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Abstract
We introduce the notion of transmission time to study the dynamics of disordered quantum
spin chains and prove results relating its behavior to many-body localization properties. We
also study two versions of the so-called Local Integrals of Motion (LIOM) representation of
spin chain Hamiltonians and their relation to dynamical many-body localization. We prove
that uniform-in-time dynamical localization expressed by a zero-velocity Lieb–Robinson
bound implies the existence of a LIOM representation of the dynamics as well as a weak
converse of this statement. We also prove that for a class of spin chains satisfying a form
of exponential dynamical localization, sparse perturbations result in a dynamics in which
transmission times diverge at least as a power law of distance, with a power for which we
provide lower bound that diverges with increasing sparseness of the perturbation.

1 Introduction

Anderson localization in random Schrödinger operators is quite well understood. Mathemat-
ical proofs of this phenomenon have been given under a variety of conditions. See the recent
book by Aizenman and Warzel for an overview of the state-of-the-art [4]. The physical phe-
nomenon is a drastic slowdown of transport in the system’s dynamics, which is seen as the
consequence of a change in the nature of the spectrum from continuous spectrum (extended
states) to pure point spectrum (localized states).

The problem of Many-Body Localization (MBL) is the question of what happens to
localization properties in the presence of interactions. Although Anderson in his work that
started the subject of localization [5] envisioned the phenomenon for interacting systems,
research on MBL picked up only relatively recently stimulated by papers by Basko et al. [6],
Oganesyan and Huse [37], and Pal and Huse [38].
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Quantum spin systems with, for example, nearest neighbor interactions, are among the
simplest interacting quantum many-body systems and much of the recent work on MBL
dealt with one of just three one-dimensional quantum spin models: the XY chain, the quan-
tum Ising chain, and the XX Z chain. The small number of rigorous results that have been
obtained so far are also mostly restricted to these three models. Exponential dynamical local-
ization, uniformly in time, was proved for a class of disordered XY chains by exploiting
their connection to Anderson models [1,25,41]. Imbrie studied the quantum Ising chain with
random couplings and fields [27]. Localization properties in the low-energy region, called
the droplet-regime, of the ferromagnetic XXZ chain were proved in [7,8,19–21].

For a single quantum particle, the study of localization for a long time focused on spectral
properties. i.e., proving the occurrence of point spectrum with associated eigenvectors that
satisfy exponential decay. Later, multi-scale analysis [23] and the fractional-moment method
[2] emerged as two powerful tools to study dynamical localization. Systems of N interacting
particles can be analyzed by extending these methods, as along as N is fixed [3,13].

The first main result of this work is the proof of a relation between uniform dynamical
localization and the existence ofLocal Integrals ofMotion (LIOM).TheLIOMpicture [10,39]
has been proposed as the mechanism by which systems exhibiting MBL do not thermalize
under their own (closed system) dynamics and, in particular, that violate the Eigenfunction
Thermalization Hypothesis (ETH). We give two definitions of LIOMs, consistent with the
different ways this concept has been considered in the literature. For lack of a better name, we
call them LIOMs of the first kind (Definition 2.3) and LIOMS of the second kind (Definition
2.6). The first kind implies dynamical localization of the form generically expected for
strongly disordered quantum spin chains. The second kind, as we show, exist when we have
uniform-in-time dynamical localization, such as has been proved to occur in the random XY
chain [25].

In interacting many-body systems it is most natural to express localization in terms of
dynamical properties directly. A good (but not typcial) example is the zero-velocity Lieb–
Robinson bound proved for the disordered XY chain in [25]. In this work, we introduce the
notion of transmission time, as the smallest time a signal or disturbance can reach a prescribed
strength a given distance away from the source. SeeDefinition 2.9. For exponentially localized
systems, we expect transmission times grow exponentially with the distance. We then prove
that exponentially localized systems perturbed by sparse disorder, have transmission times
that grow at least as a power law and we give a lower bound for the power that diverges with
increasing sparseness of the perturbation. A large power indicates sub-diffusive behavior. We
model the sparse disorder by adding a uniformly bounded but otherwise arbitrary nearest-
neighbor term to the Hamiltonian at locations determined by a Bernoulli process with small
probability of success.

De Roeck and coworkers have argued that MBL, interpreted as the complete absence of
transport, is only possible in one-dimensional systems. They argue that diffusion of energy is
inevitable in higher dimensions [14,15,17,18,31,43].We only study one dimensional systems
in this work, and therefore we do not have results that either support or contradict these
arguments. Rather, for one-dimensional systems our results imply a degree of robustness of
localization phenomena in the sense of slow propagation. Others have investigated stability
of MBL in spin chains under the influence of regions of low disorder or coupling to a heat
bath [24], in a kicked quantum spin chain model [9] and by extensive numerical calculation
for the Heisenberg chain [42]. The latter studies consider properties of the spectral form
factor (i.e., the Fourier transform of a two-point function) to look for an indicator of an
MBL-type transition. It would be interesting to supplement these studies with information
about transmission times in these models.
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In Sect. 2 we introduce several definitions related to MBL and describe our main results.
The proofs are in Sect. 3. Two applications are discussed in Sect. 4. Some auxiliary facts are
collected in an appendix.

2 Many-Body Localization Properties andMain Results

In this section we define several properties associated with localized many-body systems.We
focus on characteristics of the dynamics in terms of which our main results are formulated
and restrict ourselves to the one-dimensional setting. All notions make sense for multi-
dimensional systems but, as discussed in the introduction, the phenomenon of many-body
localization as it is commonly understood may well be restricted to one dimension.

Wewill consider subsystems of a chain of quantum systems labeled by x ∈ Z, with a finite-
dimensional Hilbert spaceHx for each x ∈ Z. The Hilbert space of the subsystem associated
with a finite set X ⊂ Z, is given by HX = ⊗

x∈X Hx , and the observables measurable in
this subsystem are given by AX := B(HX ). The elements of Aloc := ⋃

X⊂Z
AX , where the

union is over finite subsets, are called the local observables, whereas the norm completion
of Aloc, denoted by AZ, is the algebra of quasi-local observables. We denote the closed unit
ball of AX by A1

X .
A convenient way to specify a model is with an interaction, which is a map � assigning

to each finite set X ⊂ Z an element �(X) = �(X)∗ ∈ AX . Associated to the interaction �

is the family of local Hamiltonians H� = ∑
X⊂� �(X) ∈ A�, defined for each finite subset

� ⊂ Z. The Heisenberg dynamics generated by a family of local Hamiltonians determined
by an interaction � is defined in the usual way:

τ
H�
t (A) = eit H� Ae−i t H� (2.1)

The interactions � may be random, meaning the following: There is a probability space
(�,F,P), and to each ω ∈ � there is assigned an interaction �(ω). We assume weak
measurability of the random operators ω �→ �(ω)(X) for each finite X ⊂ Z.

A finite range interaction is one for which there exists R ≥ 0 such that �(X) = 0 unless
diamX ≤ R. R is then the range of the interaction. A common way to introduce a model
with a finite-range interaction is to specify self-adjoint hx ∈ A[x,x+R], for each x ∈ Z.

2.1 Dynamical Localization

In the single-particle setting, dynamical localization refers to the absence of ballistic or dif-
fusive propagation in the system’s Schrödinger evolution. Initially localized wave functions
remain localized for all time under the dynamics. A natural analogue of this property in the
setting of quantum spin chains is localization of the Heisenberg dynamics. We consider a
general notion of dynamical localization expressed by the following definition.

Definition 2.1 Let F : Z+ → (0,∞) be a non-increasing function with the property
limx→∞ F(x) = 0.

(i) We say that a family {H� : � ⊂ Z finite intervals} of random local Hamiltonians
H� ∈ A� exhibits dynamical localization with decay function F if there exists a
constant β ≥ 0 and a function χ : N → (0,∞) such that for any sets X , Y ⊆ � with
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Y ⊂ [min X ,max X ]c, the random variable

C�;X ,Y ≡ sup
t∈R

sup
A∈A1

X
B∈A1

Y

‖[τ H�
t (A), B]‖

χ(|X |)(1 + |t |β)
(2.2)

satisfies

EC�;X ,Y ≤ F(d(X , Y )) (2.3)

Here d(X , Y ) = min{|x − y| : x ∈ X , y ∈ Y } is the usual set distance.
(ii) If F is of the form F(x) = e−ηx we say the family {H�} exhibits exponential dynamical

localization. In this case η−1 is called (a bound for) the localization length.
(iii) If F is of the form F(x) = e−ηxρ

for some ρ ∈ (0, 1), we say the family {H�} exhibits
stretched exponential dynamical localization.

(iv) We say the family {H�} exhibits dynamical localization with decay function F uni-
formly in time if it satisfies (i) with β = 0.

The following lemma shows that if a family of local Hamiltonians is dynamically localized
and the corresponding family of local dynamics has a thermodynamic limit, then the infinite
volume dynamics is also dynamically localized with the same decay function.

Lemma 2.2 Suppose that {H�} is a family of dynamically localized Hamiltonians with decay
function F, and that the corresponding family of dynamics {τ H�

t } has a thermodynamic limit.
In other words, there is an exhaustive sequence �n ↑ Z such that almost surely,

lim
n→∞ τ

H�n
t ≡ τt (2.4)

strongly for all t ∈ R, where τt is a ∗-automorphism of Aloc
Z
. Then for any finite set X ⊂ Z

and any set Y ⊆ [min X ,max X ]c, the random variable

CX ,Y ≡ sup
t∈R

sup
A∈A1

X
B∈A1

Y

‖[τt (A), B]‖
χ(|X |)(1 + |t |β)

(2.5)

satisfies

ECX ,Y ≤ F(d(X , Y )) (2.6)

Proof First let X , Y ⊂ Z be finite, with Y ⊂ [min X ,max X ]c. It follows immediately that,

CX ,Y = sup
t∈R

sup
A∈A1

X
B∈A1

Y

‖[τt (A), B]‖
χ(|X |)(1 + |t |β)

≤ lim inf
n→∞ C�n;X ,Y . (2.7)

By Fatou’s lemma, ECX ,Y ≤ F(d(X , Y )). Now suppose Y ⊆ [min X ,max X ]c is infinite.
For any sequence of finite sets Yn ↑ Y , by using local approximations and the fact that CX ,Yn
is monotone in n we obtain

CX ,Y ≤ lim
n→∞CX ,Yn , (2.8)

which proves the lemma. ��
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2.2 Local Integrals of Motion

The lack of ergodicity seen in MBL systems can be ‘explained’ as a consequence the emer-
gence of an extensive set of local conserved quantities, called local integrals of motion
(LIOMs). In this section we propose precise definitions of LIOMs. Heuristic definitions of
LIOMs have been given in the physics literature, [26,40]. LIOMs are thought to account
for most of the phenomena of MBL. See, for example, the review paper [28]. To address
the variety seen in the physics literature we formulate two distinct definitions. Specifically,
Definition 2.3 given below is modeled after the discussion in [26], while Definition 2.6 was
motivated by [10]. We refer to them as LIOMs of the first kind and LIOMs of the second
kind, respectively. We briefly discuss the relation between the two at the end of this section.

In the following definition we restrict our attention to quantum spin chains, for simplicity.
The definition can also be formulated in higher-dimensions. Let dx ≥ 2 denote the dimension
of the Hilbert space at x ∈ Z.

Definition 2.3 (LIOMs of the first kind) Let Hn ∈ A[0,n] be a sequence of random Hamilto-
nians. We say that the sequence Hn has LIOMs of the first kind if the following conditions
are satisfied:

(1) There is a sequence of random unitary maps Un ∈ A[0,n] such that

U∗
n HnUn =

∑

X⊆[0,n]

∑

m∈∏x∈X {2,...,dx }
φn(m, X)

∏

x∈X
Smx ;x , (2.9)

where Sm;x is the operator supported at the site x given by the matrix,

(Sm;x ) jk = δ j,1δk,1 − δ j,mδk,m (2.10)

and the φn(m, X) are random variables satisfying

sup
n

E

⎡

⎢
⎢
⎣ sup
x,y∈[0,n]

1

F(|x − y|)
∑

X⊆[0,n]:
x,y∈X

∥
∥
∥
∥
∥
∥

∑

m∈∏x∈X {2,...,dx }
φn(m, X)

∏

x∈X
Smx ;x

∥
∥
∥
∥
∥
∥

⎤

⎥
⎥
⎦ < ∞.

(2.11)

for some non-increasing function F : Z+ → (0,∞) satisfying limx→∞ F(x) = 0.
(2) The sequence of unitary maps Un is quasi-local, in the sense that for all disjoint finite

subsets X , Y ⊂ 
,

sup
n

E sup
A∈A1

X
B∈A1

Y

‖[U∗
n AUn, B]‖ ≤

∑

x∈X
y∈Y

G(|x − y|), (2.12)

for some non-increasing function G : Z+ → (0,∞) satisfying limx→∞ G(x) = 0.

Remark 2.4 The LIOMs in Definition 2.3 are the quasi-local operators UnSm;xU∗
n . The key

feature of the family {Sm;x }dxm=2 is that the operators are uniformly bounded, are mutually
commuting, and generate a maximal abelian subalgebra of observables. Any other set of
observables with these properties could be used in the definition instead.

The following theorem shows that the Heisenberg dynamics generated by a Hamiltonian
with LIOMs of the first kind satisfies the type of propagation bound expressing dynamical
localization.
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Theorem 2.5 Suppose that the sequence of Hamiltonians Hn has LIOMs of the first kind.
Let X and Y be finite disjoint subsets of Z+. For a set Z ⊂ Z+, let Zn,λ = {x ∈ [0, n] :
d(x, Z) ≤ λd(X , Y )}. Then for λ ∈ (0, 1/2),

sup
A∈A1

X
B∈A1

Y

∥
∥[τ Hn

t (A), B]∥∥ ≤ 2

⎡

⎢
⎢
⎣Dn,X ,λ + Dn,Y ,λ + |t |Cn

∑

x∈Xn,λ

y∈Yn,λ

F(|x − y|)

⎤

⎥
⎥
⎦ , (2.13)

where Dn,X ,λ and Dn,Y ,λ are nonnegative random variables satisfying,

EDn,X ,λ ≤
∑

x∈X
y∈Xc

n,λ

G(|x − y|) and EDn,Y ,λ ≤
∑

x∈Y
y∈Y c

n,λ

G(|x − y|), (2.14)

and

Cn(ω) = sup
x,y∈[0,n]

1

F(|x − y|)
∑

X⊆[0,n]:
x,y∈X

∥
∥
∥
∥
∥
∥

∑

m∈∏x∈X {2,...,dx }
φn(m, X)

∏

x∈X
Smx ;x

∥
∥
∥
∥
∥
∥

, (2.15)

where by the assumptions in Definition 2.3 we have supn ECn < ∞.

The proof of this theorem is given in Sect. 3.1.
It is natural to ask whether the existence of LIOMs also follows from dynamical localiza-

tion. Indeed, the existence of LIOMs and dynamical localization are regarded as equivalent
properties in the physics literature. It turns out to be convenient to use a slightly different
notion of LIOMs to prove a result in this direction.

Definition 2.6 (LIOMs of the second kind) Suppose that � is a (random) finite range interac-
tion with a thermodynamic limit τt generated by the derivation δ. We say the interaction has
LIOMs of the second kind if there exists a family {Ix }x∈Z of self-adjoint, uniformly bounded
quasi-local observables Ix satisfying the following:

(1) There is a non-increasing function F : Z+ → (0,∞), with limn→∞ F(n) = 0, such
that for all x ∈ Z,

E sup
A∈A1

Y

‖[Ix , A]‖ ≤ F(d(x, Y )). (2.16)

(2) For each x ∈ Z,

δ(Ix ) = 0. (2.17)

(3) For each A ∈ Aloc,

δ(A) = lim
n→∞

n∑

x=−n

[Ix , A], (2.18)

almost surely, i.e. the family
∑n

x=−n Ix of quasi-local Hamiltonians almost surely
generate the same dynamics in the thermodynamic limit as �.

Remark 2.7 In Definition 2.6 we do not assume that the LIOMs Ix commute. From the time
invariance it is necessary that Ix ∈ kerδ, thus if kerδ is abelian the LIOMs will commute. We
expect kerδ to be abelian almost surely, generically for continuous randomness. Note that in
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finite volumes, δ(·) = [H , ·] for a local Hamiltonian H , and simplicity of the spectrum of H
is equivalent to kerδ being an abelian algebra.

The following proposition connects dynamical localization uniform in time with the
‘canonical LIOMs’ introduced in [10].

Theorem 2.8 Suppose a model with finite-range interactions is dynamically localized with
decay function F uniformly in time (β = 0), and that F has a finite first moment:∑∞

x=1 x F(x) < ∞. Then the model has LIOMs of the second kind. Moreover, a LIOM repre-
sentation (canonical in the sense of [10]) can be given explicitly by the following expression:

h̃x = lim
n→∞

1

Tn

∫ Tn

0
τt (hx )dt . (2.19)

where Tn is a suitably chosen (random) strictly increasing sequence in N. The terms h̃x are
time-invariant, and there is a constant C > 0 such that

E

⎛

⎝ sup
B∈A1

Y

‖[h̃x , B]‖
⎞

⎠ ≤ CF(d(x, Y )) (2.20)

for every x ∈ Z.

The proof of this result can be found in Sect. 3.1.
In the definition of LIOMs of the first kind, Definition 2.3, nothing is said on the depen-

dence of the unitaries and the interaction coefficients on the length, n, of the chain. One could
expect however, that a random interaction � can be defined by

�(X) = lim
n→∞

∑

m∈{1,...,d−1}|X |
φn(m, X)

∏

x∈X
Smx ;x , (2.21)

where it should be understood that n here refers to a finite spin chain labeled by [−n, n]. Using
the notion of local convergence in F-norm (see [36, Definition 3.7]), it is then straightforward
to define conditions that ensure the existence of a commuting family of LIOMs of the second
kind.

2.3 Transmission Times

Definition 2.9 Given a Hamiltonian H ∈ A[0,n] and an ε > 0 define the transmission time,
t(ε) of H as,

t(ε) = inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|t | : sup
A∈A1

0
B∈A1

n

∥
∥
∥[τ H

t (A), B]
∥
∥
∥ > ε

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (2.22)

Suppose we have a sequence Hn ∈ A[0,n] of Hamiltonians with associated transmission
times tn(ε). It is reasonable to expect that dispersive effects may cause the commutator
defining the transmission time to never exceed some fixed ε > 0 for large values of n. If this
occurs then tn(ε)will cease to be a meaningful quantity. For this reason we should consider a
sequence εn , suitably decaying in n, and instead consider the sequence of transmission times
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tn(εn). We note that some authors prefer the term ‘scrambling time’ instead of transmission
time [12].

A natural question to ask is whether the transmission time is consistent with the propaga-
tion bounds imposed by a Lieb–Robinson bound. Suppose that the sequence Hn satisfies,

sup
A∈A1

x
B∈A1

y

∥
∥
∥[τ Hn

t (A), B]
∥
∥
∥ ≤ C(eμv|t | − 1)e−μ|x−y| (2.23)

for x �= y, uniformly in n. Such bounds are known to hold for a broad class of quantum spin
models on general lattices [35]. The bound implies that,

tn(εn) ≥ 1

μv
log

(

1 + εneμn

C

)

, (2.24)

in which case

lim sup
n→∞

n

tn(εn)
≤ v (2.25)

provided εn decays subexponentially in n.
We consider slow transport in a quantum spin chain to be characterized by super-linear

growth of the transmission time. For stretched exponential dynamically localized spin chains
the transmission time grows as a stretched exponential, as the next proposition shows.

Proposition 2.10 Suppose that a sequence Hn ∈ A[0,n] of random Hamiltonians exhibits
dynamical localization with decay function F given by F(x) = e−ηxρ

for some ρ ∈ (0, 1].
Then for any positive γ and α such that βγ + α < 1,

eγ ηnρ

tn(e−αηnρ
)

→ 0 (2.26)

almost surely.

Proof For β = 0 it is easy to see that P(tn(e−αηnρ
) = ∞ eventually) = 1. Assume β > 0.

By assumption,

sup
A∈A1

0
B∈An

∥
∥
∥τ

Hn
t (A), B]

∥
∥
∥ ≤ χ(1)Cn(1 + |t |β), (2.27)

where ECn ≤ e−ηnρ
. Choose any δ such that βγ + α < δ < 1. Let

An =
{
χ(1)Cn ≤ e−δηnρ

}
.

By Markov’s inequality,

P(Ac
n) ≤ χ(1)

ECn

e−δηnρ ≤ χ(1)e−(1−δ)ηnρ

.

It follows from the Borel-Cantelli lemma that P(1An = 1 eventually) = 1. (2.27) implies
that,

1An tn(e
−αηnρ

)β ≥ 1An

(
e−αηnρ

χ(1)Cn
− 1

)

≥ (e(δ−α)ηnρ − 1)1An
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Therefore

1An

eγ ηnρ

tn(e−αηnρ
)

≤ eγ ηnρ

(e(δ−α)ηnρ − 1)1/β

Since γ < (δ−α)/β and1An = 1 eventuallywith probability 1, it follows that eγ ηnρ

tn(e−αηnρ
)

→ 0
almost surely. ��

In the case of exponential dynamical localization there exists a family of perturbations
such that the perturbed model still has long transmission times. These perturbations consist
of additional nearest neighbor interactions that occur with low density at random positions.
For this class of perturbations we can prove that the transmission time grows super linearly
provided the perturbations are sufficiently sparse1.

Theorem 2.11 Let H0
n ∈ A[0,n] be a sequence of random Hamiltonians defined over the

probability space (�0,P0) which are exponentially dynamically localized in the sense of
Definition 2.1 (ρ = 1). Let (δx )

∞
x=0 be an i.i.d. sequence of Bernoulli random variables

over the probability space (�1,P1), with P1(δ0 = 0) = p ∈ (0, 1]. Let (ψx )
∞
x=0 denote a

uniformly bounded sequence with ψx ∈ A[x,x+1] for all x. Consider the sequence of random
Hamiltonians

Hn(ω) = H0
n (ω0) +

n−1∑

x=0

δx (ω1)ψx ; (2.28)

over the probability space�0×�1 equippedwith the productmeasure. If tn is the transmission
time of Hn, then for any γ > 0 and α ∈ (0, 1/3) satisfying

η

(
1 − 3α

1 − α

)

> 2[(β + 1)γ − 1] log
(
1

p

)

, (2.29)

nγ

tn(e−αηn)
→ 0 (2.30)

in probability.

Unfortunately we do not know how to prove a similar robustness result for models with
a decay function F that decays slower than exponentially. For example, certain anisotropic
XY chains are only known to exhibit stretched exponential dynamical localization, as we
note in Sect. 4.1

Theorem 2.11 concerns finite volume Hamiltonians. The following theorem shows that in
certain cases one can work directly with the thermodynamic limit.

Theorem 2.12 Suppose that �0 is a random interaction over the probability space (�0,P0)

whose finite volume Hamiltonians are exponentially dynamically localized. Suppose that
(δx )x∈Z is a sequence of i.i.d. Bernoulli randomvariables over the probability space (�1,P1),
with P1(δ0 = 0) = p ∈ (0, 1]. Let (ψx )x∈Z denote a uniformly bounded sequence with
ψx ∈ A[x,x+1] for all x. Let �1 be the random nearest neighbor interaction given by,

�1({x, x + 1}) = δxψx (2.31)

for all x ∈ Z. Define the random interaction �(ω) = �0(ω0)+�1(ω1) over the probability
space �0 × �1 equipped with the product measure. If, for almost every ω0 ∈ �0, there is a

1 After this work appeared on the arXiv, similar perturbations were considered by De Roeck, Huveneers, and
Olla, who proved subdiffusive dynamics in classical Hamiltonian chains [16].
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(possibly random) F-function F such that �0 is F-normed, then the thermodynamic limit,
τt , of � exists almost surely. For any fixed r ∈ N, define

tn(ε) = inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|t | : sup
A∈A1[−r,0]
B∈A1[n,∞)

‖[τt (A), B]‖ > ε

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (2.32)

Then for any γ > 0 and α ∈ (0, 1/3) satisfying

η

(
1 − 3α

1 − α

)

> 2[(β + 1)γ − 1] log
(
1

p

)

, (2.33)

nγ

tn(e−αηn)
→ 0 (2.34)

in probability.

3 Proofs of Main Results

3.1 Proofs of Results About LIOMs

Showing that LIOMs of the fist kind imply dynamical localization is a straightforward appli-
cation of the quasi-locality properties of the LIOMs.

Proof of Theorem 2.5 For any A ∈ A1
X , B ∈ A1

Y ,
∥
∥
∥[τ Hn

t (A), B]
∥
∥
∥ =

∥
∥
∥[τ H̃n

t ( Ã), B̃]
∥
∥
∥, (3.1)

where Õ = U∗
n OUn for an observable O . Using the quasi-locality of the unitaryUn specified

in Eq. (2.12), by a standard application of conditional expectations (see, for example, [36,
Section IV.A]), we can find (random) local observables Aλ ∈ AXn,λ and Bλ ∈ AYn,λ , with
‖An,λ‖, ‖Bn,λ‖ ≤ 1 such that,

‖ Ã − Aλ‖ ≤ Dn,X ,λ (3.2)

‖B̃ − Bλ‖ ≤ Dn,Y ,λ, (3.3)

where Dn,X ,λ and Dn,Y ,λ have the desired expectation bound. Therefore,
∥
∥
∥[τ H̃n

t ( Ã), B̃]
∥
∥
∥ ≤ 2

(
DX ,λ,n + DY ,λ,n

)+
∥
∥
∥[τ H̃n

t (Aλ), Bλ]
∥
∥
∥. (3.4)

Now,
∥
∥
∥[τ H̃n

t (Aλ), Bλ]
∥
∥
∥ =

∥
∥
∥[τ H̃X ,Y

t (Aλ), Bλ]
∥
∥
∥ (3.5)

where

H̃X ,Y (ω) =
∑

Z⊂[0,n]:
Z∩Xn,λ,Z∩Yn,λ �=∅

∑

m∈∏x∈Z {2,...,dx }
φn(m, Z)

∏

z∈Z
Smz;z (3.6)
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Note that H̃X ,Y consist of the terms of H̃n which do not in general commute with either Aλ

or Bλ. If f (t) = [τ H̃X ,Y
t (Aλ), Bλ], then

f ′(t) = i
[[

H̃X ,Y , τ
H̃X ,Y
t (Aλ)

]
, Bλ

]
= −i[ f (t), H̃X ,Y ] − i

[
[Bλ, H̃X ,Y ], τ H̃X ,Y

t (Aλ)
]

(3.7)

Since the first term on the right is norm preserving, we have that,
∥
∥
∥[τ H̃X ,Y

t (Aλ), Bλ]
∥
∥
∥ ≤ 4|t |‖H̃X ,Y ‖. (3.8)

The estimate,

‖H̃X ,Y ‖ ≤
∑

Z⊂[0,n]:
Z∩Xn,λ,Z∩Yn,λ �=∅

∥
∥
∥
∥
∥
∥

∑

m∈∏x∈Z {2,...,dx }
φn(m, Z)

∏

z∈Z
Smz;z

∥
∥
∥
∥
∥
∥

≤
∑

x∈Xn,λ

y∈Yn,λ

∑

Z :
x,y∈Z

∥
∥
∥
∥
∥
∥

∑

m∈∏x∈Z {2,...,dx }
φn(m, Z)

∏

z∈Z
Smz;z

∥
∥
∥
∥
∥
∥

≤ Cn(ω)
∑

x∈Xn,λ

y∈Yn,λ

F(|x − y|),

together with (3.4) completes the proof.

��
The existence of LIOMs of the second kind for uniform-in-time dynamically localized

systems follows from a combination of quasi-locality arguments and compactness.

Proof of Theorem 2.8 We first show how to construct a sequence Tn for which the limit in
(2.19) exists almost surely for any dynamics that is sufficiently localized uniformly in time.
For A ∈ A1

X and T > 0, define

AT = 1

T

∫ T

0
τt (A)dt .

AT is random since τt is.
For each N ∈ N, let �N denote the conditional expectationAloc → AX(N ) defined as the

limit of the normalized partial trace over the complement of X(N ) = {y ∈ Z : d(y, X) < N }
(see [36, Section 4.2]). Since the dynamics τt is assumed to satisfy (2.3), we have

E(sup
T

‖�N (AT ) − AT ‖) ≤ CF(N ) (3.9)

where C = 2χ(|X |). In particular,
∑∞

N=1 F(N ) < ∞ implies that

lim
N

sup
T

‖�N (AT ) − AT ‖ = 0 almost surely (3.10)

Since A1
X(N ) is compact, there exists a sequence (T (N )

n )n≥1, and A(N ) ∈ A1
X(N ) such that

lim
n

�N (A
T (N )
n

) = A(N ).

We can pick the sequences (T (N )
n )n≥1 such that (T

(N+1)
n )n≥1 is a subsequence of (T (N )

n )n≥1,
for all N . Fix ε > 0, and let N ≤ M . Choose K (N , M) such that for all n ≥ K (N , M), we
have

‖�N (A
T (N )
n

) − A(N )‖ ≤ ε, ‖�M (A
T (M)
n

) − A(M)‖ ≤ ε.
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Since N ≤ M , (T (M)
n )n≥1 is a subsequence of (T (N )

n )n≥1. Therefore, we also have

‖�N (A
T (M)
n

) − A(N )‖ ≤ ε, for all n ≥ K (N , M).

Using these bounds we have

‖A(N ) − A(M)‖ ≤ 2ε + ‖�N (A
T (M)
n

) − �M (A
T (M)
n

)‖
≤ 2ε + ‖�N (A

T (M)
n

) − A
T (M)
n

‖ + ‖�M (A
T (M)
n

) − A
T (M)
n

‖
≤ 2ε + sup

T
‖�N (AT ) − AT ‖ + sup

T
‖�M (AT ) − AT ‖.

Since ε > 0 is arbitrary, this estimate along with (3.10) shows that (A(N ))N is almost surely
a Cauchy sequence in AZ. Denote its limit by Ã.

We can now pick an increasing sequence KN such that for all n ≥ KN we have

‖�N (A
T (N )
n

) − A(N )‖ ≤ 1

N
.

Then

lim
N

�N (A
T (N )
KN

) = lim
N

A(N ) = Ã.

Since we also have

‖�N (A
T (N )
KN

) − A
T (N )
KN

‖ ≤ sup
T

‖�N (AT ) − AT ‖,

we can conclude the convergence of the sequence of time averages:

lim
N

A
T (N )
KN

= Ã. (3.11)

The time-invariance of Ã is obvious from the fact that it is the limit of time averages as in
(3.11). By taking the lim sup of (3.9) we also obtain a quasi-locality estimate for Ã:

E(‖[ Ã, B]‖) ≤ CF(d(X , suppB)) (3.12)

We can now apply this to A = hx and, possibly after taking another subsequence, obtain
a sequence of times Tn such that for all x ∈ Z,

h̃x = lim
n→∞

1

Tn

∫ Tn

0
τt (hx )dx . (3.13)

are well-defined, time-invariant, and quasi-local. The model is assumed to be finite range, so
the constant C can be chosen to be uniform in x .

Finally, the quasi-local Hamiltonians H̃� defined by

H̃� =
∑

x∈�

h̃x ,

generate the same dynamics τt in the thermodynamic limit. To see the last point we once
more have to argue we can interchange two limits, which we do next.

Let X be finite, A ∈ A1
X , and ε > 0 . Fix a sufficiently large positive integer M such that

for all � containing X(M) we have
∑

x∈�

[hx , A] = δ(A). (3.14)
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Then, we have

‖δ(A) − δ̃(A)‖ ≤
∥
∥
∥
∥
∥

∑

x∈�

[hx , A] −
∑

x∈�

[h̃x , A]
∥
∥
∥
∥
∥

+
∑

x /∈�

‖[h̃x , A]‖ (3.15)

Then, for any L, n ∈ N, starting from (3.15), we obtain the following estimate:

‖δ(A) − δ̃(A)‖ ≤
∥
∥
∥
∥
∥
∥

∑

x∈X(M+L)

[hx , A] −
∑

x∈X(M+L)

[h̃x , A]
∥
∥
∥
∥
∥
∥

+
∑

x /∈X(M+L)

‖[h̃x , A]‖

=
∥
∥
∥
∥
∥
∥

⎡

⎣

⎛

⎝
∑

x∈X(M+L)

1

Tn

∫ Tn

0
τ

(X(M+L))
t (hx )

⎞

⎠ , A

⎤

⎦−
∑

x∈X(M+L)

[h̃x , A]
∥
∥
∥
∥
∥
∥

+
∑

x /∈X(M+L)

‖[h̃x , A]‖

≤
∑

x∈X(M+L)\X(M)

(

sup
t∈R

‖[τ (X(M+L))
t (hx ), A]‖ + ‖[h̃x , A]‖

)

+
∥
∥
∥
∥
∥
∥

∑

x∈X(M)

[
1

Tn

∫ Tn

0
τ

(X(M+L))
t (hx ) dt − h̃x , A

]
∥
∥
∥
∥
∥
∥

+
∑

x /∈X(M+L)

‖[h̃x , A]‖

Therefore, almost surely

‖δ(A) − δ̃(A)‖ ≤ lim inf
L→∞

∑

x /∈X(M)

(

sup
t∈R

‖[τ (X(M+L))
t (hx ), A]‖ + ‖[h̃x , A]‖

)

+
∥
∥
∥
∥
∥
∥

∑

x∈X(M)

[
1

Tn

∫ Tn

0
τt (hx ) dt − h̃x , A

]
∥
∥
∥
∥
∥
∥

Letting n → ∞ in this inequality gives,

‖δ(A) − δ̃(A)‖ ≤ lim inf
L→∞

∑

x /∈X(M)

(

sup
t∈R

‖[τ (X(M+L))
t (hx ), A]‖ + ‖[h̃x , A]‖

)

almost surely. By Fatou’s lemma,

E lim inf
L→∞

∑

x /∈X(M)

(

sup
t∈R

∥
∥
∥
[
τ

(X(M+L))
t (hx ), A

]∥
∥
∥+ ‖[h̃x , A]‖

)

≤ 4C
∞∑

d=M

F(d)

This upper bound is summable in M , therefore,

lim
M→∞ lim inf

L→∞
∑

x /∈X(M)

(

sup
t∈R

‖[τ (X(M+L))
t (hx ), A]‖ + ‖[h̃x , A]‖

)

= 0

almost surely, which proves that δ(A) = δ̃(A) with probability 1.

��
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3.2 Proofs of Results About Transmission Time

Wewill prove Theorem 2.11 by utilizing the interaction picture decomposition of the Heisen-

berg dynamics τ
Hn
t = τ

H I
n

t ◦τ
H0
n

t , where H I
n is the time dependent randomHamiltonian given

by,

H I
n (ω, t) =

n−1∑

x=0

δx (ω1)τ
H0
n (ω0)

t (ψx ) (3.16)

We make use of this decomposition of the dynamics in the following way: for an integer

dn ∈ [0, n], for any A ∈ A1
0 by quasilocality of the the dynamics τ

H0
n

t we can write

τ
H0
n (ω0)

t (A) = Ã(ω0, t) + E(ω0, t), (3.17)

where supp( Ã) ⊂ [0, dn], ‖ Ã‖ ≤ 1 and

‖E(ω0, t)‖ ≤ χ(1)Cdn (ω0)(1 + |t |β) (3.18)

where ECdn ≤ e−η(dn+1). Eq. (3.17) gives the following bound,

sup
A∈A1

0
B∈A1

n

∥
∥
∥[τ Hn(ω)

t (A), B]
∥
∥
∥ ≤ 2χ(1)Cdn (ω0)(1 + |t |β) + sup

A∈A1[0,dn ]
B∈A1

n

∥
∥
∥
∥τ

H I
n (ω)

t (A), B]
∥
∥
∥
∥ .(3.19)

To proceed we will need to derive a suitable Lieb–Robinson bound for the dynamics τ
H I
n

t .
The first step in deriving such a bound is to write H I

n in terms of a suitable time dependent
random interaction.

First we introduce some notation. Let�n = [0, n] and�n;x (m) = {y ∈ �n : d(y, {x, x+
1}) ≤ m}. We write

τ
H0
n (ω0)

t (ψx ) =
∑

m≥0

ψ
(m)
n;x (ω0, t), (3.20)

where

ψ
(m)
n;x (t) =

⎧
⎪⎪⎨

⎪⎪⎩

TrH�n\�n;x (0)

(

τ
H0
n

t (ψx )

)

if m = 0

[TrH�n\�n;x (m)
− TrH�n\�n;x (m−1) ]

(

τ
H0
n

t (ψx )

)

if m ≥ 1
(3.21)

Here Tr denotes the normalized partial trace operator. Note that the sum in Eq. (3.20) is
actually a finite sum, since ψ

(m)
n;x = 0 for any m such that �n;x (m − 1) = �n .

Proposition 3.1 supp(ψ(m)
n;x (t)) ⊆ �n;x (m) for all m ≥ 0 and

‖ψ(m)
n;x (t)‖ ≤

{
‖ψx‖ if m = 0

‖ψx‖C (m)
n;x (1 + |t |β) if m ≥ 1

(3.22)

where C (m)
n;x is a non-negative random variable satisfying

EC (m)
n;x ≤ 2χ(2)e−ηm (3.23)
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Proof supp(ψ(m)
n;x (t)) ⊆ �n;x (m) follows from properties of the partial trace. The bound

‖ψ(0)
n;x (t)‖ ≤ ‖ψx‖ is immediate. For m ≥ 1,

‖ψ(m)
n;x (t)‖ ≤

∥
∥
∥
∥τ

H0
n

t (ψx ) − TrH�n\�n;x (m)

(

τ
H0
n

t (ψx )

)∥
∥
∥
∥

+
∥
∥
∥
∥τ

H0
n

t (ψx ) − TrH�n\�n;x (m−1)

(

τ
H0
n

t (ψx )

)∥
∥
∥
∥ (3.24)

≤ ‖ψx‖χ(2)
(
C�n;�x ,�n\�n;x (m) + C�n;�x ,�n\�n;x (m−1)

) |t |β (3.25)

≡ ‖ψx‖C (m)
n;x (1 + |t |β). (3.26)

The expectation bound on C (m)
n;x follows from the assumptions. ��

The decomposition given in Eq. (3.20) provides a way to write H I
n (t) in terms of a random

interaction. Define �n(ω, t) : P(�n) → A�n by,

�n(ω, t)(X) =
∑

(x,m):
�n;x (m)=X

δx (ω1)ψ
(m)
n;x (ω0, t). (3.27)

Then H I
n = ∑

X⊆[0,n] �n(X) follows from Eq. (3.20).
Wewill useTheorem3.1 of [36] in order to obtain aLieb–Robinsonbound for the dynamics

generated by H I
n . If we apply that theorem directly to �n , with a suitable decaying function

F , we obtain a Lieb–Robinson bound with a time growth factor of

exp

⎛

⎜
⎜
⎝

∫ t

0
sup

x,y∈[0,n]
1

F(|x − y|)
∑

X⊆[0,n]
x,y∈X

‖�n(ω, s)(X)‖ds

⎞

⎟
⎟
⎠ (3.28)

This will not be of any use to us, as

sup
x,y∈[0,n]

1

F(|x − y|)
∑

X⊆[0,n]
x,y∈X

‖�n(ω, s)(X)‖ (3.29)

will be of order 1 due to the presence of non-zero δx . To remedy this we observe that the
methods used in [36] produce Lieb–Robinson bounds which are independent of on-site terms
in the interaction and also do not depend on the dimension of the Hilbert spaces at each site.
This allows us to define a new lattice for the model, which is effectively a subset of [0, n], by
identifying certain spins which forces certain interaction terms to become on-site terms. As
we explain below, we will be able to obtain a better Lieb–Robinson bound using this method.
Specifically, given 
 ⊂ [0, n], we can define the lattice to obtain a Lieb–Robinson bound for
the dynamics generated by H I

n with a time growth factor of

exp

⎛

⎜
⎜
⎝

∫ t

0
sup
x,y∈


1

F(|x − y|)
∑

X⊆[0,n]
x,y∈X

‖�n(ω, s)(X)‖ds

⎞

⎟
⎟
⎠ . (3.30)

Note than in Eq. (3.30) the supremum in the exponent is taken over pairs of points x, y ∈ 
,
as opposed to in Eq. (3.28) where all possible pairs of points in [0, n] enter. The sum in Eq.
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(3.30) therefore excludes any interaction term whose support does not contain a point of 
.
The arguments for obtaining such a Lieb–Robinson bound given the subset 
 are given in
detail in the appendix.

It remains to specify how 
 should be chosen. We know that intervals I of length L ∼
log1/p(n) with the property that δx = 0 for all x ∈ I exist with high probability. The
interaction terms�n(X)decay exponentially in the diameter of X , so the sumof all interaction
terms linking sites x, y ∈ I will decay exponentially in the distance d({x, y}, I c). This
suggests that we take 
 to consist of the intervals I with a collar of length � removed from
both sides. The interaction terms linking sites x, y ∈ 
 will then decay at least as fast as
e−η�. Taking � to be a fraction of L leads to power law decay in n of the interaction strength.
The following Lemma makes this precise.

Lemma 3.2 Fix n ∈ N and consider the time dependent random interaction �n given by
Eq. (3.27). Let θ ∈ (0, 1) be arbitrary. Consider an event E ⊂ �1 with the following two
properties:

(i) (δ1, . . . , δn−1) is fixed on E
(ii) There are two disjoint intervals I j = [a j , b j ], j = 1, 2, with |I j | ≥ θ log1/p(n) such

that δx
∣
∣
E = 0 for each x ∈ I1 ∪ I2.

For σ ∈ [0, 1/2), let � = �σθ log1/p(n)� and define the collared intervals Ĩ j = [a j +�, b j −
�]. Then for any x, y ∈ Ĩ1 ∪ Ĩ2,

1E (ω1)
∑

X⊆[0,n]:
x,y∈X

‖�n(ω, t)(X)‖ ≤ BE;x,y(ω0)(1 + |t |β), (3.31)

where there is a constant C̃, depending only on η, such that BE;x,y satisfies,
EBE;x,y ≤ C̃n− λησθ

log(1/p) e−(1−λ)η
|x−y|
2 (3.32)

for any λ ∈ (0, 1) .

Proof First note that for any points x < y in [0, n] the following inequality holds,
∑

X⊆[0,n]:
x,y∈X

‖�n(ω, t)(X)‖ ≤
n−1∑

z=0

∑

m≥
max{|z−x |,|z−y+1|}

δz(ω1)‖ψ(m)
n;z (ω0, t)‖. (3.33)

This follows from the fact that max{|z − x |, |z − y + 1|} is the smallest integer m such that
x, y ∈ �n;z(m). Without loss of generality assume a1 < a2, and take x ≤ y ∈ Ĩ2 ∪ Ĩ2.
Suppose x ∈ Ĩs , y ∈ Ĩr with s ≤ r . On the event E , δz(ω1) = 0 if z ∈ I1 ∪ I2, so we have
the bound

1E (ω1)

n−1∑

z=0

∑

m≥
max{|z−x |,|z−y+1|}

δz(ω1)‖ψ(m)
n;z (ω0, t)‖

≤
∑

z /∈I1∪I2

∑

m≥
max{|z−x |,|z−y+1|}

‖ψ(m)
n;z (ω0, t)‖

≤ (sup
x

‖ψx,x+1‖)
∑

z /∈Ir∪Is

∑

m≥
max{|z−x |,|z−y+1|}

C (m)
n;z (ω0)(1 + |t |β) ≡ BE;x,y(ω0)(1 + |t |β).

(3.34)
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By Proposition 3.1,

EBE;x,y ≤ 2(sup
x

‖ψx‖)χ(2)
∑

z /∈Ir∪Is

∑

m≥
max{|z−x |,|z−y+1|}

e−ηm (3.35)

We have,

∑

z /∈Ir∪Is

∑

m≥
max{|z−x |,|z−y+1|}

e−ηm =
⎛

⎝
ar−1∑

z=0

+
as−1∑

z=br+1

+
n−1∑

z=bs+1

⎞

⎠
∑

m≥
max{|z−x |,|z−y+1|}

e−ηm (3.36)

We first estimate,
⎛

⎝
ar−1∑

z=0

+
n−1∑

z=bs+1

⎞

⎠
∑

m≥
max{|z−x |,|z−y+1|}

e−ηm

≤
⎡

⎣
ar−1∑

z=0

∞∑

m=y−z−1

e−ηm +
n−1∑

z=bs+1

∞∑

m=z−x

e−ηm

⎤

⎦

≤
∞∑

k=y−ar

∞∑

m=k

e−ηm +
∞∑

k=bs−x

∞∑

m=k

e−ηm

= 1

(1 − e−η)2
[e−η(y−ar ) + e−η(bs−x)]

≤ 1

(1 − e−η)2
e−η[(y−x)+�], (3.37)

where we used that bs − y, x − ar ≥ � in the last line. The remaining sum in Eq. (3.36)
vanishes when r = s. If r < s then,

as−1∑

z=br+1

∑

m≥
max{z−x,y−z−1}

e−ηm

≤
� y+x−1

2 �−1∑

z=br+1

∞∑

m=y−z−1

e−ηm +
as−1∑

z=� y+x−1
2 �

∞∑

m=z−x

e−ηm

≤
∞∑

k=y−� y+x−1
2 �

∞∑

m=k

e−ηm +
∞∑

k=� y+x−1
2 �−x

∞∑

m=k

e−ηm

≤ 1

(1 − e−η)2

[
e−η(y−� y+x−1

2 �) + e−η(� y+x−1
2 �−x)

]

≤ 1

(1 − e−η)2
e

η
2 e−η(

y−x
2 ) (3.38)

If r < s, then |x − y| ≥ 2� and

e−η(
y−x
2 ) = e−ηλ(

y−x
2 )e−η(1−λ)(

y−x
2 ) ≤ e−λη�e−(1−λ)η(

y−x
2 ) (3.39)
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Therefore,
∑

z /∈I1∪I2

∑

m≥
max{|z−x |,|z−y+1|}

e−ηm ≤ 1

(1 − e−η)2

(
e−η(|x−y|+�) + (1 − δs,r )e

η
2 e−λη�e−(1−λ)η

|x−y|
2

)
,

(3.40)

which together with Eq. (3.35) proves the lemma. ��
We now use Lemma 3.2 to prove that a Lieb–Robinson bound holds for the dynamics τ

H I
n

t
on an event contained in E which has probability nearly that of E for large n.

Lemma 3.3 Assume the hypotheses and notation of Lemma 3.2, with the additional assump-
tion that |I j | ≤ 3

2 log1/p(n) for j = 1, 2. Then for any ν ∈ (0, 1) there is an event WE ⊂ �0

such that for any ξ ∈ (0, 1) there are positive constants c0 and c1, which depend only on
ν, ξ, λ and η, such that

1WE (ω0)1E (ω1) sup
A∈A1[0,a1]
B∈A1

n

∥
∥
∥
∥[τ

H I
n (ω)

t (A), B]
∥
∥
∥
∥ ≤ c0

(

ec1n
− νλησθ

log(1/p) (|t |+|t |β+1) − 1

)

e−ξ
ν(1−λ)η

2 d(I1,I2).

(3.41)

Furthermore, the event WE satisfies,

P(WE ) ≥ 1 − C̃ ′n− (1−ν)λησθ
log(1/p) log1/p(n) (3.42)

where

C̃ ′ = 3C̃

1 − e− (1−ν)(1−λ)η
2

(3.43)

Proof For a fixed pair x, y in Ĩ1 ∪ Ĩ2, by Markov’s inequality and Lemma 3.2,

P

(

BE;x,y ≤ n− νλησθ
log(1/p) e−ν(1−λ)η

|y−x |
2

)

≥ 1 − C̃n− (1−ν)λησθ
log(1/p) e−(1−ν)(1−λ)η

|x−y|
2 (3.44)

Let

WE =
{

BE;x,y ≤ n− νλησθ
log(1/p) e−ν(1−λ)η

|y−x |
2 for all x, y ∈ Ĩ1 ∪ Ĩ2

}

(3.45)

It follows that,

P(WE ) ≥ 1 − C̃n− (1−ν)λησθ
log(1/p)

∑

x≤y:
x,y∈ Ĩ1∪ Ĩ2

e−(1−ν)(1−λ)η
|x−y|
2

≥ 1 − C̃n− (1−ν)λησθ
log(1/p)

∑

x∈ Ĩ1∪ Ĩ2

∞∑

y=x

e−(1−ν)(1−λ)η
|x−y|
2

≥ 1 − 3C̃

1 − e− (1−ν)(1−λ)η
2

n− (1−ν)λησθ
log(1/p) log1/p(n) (3.46)

Let F be any F-function on Z such that for any c > 0,

sup
x∈Z

e−c|x |

F(|x |) < ∞. (3.47)
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Then by Lemma 3.2 and the definition of WE we have that,

1E∩WE (ω) sup
x,y∈ Ĩ1∪ Ĩ2

1

e−ξ
ν(1−λ)η

2 |x−y|F(|x − y|)
∑

X⊆[0,n]:
x,y∈X

‖�n(ω, t)(X)‖

≤ n− νλησθ
log(1/p) sup

x,y∈ Ĩ1∪ Ĩ2

e−ν(1−ξ)(1−λ)η
|y−x |
2

F(|x − y|)

≤ n− νλησθ
log(1/p) sup

x∈Z
e− ν(1−ξ)(1−λ)η

2 |x |

F(|x |) (3.48)

The result now follows from Proposition A.2 in the appendix, using the collection I =
{ Ĩ1, Ĩ2}. ��

From Lemma 3.3, we see that the best Lieb–Robinson bound will be obtained on events
E where the intervals I1 and I2 are as far apart as possible. This in fact occurs with high
probability: Let θ ∈ (0, 1) and suppose Fn is the event that there are two intervals of con-
secutive 0’s of length at least θ log1/p(n) in n i.i.d. Bernoulli trials, such that the distance rn
between the intervals satisfies lim rn/n = 1. Then the probability of Fn tends to 1 as n tends
to infinity. This can be seen by noting that if θ ′ ∈ (θ, 1), then the longest run Rn of zeros in
�nθ ′ � i.i.d. Bernoulli trials has the property that

Rn

θ ′ log1/p(n)
→ 1 (3.49)

in probability. Therefore, with a probability tending to 1, there is an interval of length at least
θ log1/p(n) in both the first and last �nθ ′ � trials in n Bernoulli trials. The distance between

these two intervals is at least n − 2nθ ′
.

Proof of Theorem 2.11 We will prove the result for β > 0. The case β = 0 requires only
minor modifications. We will show that under the hypotheses of the theorem there is a
sequence of events Qn with limn→∞ P(Qn) = 1, and a deterministic sequence xn satisfying
limn→∞ nγ /xn = 0 such that

1Qn tn(e
−αηn) ≥ xn . (3.50)

From this it easily follows that nγ /tn(e−αηn) → 0 in probability.

Let κ ∈ (α, 1). Our starting point is Eq. (3.19), with dn = �κn�. Consider the event
Fn = {2χ(1)Cdn ≤ n−(γβ+1)e−αηn}. By Markov’s inequality,

P(Fn) ≥ 1 − 2χ(1)nγβ+1e−(κ−α)ηn . (3.51)

It follows from Eq. (3.19) that,

1Fn (ω0) sup
A∈A1

0
B∈A1

n

∥
∥
∥[τ Hn(ω)

t (A), B]
∥
∥
∥ ≤ (1 + |t |β)n−γβ+1e−αηn + sup

A∈A1[0,dn ]
B∈A1

n

∥
∥
∥
∥τ

H I
n (ω)

t (A), B]
∥
∥
∥
∥ .

(3.52)

Choose θ ∈ (0, 1), and let Gn ⊂ �1 denote a sequence of events in which there are
two runs of zeros in the list (δdn , . . . , δn−1) of length at least θ log1/p(n) and no more than
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3
2 log1/p(n), and such that if rn denotes the distance between the two runs, limn→∞ rn/n →
(1 − κ). We have observed that such a sequence can be chosen with limn→∞ P(Gn) = 1.
Write,

Gn =
⊔

E∈Fn

E, (3.53)

where Fn is the set of events E ⊂ �1 on which (δdn , δdn+1, . . . δn−1) is fixed. Consider an
event E ∈ Fn . By Lemma 3.3 we have that,

1WE (ω0)1E (ω1) sup
A∈A1[0,dn ]
B∈A1

n

∥
∥
∥
∥[τ

H I
n (ω)

t (A), B]
∥
∥
∥
∥ ≤ c0

(

ec1n
− νλησθ
log(1/p) (|t |+|t |β+1) − 1

)

e−ξ
ν(1−λ)η

2 rn .

(3.54)

Note that Eq. (3.51) and Lemma 3.3 imply that for each E ∈ Fn ,

P(WE ∩ Fn) ≥ 1 − 2χ(1)nγβ+1e−(κ−α)ηn) − C̃ ′n− (1−ν)λησθ
log(1/p) log1/p(n) ≡ Xn . (3.55)

Clearly Xn → 1 as n → ∞. Now define Qn = �E∈Fn E ∩ WE ∩ Fn . By independence and
Eq. (3.55),

P(Qn) =
∑

E∈Fn

P(E)P(WE ∩ Fn) ≥ Xn

∑

E∈Fn

P(E) = XnP(Gn), (3.56)

which shows that P(Qn) → 1 as n → ∞.

We now show that the transmission time has a deterministic lower bound on the event Qn .
Eqs. (3.52) and (3.54) give the bound,

1Qn (ω) sup
A∈A1

0
B∈A1

n

∥
∥
∥[τ Hn(ω)

t (A), B]
∥
∥
∥ ≤ (1 + |t |β)n−(γβ+1)e−αηn

+c0

(

ec1n
− νλησθ
log(1/p) (|t |+|t |β+1) − 1

)

e−ξ
ν(1−λ)η

2 rn

(3.57)

It follows that

1Qn tn(e
−αηn) ≥ min{( 12nγβ+1 − 1)

1
β , Yn} ≡ xn, (3.58)

where

Yn =
⎡

⎣n
λησθ

log(1/p)

2c1
log

(

1 + 1

2c0
e(ξ

ν(1−λ)
2

rn
n −α)ηn

)
⎤

⎦

1
β+1

. (3.59)

Since limn→∞ rn/n = (1 − κ), we have that

n(
νλησθ
log(1/p) +1)/(β+1)

Yn
(3.60)
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converges to a positive constant, provided

ξ
ν(1 − λ)(1 − κ)

2
> α (3.61)

One can check that Eq. (3.61) can be satisfied only if α < 1/3. In this case, ν and ξ close to
1 can be chosen so Eq. (3.61) is satisfied only if

κ ∈ (α, 1 − 2α) and λ ∈ (0, 1 − 2α

1 − κ
). (3.62)

If Eq. (3.61) is satisfied, then Eq. (3.60) implies that

lim
n→∞

nγ

Yn
= 0 (3.63)

provided

η >
[γ (β + 1) − 1]

νλσθ
log(1/p). (3.64)

We conclude that if Eq. (3.64) is satisfied, then nγ /xn → 0.

We can choose parameters so Eq. (3.64) is satisfied if η is larger than

inf
[γ (β + 1) − 1]

νλσθ
log(1/p) = 2[γ (β + 1) − 1]

1 − 2α
1−α

log(1/p), (3.65)

where the infimum is taken over parameter values satisfying Eqs. (3.62) and (3.61). ��
The following general proposition is needed to adapt the proof of Theorem 2.11 to the
thermodynamic limit.

Proposition 3.4 Suppose �1,�2 : P0(Z) → Aloc
Z

are two F-norm bounded interactions

with respect to some F-function. Let H j
� = ∑

X⊆� � j (X) denote the corresponding local
Hamiltonians for each finite volume � ⊂ Z. Let τt denote the thermodynamic limit of the
model �1 + �2. Then the following limit holds,

τt = lim
�2↑Z

lim
�1↑Z

τ
H1

�1
+H2

�2
t (3.66)

where the limits are taken along any increasing, exhaustive sequences of finite subsets of

Z. For each finite � ⊂ Z, lim�1↑Z τ
H1

�1
+H2

�

t can be expressed in terms of the interaction
picture:

lim
�1↑Z

τ
H1

�1
+H2

�

t = τ
�,I
t ◦ τ 0t , (3.67)

where τ 0t is the thermodynamic limit of the model �1, and τ
�,I
t is the dynamics generated

by the time-dependent, quasi-local Hamiltonian τ 0t (H2
�).

Armed with Proposition 3.4, the proof of Theorem 2.12 is nearly identical to the proof
of Theorem 2.11. Using the decomposition (3.67), one can show that the bound (3.41) in

Lemma 3.3 holds with τ
H I
n

t replaced by τ
�,I
t , uniformly for intervals � ⊇ [0, n]. One can

then obtain the bound (3.57) with τ
Hn
t replaced by τ

I ;�
t ◦ τ 0t . Taking the limit � ↑ Z gives

this bound for the thermodynamic limit, and the proof proceeds exactly as before.
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4 Applications

As mentioned before, MBL in the sense of dynamical localization without an energy restric-
tion, has been rigorously established only for the random XY chain and partial results exists
for the quantum Ising chain. Naturally, applications of the results in this paper, at themoment,
are also restricted to these two models. An extension we will not discuss in detail here is
to fermion chains. Our arguments go through without change as long the same obvious
analogous conditions are satisfied. Generalizing in another direction, one could consider
non-random quasi-periodic chains with localization properties such as the Fibonacci chain
[32] or the fermion models studied by Mastropietro [33,34].

4.1 The Disordered XY Chain

Consider three real-valued sequences μ j , γ j and ω j . These sequences may be random. The
finite volume anisotropic XY Hamiltonian in an external field in the z-direction is given by
the Hamiltonian

HXY
n =

n−1∑

j=0

μ j [(1 + γ j )σ
x
j σ

x
j+1 + (1 − γ j )σ

y
j σ

y
j+1] + λ

n∑

j=0

ω jσ
z
j , (4.1)

acting on
⊗n

x=0 C
2. Here σ x

j , σ
y
j , σ

z
j ∈ A j denote the Pauli spin matrices acting on the j th

spin. It is well known that the many-body XY Hamiltonian can be written in terms of an
effective one-body Hamiltonian via the Jordan-Wigner transformation [30]:

HXY
n = C∗MnC, (4.2)

where Ct = (c0, . . . , cn, c∗
0, . . . , c

∗
n) is a column vector of operators c j given by

c j = 1

2
(σ x

j − iσ y
j )

j−1∏

k=0

σ z
k ,

and Mn is a 2 × 2 block matrix,

Mn =
(

An Bn

−Bn −An

)

with

An =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω0 −μ0 0 0 0

−μ0
. . .

. . . 0 0

0
. . .

. . .
. . . 0

0 0
. . .

. . . −μn

0 0 0 −μn ωn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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and

Bn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −μ0γ0 0 0 0

μ0γ0
. . .

. . . 0 0

0
. . .

. . .
. . . 0

0 0
. . .

. . . −μnγn
0 0 0 μnγn 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The following result was proved in [25]:

Theorem 4.1 Suppose that the matrices Mn are exponentially dynamically localized in the
following sense: there exist positive constants C and η such that for any integers n ≥ 0 and
j, k ∈ [0, n + 1],

E

[

sup
t∈R

|(e−i tMn ) j,k | + |(e−i tMn ) j,n+k+1|
]

≤ Ce−η| j−k|. (4.3)

Then theHeisenberg dynamics τ
HXY
n

t of the XY -chain is exponentially dynamically localized,
uniformly in time, with χ(x) = 4x .

Theorem4.1 shows that if the sequencesμ j , γ j andω j are such that dynamical localization
for the Mn holds, then Theorem 2.11 applies to the XY chain. If, in addition sup j μ j and
sup j γ j are almost surely finite, then the XY chain satisfies the hypotheses of Theorem 2.12.

There are several instances in which the matrices Mn are known to satisfy (4.3). For
example, if γ j = 0 and μ j = 1 for all j , and the ω j are i.i.d. with compactly supported
density, then Bn = 0 and An is the finite volumeAndersonmodel. In this case it is well known
that (4.3) holds [29]. In [22] a large class of random block operators were shown to exhibit
exponential dynamical localization at high disorder. Under the assumption that μ j and γ j

are deterministic and bounded, and that the ω j are i.i.d. with sufficiently smooth distribution,
this class of random block operators includes Mn and (4.3) holds for sufficiently large |λ|.
Therefore in these models the conditions of Theorems 2.8, 2.11 and 2.12 are satisfied.

The anisotropic case was also investigated in [11]. The methods there prove localization
of the Mn for ω j with compactly supported distribution contained in (−∞,−2) or (2,∞).
For these results smoothness of the distribution is not needed, however the method produces
a bound with a stretched exponential, not an exponential as in (4.3). This localization bound
is shown to imply a uniform in time localization bound for the XY chain where the decay is
given by a stretched exponential. Therefore disordered anisotropic XY models have LIOMs,
as shown by Theorem 2.8, but our results do not imply robustness of long transmission times
under perturbation.

4.2 The Quantum Ising Chain

Another model that has been widely discussed in the literature is the quantum Ising with
random coefficients. For concreteness, consider the following family of Hamiltonians for a
spin-1/2 systems on a chain [a, b] ⊂ Z:

H[a,b] =
b−1∑

x=a

Jxσ
3
x σ 3

x+1 +
b∑

x=a

γ
xσ
1
x + hxσ

3
x , (4.4)
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where (Jx ), (
x ), and (hx ) are three independent sequences of i.i.d. random variables, each
with bounded density of compact support.

Mathematical work by John Imbrie and a variety of numerical results point towards the
existence of a description of this model in terms of LIOMs of the first kind (Definition 2.3).
To state the various claims we need to introduce the assumptions made by Imbrie [27]. Let
λ

[a,b]
α denote an enumeration of the eigenvalues, which are almost surely simple.

Imbrie’s Assumption: There exist γ0, such that for all γ ∈ (−γ0, γ0), there exists constants
ν,C > 0, such that for all δ > 0, a < b ∈ Z we have

P

(

min
α �=β

|λ[a,b]
α − λ

[a,b]
β | < δ

)

≤ δνCb−a+1. (4.5)

In [27] Imbrie uses a systematic perturbation theory which, under his assumptions, he
argues combines with a multi-scale analysis to prove detailed properties about the eigenvec-
tors of the Hamiltonians H[a,b] for sufficiently small γ , uniformly in the length of the chain.
We should note, however, that among experts in the multiscale analysis approach to proving
localization there is no agreement that such an argument can indeed be carried out along the
lines described in [27].

In the reviewpaper [28, Section 4.3] the following implications of the perturbation analysis
of [27] are stated: H[a,b] is diagonalized by a quasi-local unitary transformation and the
resulting energy eigenvalues when labeled by Ising configurations take the form of a random
Ising model with multi-spin interactions of strong decay, i.e., something very similar to the
LIOM picture we define in Definition 2.3. The LIOM representation is explained by starting
from Imbrie’s localization property for the eigenvectors ψ [a,b] which reads as follows: there
exists κ > 0 such that for all sufficiently long finite intervals [a, b] containing the origin one
has

∣
∣
∣
∣
∣
1 − E

[
∑

α

ρα|〈ψα, σ 3
0 ψα〉|

]∣
∣
∣
∣
∣
≤ γ κ,

where ρα is a probability distribution such as

ρα = e−βλ
[a,b]
α

∑
γ e−βλ

[a,b]
γ

.

In the spirit of these results it appears that the disordered quantum Ising chain may indeed
be a model where the exponential dynamical localization of Definition 2.1 and the LIOM
picture of Definition 2.3 indeed both hold.
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Grants DMS-1207995, DMS-1515850 and DMS-1813149. We also acknowledge support from the Centre
de Recherches Mathématiques (Montréal) and the Simons Foundation during Fall 2018, when part of this
work was carried out. Our work was stimulated by fruitful discussions with Gunter Stolz and Simone Warzel.

Appendix A: Lieb–Robinson Bounds

In this appendix we develop a bound on the velocity of propagation under the Heisenberg
dynamicswhich ignores interaction terms supported in a given subset of the lattice.We use the
results of [36], in which Lieb–Robinson bounds which do not depend on on-site interactions
are developed for Hamiltonians expressed in terms of time-dependent interactions.
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Let (
, d) denote a countable metric space, and let P0(
) denote the collection of finite
subsets of 
. Assign a spin Hilbert spaceHx to each x ∈ 
. The algebra of local observables
is given by Aloc = ∪X∈P0(
)AX , where AX = ⊗

x∈X B(H). A time-dependent interaction
� : R×P0(
) is called continuous if t �→ �(t, X) is norm continuous for every X ∈ P0(
).

To measure the spatial decay of the interaction we introduce the notion of an F-function.
Let (
, d) denote a countable metric space. Then an F-function on (
, d) is a function
F : [0,∞) → (0,∞) such that

(1) F is non-increasing.
(2) F is integrable, i.e.,

‖F‖ = sup
x∈


∑

y∈


F(d(x, y)) < ∞. (A.1)

(3) F satisfies the convolution identity,

CF = sup
x,y∈


1

F(d(x, y))

∑

z∈


F(d(x, z))F(d(z, y)) < ∞. (A.2)

If μ > 0, it is easy to show that Fμ(x) = e−μx F(x) also defines an F function on (
, d)

with ‖Fμ‖ ≤ ‖F‖ and CFμ ≤ CF .
Given an F-function F , we denote by BF the set of continuous interactions � : R ×

P0(
) → Aloc such that the function on R

t �→ sup
x,y∈


1

F(d(x, y))

∑

x,y∈X
|X |>1

‖�(t, X)‖ (A.3)

is locally bounded.

Theorem A.1 (Theorem 3.1 in [36]) Let � ∈ BFμ for some F-function F and μ > 0, and let
X , Y ∈ P0(
) with X ∩ Y = ∅. Then for any � ∈ P0(
) with X ∪ Y ⊆ �, we have

sup
A∈A1

X
B∈A1

Y

‖[τ H�
t (A), B]‖ ≤ 2‖F‖

CFμ

min{|X |, |Y |}(e2CFμ I (t) − 1)e−μd(X ,Y ) (A.4)

for every t ∈ R, where

I (t) =
∫ max{0,t}

min{0,t}
sup
x,y∈


eμd(x,y)

F(d(x, y))

∑

x,y∈X
|X |>1

‖�(s, X)‖ds. (A.5)

We will now apply the previous theorem to obtain a Lieb–Robinson bound which ignores
interaction terms in certain parts of the lattice. For simplicity we restrict ourselves to one-
dimensional finite volume systems. Neither of these restrictions is essential.

Suppose that we have a quantum spin chainH = ⊗n
x=0 Hx on the interval�n = [0, n] ⊂

Z+ together with a time-dependent Hamiltonian H(t) generated by an interaction �(t) :
P(�n) → B(H). Let I = {I j }mj=1 be a collection of disjoint subintervals I j = [a j , b j ] ⊂
�n , satisfying b j < a j+1. For purposes of notation let b0 = 0 and am+1 = n. We seek to
define an equivalent spin chain inwhich the spins located on the sites [b j , a j+1] are identified.
Define the contracted lattice 
I by,


I = ∪m
j=1[a j , b j ) ∪ {n}
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Define a map C : �n → 
I by,

C(x) =
{
a j if x ∈ [b j−1, a j ] for some j = 1, 2, . . . ,m + 1

x Otherwise
(A.6)

Note that C maps a site in �n to its corresponding site in 
I . For each x ∈ 
I , define

H′
x =

⊗

z∈C−1({x})
Hz (A.7)

Then
⊗n

x=0 Hx = ⊗
x∈
I H′

x , and an observable which has support X in A�n has support

C(X) in A
I . Define an interaction �̃(t) on 
I by,

�̃(t)(X) =
∑

Z⊆�nC(Z)=X

�(t)(Z) (A.8)

Then �̃ and � generate the same Hamiltonian. With this setup we have the following propo-
sition.

Theorem A.2 Suppose d is a metric on 
I . Let μ > 0 and let F denote any F-function on
(
I , d). Then for any X , Y ⊆ �n with C(X) ∩ C(Y ) = ∅ we have,

sup
A∈A1

X
B∈A1

Y

‖[τ H
t (A), B]‖ ≤ 2‖F‖

CFμ

min{|C(X)|, |C(Y )|}(e2CFμ I (t) − 1)e−μd(C(X),C(Y )) (A.9)

holds for all t ∈ R, where

I (t) =
∫ max{0,t}

min{0,t}
sup

x,y∈
I

eμd(x,y)

F(d(x, y))

∑

X⊆
I :
x,y∈X ,
|X |>1

‖�̃(s)(X)‖ds. (A.10)

Proof Apply Theorem A.1 to the spin model �̃. ��
A few remarks about this theorem need to be made. Note that

∑

X⊆
I :
x,y∈X ,
|X |>1

‖�̃(t)(X)‖ =
∑

X⊆
I :
x,y∈X ,
|X |>1

‖
∑

Z⊆�nC(Z)=X

�(t)(Z)‖ ≤
∑

Z⊆�n :
x,y∈Z ,

|C(Z)|>1

‖�(t)(Z)‖ (A.11)

for any pair x, y ∈ 
I . If Z ⊂ [b j−1, a j ] for some j , then C(Z) will contain at most one
point of 
I . Therefore Theorem A.2 provides an upper bound on the speed of propagation
which excludes elements from the original interaction with support Z .

While Theorem A.2 was stated for an arbitrary metric d on 
I , there are two natural
metrics which both allow (
I , d) to be isometrically embedded into Z+. One choice to
simply restrict the usual metric on Z+ to 
I . Another choice is to define d so that (
I , d)

isometrically embeds into [0, L], where L = ∑m
j=1(b j − a j ). With either of these metrics,

given an F-function F on Z+ with the usual metric, the constants in Theorem A.2 can be
chosen to be c0 = 2‖F‖/CFμ and c1 = 2CFμ . In particular, these constants do not depend
on n or the collection of intervals I. This follows from the fact that 
I isometrically embeds
into (Z+, | · |) when equipped with either of these metrics.

123



Slow Propagation in Some Disordered... Page 27 of 28 12

References

1. Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Localization properties of the disordered xy
spin chain. A review of mathematical results with an eye toward many-body localization. Ann. Phys.
(Berlin) 529, 1600280 (2017)

2. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary
derivation. Commun. Math. Phys. 157, 245–278 (1993)

3. Aizenman, M., Warzel, S.: Localization bounds for multiparticle systems. Commun. Math. Phys. 290,
903–934 (2009)

4. Aizenman, M., Warzel, S.: Random operators. In: Disorder Effects on Quantum Spectra and Dynamics.
Graduate Studies in Mathematics, vol. 168. Amer Math Soc, Providence (2015)

5. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)
6. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-

electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006)
7. Beaud, V., Warzel, S.: Low-energy Fock-space localization for attractive hard-core particles in disorder.

Ann. H. Poincaré 18, 3143–3166 (2017)
8. Beaud, V., Warzel, S.: Bounds on the entanglement entropy of droplet states in the XXZ spin chain. J.

Math. Phys. 59, 012109 (2018)
9. Braun, P., Waltner, D., Akila, M., Gutkin, B., Guhr, T.: Transition from quantum chaos to localization in

spin chains, arXiv: 1902.06265 (2019)
10. Chandran, A., Kim, I.H., Vidal, G., Abanin, D.A.: Constructing local integrals ofmotion in themany-body

localized phase. Phys. Rev. B 91, 085425 (2015)
11. Chapman, J., Stolz, G.: Localization for random block operators related to the XY spin chain. Ann. H.

Poincaré 16, 405–435 (2015)
12. Chen, C.-F., Lucas, A.: Finite speed of quantum scrambling with long range interactions. Phys. Rev. Lett.

123, 250605 (2019)
13. Chulaevsky, V., Suhov, Y.: Multi-particle Anderson localisation: induction on the number of particles.

Math. Phys. Anal. Geom. 12, 117–139 (2009)
14. De Roeck, W., Huveneers, F.: Stability and instability towards delocalization in many-body localization

systems. Phys. Rev. B 95, 155129 (2017)
15. De Roeck, W., Huveneers, F., Müller, M., Schiulaz, M.: Absence of many-body mobility edges. Phys.

Rev. B 93, 014203 (2016)
16. De Roeck, W., Huveneers, F., Olla, S.: Subdiffusion in one-dimensional Hamiltonian chains with sparse

interactions. J. Stat. Phys. (2020). https://doi.org/10.1007/s10955-020-02496-1
17. De Roeck, W., Imbrie, J.Z.: Many-body localization: stability and instability. Philos. Trans. R. Soc. A

375, 20160422 (2017)
18. De Roeck, W., Schütz, M.: Local perturbations perturb exponentially-locally. J. Math. Phys. 56, 061901

(2015)
19. Elgart, A., Klein, A., Stolz, G.: Droplet localization in the random XXZ model and its manifestations. J.

Phys. A 51, 01LT02 (2018)
20. Elgart, A., Klein, A., Stolz, G.: Manifestations of dynamical localization in the disordered xxz spin chain.

Commun. Math. Phys. 361, 1083–1113 (2018)
21. Elgart, A., Klein, A., Stolz, G.: Many-body localization in the droplet spectrum of the random XXZ

quantum spin chain. J. Funct. Anal. 275, 211–258 (2018)
22. Elgart, A., Shamis, M., Sodin, S.: Localisation for non-monotone Schrödinger operators. J. Eur. Math.

Soc. 16, 909–924 (2014)
23. Germinet, F., Klein, A.: Bootstrap multiscale analysis and localization in randommedia. Commun. Math.

Phys. 222, 415–448 (2001)
24. Goihl, M., Eisert, J., Krumnow, C.: Are many-body localized systems stable in the presence of a small

bath?, arXiv:1902.0437 (2019)
25. Hamza, E., Sims, R., Stolz, G.: Dynamical localization in disordered quantum spin systems. Commun.

Math. Phys. 315, 215–239 (2012)
26. Huse, D.A., Nandkishore, R., Oganesyan, V.: Phenomenology of fully many-body-localized systems.

Phys. Rev. B 90, 174202 (2014)
27. Imbrie, J.Z.: On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998–1048 (2016)
28. Imbrie, J.Z., Ros, V., Scardicchio, A.: Review: local integrals of motion in many-body localized systems.

Ann. Phys. (Berlin) 529, 1600278 (2017)
29. Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math.

Phys. 78, 201–224 (1980)

123

http://arxiv.org/abs/1902.06265
https://doi.org/10.1007/s10955-020-02496-1
http://arxiv.org/abs/1902.0437


12 Page 28 of 28 B. Nachtergaele, J. Reschke

30. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.)
16, 407–466 (1961)

31. Luitz, D.J., Huveneers, F., De Roeck,W.: How a small quantum bath can thermalize long localized chains.
Phys. Rev. Lett. 119, 150602 (2017)

32. Macé, N., Laflorencie, N., Alet, F.: Many-body localization in a quasiperiodic fibonacci chain. SciPost
Phys. 6, 050 (2019)

33. Mastropietro, V.: Coupled identical localized fermionic chains with quasi-random disorder. Phys. Rev. B
95, 075155 (2017)

34. Mastropietro, V.: Localization in interacting fermionic chains with quasi-random disorder. Commun.
Math. Phys. 351, 283–309 (2017)

35. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat.
Phys. 124, 1–13 (2006)

36. Nachtergaele, B., Sims, R., Young, A.: Quasi-locality bounds for quantum lattice systems. I. Lieb-
Robinson bounds, quasi-local maps, and spectral flow automorphisms. J. Math. Phys. 60, 061101 (2019)

37. Oganesyan, V., Huse, D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75,
155111 (2007)

38. Pal, A., Huse, D.A.: The many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)
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