′ at q, defined and studied by De Concini and

Kac [8]. In either case Uq(g
′) is a Hopf algebra with coproduct ∆ defined for all

i ∈ I by

∆(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, ∆(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi, ∆(Ki) = Ki ⊗ Ki.

Let τ : I → I be a bijection such that aτ(i)τ(j) = aij for all i, j ∈ I. The diagram

automorphism τ gives rise to a Lie algebra automorphism τ : g′ → g′ denoted
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by the same symbol. Let ω : g′ → g′ be the Chevalley involution as defined in

[15, (1.3.4)]. Consider the involutive Lie algebra automorphism θ = τ ◦ ω of g′ and

let k′ = {x ∈ g′ | θ(x) = x} denote the corresponding pointwise fixed Lie subalgebra.

The theory of quantum symmetric pairs provides quantum group analogs of the

universal enveloping algebra U(k′) as coideal subalgebras of Uq(g
′). More precisely,

let Hθ ⊂ Uq(g
′) denote the Hopf subalgebra generated by the elements KiK

−1
τ(i) for

all i ∈ I. Let c = (ci)i∈I ∈ (K×)I be a family of parameters such that

ci = cτ(i) for all i ∈ I with aiτ(i) = 0. (4.3)

We define Bc to be the subalgebra of Uq(g
′) generated by Hθ and the elements

Bi = Fi − ciEτ(i)K
−1
i for all i ∈ I. (4.4)

By definition the coproduct ∆ of Uq(g
′) satisfies

∆(Bi) = Bi ⊗ K−1
i + 1 ⊗ Fi − ciKτ(i)K

−1
i ⊗ Eτ(i)K

−1
i

and hence Bc is a right coideal subalgebra of Uq(g
′), that is ∆(Bc) ⊆ Bc ⊗ Uq(g

′).

We call Bc a quasi-split quantum symmetric pair coideal subalgebra of Uq(g).

Remark 4.1. The condition (4.3) on the parameters c guarantees that the subal-

gebra Bc has many desirable properties, see [17, (5.9); 18, Proposition 3.1].

Remark 4.2. For q not a root of unity, quantum symmetric pairs of Kac–Moody

type were defined in [17] depending on a pair (X, τ) where τ : I → I is a diagram

automorphism and X is a subset of I satisfying the admissibility conditions given

in [17, Definition 2.3]. Following [6] we call a quantum symmetric pair quasi-split if

X = ∅. In the present paper we only consider quasi-split quantum symmetric pairs.

The definition of quantum symmetric pairs in [17] involves a second parameter

family s = (si)i∈I . The corresponding coideal subalgebras Bc,s are isomorphic as

algebras for all s under a map which maps generators to generators, see [17, The-

orem 7.1]. In this paper we are only concerned with the defining relations of Bc,s

and we hence restrict to the case si = 0 for all i ∈ I.

4.2. The ∗-product on Hθ ⋉ U−

We now recall a method devised in [18] to describe the algebra Bc in terms of gener-

ators and relations. Let U− denote the subalgebra of Uq(g
′) generated by all Fi for

i ∈ I. The algebra U− is Q-graded with U−
−µ = span

K
{Fi1 · · ·Fim

| ∑m
j=1 αij

= µ}
for all µ ∈ Q+ = NΠ, and U−

−µ = {0} otherwise. For any i ∈ I let ∂R
i , ∂L

i :

U− → U− denote the linear maps uniquely determined by the property that
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∂R
i (Fj) = ∂L

i (Fj) = δij for all j ∈ I and

∂R
i (fg) = q(αi,ν)∂R

i (f)g + f∂R
i (g), (4.5)

∂L
i (fg) = ∂L

i (f)g + q(αi,µ)f∂L
i (g), (4.6)

for all f ∈ U−
−µ, g ∈ U−

−ν . Consider the semidirect product Hθ ⋉ U− which is the

subalgebra of Uq(g
′) generated by Hθ and U−. The algebra Bc is a deformation of

Hθ ⋉ U−.

Theorem 4.3. (1) [18, Theorem 4.7, Lemma 5.2] There exists an associative prod-

uct ∗ on Hθ ⋉ U− which is uniquely determined by the following properties:

h ∗ g = hg, g ∗ h = gh for all h ∈ Hθ, g ∈ U−, (4.7)

Fi ∗ g = Fig − ciq
(αi,ατ(i))

qi − q−1
i

Kτ(i)K
−1
i ∂L

τ(i)(g) for all i ∈ I, g ∈ U−. (4.8)

(2) [18, Corollary 5.8] There is a uniquely determined isomorphism of algebras

ψ : Bc → (Hθ ⋉ U−, ∗)
such that ψ(h) = h for all h ∈ Hθ and ψ(Bi) = Fi for all i ∈ I.

Remark 4.4. Property (4.8) in Theorem 4.3 can be replaced by the property

g ∗ Fi = gFi −
cτ(i)q

(αi,ατ(i))

qi − q−1
i

∂R
τ(i)(g)KiK

−1
τ(i) for all i ∈ I, g ∈ U−. (4.9)

The resulting algebra structure on Hθ ⋉ U− coincides with the algebra structure

obtained in Theorem 4.3(1).

Remark 4.5. The coefficient in (4.8) differs from the corresponding coefficient in

[18, (4.25)]. This is due to the fact that we follow standard conventions (4.1) while

[18] works with EiFj − FjEi = δij(Ki − K−1
i ). Moreover, our convention for the

coefficient ci differs from [18] by a sign. The conventions in the present paper follow

[17] but we additionally allow q to be a root of unity.

Set V − =
⊕

i∈I KFi and let T (V −) denote the corresponding tensor algebra.

By [18] the first part of the above theorem also holds when U− is replaced by

T (V −). More precisely, there exists an associative product ⊛ on Hθ ⋉T (V −) which

is uniquely determined by (4.7) and (4.8) or (4.9) for all h ∈ Hθ, g ∈ T (V −), i ∈ I

with ∗ replaced by ⊛. By construction, the canonical projection gives rise to an

algebra homomorphism

η : (Hθ ⋉ T (V −), ⊛) → (Hθ ⋉ U−, ∗)
of deformed algebras.

Proposition 4.6 ([18, Proposition 5.9]). The kernel of the algebra homomor-

phism η is generated by the quantum Serre polynomials Sij(Fi, Fj) ∈ T (V −) for

i, j ∈ I.
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Proposition 4.6 and the second part of Theorem 4.3 together provide an effective

method to obtain the defining relations for the algebra Bc. Indeed, the algebra

Hθ ⋉ T (V −) is generated over Hθ by the elements Fi for i ∈ I subject only to the

relations KjK
−1
τ(j)Fi = q−(αj−ατ(j),αi)FiKjK

−1
τ(j). The additional relations in Bc are

obtained by rewriting the quantum Serre polynomials Sij(Fi, Fj) in terms of the

deformed product ⊛ on T (V −).

For any noncommutative polynomial r(x1, . . . , xn) =
∑

J aJ xj1 . . . xjm
in n

variables with coefficients aJ = a(j1,...,jm) ∈ Hθ and any elements u1, . . . , un ∈
Hθ ⋉ T (V −) we write

r(u1
⊛, · · · ⊛, un) =

∑

J

aJ uj1 ⊛ · · · ⊛ ujm
. (4.10)

If τ(i) �= {i, j} then (4.8) implies that Sij(Fi, Fj) = Sij(Fi
⊛, Fj). Hence it remains

to consider the two cases τ(i) = i and τ(i) = j.

4.3. Deformed quantum Serre relations for τ(i) = i

All through this section, we fix i, j ∈ I with τ(i) = i �= j. In this case (4.8) and

(4.9) for ⊛ become

Fi ⊛ g = Fig + c∂L
i (g), g ⊛ F = gFi + c∂R

i (g), (4.11)

where c = − ciq
2
i

qi−q−1
i

. For any polynomial w(x, y) =
∑

r,s brsx
rys ∈ K[x, y] and any

u1, u2, u3 ∈ Hθ ⋉ T (V −) set

u3 � w(u1
⊛, u2) =

∑

r,s

brsu
⊛r
1 ⊛ u3 ⊛ u⊛s

2 . (4.12)

Lemma 4.7. For any m, n ∈ N there exists a uniquely determined polynomial

wm,n(x, y) =
∑

r,s brsx
rys ∈ K[x, y] such that

Fm
i FjF

n
i = Fj � wm,n(Fi

⊛, Fi).

Proof. By (4.11) the noncommutative monomial Fm
i FjF

n
i can be written as a

noncommutative polynomial with respect to the product ⊛ on T (V −). This poly-

nomial is homogeneous of degree one in Fj and hence can be written in the form

Fj � wm,n(Fi
⊛, Fi) for some polynomial wm,n(x, y) as in the lemma. The poly-

nomial wm,n(x, y) is uniquely determined because the subalgebra of (T (V −), ⊛)

generated by Fi, Fj is a free algebra.

It remains to determine the polynomials wm,n(x, y) in the above Lemma. To this

end observe that ∂L
i (Fn

i ) = ∂R
i (Fn

i ) = (n)q2
i
Fn−1

i where we use the non-symmetric

quantum integer (n)p defined by (n)p = 1 + p + · · · + pn−1 for any p ∈ K. Hence
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the first equation in (4.11) and (4.6) imply that

Fi ⊛ (Fm
i FjF

n
i ) = Fm+1

i FjF
n
i + c(m)q2

i
Fm−1

i FjF
n
i + cq

2m+aij

i (n)q2
i
Fm

i FjF
n−1
i

for m, n ∈ N\{0}. In view of Lemma 4.7 the above formula implies that the poly-

nomials wm,n(x, y) satisfy the recursion

xwm,n(x, y) = wm+1,n(x, y) + c(m)q2
i
wm−1,n(x, y)

+ cq
2m+aij

i (n)q2
i
wm,n−1(x, y) (4.13)

for all m, n ∈ N\{0}. Similarly, using the second equation in (4.11) and (4.5) we

obtain

ywm,n(x, y) = wm,n+1(x, y) + c(n)q2
i
wm,n−1(x, y)

+ cq
2n+aij

i (m)q2
i
wm−1,n(x, y). (4.14)

The recursions (4.13), (4.14) also hold for m = 0 or n = 0 if we set w−1,t(x, y) =

ws,−1(x, y) = 0 for all s, t ∈ N. Moreover, w0,0(x, y) = 1 as Fj � 1 = Fj . The

symmetry of the recursions (4.13) and (4.14) implies that

wm,n(x, y) = wn,m(y, x) for all m, n ∈ N. (4.15)

Recall the bivariate q-Hermite polynomials Hm,n(x, y; q, r) from Sec. 3.1 which

depend on two parameters q, r. The recursions (4.13), (4.14) imply that up to

rescaling, wm,n(x, y) coincides with Hm,n(x, y; q2
i , q

aij

i ).

Proposition 4.8. The polynomials wm,n(x, y) are given by

wm,n(x, y) =
Hm,n(bix, biy; q2

i , q
aij

i )

(2bi)m+n
, (4.16)

where bi = 1
2 (qi − q−1

i )c
−1/2
i q

−1/2
i .

Remark 4.9. The factor bi may lie in a quadratic extension of the field K. However,

the right-hand side of (4.16) is still a well-defined polynomial in K[x, y] because if

xiyj appears in Hm,n(x, y) with nonzero coefficient then i + j ≡ m + n mod 2.

Proof of Proposition 4.8. For a square root b of a nonzero element in K and

m, n ∈ N define a new polynomial rm,n(x, y) ∈ K[x, y] by

rm,n(x, y) = (2b)m+nwm,n(b−1x, b−1y).

The recursion (4.13) for wm,n is equivalent to

2xrm,n(x, y) = rm+1,n(x, y) + 4cb2 q2m
i − 1

q2
i − 1

rm−1,n(x, y)

+ 4cb2q
2m+aij

i

q2n
i − 1

q2
i − 1

rm,n−1(x, y).
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Recall that c = − ciq
2
i

qi−q−1
i

and hence the above recursion can be rewritten as

2xrm,n(x, y) = rm+1,n(x, y) +
4ciqib

2

(qi − q−1
i )2

(1 − q2m
i )rm−1,n(x, y)

+
4ciqib

2

(qi − q−1
i )2

q
aij

i q2m
i (1 − q2n

i )rm,n−1(x, y).

For b = 1
2 (qi−q−1

i )c
−1/2
i q

−1/2
i the above recursion coincides with the recursion (3.2)

for Hm,n(x, y; q2
i , q

aij

i ). Moreover, r0,0(x, y) = 1 and rm,n(x, y) = rn,m(y, x) for all

m, n ∈ N by (4.15). Hence rm,n(x, y) = Hm,n(x, y; q2
i , q

aij

i ) for this choice of b.

For any polynomial w(x, y) =
∑

r,s brsx
rys ∈ K[x, y] and any u1, u2, u3 ∈ Bc

set

u � w(u1, u2) =
∑

r,s

brsu
r
1 u3 us

2 ∈ Bc,

in analogy to the notation (4.12). Combining Theorem 4.3(2), Proposition 4.6,

Lemma 4.7 and Proposition 4.8 we are now able to write down the deformed quan-

tum Serre relations satisfied by the generators Bi, Bj of Bc. Recall that in this

section, we always assume that i = τ(i) �= j.

Corollary 4.10. The generators Bi, Bj of Bc satisfy the relation

1−aij∑

ℓ=0

(−1)ℓ

[
1 − aij

ℓ

]

qi

Bj � w1−aij−ℓ,ℓ(Bi, Bi) = 0, (4.17)

where the polynomial wm,n(x, y) ∈ K[x, y] is given by (4.16).

With bi as in Proposition 4.8 we define univariate polynomials wm(x) ∈ K[x] by

wm(x) = wm,0(x, y) =
1

(2bi)m
Hm(bix; q2

i ) (4.18)

for all m ∈ N. By (4.13) the polynomials wm(x) satisfy the recursion

wm+1(x) = xwm(x) − c(m)q2
i
wm−1(x). (4.19)

Note that the polynomials wm(x) depend on a choice of i ∈ I, but we do not

make this explicit in the notation.

Example 4.11. For small values of m the polynomials wm(x) are given by

w0(x) = 1, w1(x) = x, w2(x) = x2 − c, w3(x) = x3 − (1 + (2)q2
i
)cx,

w4(x) = x4 − c(1 + (2)q2
i

+ (3)q2
i
)x2 + c2(3)q2

i
.

Remark 4.12. Define w(n)(x) ∈ K[x] by

w(n)(x) =
wn(x)

[n]!qi

=
Hn(bix; q2

i )

(2bi)n[n]!qi

.
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In terms of the divided powers w(n)(x) the recursion (4.19) can be rewritten as

[m]qi
w(m)(x) = xw(m−1)(x) − cqm−2

i w(m−2)(x). (4.20)

Interestingly, this recursion appeared for non-quasi-split quantum symmetric pairs

in [4, (5.8)].

Using Eqs. (4.16) and (3.4) we can express wm,n(x, y) in terms of the univariate

polynomials wm(x). Additionally using the relations

(q2; q2)k = (−1)kqk(k+1)/2(q−q−1)k[k]!q,
(q2; q2)n

(q2; q2)m(q2; q2)n−m
= qm(n−m)

[
n

m

]

q

for n ≥ m, we obtain

wm,n(x, y) =

min(m,n)∑

k=0

(−1)kckq
k(m+n+aij−1)− k(k+1)

2

i

[
m

k

]

qi

[
n

k

]

qi

[k]!qi
wm−k(x)wn−k(y).

With this relation we calculate

1−aij∑

n=0

(−1)n

[
1 − aij

n

]

qi

w1−aij−n,n(x, y) =

1−aij∑

n=0

(−1)n[1−aij ]
!
qi

×
min(1−aij−n,n)∑

k=0

(−1)kckq
−k(k+1)/2
i

[1−aij−n−k]!qi
[n−k]!qi

[k]!qi

w1−aij−n−k(x)wn−k(y).

Setting ℓ = n + k and m = k we obtain

1−aij∑

n=0

(−1)n

[
1 − aij

n

]

qi

w1−aij−n,n(x, y)

=

1−aij∑

ℓ=0

(−1)ℓ

[
1 − aij

ℓ

]

qi

w1−aij−ℓ(x)

×
⌊ℓ/2⌋∑

m=0

cmq
−m(m+1)/2
i

[
ℓ

2m

]

qi

[2m]!qi

[m]!qi

wℓ−2m(y). (4.21)

In view of Eq. (4.21) it is natural to consider a second family of polynomials

vn(x) ∈ K[x] defined for all n ∈ N by

vn(x) =

⌊n/2⌋∑

k=0

ckq
−k(k+1)/2
i

[
n

2k

]

qi

[2k]!qi

[k]!qi

wn−2k(x).
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The polynomials vn(x) can also be interpreted in terms of continuous q-Hermite

polynomials. The proof of the first part of the following proposition is adapted from

a similar calculation in the proof of [4, Lemma 5.10].

Proposition 4.13. The polynomials vn(x) satisfy v−1(x) = 0, v0(x) = 1 and the

recursion

vm+1(x) = xvm(x) + cq−2
i (m)q−2

i
vm−1(x) (4.22)

for all m ∈ N. The polynomial vm(x) is given by

vm(x) =
1

(2bi)m
Hm(bix; q−2

i ), (4.23)

where as before bi = 1
2 (qi − q−1

i )c
−1/2
i q

−1/2
i .

Proof. A direct calculation using (4.19) gives

xvm(x) + cq−2
i (m)q−2

i
vm−1(x)

(4.19)
=

⌊m/2⌋∑

k=0

ckq
−k(k+1)/2
i

[
m

2k

]

qi

[2k]!qi

[k]!qi

(wm−2k+1(x) + c(m − 2k)q2
i
wm−2k−1(x))

+ c[m]qi
q−m−1
i

⌊(m−1)/2⌋∑

k=0

ckq
−k(k+1)/2
i

[
m − 1

2k

]

qi

[2k]!qi

[k]!qi

wm−1−2k(x)

= wm+1(x) +

⌊(m+1)/2⌋∑

k=1

ckq
−k(k+1)/2
i [m]!qi

[m+1−2k]!qi
[k]!qi

× ([m+1−2k]qi
+ [k]qi

(qm+1−k
i +q

k−(m+1)
i ))wm+1−2k(x)

= vm+1(x)

which proves the recursion (4.22). Using c = − ciq
2
i

qi−q−1
i

the recursion (4.22) can be

rewritten as

vm+1(x) = xvm(x) +
ciqi

(qi − q−1
i )2

(q−2m
i − 1)vm−1(x).

Now Eq. (4.23) follows by comparison with the recursion (2.6).
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Combining Corollary 4.10 with Eq. (4.21) we are able to express the deformed

quantum Serre relations in terms of univariate continuous q-Hermite polynomials.

Corollary 4.14. Let i, j ∈ I with τ(i) = i �= j. The generators Bi, Bj of Bc satisfy

the relation

1−aij∑

ℓ=0

(−1)ℓ

[
1 − aij

ℓ

]

qi

w1−aij−ℓ(Bi)Bjvℓ(Bi) = 0, (4.24)

where the polynomials wm(x) and vm(x) in K[x] are given by (4.18) and (4.23),

respectively.

A resummation shows that (4.24) can alternatively be written as

1−aij∑

ℓ=0

(−1)ℓ

[
1 − aij

ℓ

]

qi

v1−aij−ℓ(Bi)Bjwℓ(Bi) = 0. (4.25)

Remark 4.15. To make the relation between the polynomials wm(x) and vm(x)

even clearer, we write wm(x; qi, c) and vm(x; qi, c) for the polynomials given by the

recursions (4.19) and (4.22), respectively, with w−1(x; qi, c) = v−1(x; qi, c) = 0 and

w0(x; qi, c) = v0(x; qi, c) = 1. Then we have

vm(x; qi, c) = wm(x; q−1
i ,−q−2

i c) (4.26)

for all m ∈ N.

Remark 4.16. Corollary 4.14 can be used to calculate the deformed quantum

Serre relation satisfied by the generators Bi, Bj explicitly in the case τ(i) = i for

small values of −aij . Using the expressions for wm(x) in Example 4.11 and (4.26)

one obtains

1−aij∑

n=0

(−1)n

[
1 − aij

n

]

qi

B
1−aij−n
i BjB

n
i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if aij = 0,

−qiciBj if aij = −1,

−[2]2qi
qici(BiBj − BjBi) if aij = −2,

−([3]2qi
+ 1)qici(B

2
i Bj + BjB

2
i )

+[4]qi
([2]2qi

+ 1)qiciBiBjBi − [3]2qi
(qici)

2Bj if aij = −3.

In slightly different conventions, these formulas first appeared in [19, Lemma 2.2;

21, Theorem 7.1] for q not a root of unity.

Remark 4.17. In [6, Eq. (3.9)] the relation (4.24) is expressed in terms of so-called

ıdivided powers for q not a root of unity. Similarly to (4.24) and (4.25), the ıdivided

powers allow two equivalent expressions for the deformed quantum Serre relation
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in the case τ(i) = i �= j. It would be interesting to establish a relation between the

ıdivided powers of [6] and the continuous q-Hermite polynomials.

Remark 4.18. Assume that K = k(q) is a field of rational functions in a variable

q over some field k of characteristic zero. Let : K → K denote the bar involution

sending a rational function g(q) ∈ K to g(q) = g(q−1). The map extends to an

involutive k-algebra automorphism : K[x] → K[x] by action on the coefficients.

In this setting Eq. (4.26) can be rewritten as

vm(x) = wm(x) if c = −q−2
i c.

In the case c = −q−2
i c the above formula and the equivalence of the relations (4.24)

and (4.25) show that relation (4.24) is preserved under the k-linear map given by

Bi �→ Bi, Bj �→ Bj and q �→ q−1. This provides the essential step in the proof

that the algebra Bc has a bar-involution in the quasi-split case, as first observed in

[6, Proposition 3.7]. Note that the existence of the bar-involution on Bc also follows

from the general theory in [18] without the need to have a presentation of Bc in

terms of generators and relations. This will be discussed elsewhere.

4.4. Deformed quantum Serre relations for τ(i) = j

The deformed quantum Serre relations for τ(i) = j were determined in [3, Theo-

rem 3.6] based on Letzter’s method [21] involving coproducts. In this subsection we

offer an alternative proof in the quasi-split case based on the star product method

from [18]. Throughout we fix distinct i, j ∈ I with τ(i) = j. In this case formula

(4.8) for ⊛ becomes

Fi ⊛ g = Fig + γiKjK
−1
i ∂L

j (g), Fj ⊛ g = Fjg + γjKiK
−1
j ∂L

i (g)

for all g ∈ U−, where γi = − ciq
aij

i

qi−q−1
i

and γj = − cjq
aij

i

qi−q−1
i

. Hence Fn
i = F⊛n

i and

Fj ⊛ Fn
i = FjF

n
i + γjq

(n−1)(aij−2)
i (n)q2

i
Fn−1

i KiK
−1
j . (4.27)

By induction on m one moreover gets

F⊛m
i ⊛ FjF

n
i = Fm

i FjF
n
i + γiq

n(2−aij)
i (m)q2

i
Fm+n−1

i KjK
−1
i .

Inserting (4.27) into the above equation we obtain

Fm
i FjF

n
i = F⊛m

i ⊛ Fj ⊛ F⊛n
i − γiq

n(2−aij)
i (m)q2

i
F

⊛(m+n−1)
i KjK

−1
i

− γjq
(n−1)(aij−2)
i (n)q2

i
F

⊛(m+n−1)
i KiK

−1
j . (4.28)

Using the relation

ℓ∑

n=0

(−1)n

[
ℓ

n

]

q

qn(ℓ+1) = (q2; q2)ℓ for all ℓ ∈ N (4.29)

2140016-26



Bivariate q-Hermite polynomials and deformed Serre relations

one shows that
1−aij∑

n=0

(−1)n

[
1 − aij

n

]

qi

q
n(2−aij)
i (1 − aij − n)q2

i
= −q−1

i (q2
i ; q2

i )1−aij

qi − q−1
i

, (4.30)

1−aij∑

n=0

(−1)n

[
1 − aij

n

]

qi

q
n(aij−2)
i (n)q2

i
= −q−1

i (q−2
i ; q−2

i )1−aij

qi − q−1
i

. (4.31)

Recall the notation (4.10). The formulas (4.30), (4.31) and Eq. (4.28) imply the

relation

Sij(Fi, Fj) = Sij(Fi
⊛, Fj) + γi

q−1
i (q2

i ; q2
i )1−aij

qi − q−1
i

F
⊛(−aij)
i KjK

−1
i

+ γj

q
1−aij

i (q−2
i ; q−2

i )1−aij

qi − q−1
i

F
⊛(−aij)
i KiK

−1
j

in T (V −). Using again Theorem 4.3(2) and Proposition 4.6 one obtains the following

result.

Theorem 4.19. Let i, j ∈ I with τ(i) = j and i �= j and set m = 1 − aij. Then

the relation

Sij(Bi, Bj) =
ciq

−m
i (q2

i ; q2
i )m

(qi − q−1
i )2

Bm−1
i KjK

−1
i +

cjqi(q
−2
i ; q−2

i )m

(qi − q−1
i )2

Bm−1
i KiK

−1
j

holds in Bc.
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