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A B S T R A C T   

The Langevin Dynamics (LD) method (also known in the literature as Brownian Dynamics) is 
routinely used to simulate aerosol particle trajectories for transport rate constant calculations as 
well as to understand aerosol particle transport in internal and external fluid flows. This tutorial 
intends to explain the methodological details of setting up a LD simulation of a population of 
aerosol particles and to deduce rate constants from an ensemble of classical trajectories. We 
discuss the applicability and limitations of the translational Langevin equation to model the 
combined stochastic and deterministic motion of particles in fields of force or fluid flow. The drag 
force and stochastic “diffusion” force terms that appear in the Langevin equation are discussed 
elaborately, along with a summary of common forces relevant to aerosol systems (electrostatic, 
gravity, van der Waals, …); a commonly used first order and a fourth order Runge-Kutta time 
stepping schemes for linear stochastic ordinary differential equations are presented. A MATLAB® 
implementation of a LD computer code for simulating particle settling under gravity using the 
first order scheme is included for illustration. Scaling analysis of aerosol transport processes and 
the selection of timestep and domain size for trajectory simulations are demonstrated through two 
specific aerosol processes: particle diffusion charging and coagulation. Fortran® implementations 
of the first order and fourth order time-stepping schemes are included for simulating the 3D 
motion of a particle in a periodic domain. Potential applications and caveats to the usage of LD 
are included as a summary.   

1. Introduction 

The calculation of particle trajectories in the context of classical physics that permits the knowledge of both position and velocity 
with complete certainty by integrating Newton’s Second law of motion, (i. e.) position r→p(t) and velocity v→p(t) timeseries, is of 
fundamental interest for visualizing aerosol particle dynamics, developing models of collision/reaction rate constants for single 
particle-level mass transfer processes as well as to predict the transport of populations of aerosol particles and can be accomplished at a 
relatively modest computational cost by integrating Langevin-type ordinary differential equations (ODEs) of motion. The term particle 
is broadly used here to denote nm – μm sized solid/liquid aerosol particles (spherical or arbitrary shaped), nm-sized macromolecules or 
molecular ions suspended in a flowing/stagnant background gas in the presence/absence of external electric/magnetic fields. In this 
tutorial article, we focus on the methodological details of solving the Langevin equation of motion to calculate particle trajectories and 
discuss two examples on the use of an ensemble of computed trajectories to infer single particle mass transfer rate constants. The 
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Nomenclature (in order of appearance) 

r→p(t) Particle position 
v→p(t) Particle velocity 
Rep Flow Reynolds number based on particle size 
Map Flow Mach number based on particle velocity 

F→D Drag force exerted by the gas medium on a particle 
Tg Gas temperature 
pg Gas pressure 

F→B(t) Time-dependent stochastic force experienced by the particle 
tr Particle relaxation or thermal equilibration timescale 
ts Particle transport timescale 
F→ext Externally applied force on a particle 
λmpp Particle’s mean persistence path 
lsys System length scale 
mp Particle mass 
fp Particle friction factor 
np Particle number concentration 
Dp Particle mass diffusion constant 
ζp Particle electrical mobility 
zp Particle electric charge 
e Magnitude of charge on an electron 
kB Boltzmann constant 
KnD Diffusive Knudsen number for single particle mass transfer 
Kn Momentum Knudsen number for single particle momentum transfer 
λg Gas mean free path 
lp Particle size descriptor 
ap Radius of a spherical particle 
PA Orientation-averaged projected area of an arbitrary shaped particle 
Rh Capacitance or hydrodynamic radius of an arbitrary shaped particle 

f
=T

p Single particle friction tensor 
fT
p Single particle scalar friction factor 

μg Gas viscosity 
ξ Momentum accommodation coefficient 
Ωp Particle momentum transfer collision cross-section 
α1, α2, α3 Gas-specific coefficients in the calculation of fp 

ηv Particle volume fraction 
v→g Gas (continuum) velocity field 

F→i Hydrodynamic force on the ith sphere 

V
=

ij Perturbation tensor 
fi Scalar friction factor of the ith sphere 
r→ij Position of sphere j relative to sphere i 
rij Distance between spheres i and j 

q(i)
2 (rij),q(i)

3 (rij) Functions that appear in V
=

ij 

A3N×3N Coefficient matrix of size 3N × 3N 
X3N×1 Solution vector of size 3N × 1 
B3N×1 Column vector of size 3N × 1 
δ( ⋅) Delta function 
γij Coefficient that appears in the variance of F→B 

Φ(r) Particle-particle interaction potential 
z1,2 Elementary charges of particles (1, 2) 
ε0 Permittivity of vacuum 
εr Particle dielectric constant 
r Radial separation between particles (1, 2) 
R1,2 Radius of particles (1, 2) 
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A Particle Hamaker constant 
m1 Mass of particle 1 
E→( r→1(t), t) Spatially and/or temporally varying electric field 
B→( r→1(t), t) Spatially and/or temporally varying magnetic field 
v→g( r→1(t), t) Local fluid velocity 

F→1 Force on particle 1 
λD Debye length 
ni Ion concentration 
g→ Acceleration due to gravity 
N Number of particles 
text Timescale of variation of F→ext 

R→r Normally distributed random position vector 
R→v Normally distributed random velocity vector 
Δt Simulation timestep with units 
X Solution vector 
Ẋ Time derivative of solution vector 
F(X, t) Deterministic vector 
Π(t) Stochastic vector 
D, cj, aji, αi, qj Coefficients that appear in Eq. 17 
ρp Particle density 
H Height from which particle is released 
z Vertical coordinate 
tS Average particle settling time 
σS Standard deviation of particle settling time 
NT Number of trials 
μ,k, σ Parameters of generalized extreme value distribution 
Rpi Particle-ion collision rate 
zi Ion charge 
βpi Particle-ion collision kernel or collision rate constant 
Φpi Particle-ion interaction potential 
L Side of cubic periodic domain with units 
τ Average particle-ion collision time with units 
mi Ion mass 
fi Ion scalar friction factor 

r→*
i Non-dimensional ion position 

v→*
i Non-dimensional ion velocity 

t* Non-dimensional time 
Δt* Non-dimensional timestep 
ΨE Particle-ion electrostatic potential energy ratio 
ηc(ΨE), ηf (ΨE) Continuum and free molecular enhancement factors 
H Non-dimensional collision kernel 
L* Non-dimensional side of cubic periodic domain 
T* Non-dimensional timestep factor 
EB method First order accurate time stepping scheme given by eq. 14 
RK method Fourth order accurate time stepping scheme given by eq. 17 
μ Location parameter that appears in eq. 29 
HRK H calculated using LD implemented using the RK method 
HEB H calculated using LD implemented using the EB method 
HEq.29 H calculated using eq. 29 
ϑi Volume of particle i 
mij Reduced mass 
fij Reduced friction factor 
aij Sum of particle radii 
βij Particle-particle coagulation kernel or coagulation rate constant 
τ* Dimensionless average particle-particle collision time 
τk Dimensionless particle-particle collision time in trial k 
Rij Collision rate of particle i and particle j 
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interested reader is referred to the pioneering work of Uhlenbeck and Ornstein (1930) that presents an analysis of the mean values of 
the velocity and mean squared displacement of a free particles subject to stochastic forces from a fluid medium and establishes the 
connection of the Langevin equation to the Fokker-Planck partial differential equations for the phase-space (velocity and position) 
distribution functions (Risken & Frank, 1996). Further, in a seminal review, Chandrasekhar (1943) presents a detailed overview of the 
Langevin equation, the underlying probabilistic aspects and applications to colloidal and astrophysical problems. The widespread use 
of Langevin equations to model driven-dissipative systems is evident from its usage in diverse fields such as physics, engineering, 
finance and several textbooks on this topic (Coffey et al., 2004; Risken & Frank, 1996; Schuss, 2013). We restrict our scope to walking 
the interested reader through the steps of setting up equations of motion to calculate particle trajectories under the influence of 
deterministic and stochastic forces and excuse ourselves from elaborate discussions of the modeling of the physical processes them
selves. Specifically, the reader is referred to prior research articles on particle charging modeling (Chahl & Gopalakrishnan, 2019; 
Gopalakrishnan et al., 2013a, 2013b; Gopalakrishnan & Hogan, 2012; Li et al., 2020; Li & Gopalakrishnan, 2021; Ouyang et al., 2012) 
and particle coagulation modeling (Gopalakrishnan et al., 2011; Gopalakrishnan & Hogan, 2011; Thajudeen et al., 2012) using 
Langevin Dynamics. The tutorial is organized as follows: the Methods section discusses the Langevin ODE for particle translational 
motion; various particle-gas, particle-particle, particle-flow and particle-field interactions relevant to aerosol systems; two numerical 
schemes for integrating the Langevin ODE. Subsequently, in the Demonstrations section, we discuss two case studies of using LD to 
model the collision rate constant for aerosol particle diffusion charging and coagulation. We conclude with a Summary of the LD 
methodology, potential applications and caveats to the usage of LD for modeling particle trajectories in gas-phase systems such as 
aerosols and dusty plasmas. 

2. Methods 

2.1. Langevin equation of motion 

The Langevin Dynamics (LD) methodology consists of essentially applying Newton’s II law to model the motion of a suspended 
particle that is much heavier than the molecules of the background gas (Mazur & Oppenheim, 1970), while including the systematic 
resistance to particle motion exerted by the gas medium (in the Rep → 0, Map → 0 limit) as a time-averaged continuum drag force F→D 

and the random thermal impulses exerted by the gas molecules on a particle through discrete impacts, that physically manifest as 
Brownian motion at a given gas temperature Tg, as a time-dependent stochastic force F→B(t) (Chandrasekhar, 1943). LD assumes that 
the particle is in thermal equilibrium with the background gas through sufficiently many particle-gas molecule collisions: in other 
words, LD-calculated trajectories represent average behavior in the limit of sufficiently long observation times over which a particle 
undergoes these collisions. Thus, for high or atmospheric pressure systems, LD is an efficient formulation to represent particle sto
chastic and deterministic motion due to rapid relaxation of particles with the background gas: tr ≪ ts, where tr is the timescale over 
which the particle velocity relaxes to an equilibrium Maxwell-Boltzmann distribution through collisions with the gas molecules and ts 
is the timescale of interest for particle transport. For low pressure systems, LD provides increasingly accurate results in the limit of ts ≫ 
tr and is appropriate generally, except when one is interested in particle transport timescales that are comparable or shorter than the 
relaxation times (i. e.) ts̃ < tr. In such cases, a LD description may be abandoned in favor of a direct numerical simulation of the 
particles and the molecules constituting the background gas using molecular dynamics (MD) simulation methods (see for examples 
(Bird, 1994; Collins et al., 1996; Daneshian & Assadi, 2014; Goudeli & Pratsinis, 2016; Hawa & Zachariah, 2007; Koparde & Cum
mings, 2008; Mazzone, 2000; Naicker et al., 2005; Ogawa, 2005; Yi et al., 2005; Zhu, 1996),), that is considerably more computa
tionally expensive than LD, or a Monte-Carlo (MC) type approach (see for examples (Bardsley & Wadehara, 1980; Kruis et al., 2000; Lin 
& Bardsley, 1977; Morán, Yon, & Poux, 2020; Morán, Yon, Poux, et al., 2020; Nowakowski & Sitarski, 1981; Rosner et al., 2003; 
Tandon & Rosner, 1999; Zahaf et al., 2015),) of accounting for particle-gas molecule collisions probabilistically. Lazzari et al. (2016) 
present a detailed summary of various computational methods that may be employed to unravel aggregation phenomena in diverse 
particulate systems considering the interplay of particle-particle interactions and solvent effects. 

LD captures the particle-gas hydrodynamic interactions ( F→D, F→B) implicitly without needing to account for the details of individual 
particle-gas molecule collisions (Deutch & Oppenheim, 1971) while allowing the inclusion of all other external forces F→ext that act on 
the particle explicitly (Kim & Oppenheim, 1972), thus allowing the description of a particle’s motion in the presence of a background 
gas by solving exactly one stochastic ODE of the form (Albers et al., 1971; Masters & Madden, 1981a): 

HEq.33 H calculated using eq. 33 
HN H calculated using LD by simulating N particles in a periodic domain 
⃒
⃒
⃒
⃒δ F→D

∗
⃒
⃒
⃒
⃒

max
Maximum of hydrodynamic force perturbation terms δ F→D,i 

δ F→D,i Hydrodynamic force perturbation terms 
⃒
⃒
⃒
⃒ r→ij

∗

⃒
⃒
⃒
⃒

min 
Minimum of particle pairwise seperations for all pairs 1 ≤ i ≤ N, 1 ≤ j ∕= i ≤ N 

βr Ratio of collision kernel calculated using LD and using eq. 33  
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mp
d v→p

dt
= F→D + F→B + F→ext (1) 

The transport regime of particle motion in the presence of neutral gas molecules is typically established by comparing the particle’s 

mean persistence path λmpp ≡

̅̅̅̅̅̅̅̅̅̅̅
mpkBTg

√

fp 
at a specific gas temperature kBTg and pressure pg with a suitable system length scale lsys to derive 

a diffusive Knudsen number KnD ≡
λmpp
lsys 

of particle mass transfer valid for dilute systems in which λmpp ≪ n−1
3

p (Dawes & Sceats, 1988; 
Gopalakrishnan & Hogan, 2011; Thajudeen et al., 2012; Chahl & Gopalakrishnan, 2019); here mp is the particle mass, fp is the particle 
scalar friction factor, related to the particle mass diffusivity Dp via the Stokes-Einstein relationship Dp =

kBTg
fp 

and to the particle 

electrical mobility ζp =
zpe
fp 

and elementary particle charge zp, n
−1

3
p is the nominal particle-particle spacing based on the particle number 

concentration np. While the definition of KnD may be generalized based on n−1
3

p (Morán et al., 2020a, 2020b) for concentrated mass 
transfer regimes, for simplicity, we discuss dilute interactions between particles here. By definition, KnD → 0 denotes the diffusive or 
continuum trajectories of particles and KnD → ∞ represents the free molecular or ballistic motion of particles. λmpp must be distin
guished from the more commonly used gas mean free path λg – the former may be interpreted as the average distance travelled by the 
particle before it changes direction completely due to diffusional collisions with gas molecules that alter its trajectory through space. 
The latter is a statistical quantity with a precise definition as the average distance travelled by gas molecules (not the particle) between 
collisions with other molecules. λmpp is typically used to characterize the nature of particle motion in the context of mass transfer of a 
particle onto another particle (charging, coagulation, condensation, …) or a surface (deposition, filtration, sedimentation, precipi
tation, impaction, bounce, resuspension, …). The regime of momentum transfer on to or from a particle to the gas is established by 
comparing λg to a suitable particle size descriptor lp to derive the momentum Knudsen number Kn ≡

λg
lp
, with Kn → 0 representing the 

continuum regime of fluid flow and Kn → ∞ corresponding to the free molecular regime. The particle radius ap is the obvious choice for 
spherical shapes whereas the use of lp = PA

πRh 
has been shown to be valid for particles of arbitrary shape (Dahneke, 1973a, 1973b, 1973c; 

Zhang et al., 2012; Gopalakrishnan et al., 2015b; Thajudeen, Jeon, & Hogan, 2015); here, PA is the orientation-averaged projected area 
and Rh is the capacitance of the particle shape (elaborated upon in Section 2.2). It is noted that KnD and Kn, similar to pressure pg and 
temperature Tg being independent thermodynamic properties of a gas, can represent different regimes of particle mass and momentum 
transfer, respectively (Thajudeen et al., 2012). It is conceivable that a particle may simultaneously considered to be undergoing mass 
transfer in the continuum regime while the gas medium exerts a transition regime drag (momentum transfer), or any combinations 
thereof, by virtue of 0 < KnD < ∞, 0 < Kn < ∞ independently, for a population of particles. For example, the diffusional deposition of 
particles from a gas flow at low pressure through a tube is an instance in which KnD is small owing to lsys ≫ λmpp for mass transfer while 
single particle momentum transfer takes place at high Kn as lp ≪ λg. For the same set of conditions, if one considered particle-particle 
coagulation, driven by diffusion, KnD would be high, as, in this case, lsys = lp ≪ λmpp for single particle mass transfer. 

Time resolved solutions to eq. (1) allow the quantification of the effects of both deterministic and stochastic forces on a particle’s 
trajectory through space and time, acting as a bridge computational technique between field theories used to describe the continuum/ 

diffusive limit of particle motion (KnD → 0, pg → ∞), wherein the particle inertia is negligible 

⎛

⎝mp
d v→p

dt ≪ F→B

⎞

⎠ compared to ther

malizing stochastic forces allowing the assumption of instant equilibration, and kinetic theories valid in the low pressure free mo
lecular/ballistic limit (KnD → ∞, pg → 0) wherein the fluid drag exerted by the gas on the particle vanishes ( F→D → 0) along with the 

absence of random collisions with gas molecules ( F→B → 0). LD simulations allow the computationally inexpensive description of 
particle motion in the finite KnD, pg transition regime wherein the trajectories are influenced by both non-negligible inertia, short 
timescale thermal impulses as well as long timescale drag forces exerted by the gas medium. LD is thus a niche transition regime 
computational method that allows the exploration of the interplay of dissipative particle-gas interactions (drag), stochastic particle-gas 
interactions (Brownian motion) and deterministic or potential interactions between particles, force fields and fluid flows. In Sections 
2.2–2.4, we discuss the functional forms of F→D, F→B, F→ext to be used in eq. (1) for modeling particle motion. The coupled translation and 
rotation of aerosol particles may also be modeled with an additional equation for the conservation of angular momentum along with 
expressions for the resistance torques, stochastic torques and deterministic torques, analogous to forces in the case of translation. We 
consider these aspects, although important, to be beyond our scope and refer the interested reader to the literature on rotational 
Brownian motion (Hubbard, 1972, 1973, 1977; Masters & Madden, 1981b); the coupling between translation and rotation (Brenner, 
1965, 1967); calculation of resistance tensors for rotational motion in the continuum regime (Brenner, 1963, 1964) and transition 
regime (Corson et al., 2017b, 2018a); and numerical methods for integrating coupled translation and rotational Langevin equations 
(Davidchack et al., 2009, 2017; Delong et al., 2015; Gordon et al., 2009; Ilie et al., 2015; Sun et al., 2008; Wu & Brooks, 2011). 

2.2. Hydrodynamic drag force F→D in dilute particle concentration regimes 

For instances wherein particle rotation minimally influences their transport and may be conveniently ignored and the orientation 
assumed to be frozen in time, particles trajectories can be calculated by considering translation only. For an isolated, arbitrary shaped 
particle slowly moving through an unbounded fluid in the Rep → 0, Map → 0 limit, the hydrodynamic drag F→D exerted by the gas 
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medium is calculated as the dot product of a single particle friction tensor f
=T

p and particle velocity v→p (Brenner, 1963): 

F→D = − f
=T

p · v→p (2a) 

In the continuum limit (Kn → 0), Brenner (1963) showed that the resistance to pure translational motion (without rotation) exerted 
by an incompressible fluid for a given particle shape may be expressed along principal directions, along which the motion is isotropic. 
Using this formalism and the method of Kirkwood and Riseman (1948), and extensions therein (Chen et al., 1984; Rotne & Prager, 

1969; Yamakawa, 1970), f
=T

p may be computed for particles of arbitrary shape consisting of point contacting spherical elements in the 
continuum regime (Corson, 2018; Corson et al., 2017c; Happel & Brenner, 2012). The use of the complete translational friction tensor 
for computing F→D, though rigorous, often offers no more accuracy than using a scalar friction factor fT

p that is orientation averaged for 
slight to moderately non-spherical shapes and is often considered to be an adequate approximation for shapes that do not have a 
preferred orientation when suspended in the gas phase (absence of aligning forces that are typically electrical or gravitational in 
origin): 

F→D = − f T
p v→p (2b) 

For spheres, fT
p is derived analytically by solving for the drag on a sphere moving at a constant speed (without considering rotation) 

through a stagnant, infinite fluid medium at low speeds, commonly known as Stokes law (Friedlander, 2000): 

Kn → 0 : f T
p = 6πμgap (3a) 

Here, μg is the viscosity of the background gas. Eq. (3a) has also been generalized for arbitrary shapes by replacing the particle 
radius ap with the particle capacitance/hydrodynamic radius Rh (Douglas et al., 1994; Hubbard & Douglas, 1993) that can be 
calculated for particles of any shape using algorithms described elsewhere (Given et al., 1997; Gopalakrishnan et al., 2011; Zhou et al., 
1994): 

Kn → 0 : f T
p = 6πμgRh (3b) 

In the free molecular limit of momentum transfer (Kn → ∞), Rohatschek and Zulehner (1987) extend the formalism of Happel and 

Brenner (2012) and derive a functional form for f
=T

p . Larriba and Fernandez de la Mora (2012) rigorously show the exact form of f
=T

p for 
cylinders and particles made up of point contacting spheres. From an experimental point of view, the measurement of orientation 
averaged diffusion constant Dp or particle electrical mobility ζp allows the inference of fT

p directly as mentioned before. Sensitive 

experimental observables are not known currently to infer the elements of f
=T

p for complex shapes and thus, serve as a practical reason 
for the usage of fT

p widely. For a spherical particle in the free molecular regime fT
p was derived by Epstein (1924): 

Kn → ∞ : f T
p =

8
3

μg

λg
ξπa2

p (4a)  

ξ is a dimensionless coefficient, approximately equal to 1.36 as confirmed via prior experimental measurements (Millikan, 1923; 
Rader, 1990; Ku & de la Mora, 2009; Hogan & Fernandez de la Mora, 2011; Larriba et al., 2011), to accommodate the scattering of 
momentum of gas molecules upon reflection from the surface of the particle. For non-spherical particles, eq. (4a) is generalized in 
terms of the momentum transfer collision cross-section Ωp of the particle (Chapman & Cowling, 1991; McDaniel & Mason, 1973; 
Vincenti & Kruger, 1975): 

Kn → ∞ : f T
p =

8
3

μg

λg
Ωp (4b) 

Zhang et al. (2012) proposed the “projected area approximation” to estimate Ωp ≈ ξPA and found good agreement between eq. (4b) 
and Direct Simulation Monte Carlo (DSMC) calculations of fT

p , also confirmed by the calculations of Corson et al. (2017c) using an 
extension of the Kirkwood-Risemann approach. Eq. (3) and eq. (4) establish the continuum and free molecular limits, respectively, of 
fT
p for spheres and arbitrary shapes. For molecular ions in the gas phase (Kn ≫ 1), fT

p =
zpe
ζp 

is calculated from experimentally determined 
ion mobilities. Alternately, Larriba and co-workers (Larriba & Hogan, 2013a, 2013b; Shrivastav et al., 2017; Larriba-Andaluz & Prell, 
2020; Larriba-Andaluz & Carbone, 2021), have developed IMoS (Coots et al., 2020) – a computationally efficient platform for 
computing Ωp in the free molecular regime using MD simulations including gas molecule-particle collision physics, gas molecule 
rotation, particle-molecule dipole interactions and external electric fields, enabling the usage of eq. (4b) for ions and macromolecules 
of any shape or structure. In the intermediate, finite Kn transition regime of momentum transfer, a slip correction factor developed by 
fitting experimentally obtained fT

p is used (Cunningham, 1910; Davies, 1945): 
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f T
p (Kn) =

6πμgap

1 + α1

(

α2 + Kn · e−
α3
Kn

) (5a)  

α1, α2, α3 are gas-specific coefficients summarized by Rader (1990). Eq. (5a) has been tested and been shown to be accurate to particles 
of size down to ~1.1 nm (Ku & de la Mora, 2009; Larriba et al., 2011) and has been extended to arbitrary shaped particles as well 
(Dahneke, 1973a, 1973b, 1973c; Gopalakrishnan et al., 2015b; Thajudeen, Jeon, & Hogan, 2015; Zhang et al., 2012) with Kn defined 
in terms of Rh and PA: 

f T
p (Kn) =

6πμgRh

1 + α1

(

α2 + Kn · e−
α3
Kn

) (5b) 

Eq. (5b) agrees well with the calculations of fT
p for agglomerates consisting of point contacting spheres using an extension of the 

continuum Kirkwood-Risemann approach (Kirkwood & Riseman, 1948) to the finite Kn transition regime by Corson et al. (2017c) – the 

complete f
=T

p for particles of arbitrary shape can also be computed using this approach, expanding the level of detail that can be 
accommodated in LD using eq. (1). An analytic expression for fT

p valid specifically for DLCA aggregates has also been proposed by 

Corson et al. (2017a). Equation (3)–5 represent a complete set of fT
p expressions valid for the entire Kn regime for computing F→D using 

eq. (2b) for pure translation of aerosol particles of known shape; wherever the complete translation friction factor tensor f
=T

p is 
available, eq. (2a) may be used as well in trajectory simulations. 

2.3. Hydrodynamic drag force F→D in dense particle concentration regimes 

In Section 2.2, we summarized f
=T

p calculation methodologies and fT
p expressions for the modeling of momentum transfer onto an 

aerosol particle at low concentrations wherein the average inter-particle distance n−1
3

p is much larger than any other length 

scales: n−1
3

p ≫ λg, lp; np is the particle number concentration. In other words, the particle volume fraction ηv = npl3p → 0 and the aerosol 
may be considered ‘dilute’. For reference, dilute ambient, industrial or laboratory sub-micron aerosols often have ηṽ10−6− 10−4 and 
particle-particle interactions may be taken to be binary and that the drag experienced by a single particle is not significantly influenced 
by the presence of other particles. A short summary of Corson et al.‘s approach (Corson et al., 2017a, 2017b, 2017c, 2018a, 2018b; 
Corson, 2018) to compute F→D in the case of dense aerosols, wherein the particles occupy a non-trivial fraction of the system volume (i. 
e.) finite ηv is presented here. At high pressures and/or high concentrations, such as those found in explosions/detonations or fuel rich 
flames (see work by Sorensen et al. (Dhaubhadel et al., 2009; Dhaubhadel et al., 2012; Nepal et al., 2013; Nepal et al., 2015),) where 
the particles occupy a significant fraction of the system volume (ηv > ̃10−2), the assumption that a particle is isolated and away from 
any surfaces/other particles in a fluid of infinite extent becomes moot. It becomes necessary to account for the perturbation of the gas 

flow around individual particles by the presence of other particles (i. e.) account for the finite ηv effects in the calculation of f
=T

p or fT
p . In 

the continuum regime of momentum transfer (Kn → 0), particle trajectory simulations accounting for multi-body hydrodynamic in
teractions have been realized by neglecting particle inertia from eq. (1): 0 = F→D + F→B + F→ext . Stokesian Dynamics methods (Brady & 
Bossis, 1988; Brady et al., 1988; Brady & Sierou, 2001) use linear superposition to compute the resultant fluid flow field around an 
ensemble of interacting particles by exploiting the linearity of the underlying fluid flow equations in the limit of Rep → 0, Kn → 0 and 
with no-slip boundary conditions: 0 = μg∇2 v→g. In the finite Kn transition regime of momentum transfer, Corson et al. (2018b) describe 

the calculation of F→D on a single particle including the perturbation of the fluid flow by the presence of other particles in the vicinity. 

This method allows the accounting of the non-negligible particle inertia 

⎛

⎝mp
d v→p

dt

⎞

⎠ while carrying out trajectory simulations of aerosol 

particle motion in dense environments. For illustration, we describe a calculation of the drag force on N identical, hydrodynamically 
interacting spheres in a gas here, that will later be utilized for the case study on aerosol coagulation described in Section 3.2. The drag 

force on the ith sphere F→i is expressed in terms of the perturbation tensor V
=

ij, that captures the perturbation of the fluid flow field 
around sphere i due to the presence of sphere j: 

F→i = − fi v→i −
∑N

j=1, j∕=i

V
=

ij. F→j (6a) 

In the limit that sphere j is at infinitely far distance from sphere i, the components of V
=

ij are trivially zero. The functional form of 

V
=

ij(Kn) (eq. (6b)) in the transition regime was obtained by generalizing V
=

ij(Kn → 0) derived in the continuum regime (Rotne & Prager, 
1969; Yamakawa, 1970) to include Kn-dependent slip at the surface of the particle by Corson et al. (2017c): 
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V
=

ij(Kn) = −
q(i)

2
(
rij

)

̅̅̅
2

√
r→ij r→ij

r2
ij

−
q(i)

3
(
rij

)

̅̅̅
2

√

⎛

⎝I
=

−
r→ij r→ij

r2
ij

⎞

⎠ (6b)  

q(i)
2 (rij) and q(i)

3 (rij) are calculated using the methods of Corson et al. (Corson, 2018; Corson et al., 2017c, 2018b) and tabulated as a 

function of Kn =
λg
ap 

therein; r→ij = r→j − r→i. Treating V
=

ij to be a known function of particle relative positions r→ij and Kn in the transition 

regime, eq. (6a) is expanded as a set of 3N linear equations to solve for the components of the drag force F→i =
(
Fxi, Fyi, Fzi

)
in terms of 

the position r→i = (rxi, ryi, rzi) and velocities v→i = (vxi, vyi, vzi) of i = 1 − N spheres (fp = 6πμgap is the friction factor of a spherical 

particle of radius ap, Vij;xy represents the xy dyadic of the tensor V
=

ij): 

i = 1 − N :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fxi = −fpvxi −
∑N

j=1, j∕=i

(
Vij;xxFxj + Vij;xyFyj + Vij;xzFzj

)

Fyi = −fpvyi −
∑N

j=1, j∕=i

(
Vij;yxFxj + Vij;yyFyj + Vij;yzFzj

)

Fzi = −fpvzi −
∑N

j=1, j∕=i

(
Vij;zxFxj + Vij;zyFyj + Vij;zzFzj

)

(7) 

Eq. (7) is compactly written in matrix form as (k, l = 1 − 3 is used to denote the x, y, z components, respectively, Vij;kl represents the 

kl dyadic of the V
=

ij tensor): 

A3N×3NX3N×1 = B3N×1 (8a)  

X3(i−1)+(k) = Fki; B3(i−1)+(k) = − fpvki; k = 1 − 3; i = 1 − N (8b)  

i = 1 − N :

{

k = 1 − 3 :

{

Fki = − fpvki −
∑N

j=1, j∕=i

∑3

l=1
Vij;klFlj (8c)  

X3(i−1)+(k) = − fpvki −
∑N

j=1

∑3

l=1

(
1 − δij

)
Vij;klX3(j−1)+(l) (8d) 

For clarity, eq. (8d) is expanded to explicitly show the system of linear equations to be solved to obtain the set of drag forces F→i on 
each particle i = 1 − N: 

i = 1 − N :

{

k = 1 − 3 :

{

X3(i−1)+k = −fpvki −
∑N

j=1

(
1 − δij

)(
Vij;k1X3(j−1)+1 + Vij;k2X3(j−1)+2 + Vij;k3X3(j−1)+3

)
(9a)  

i = 1 − N :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X3(i−1)+1 = −fpv1i −
∑N

j=1

(
1 − δij

)(
Vij;11X3(j−1)+1 + Vij;12X3(j−1)+2 + Vij;13X3(j−1)+3

)

X3(i−1)+2 = −fpv2i −
∑N

j=1

(
1 − δij

)(
Vij;21X3(j−1)+1 + Vij;22X3(j−1)+2 + Vij;23X3(j−1)+3

)

X3(i−1)+3 = −fpv3i −
∑N

j=1

(
1 − δij

)(
Vij;31X3(j−1)+1 + Vij;32X3(j−1)+2 + Vij;33X3(j−1)+3

)

(9b) 

The coefficient matrix A3N×3N is then expressed compactly as: 

A[3(i−1)+k][3(j−1)+l] =

{

i = j →
{

1, k = l
0, k ∕= l

i ∕= j → Vij;kl

(10a) 

Finally, X3N×1 is calculated by matrix inversion to calculate F→i = (Fxi,Fyi,Fzi): 

X3N×1 = A−1
3N×3NB3N×1 (10b) 

In a dynamical simulation of a system of particles, particle position r→i(t) and velocity v→i(t) from the previous timestep are used to 
compute the drag force on the ith particle F→i as a function of r→i(t), v→i(t), Kn via eq. (10). For a system of polydisperse spheres or 
agglomerates, the calculation procedure remains the same but the number of equations to be solved scales as 3N, where N is the total 
number of primary spheres in all the agglomerates combined, as described by Corson et al. (2018b). The solution to eq. (6a) using 

Corson et al.‘s V
=

ij for finite-Kn gas flow around an aerosol particle is an attractive approach for computing multi-body hydrodynamic 
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interactions in the momentum transfer transition regime, enabling the complete dynamical simulation of system of hydrodynamically 
coupled aerosol particles. In prior work on the coagulation of dense aerosols (Buesser et al., 2009; Heine & Pratsinis, 2007; Trzeciak 
et al., 2004), for example, particle-particle hydrodynamic interactions that are significant at ηv > ̃10−2 were neglected and may now 

be self-consistently included as demonstrated in Section 3.2. The complete friction tensor f
=T

p , relevant for non-spherical particles, can 
also be readily incorporated in this formalism to improve the accuracy of LD trajectory simulations. Future work that compares the 
predictions of particle coagulation rates or the evolution of the moments of the particle size distribution from dynamical simulations of 
dense aerosols will presumably place Corson et al.’s extended Kirkwood-Risemann method for hydrodynamic interactions on a firmer 
footing for widespread use. Lastly, hydrodynamic interactions between particles identically vanish in the free molecular limit 

V
=

ij(Kn → ∞) → 0 and eq. (6a) reduces to eq. (2a) exactly. 

2.4. Stochastic brownian force F→B 

The stochastic force F→B, representative of random thermal impulses experienced by the particle due to collisions with gas mole
cules, as a normally distributed random vector (of zero mean and specified variance in terms of the scalar friction factor fp) is valid in 
the limit of tr ≪ ts for the unconfined motion of particles: 

Table 1 
Symbols used: z1,2 is the elementary charges of particles (1, 2); e is the electron charge; ε0 is the permittivity of vacuum; εr is the particle dielectric 

constant; r is the radial separation between (1, 2); R1,2 is the radius of (1, 2); A is the particle Hamaker constant; m1 is the mass of (1); E→( r→1(t), t) is a 

spatially and/or temporally varying electric field; B→( r→1(t), t) is a spatially and/or temporally varying magnetic field; local fluid velocity v→g( r→1(t),t).  

Description of F→1 = −∇Φ(r) or F→1( r→1(t), t)

Coulomb interaction between point charges (1, 2); a spherical particle (1) and a point charge (2). For a detailed summary of ion-ion dipole interaction potentials, 
see Hiemenz and Rajagopalan (1997). 

Φ(r) =
z1z2e2

4πε0r 
Applications: Ion-ion collisional recombination (unlike charged ions), Coulomb scattering (like charged ions), like or unlike charged spherical particle-ion 
diffusion charging.  

Screened Coulomb interaction between a spherical particle (1) and a point charge (2). 

Φ(r) =
z1z2e2

4πε0r
e

−
r

λD 

Applications: Screening of particle at high space charge concentrations, such as those in dusty plasmas and ionized gases, using a linearized Debye length λD =

(
ε0kBTg

nie2

)1
2.  

Image potential interaction between a spherical particle (1) and point mass ion (2). For a detailed discussion of the derivation of the image potential, see Jackson 
(1975); Jeans (1925). For a straightforward implementation of the method of images for the image potential interaction between two spherical particles (1, 2), 
see Soules (1990). For the combined Coulomb and image potential between a perfectly conducting point contact agglomerate particle (1) and a point mass ion 
(2), see Gopalakrishnan, Thajudeen, et al. (2013). 

Φ(r) = −
1
2

εr − 1
εr + 1

z2
2e2

4πε0

a3
p

r2 − a2
p 

Applications: Collisions between neutral particle and ions in the context of charging; strongest for conducting particles (εr → ∞) and vanishes for dielectric 
particles (εr → 0).  

van der Waals potential interaction between two spherical particles (1, 2) valid for non-retarded van der Waals interaction between spherical particles only; 
inclusion of retardation effects leads to distance-dependent Hamaker constant A for specific particle material combinations. For a detailed summary of 
interaction potentials between particles of various shapes, see Hiemenz and Rajagopalan (1997). 

Φ(r) = −
A
6

[

2R1R2

(
1

f1(R1, R2, r)
+

1
f2(R1, R2, r)

)

+ ln
(

f1(R1, R2, r)
f2(R1, R2, r)

)]

f1(R1, R2, r) = r2 + 2R1r + 2R2r 
f2(R1, R2, r) = r2 + 2R1r + 2R2r + 4R1R2 

Applications: Collisions between neutral particles in coagulation and condensation processes, particle-surface interactions in deposition, impaction, bounce and 
resuspension processes.  

Gravity: F→1 = m1 g→

Applications: Particle inertial settling time calculations, mechanical mobility calculations  

External electric field: F→1( r→1(t), t) = z1e E→( r→1(t), t)
Applications: Particle motion in applied electric fields, field chargers, differential mobility classifiers, electrostatic precipitators, dusty plasmas.  

External magnetic field: F→1( r→1(t), t) = z1e( v→1 × B→( r→1(t), t))

Applications: Particle motion in applied magnetic fields, dusty plasmas  

Bulk fluid flow: Eq. (2a) can be generalized to include local fluid velocity v→g as F→D = − f
=T

p ·( v→p − v→g). For such instances, F→1 = f
=T

p · v→g is treated as an external 
force in eq. (1). 
Applications: Particle transport in internal/external flows, impactors, differential mobility classifiers, diffusion battery, flow devices.   
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∫tr

0

F→B(t
′

)dt
′

= 0 (11a)  

∫tr

0

F→B(tr) · F→B(t
′

− tr)dt
′

= 6fpkBTgδ(tr) (11b) 

More generally, the translation friction tensor f
=T

p may be used to express co-variances of the stochastic force in terms of the tensor 

components fT
ij (Fi

B is the ith component of F→B): 

∫tr

0

Fi
B(tr)Fj

B(t′

− tr)dt′

= 2γijδ(tr) (12a)  

kBTgf T
ij = γilγlj (12b) 

For Brownian motion encountered in aerosol and dusty plasma systems, a Gaussian thermal noise is an adequate model but it is 
conceivable that physically motivated non-Gaussian approximations for F→B(t) may be incorporated easily as well (Berkowitz et al., 
1983; Ermak & Buckholz, 1980; Risken & Frank, 1996). 

2.5. External forces F→ext 

Applications of LD simulations include the prediction of aerosol behavior under the action of external forces. By statistically 
averaging over an ensemble of particle trajectories, the effect of stochastic Brownian motion is filtered out to deduce the average 
behavior of particles in systems of interest. In this section, we summarize, by no means exhaustively, various external forces and 
possible applications in Table 1 for incorporation into dynamical simulations of a population of particles. 

2.6. Numerical integration schemes for solving the Langevin equation of motion 

Using the force terms described in Sections 2.2–2.5, a system of Langevin ODEs may be used to describe N ≥ 1 particles by inte
grating in time explicitly. We discuss two time-stepping schemes for stochastic ODEs that have been widely implemented for simu
lating stochastic processes and may be considered well established. 

2.6.1. First order time-stepping scheme 
Ermak and Buckholz (1980) describe a first-order time-stepping scheme that is valid for arbitrary forms of F→ext . In case of time 

varying external forces, it is necessary that they vary slower than the timescale text over which the particles relax to a 
Maxwell-Boltzmann velocity distribution tr (i. e.) text ≫ tr. For the sake of clarity, we re-state eq. (1) for the motion of a particle un
dergoing translational motion moving under the influence of an arbitrary external force F→ext with a scalar friction factor fp: 

mp
d v→p

dt
= − fp v→p + F→ext + F→B (13) 

In Ermak and Buccholz’s original paper, that has received over 300 citations since publication, three variants of a first order method 
were presented. Here, we state the particular variant in which the stochastic particle velocity and displacement fluctuations added to 
the deterministic part of the solution at each timestep have zero co-variance, (i. e.) R→v · R→r = 0 and has produced excellent agreement 
with a wide range of aerosol diffusion experimental data for particle-ion collision kernel models developed using this numerical 
method in our prior work (Li et al., 2020; Li & Gopalakrishnan, 2021; Ouyang et al., 2012): 

v→p(t + Δt) = v→p(t)e−
fp
mpΔt

+
F→ext

fp

⎛

⎜
⎝1 − e−

fp
mpΔt

⎞

⎟
⎠ +

(
1
3

R→v · R→v

)1
2

⎡

⎣
NRAND(0, 1)

NRAND(0, 1)

NRAND(0, 1)

⎤

⎦ (14a)  

R→v · R→v =
3kBTg

mp

⎛

⎜
⎝1 − e−2 fp

mpΔt

⎞

⎟
⎠ (14b)  
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r→p(t + Δt) = r→p(t) +
mp

fp

⎛

⎝ v→p(t + Δt) + v→p(t) − 2
F→ext

fp

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎝

1 − e−
fp
mpΔt

1 + e−
fp
mpΔt

⎞

⎟
⎟
⎟
⎟
⎠

+
F→ext

fp
Δt +

(
1
3

R→r · R→r

)1
2

⎡

⎣
NRAND(0, 1)

NRAND(0, 1)

NRAND(0, 1)

⎤

⎦ (14c)  

R→r · R→r =
6mpkBTg

f 2
p

⎛

⎜
⎜
⎜
⎜
⎝

fp

mp
Δt − 2

1 − e−
fp
mpΔt

1 + e−
fp
mpΔt

⎞

⎟
⎟
⎟
⎟
⎠

(14d) 

Here, NRAND(0, 1) is a normally distributed random number with a mean of 0 and variance of 1; R→v and R→r are normally 
distributed random vectors of velocity and displacement, respectively, of mean zero and variance given by eq. (14b) and eq. (14d), 
added to capture the particle’s Brownian motion. The timestep Δt used for simulation needs to be carefully determined to minimize 
loss of accuracy in computed trajectories. In a typical simulation, the order of magnitude of the Δt may be estimated by comparing the 
displacement steps due to the deterministic and stochastic forces: 

Δt ∼ min

⎛

⎝ lpfp⃒
⃒
⃒ F→ext

⃒
⃒
⃒
,

l2
pfp

6kBTg

⎞

⎠ (15) 

For a specific system, Δt may be estimated by progressively reducing the Δt calculated using eq. (15) as a starting point, until the 
calculate trajectories or calculated statistical quantities are no longer sensitive to Δt. This aspect will be demonstrated in Sections 2.6.3, 
3.1 and 3.2. 

2.6.2. Fourth order time-stepping scheme 
Kasdin (1995) describes a fourth-order Runge-Kutta (RK) method, that has received 45 citations since publication and is widely 

used across many fields to model driven-dissipative systems (Dong et al., 2011), for the integration of linear stochastic ODEs of the 
form of eq. (1) or 13, restated as a system of 2 first-order ODEs (16a and 16b), written in matrix form (16c): 

d r→p

dt
= v→p (16a)  

d v→p

dt
= −

f T
p

mp
v→p +

F→ext

mp
+

F→B

mp
(16b)  

Ẋ = F(X, t) + Π(t) (16c)  

X =

⎛

⎝ r→p
v→p

⎞

⎠, F(X, t) =

⎛

⎜
⎜
⎜
⎝

v→p

−
fT
p v→p

mp
+

F→ext

mp

⎞

⎟
⎟
⎟
⎠

, Π(t) =

⎛

⎜
⎜
⎝

0

F→B

mp

⎞

⎟
⎟
⎠ are, respectively, the solution, deterministic and stochastic column vectors 

(shown in bold font). A known point in the phase-space X(t) is used to calculate the solution at X(t + Δt): 

X(t + Δt) = X(t) + α1k1 + α2k2 + α3k3 + α4k4 (17a)  

k1 = ΔtF(X(t), t) + ΔtD1
2

(
0

NRAND(0, 1)

)

(17b)  

j = 2, 3, 4 : kj = ΔtF

(

X(t) +
∑j−1

i=1
ajiki, t + cjΔt

)

+ Δt
(
Dqj

)1
2

(
0

NRAND(0, 1)

)

(17c) 

Coefficients aji, αi, qj are tabulated in Table S2, SI; D =
2fT

p kBTg

Δt and cj =
∑j−1

i=1
aji. Similar to eq. (15), Δt is estimated by comparing the 

velocity step, deterministic and stochastic forces: 

Δt = min

⎛

⎜
⎝

lp⃒
⃒
⃒
⃒ v→p

⃒
⃒
⃒
⃒

,

̅̅̅̅̅̅̅̅̅̅̅̅
mplp⃒

⃒
⃒ F→ext

⃒
⃒
⃒

√
√
√
√ ,

(
l2
pm2

p

6fpkbTgq4

)1
3

⎞

⎟
⎠ (18) 

Lastly, Kasdin and Stankievech (2009) describe a RK method for coupled non-linear stochastic ODEs that is potentially useful for 

V. Suresh and R. Gopalakrishnan                                                                                                                                                                                  



Journal of Aerosol Science 155 (2021) 105746

12

the incorporation of the full translational friction tensor f
=T

p in eq. (1). 

2.6.3. Example on the usage of LD to predict the settling time distribution of sub-micron spherical aerosol particles in still air, at room 
temperature 

Parameters: Particle density ρp = 1000 kg
m3; gas pressure pg = 101325 Pa; gas temperature Tg = 300 K; viscosity of air μg = 1.8 ×

10−5Pa.s; particle mass mp = ρp
π
6d

3
p ; dp is particle diameter varied between 10 and 1000 nm. Scalar friction factor fT

p calculated using 
eq. (5a) with α1 = 1.250, α2 = 0.4, α3 = 1.1 corresponding to air (Rader, 1990). 

Governing LD ODE: 

mp
d v→p

dt
= − f T

p v→p + mp g→ + F→B (19a) 

Eq. (20a) is integrated using the first order method (eq. (14), referred to as the EB method hereon) in a 3D cartesian coordinate 

system to the particle’s motion tracked from a height of z = H and gravity acts along the vertical direction: g→ = −
(

9.8 m
s2

)
k̂, subject to 

initial conditions: 

r→p(t = 0) = 0̂i + 0̂j + Hk̂ (19b)  

v→p(t = 0) =

(
kBTg

mp

)
1
2

[
îNRAND(0, 1) + ĵNRAND(0, 1) + k̂NRAND(0, 1)

]
(19c) 

Eq. (19c) may be recognized as the sampling of the particle’s 3D velocity from a Maxwell-Boltzmann distribution for each 
component, with a mean of zero and variance of kBTg

mp
, assuming thermal equilibrium between the settling particle and the gas. The 

simulation is advanced using a variable time step of Δt(s) (eq. (20) below) until the particle reaches the bottom surface defined by z = 0 
(i. e.) z ≤ 0 and is considered to have settled from a height of H = 0.1 m (without considering particle bounce off of the surface): 

Δt(s) = 0.01 · min
(

z2fp

6kBTg
,

zfp

mpg

)

(20) 

For a chosen particle size, NT = 1000 trials of particle settling are run to create a histogram of settling times shown in Fig. 1a for 

dp = 500 nm. By averaging over NT trials, an average settling time tS = 1
NT

∑NT

i=1
tS,i and the standard deviation σS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
NT−1

∑NT

i=1
(tS,i − tS)

2

√

are 

calculated and plotted in Fig. 1b as a function of dp; tS,i is the settling time calculated in the i-th trial. Fig. 2 shows sample trajectories for 
dp = 10, 100, 1000 nm, calculated using the EB method, to illustrate the effect of stochastic Brownian motion on the settling of an 
aerosol particle. LD is a useful tool for sampling and visualizing particle trajectories that are the convolutions of various underlying 
dissipative (drag), deterministic (gravity) and stochastic (thermal kicks) force distributions and for calculating the average statistical 
transport properties of an ensemble of particles, and as illustrated by the particle settling time calculation in this example. The online 
Supplementary Information (SI) accompanying this tutorial article includes a MATLAB® (.m) implementation of the 3D EB method 
(“EB_3D_Settling.m”) for simulating this example with comments. 

Fig. 1. A. Histogram of gravitational settling times for a dp = 500 nm spherical particles in still air. The settling times are well described by a 
generalized extreme value distribution with parameters μ = 9917.68, k = − 0.2593, σ = 111.708. Other parameters used in the trajectory sim
ulations are noted in Sec. 2.6.3. B. Plot of average settling time ts and standard deviation σs as a function of particle diameter dp. 
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3. Demonstrations 

3.1. Modeling of particle-ion diffusion charging collision kernel 

Diffusion charging is a mass transfer process in which gas-phase ions undergo combined diffusional and electrostatic motion to 
impinge upon particles at low speeds and transfer charge. This process, ubiquitous in the atmosphere as well as used for imparting a 
known charge distribution to generated/sampled sub-micron aerosols before electrical mobility-based classification (Knutson & 
Whitby, 1975), has been investigated by Gopalakrishnan et al. using LD simulations (Chahl & Gopalakrishnan, 2019; Gopalakrishnan 
et al., 2013a, 2013b, 2015a; Gopalakrishnan & Hogan, 2012; Li et al., 2020; Li & Gopalakrishnan, 2021; Ouyang et al., 2012). In this 
demonstration, we describe the physical problem only briefly, focus on the computational methodology and refer the interested reader 
to Chahl and Gopalakrishnan (2019) and Gopalakrishnan and Hogan (2012) for a detailed discussion of the simulation results and the 
underlying physics. 

The rate Rpi at which particle-ion collisions that result in the particle charge zp being modified as zp → zp + zi, where zi is the charge 
carried by the ion, may be calculated as Rpi = βpinpni; here, np is the concentration of particles carrying zp charges and ni is the gas- 
phase ion concentration.βpi has modeled or theorized by various approaches (Bricard, 1962; Fuchs, 1963; Marlow, 1980; Hoppel & 
Frick, 1986; Lushnikov & Kulmala, 2004; D’Yachkov et al., 2007; Gatti & Kortshagen, 2008; Lopez-Yglesias & Flagan, 2013; Gopa
lakrishnan et al., 2015a; Sharma et al., 2019), including LD that we focus upon here. βpi is calculated using LD by simulating the ion 
motion in the vicinity of an aerosol particle (assumed to be at rest) including the particle-ion Coulomb interaction potential Φpi =

zpzie2

4πε0

⃒
⃒
⃒ r→i− r→p

⃒
⃒
⃒
and F→D, F→B described previously. By calculating the average particle-ion collision time τ(s) in a periodic domain of volume 

L3 (m3), Chahl and Gopalakrishnan (2019) infer βpi

(
m3

s

)

= L3

τ and use scaling analysis to build a model for βpi, expressed in a 

non-dimensional form. We show the intermediate steps to develop a model for βpi and start by non-dimensionalizing the EB solution 
(eq. (14)) to the LD ODE for a single ion colliding with a stationary particle: 

mi
d v→i

dt
= − fi v→i − ∇Φpi + F→B (21) 

To scale distances the particle radius ap is used, the ion relaxation time in the gas mi
fi 

is used as a unit for time (note that fi has units of 
kg
s ) and apfi

mi 
is used as a reference velocity. With these choices, the non-dimensional form of eq. (14) is written as follows, with an * 

symbol used to denote that the involved quantities are unitless: 

v→*
i (t* + Δt*) = v→*

i (t*)e−Δt* −
mi

apf 2
i

∇Φpi(1 − e−Δt* ) +

(
1
3

R→
∗

v · R→
∗

v

)1
2

⎡

⎣
NRAND(0, 1)

NRAND(0, 1)

NRAND(0, 1)

⎤

⎦ (22a)  

R→
*
v · R→

*
v = 3

mikBTg

a2
pf 2

i

(
1 − e−2Δt* )

(22b)  

r→*
i (t* + Δt*) = r→*

i (t*) +

(

v→*
i (t* + Δt*) + v→*

i (t*) + 2
mi

apf 2
i

∇Φpi

)(
1 − e−Δt*

1 + e−Δt*

)

−
mi

apf 2
i

∇ΦpiΔt* +

(
1
3

R→
∗

r · R→
∗

r

)1
2

⎡

⎣
NRAND(0, 1)

NRAND(0, 1)

NRAND(0, 1)

⎤

⎦

(22c)  

Fig. 2. Calculated particle trajectories for the gravitational settling of 10, 100, 1000 nm spherical particles in still air. The starting point is indicated; 
it is seen that the 1000 nm particle has an average settling time tS̃2900 s dominated by gravitation force, while the 10 nm particle wanders 
considerably before settling down with tS̃106 s. The 100 nm particle has aspects of both deterministic settling and stochastic Brownian motion with 
a tS̃105 s. 
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R→
*
r · R→

*
r = 6

mikBTg

a2
pf 2

i

(

Δt* − 2
1 − e−Δt*

1 + e−Δt*

)

(22d) 

Eq. (22) contains two dimensionless combinations of physical variables that are recognized as independent parametric inputs for 
the calculation of βpi: 

mikBTg

a2
pf 2

i
=

[( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
mikBTg

√

fi

)/

ap

]2

(23a) 

Chahl and Gopalakrishnan (2019), as well as previously in this article, discussed that 

( ̅̅̅̅̅̅̅̅̅̅
mikBTg

√

fi

)

is the mean persistence path λmpp of 

the ion as it collides with a particle due to combined Brownian and electrostatic motion while experiencing dissipative drag forces 
exerted by the gas medium. Eq. (23a) represents a quantity that is ratio between λmpp and the collision length scale ap and is recognized 
as the particle-ion diffusive Knudsen number KnD: 

KnD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
mikBTg

√

fiap

ηc(ΨE)

ηf (ΨE)
(23b) 

Two functions ηc(ΨE), ηf (ΨE) are added to the definition of KnD to ensure that in the continuum regime (KnD → 0) and the free 
molecular regime (KnD → ∞), expressions constructed for non-dimensional βpi converge to the appropriate analytical expressions, as 
described in detail by Chahl and Gopalakrishnan (2019). It is sufficient to note here that ηc(ΨE), ηf (ΨE) can be calculated analytically or 
numerically as a function of ΨE (eq. (24c) below). The other combination that appears in eq. (22) is: 

−
mi

apf 2
i

∇Φpi = −
mi

apf 2
i

∇

⎛

⎝ zpzie2

4πε0

⃒
⃒
⃒
⃒ r→i − r→p

⃒
⃒
⃒
⃒

⎞

⎠ =
mi

apf 2
i

⎛

⎝ zpzie2

4πε0

⃒
⃒
⃒
⃒ r→i − r→p

⃒
⃒
⃒
⃒

2

⎞

⎠

(

r→i − r→p

)

⃒
⃒
⃒
⃒ r→i − r→p

⃒
⃒
⃒
⃒

=
mi

apf 2
i

(
zpzie2

4πε0a2
p

)
(

r→*
i − r→*

p

)

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

3 (24a) 

By recognizing − zpzie2

4πε0ap 
as an order of magnitude of the particle-ion electrostatic potential energy and by multiplying and dividing by 

kBTg (the ion’s mean kinetic/thermal energy), we rewrite eq. (24a) and recognize the definition of the dimensionless parameter ΨE (eq. 
(24c)): 

−
mp

apf 2
i

∇Φpi = −
mikBTg

a2
pf 2

i

(

−
zpzie2

4πε0apkBTg

)

(

r→*
i − r→*

p

)

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

3 = −

(

Kn2
D

η2
f

η2
c

)

ΨE

(

r→*
i − r→*

p

)

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

3 (24b)  

ΨE = −
zpzie2

4πε0apkBTg
(24c)  

ηc(ΨE) =
ΨE

1 − e−ΨE
(24d)  

ηf (ΨE) =

{
eΨE , ΨE ≤ 0

1 + ΨE, ΨE ≥ 0 (24e)  

ΨE is a comparison of the ion’s electrostatic potential energy to kinetic energy. ΨE = 0 represents hard sphere motion of the ion 
without the influence of any potential interactions, while ΨE ≫ 3

2 represents motion that is strongly influenced by the particle-ion 
electrostatic force; ΨE > 0 represents collisions between unlike charged particles and ions and vice versa. Eq. (22) may be 
rewritten in terms of ΨE, KnD as: 

v→*
i (t* + Δt*) = v→*

i (t*)e−Δt* − ΨEKn2
D

η2
f

η2
c

(

r→*
i − r→*

p

)

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

3 (1 − e−Δt* ) +

(
1
3

R→
∗

v · R→
∗

v

)1
2

⎡

⎣
NRAND(0, 1)

NRAND(0, 1)

NRAND(0, 1)

⎤

⎦ (25a)  

R→
*
v · R→

*
v = 3Kn2

D

(
1 − e−2Δt* )

(25b)  
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r→*
i (t* + Δt*) = r→*

i (t*) +

⎛

⎜
⎜
⎝ v→*

i (t* + Δt*) + v→*
i (t*) + 2ΨEKn2

D

η2
f

η2
c

(

r→*
i − r→*

p

)

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

3

⎞

⎟
⎟
⎠

(
1 − e−Δt*

1 + e−Δt*

)

− ΨEKn2
D

η2
f

η2
c

(

r→*
i − r→*

p

)

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

3 Δt*

+

(
1
3

R→
∗

r · R→
∗

r

)1
2

⎡

⎣
NRAND(0, 1)

NRAND(0, 1)

NRAND(0, 1)

⎤

⎦ (25c)  

R→
*
r · R→

*
r = 6Kn2

D

(

Δt* − 2
1 − e−Δt*

1 + e−Δt*

)

(25d) 

The ion is initialized on the surface of the periodic box one on of the six faces chosen randomly with a velocity sampled randomly 
from a Maxwell-Boltzmann distribution: 

v→*
i (t* = 0) = KnD

[
îNRAND(0, 1) + ĵNRAND(0, 1) + k̂NRAND(0, 1)

]
(26) 

Eq. (25) represents the non-dimensional velocity v→*
i (t*) and position r→*

i (t*) of the ion that is tracked in a periodic domain of side L* 

with a spherical particle of non-dimensional radius 1 at the origin r→*
p(t) = (0, 0, 0) as a function of ΨE, KnD as inputs. Collisions are 

detected when 
⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒ ≤ 1 and the ion position and velocity are re-initialized for simulating NT trials as desired (typically, NT̃2000 

yields good statistical confidence on the calculated ensemble averages). Lastly, βpi is reduced to a dimensionless form H (Chahl & 
Gopalakrishnan, 2019; Gopalakrishnan, Thajudeen, et al., 2013; Gopalakrishnan & Hogan, 2012; Li et al., 2020; Li & Gopalakrishnan, 
2021; Ouyang et al., 2012): 

H =
βpimi

fia3
p

ηc

η2
f

(27a) 

In total, the functional dependence (eq. (27b)) of βpi on the radius ap and elementary charge zp of a conducting particle (εr → ∞), ion 
mass mi, ion scalar friction factor fi (that is dependent on gas pressure pg) and gas temperature kBTg is expressed compactly in non- 

Fig. 3. A. H(KnD, ΨE) Calculated using the EB method (red filled circles) and RK method (blue filled squares) shown along with the prediction of the 
model (grey dashed line) developed by Chahl and Gopalakrishnan (2019) given by eq. (29) for ΨE = 30. Simulation parameters, L* = 4000, T* =

0.005. B. % difference between H Calculated using the EB method (HEB) and the RK method (HRK) for 10 ≤ KnD ≤ 200. Reference lines at ± 5% 
are included. 
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dimensional form (eq. (27c)): 

βpi = βpi
(
ap, mi, fi, kBTg, zp

)
(27b)  

H = H(KnD, ΨE) (27c) 

It is necessary that H inferred from LD simulations be insensitive to the simulation parameters L* and Δt* to be physically valid and 
are selected as follows (Chahl & Gopalakrishnan, 2019): 

L* = max
(

500,
400
3

ΨE

)

(28a)  

Δt* = T*min

⎛

⎝

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

2

Kn2
D

,

⃒
⃒
⃒
⃒ r→*

i − r→*
p

⃒
⃒
⃒
⃒

2

|ΨE|Kn2
D

⎞

⎠ (28b) 

The ion trajectory in free space is approximated accurately by an LD simulation in the limit of L* → ∞, chosen using eq. (28a) to 
balance computational expense and accuracy. The selection of L* ≥ 4000, T* ≤ 0.005 proved adequate to ensure that ∂H

∂L* ≈ 0, ∂H
∂T* ≈ 0. In 

the simulation, T* is used along with eq. (28b) to calculate a variable timestep for each iteration, taking advantage of the linearity 
between the mean squared displacement and the timestep when the particle and ion are far away from each other and the electrostatic 

force is small. A related caution is to ensure that the chosen Δt* results in a positive definite value for R→
*

r · R→
*

r given by eq. (25d) to 

ensure a real-valued square root of R→
*

r · R→
* 1

2

r used in eq. (25c). In practice, Δt* may be arbitrary reduced until R→
*

r · R→
*

r ≥ 0. 
Chahl and Gopalakrishnan (2019) describe the H or non-dimensional βpi model development for 0 < ΨE ≤ 60, 0 < KnD ≤ 2000 

and discuss further aspects of particle charging in aerosols and dusty plasmas. The predictions of LD-based models for βpi including the 
combined Coulomb and image potential interactions between a spherical particle and ion (Chahl & Gopalakrishnan, 2019; Gopa
lakrishnan & Hogan, 2012; Li et al., 2020) and a non-spherical particle and ion (Gopalakrishnan, Thajudeen, et al., 2013; Li & 
Gopalakrishnan, 2021) have been recently compared to available experimental data and have been shown to be accurate to describe 
diffusion charging of sub-micron, electrically conducting aerosol particles of arbitrary shape in the absence of electric or flow fields (Li 
et al., 2020; Li & Gopalakrishnan, 2021). As an alternate paradigm to describe diffusion charging of particles without invoking a βpi, LD 
has been used to describe particle charge fluctuations in aerosols (Gopalakrishnan, Meredith, et al., 2013) and dusty plasmas (Vaulina 
et al., 2006) that are well corroborated by experimental measurements (Gopalakrishnan et al., 2015a). 

Lastly, the first order EB method (eq. (22)) was used to integrate eq. (21) to derive a model for H. Alternately, one may choose to use 
the fourth order RK method (eq. (17)) as well for the same purpose and the foregoing discussion applies there as well. Without restating 
the steps of scaling eq. (17) to solve eq. (21), we present calculations of H(0.01 ≤ KnD ≤ 2000, ΨE = 30) Using both the methods in 
Fig. 3a. Chahl and Gopalakrishnan (2019) used the EB method for 0.01 ≤ KnD ≤ 2000, while here we used the EB method for 0.01 ≤

KnD ≤ 200 and the RK method for 10 ≤ KnD ≤ 2000, with both methods being used in the range of 10 ≤ KnD ≤ 200. Also shown, for 
comparison, are the predictions of the H(KnD, ΨE) put forward by Chahl and Gopalakrishnan (2019) by parameterized H Calculations 
using the EB method: 

H(KnD, ΨE) = eμH(KnD, ΨE = 0) (29a)  

μ(KnD, ΨE) =
C
A

(

1 + k
log KnD − B

A

)−1
k−1

exp

⎛

⎜
⎝ −

(

1 + k
log KnD − B

A

)−1
k

⎞

⎟
⎠, k ∕= 0 (29b)  

H(KnD, ΨE = 0) =
4πKn2

D + 25.836Kn3
D +

̅̅̅̅̅
8π

√
KnD

(
11.211Kn3

D

)

1 + 3.502KnD + 7.211Kn2
D + 11.211Kn3

D
(29c) 

While it is evident that the H calculations derived using both the numerical methods agree within ±10% (Fig. 3b presents 
(

1 −HRK
HEB

)

% as a function of KnD), it is noted that the EB method by virtue of being first order is most accurate and least expensive for 

KnD < 100 and the same is true for the RK method for KnD > 10. Thus, we recommend these methods, respectively, for low-to- 
transition and transition-to-high KnD regimes. Finally, in the range of 10 ≤ KnD ≤ 200, H Derived using the EB and RK methods are 
statistically indistinguishable and that the comparisons with experimental data mentioned before apply to simulation results derived 
using both the numerical schemes. The SI includes Fortran® (.f) implementations of the 3D EB method (“EB_3D_H.f”) and 3D RK 
method (“RK_3D_H.f”) for simulating this example with comments. 

3.2. Modeling of particle-particle coagulation rate constant in dense aerosols 

Coagulation involves collisions between particles that results in particle size growth by sticking and coalescence (in case of easily 
deformable particles such as liquid droplets). We consider aerosol particle coagulation driven by Brownian motion and hydrodynamic 
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interactions between particles and the gas medium (drag). Coagulation is the primary driver of particle size distribution changes in 
ambient or laboratory aerosols and modeling Brownian coagulation in aerosols and dusty plasmas has considerable attention in the 
past (Chatterjee et al., 1975; Davies, 1979; Fuchs & Sutugin, 1965; Galli & Kortshagen, 2010; Goudeli et al., 2016; Huang et al., 1991; 
Huang & Seinfeld, 1990; Kortshagen & Bhandarkar, 1999; Kruis et al., 2000; Loyalka, 1976; Lushnikov & Smirnov, 1975a, 1975b; 
Matsoukas, 1997; Narsimhan & Ruckenstein, 1985a, 1985b; Nowakowski & Sitarski, 1981; Otto & Fissan, 1999; Ravi & Girshick, 
2009; Sceats, 1986; Schweigert & Schweigert, 1996; Sitarski & Seinfeld, 1977; Sorensen et al., 1987; Veshchunov & Azarov, 2012; 
Wagner & Kerker, 1977), including the use of LD for the same (Buesser et al., 2009; Gopalakrishnan et al., 2011; Gopalakrishnan & 
Hogan, 2011; Heine & Pratsinis, 2007; Hunt et al., 2014; Matthews et al., 2012; Thajudeen et al., 2012, 2014, 2015a; Trzeciak et al., 
2004). In line with the scope of this demonstration, we provide just enough details about the physical process itself to follow the 
computational methodology and refer the interested reader to Gopalakrishnan and Hogan (2011) for a detailed account of model 
development for the coagulation of dilute aerosols (ηv → 0) Using LD. The methodology described herein are applied to unravel the 
coagulation of dense aerosols (0 < ηv < 0.1) as part of an ongoing investigation in the authors’ research group (Liu et al., 2020). 
Recently, Morán, Yon, and Poux (2020); Morán, Yon, Poux, et al. (2020) have incorporated LD-derived timestep into Monte Carlo 
simulations of particle agglomeration and coagulation-driven growth in dense environments. Similarly, Boies et al. (2019) state that 
the coagulation rate constant, calculated using LD and experimentally tested, is 1.3–10 times higher for carbon nanotubes than cor
responding spheres and is seen as driving the coagulation of highly non-spherical carbon nanotubes into bundles by Brownian motion. 

Similar to diffusion charging or broadly, single particle mass transfer processes, the particle-particle collision rate Rij that results in 
the particle volume being increased from ϑi → ϑi + ϑj, where ϑi, ϑj are the volumes of the colliding particles (i, j), may be calculated as 
Rij = βijninj; here, ni, nj is the number concentration of particles of kind (i, j).Departing from prior work (Gopalakrishnan & Hogan, 
2011), in which particle coagulation was considered as binary particle-particle collision events in the presence of a background gas, we 
set up a system of N LD ODEs to investigate the coagulation of mono-sized particles at non-trivial volume fractions in a periodic 
domain: 

i = 1, 2, …N : mi
d v→i

dt
= F→D + F→B (30) 

The particle-particle hydrodynamic interactions F→D are calculated using Corson’s extended Kirkwood-Risemann methodology as 
described in Section 2.3. For simplicity, we do not include particle-particle adhesion forces, electrostatic effects, fluid flows and 
external fields in our demonstration and lastly, we ignore particle bounce and assume that particles stick immediately upon collision. 

The particle-particle diffusive Knudsen number KnD =

̅̅̅̅̅̅̅̅̅̅̅
mijkBTg

√

fijaij 
that parameterizes the mass transfer regime, the particle momentum 

Knudsen number Kn =
λg
ap 

that describes the momentum transfer regime onto an individual particle and the particle volume fraction 

ηv = a3
pnp determine H, the non-dimensional form of βij. The sum of particle radii aij = ai + aj is used as the reference length scale, mij

fij 
is 

the unit of time where mij =
mimj

mi+mj
, fij =

fi fj
fi+fj 

and apfij
mij 

is a reference particle velocity: in this specific example, we consider only identical 
particles of radius ap = ai = aj; fp is the single particle scalar friction factor given by eq. (5a). Eq. (30) may be integrated using the EB 

method (eq. (14)) by rewriting F→D as the sum of a single particle drag force −fp v→i and a perturbation term δ F→D that depends on the 
volume fraction ηv and Kn. 

F→D = − fp v→i + δ F→D(ηv, Kn) (31a)  

δ F→D(ηv → 0, Kn) → 0 (31b)  

Fig. 4. A. H Calculations in the dilute limit (ηv → 0) Compared to the predictions of dilute coagulation model developed by Gopalakrishnan and 
Hogan (2011) given by eq. (33) using N = 32, 64, 128 Particles in the simulation domain. It is seen that H(KnD, ηv → 0) is insensitive to the choice of 
N. B. H(KnD, Kn, ηv) calculations with N = 128 including Kn-dependent hydrodynamic interactions as a function of T* to determine a suitable value 
that leads to the simulation results being independent of T*. 
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i = 1, 2, …N : mi
d v→i

dt
= − fp v→i + δ F→D(ηv, Kn) + F→B (31c) 

By dynamically simulating a system of N spheres using eq. (31) in a non-dimensional form, the details of which we skip, particle 

trajectories are analyzed to detect collisions between any particle pair (i, j) Of the N spheres in a periodic domain of side L*, when 
⃒
⃒
⃒
⃒ r→*

i −

r→*
j

⃒
⃒
⃒
⃒ ≤ 1, to calculate H as: 

βijmij

fija3
p

≡ H = H(KnD, Kn, ηv) =
L* 3

τ*
1

C(N, 2)
(32a)  

τ* =
1

NT

∑NT

k=1
τk (32b)  

τ* is the mean particle-particle collision time averaged over NT̃2000 collisions of an ergodic simulation. C(N, r) = N!
(N−r)!r!

is included to 

account for collision between any pair of N identical particles. Eq. (32) may be derived as follows: βij =
Rij
ninj

. Rij is the number of 

collisions per unit volume per unit time and may be evaluated from LD simulations as Rij = 1
τ

1
L3 and ni = nj = N

L3, leading to βij =

L3

τ
1

C(N,2)
; L is the simulation box side, τ is the dimensional particle-particle collision time over NT collisions. This equation is expressed 

in non-dimensional form in Eq. (32). The ergodicity of this equation was checked by simulating cases of dilute or low-volume fraction 
aerosols as shown in Fig. 4a that shows that the derived H values are independent of N as ηv → 0. When two particles collide, they are 
initialized with a newly sampled position in the simulation box (while checking that the new position does not overlap with other 
particles) and velocity from the Maxwell-Boltzmann distribution, similar to the case of ion trajectory simulations in Section 3.1. H 
estimated using eq. (32) is compared with H(KnD, ηv → 0) derived previously by Gopalakrishnan and Hogan (2011) in the limit of ηv → 
0 as a consistency check (same as eq. (29c)): 

Fig. 5. A. H(KnD, Kn, ηv) calculations to probe the effect of volume fraction 0 < ηv < 10−1 without including hydrodynamic interactions (no Kn 
Dependence) that shows the enhancement compared to the predictions of dilute coagulation rate constant model (eq. (33)). B. H(KnD, Kn, ηv)

calculations to probe the combined effect of volume fraction 0 < ηv < 10−2 and Kn-dependent hydrodynamic interactions. 
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H(KnD, ηv → 0) =
4πKn2

D + 25.836Kn3
D +

̅̅̅̅̅
8π

√
KnD

(
11.211Kn3

D

)

1 + 3.502KnD + 7.211Kn2
D + 11.211Kn3

D
(33)  

L* is selected using the target volume fraction ηv and N: 

L* =

(
π
6

N
ηv

)1
3

(34a) 

Fig. 4a presents 
(

1 − HN
HEq.33

)

% for 0.01 ≤ KnD ≤ 100, ηv = 2.5 × 10−7 while varying N = 32, 64, 128 particles. It is seen that HN, H 

calculated by simulating N particles in a periodic domain of volume L*3, is independent of N, showing that the simulation predictions in 
the ηv → 0 limit are in line with prior work (eq. (33)). The timestep Δt* is chosen by comparing the displacement step due to hy
drodynamic force and diffusion: 

Δt* = T*min

⎛

⎜
⎜
⎜
⎝

1
⃒
⃒
⃒δ F→D

∗
⃒
⃒
⃒

max,

⃒
⃒
⃒
⃒ r→ij

∗

⃒
⃒
⃒
⃒

min

Kn2
D

⎞

⎟
⎟
⎟
⎠

(34b) 

Here, 
⃒
⃒
⃒δ F→D

∗
⃒
⃒
⃒
max 

is the maximum of hydrodynamic force perturbation δ F→D,i experienced by i = 1 − N particles and 
⃒
⃒
⃒
⃒ r→ij

∗

⃒
⃒
⃒
⃒

min 

is the 

minimum of particle pairwise seperations for all pairs 1 ≤ i ≤ N,1 ≤ j ∕= i ≤ N. Fig. 4b presents H(KnD, Kn, ηv) as a function of T* that 
shows that a selection of T* ≤ 0.005 sufficiently mitigates any influence of timestep on trajectory simulations for H calculations. In 
general, T* must be chosen to establish ∂H

∂T* ≈ 0. Fig. 5a present preliminary results of the calculation of βr =
H(KnD ,ηv)

HEq.33 
as a function of ηv 

for KnD = 0.001,0.1,1.0, without including hydrodynamic interactions (δ F→D(ηv, Kn) = 0) to understand the effect of particle volume 
fraction on coagulation. It is seen that βr is enhanced by ~2–6 times for ηv > 10−2. Similarly, Fig. 5b plots βr =

H(KnD ,Kn,ηv)

HEq.33 
while including 

both the effects of ηv and Kn-dependent hydrodynamic interactions δ F→D(ηv, Kn). In this case, it is seen that there is a reduction by 
~1–2.5 times that is dependent on Kn at a fixed KnD = 0.1. Hard sphere interactions (Kn → ∞) represents the limit of vanishing 
hydrodynamic interactions, that become more significant with decreasing Kn up to 0.1. A more detailed study of the coagulation of 
dense aerosols is currently underway (Liu et al., 2020) and the computational results obtained therein will need to compared with prior 
theories on the coagulation of dense aerosols (Veshchunov & Tarasov, 2014). 

4. Summary 

We have demonstrated the usage of LD for simulating particle trajectories and to derive collision rate constants by averaging over 
an ensemble of simulated trajectories. We have described the considerations for selecting simulation parameters such as domain size 
and time step in an LD simulation that is usually omitted from regular articles that are focused on aerosol physics. We have also 
provided Fortran® and MATLAB® computer codes with comments for the benefit of the interested reader. The following remarks are in 
order to conclude this tutorial:  

1. Although, not discussed in detail in this tutorial, LD has been used numerously in the field of dusty plasmas as well to extract 
transport and thermodynamic properties of electrostatically coupled charged dust grains suspended in a partially ionized gas at low 
pressures (<500 Pa): dust particle pair correlation and bond order functions (Petrov et al., 2005; Ratynskaia et al., 2009; Smith 
et al., 2004; Vaulina, 2009; Vaulina & Dranzhevskii, 2007; Vaulina et al., 2004, 2007, 2011; Vaulina & Petrov, 2004), as well as 
dusty particle phase transport coefficients such as self-diffusion coefficient (Khrapak et al., 2012; Liu & Goree, 2007, 2014, 2016b; 
Vaulina & Dranzhevskii, 2007), shear viscosity (Donkó et al., 2006; Donko et al., 2009; Feng et al., 2011, 2012, 2013; Haralson & 
Goree, 2017; Liu & Goree, 2005, 2016a; Nosenko & Goree, 2004), shear modulus (Liu & Goree, 2017) and dust particle ther
modynamic equations of state in the authors’ current work (Gopalakrishnan et al., 2020; Suresh et al., 2020)  

2. LD is also widely used to model particle motion in flow devices for design and evaluation as well. Examples include: Liu et al. (Liu 
et al., 1995a, 1995b) and Wang et al. (Wang et al., 2005a, 2005b) used LD to track particles along with gas flow at low pressure for 
designing aerodynamic lenses for particle focusing. The fluid flow field obtained using CFD was one-way coupled to the equations 
of particle motion for calculating the resulting trajectories. Nikbakht et al. (2006) and Abouali et al. (2009) similarly use LD to track 
the 3D motion of particles for optimizing the design of aerodynamic lenses for minimizing particle Brownian motion. Recently, 
Ahmed and Gopalakrishnan (2019) used LD (with and without including the stochastic force term F→B(t)) to analyze the electro
static focusing of aerosol particles using a 3-electrode Einzel lens. Dubey and Dhaniyala (2011) use LD to estimate the diffusional 
transfer function of differential mobility analyzers by coupling particle motion to an axisymmetric flow field. Likewise, Oberreit 
et al. (2014) use LD to calculate particle arrival time distributions in a drift tube aerosol mobility spectrometer to develop in
strument response/transfer function. 
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3. While LD has many potential applications to simulate aerosol particle motion in the finite KnD transition regime, the limitations of 
the same must also be kept in mind while selecting a trajectory simulation technique for a specific application. Thermal equilibrium 
between the suspended particles and the background gas molecules is a pre-requisite to apply LD modeling; thus, modeling particle 
transport in conditions far from equilibrium (Kn → ∞, ts > tr) must be approached with caution. Another assumption built into the 
LD formalism is that the suspended particle is much heavier than the background gas molecules (mp ≫ mg); mp is particle mass and 
mg is the mass of a background gas molecule. Aerosol particles that are >2 nm and macromolecules that are at least a few ~100 Da 
satisfy this requirement in most background gases. The simulation of atomic or light ions for which mp̃mg using LD requires a 
fundamental reexamination of the formulation of eq. (1) that is currently not known, as they represent a lower limit to the size/ 
mass of particles that are amenable to an LD description through the use of continuum approximations for the particle-gas in
teractions. Lastly, although not discussed in this tutorial, consideration of particle rotation and the translation-rotation coupling is a 
considerably more complex endeavor than simulating pure translational motion discussed here – the rotational Langevin equations 
for a single particle needs to be solved in a frame of reference that is attached to and rotates at the same angular rate as the particle. 
This precludes the description of a system of particles in a common laboratory frame of reference. Also, a quaternion-based 
rotational degrees of freedom is necessary to describe the evolution of the orientation and angular rate of rotation of a particle 
(Davidchack et al., 2017) instead of the use of Eulerian angles that is applicable only for particles with special symmetries (Ber
kowitz et al., 1983; Dickinson et al., 1985a, 1985b; Huber & McCammon, 2010; Northrup et al., 1984, 1986).  

4. Lastly, a disadvantage of LD simulations is the high CPU time, especially when simulating systems consisting of a large number of 
interacting particles. Implementational issues devoted to optimizing the CPU time, such as implementing linked-cell methods, 
neighbor lists, ghost domains when simulating coagulation of dense aerosols, periodic boundary conditions and few other aspects 
of N-particle simulations such as the truncation of interaction potentials at long particle-particle separations were not discussed in 
this tutorial as these issues have been well developed in the context of MD simulations (Allen & Tildesley, 1991; Bird, 1994) and LD 
simulations (Huber & McCammon, 2010). While selecting a computational technique, it is important that one balances the level of 
detail required in particle position and velocity timeseries to the computational expense and utility in obtaining the same. In the 
limit of a large number of interacting particles, in principle, a Lagrangian tracking approach such as LD would approach a field 
description of the collective transport of particles that provides less information about individual particles but also comes with a 
modest computational expense. 

About the article 

This article is an Editor-Invited Tutorial Article. Tutorial Articles, established to commemorate the 50th Anniversary of the Journal 
of Aerosol Science in 2020, are intended to serve as educational resources for the aerosol research community on state-of-the-art 
experimental, theoretical, and numerical techniques in aerosol science. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

Funding for this work was provided by US National Science Foundation (NSF) PHY Grant Award Number 1903432 under the 
Directorate of Mathematical & Physical Sciences, US Department of Energy Office of Science Grant Award Number DE-SC0021146 
from the Office of Fusion Energy Sciences and Grant Award Number DE-SC0021206 from the Office of Basic Energy Sciences. We thank 
the University of Memphis High Performance Computing Cluster for providing computational resources to carry out this research. The 
authors thank Mr. Harjindar Chahl, Mr. Zhibo Liu and Ms. Li Li for helpful discussions on this topic. R. G. thanks Prof. Chris Hogan for 
many insightful discussions about aerosol physics over the years. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jaerosci.2021.105746. 

References 

Abouali, O., Nikbakht, A., Ahmadi, G., & Saadabadi, S. (2009). Three-dimensional simulation of brownian motion of nano-particles in aerodynamic lenses. Aerosol 
Science and Technology, 43(3), 205–215. https://doi.org/10.1080/02786820802587888 

Ahmed, R., & Gopalakrishnan, R. (2019). Computational study of electrostatic focusing of aerosol nanoparticles using an einzel lens. Journal of Aerosol Science, 137, 
105443. https://doi.org/10.1016/j.jaerosci.2019.105443 

Albers, J., Deutch, J. M., & Oppenheim, I. (1971). Generalized Langevin equations. The Journal of Chemical Physics, 54(8), 3541–3546. https://doi.org/10.1063/ 
1.1675378 

Allen, M. P., & Tildesley, D. J. (1991). Computer simulation of liquids. Oxford: Clarendon Press.  

V. Suresh and R. Gopalakrishnan                                                                                                                                                                                  

https://doi.org/10.1016/j.jaerosci.2021.105746
https://doi.org/10.1080/02786820802587888
https://doi.org/10.1016/j.jaerosci.2019.105443
https://doi.org/10.1063/1.1675378
https://doi.org/10.1063/1.1675378
http://refhub.elsevier.com/S0021-8502(21)00002-1/sref4


Journal of Aerosol Science 155 (2021) 105746

21

Bardsley, J. N., & Wadehara, J. M. (1980). Monte Carlo simulation of three-body ion-ion recombination. Chemical Physics Letters, 72(3), 477–480. https://doi.org/ 
10.1016/0009-2614(80)80335-6 

Berkowitz, M., Morgan, J. D., & McCammon, J. A. (1983). Generalized Langevin dynamics simulations with arbitrary time-dependent memory kernels. The Journal of 
Chemical Physics, 78(6), 3256–3261. https://doi.org/10.1063/1.445244 

Bird, G. A. (1994). Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarendon.  
Boies, A. M., Hoecker, C., Bhalerao, A., Kateris, N., de La Verpilliere, J., Graves, B., & Smail, F. (2019). Agglomeration dynamics of 1d materials: Gas-phase collision 

rates of nanotubes and nanorods. Small, 15(27), 1900520. https://doi.org/10.1002/smll.201900520, 10.1002/smll.201900520. 
Brady, J. F., & Bossis, G. (1988). Stokesian dynamics. Annual Review of Fluid Mechanics, 20(1), 111–157. https://doi.org/10.1146/annurev.fl.20.010188.000551 
Brady, J. F., Phillips, R. J., Lester, J. C., & Bossis, G. (1988). Dynamic simulation of hydrodynamically interacting suspensions. Journal of Fluid Mechanics, 195, 

257–280. https://doi.org/10.1017/S0022112088002411 
Brady, J. F., & Sierou, A. (2001). Accelerated stokesian dynamics simulations. Journal of Fluid Mechanics, 448, 115–146. 
Brenner, H. (1963). The Stokes resistance of an arbitrary particle. Chemical Engineering Science, 18(1), 1–25. https://doi.org/10.1016/0009-2509(63)80001-9 
Brenner, H. (1964). The Stokes resistance of an arbitrary particle—ii. Chemical Engineering Science, 19(9), 599–629. https://doi.org/10.1016/0009-2509(64)85051-X 
Brenner, H. (1965). Coupling between the translational and rotational brownian motions of rigid particles of arbitrary shape i. Helicoidally isotropic particles. Journal 

of Colloid Science, 20(2), 104–122. https://doi.org/10.1016/0095-8522(65)90002-4 
Brenner, H. (1967). Coupling between the translational and rotational brownian motions of rigid particles of arbitrary shape: Ii. General theory. Journal of Colloid and 

Interface Science, 23(3), 407–436. https://doi.org/10.1016/0021-9797(67)90185-3 
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