RIGID LOCAL SYSTEMS WITH MONODROMY
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ABSTRACT. We first develop some basic facts about certain sorts
of rigid local systems on the affine line in characteristic p > 0.
We then apply them to exhibit a number of rigid local systems of
rank 23 on the affine line in characteristic p = 3 whose arithmetic
and geometric monodromy groups are the Conway group Cos in
its orthogonal irreducible representation of degree 23.
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INTRODUCTION

In the first section, we recall the general set up, and some basic
results. In the second section, we generalize the criteria of [R-IJ, Thm.
1] and [Ka-RLSAl 5.1] for finite (arithmetic and geometric) monodromy
to more general local systems. In the third section, we apply these
criteria to show that certain local systems have finite (arithmetic and
geometric) monodromy groups. In the fourth section, we show that the
finite monodromy groups in question are the Conway group Cogs in its
23-dimensional irreducible orthogonal representation.
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1. THE BASIC SET UP, AND GENERAL RESULTS

We fix a prime number p, a prime number ¢ # p, and a nontrivial
Q¢ -valued additive character ¢ of F,. For k/F, a finite extension,
we denote by 1, the nontrivial additive character of k given by ¢ :=
YoTraceyr,. In perhaps more down to earth terms, we fix a nontrivial
Q(pp)*-valued additive character v, of F,, and a field embedding of
Q(p,,) into Q; for some £ # p.

Given an integer D > 3 which is prime to p, a finite extension k/F,,
and a polynomial f(z) € k[z] of degree D, we form the local system
Fpp 1 on Al/k whose trace function is given as follows: for L/k a
finite extension, at L-valued points t € A'(L) = L, is given by

L = er(f(x) + tx).

This is a geometrically irreducible rigid local system on A, being the
Fourier Transform of the rank one local system Lys)). It has rank
D — 1, it is totally wild at oo, and each of its D — 1 I(c0)-slopes is
D/(D —1). Tt is pure of weight one. [When f(z) is 2, it is the local
system F(F,, 1,1, D) of [Ka-RLSAJ]

Suppose in addition we are given a nontrivial character x of £*.
For L/k a finite extension, we obtain a nontrivial character y of L* by
defining xr, := x o Normyp, ;. We then form the local system F, p r, on
A'/k whose trace function is given as follows: for L/k a finite extension,
at L-valued points t € A'(L) = L, is given by

= =Y Uu(f(w) + tr)xp(e).

This too is a geometrically irreducible rigid local system, being the
Fourier Transform of the rank one local system Lyfz)) ® Ly(z). It
has rank D. Its I(oco) representation is the direct sum of the tame
character Ly(,) with a totally wild representation of rank D — 1, each
of whose D — 1 I(o0)-slopes is D/(D — 1) [Lau, Thm. 2.4.3]. It is pure
of weight one. [When f(z) is | it is the local system F(F,, 1, x, D)
of [Ka-RLSA].]

Lemma 1.1. (Primitivity Lemma) We have the following results.

(i) If both D and D —1 are prime to p, the local system F, p 1 s not
geometrically induced, i.e., there is no triple (U, m,H) consisting
of a connected smooth curve U/k, a finite etale map f : U — A'/k
of degree d > 2, and a local system H on U such that there exists
an isomorphism of m,H with (the pullback to A/k of) Fypp sa.
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(ii) When D is prime to p, then for any nontrivial x, the local system
Fp.D,fx 4 not geometrically induced.

Proof. In case (i), our local system is an Airy sheaf (the Fourier trans-
form of a nonconstant lisse sheaf on A! of rank one). By a result [Such|
11.1] if an Airy sheaf is induced, it is Artin-Schreier induced, so has
rank divisible by p.

For (ii), we argue as follows. If such a triple exists, then we have an
equality of Euler characteristics

EP(U,H) = EP(AI/E 77*%) = EP(AI/E }—pﬂvayx)‘

Denote by X the complete nonsingular model of U, and by gx its genus.
Then 7 extends to a finite flat map of X to P!, and the Euler-Poincaré
formula gives

EP(U,M) = rank(H)(2 — 2gx — #(7'(0))) = Y Swan,(H),

wen—1—(oc0)

EP(A' )k, Fyp.iy) = rank(F,p ) — SWane (Fpp.sy) = D — D = 0.
So we have the equality

0 = rank(H)(2 — 2gx — #(7'(0))) = Y Swan,(H).

We first bound the genus gx. We must have gx < 0, otherwise the
factor 2 —2gx — #(n71(00)) is < —1, and the right hand side is strictly
negative.

Thus gx = 0, and we have

0= rank(H)(2 — #(7'(0))) = Y Swan,(H).

If #(m'(00)) = 1, then U is P!\ (one point) & Al and so 7 is a
finite etale map of Al to itself of degree > 1. But any such map has
degree divisible by p. Indeed, when the map is given by the polynomial
F(z), the hypothesis is that for every ¢ € k, the two equations F(z) =
t, F'(z) = 0 have no common solution. If F’ had a zero, say a, then
a would be a solution of F(x) = F(a), F'(x) = 0. Thus F’ has no
zeroes, so is some nonzero constant A, and hence F'(x) is of the form
G(z)? + Ax.

We cannot have # (7~ *(00)) > 3, otherwise the factor 2—#(7~*(c0))
is strictly negative, and the right side is then strictly negative. It re-
mains to treat the case when #(71(00)) = 2 (and gx = 0). Throwing
the two points to 0 and oo, we have a finite etale map

7:G,, — AL
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The equality of EP’s now gives
0 = Swang(H) + Swan.,(H).

Thus H is lisse on G,, and everywhere tame, so a successive extension
of lisse, everywhere tame sheaves of rank one. But 7, H is irreducible,
so H must itself be irreducible, hence of rank one, and either Q, or
an L,. [It cannot be Qy, because 1,Qy is not irreducible when 7 has
degree > 1; by adjunction 7,Q, contains Q,.] Now consider the maps
induced by 7 on punctured formal neighborhoods

7(0) : G, (0)—= Al(c0), 7(00) : G,p(o0) — Al(00).
The I(oo)-representation of F, p r, is then the direct sum
7(0),.L, & m(00)L,.
Denote by dy and d, their degrees. For any tame L), we have
T(0)* LA = Lpay, 7(00) Ly = Lpdeo-

Since the tame character group is divisible, there exist Ay with Ag‘) =p
(in fact, as many as the prime to p part ng of dy = ngy x (a power of p)),
and there exist A, with A = p (in fact, as many as the prime to p
part ne, of dy = nee X (a power of p),

Thus if F, p,f, were induced, its I(oco) representation would contain
at least two tame characters. 0

Let k be a finite extension of F,,, £ # p, U/k a smooth, geometrically
connected k-scheme of relative dimension > 0, and G a @, local system
on U of rank d > 1. Viewing G as a representation of m (U), say

pg : m(U) = GLa(Q),
we get its arithmetic monodromy group G, defined to be the Zariski
closure of the image of m;(U). Inside 7;(U) we its normal subgroup
77" (U) := m (U ®y, k). The Zariski closure of the image of 7{“"(U)
is the geometric monodromy group Ggeom. Thus we have
Ggeom < Gam’th - GLd(@)

When we apply this general machine to the local system F, p 1 on

Al/k, we get its
Ggeom < Gam’th C GLDfl(@)-

Similarly, for any nontrivial x, when we apply the general machine
to the local system F, p s, on A'/k, we get its

Ggeom < Garith C GLD (@)
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Lemma 1.2. (p-subgroups of Gyeom) Suppose both D > 3 and D—1 are
prime to p. Denote by f the multiplicative order of p in (Z/(D—1)Z)*,
so that F,s is the extension Fp(up_1) of F, obtained by adjoining the
D —1 roots of unity. Then for the particular local systems F, p o1 or
Fp.pal y with any nontrivial x, the image in Ggeom of the wzld inertia
group P(00) is isomorphic to (the additive group of) F s

Proof. In all cases, the local system, restricted to G,,, descends through
the D’th power map. For F, p,p g, the descent is given explicitly in
terms of trace functions as

t— —Zwk(xD/t—l—x).

€k

For F, p .o X e must first choose a character A with AP =*%. Then
the descent is given explicitly interms of trace function as

o — 57 AL/t + 2y ().

relX

In fancier terms, the first descent is to a Kloosterman sheaf of rank D —
1, the second is to a hypergeometric sheaf of type (D, 1), cf. [Ka-RLSA|
2.1].

In all cases, the wild part W of the I(co) representation has rank
D—1and all slopes 1/(D—1). Because D—1 > 2, one knows [Ka-ESDE]
8.6.3] that W is unique up to tensoring with a tame character and
performing a multiplicative translation. Thus the underlying P(o0)-
representation is unique up to a multiplicative translation, which does
not change its image in Gyeom. Because D — 1 is prime to p, we obtain
one such W by forming the direct image by D — 1 power

W = [D - 1]*£w($).

Because D — 1 is prime to p, the image of P(cc) does not change if
we pass to the pullback

[D—1W = [D—1P[D - 1.Ly) = P Lo
CEMD-1
In other words, the image of P(00) is the abelian group whose character
group consists of all monomials
®n
®Ceup_1['¢(gcx) = Ew(ZceW}1 n¢(z)-:

as each n¢ runs over Z/pZ. This character group is thus the subring
Fplpp—1] C F,r consisting of all Fy-linear combinations of elements of
ip—1. But this subring, being a finite integral domain, is itself a field.
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It lies in [F,r, and contains yip_1, so it is F,;. One knows that (by the
trace), s is its own Pontrayagin dual. O

2. CRITERIA FOR FINITE MONODROMY

We first recall the basic underlying result, cf [Ka-ESDE, 8.14]. [It
is stated there for a local system on an open curve, but the "on a
curve” hypothesis never enters the proof. Also, the exact rule of the
hypothesis of geometric irreducibility is less clear than it might be, cf.
Remark 2.2 below.

Let k be a finite extension of F,,, £ # p, U/k a smooth, geometrically
connected k-scheme of relative dimension > 0, and G a Q, local system
on U of rank d > 1. We have its geometric and arithmetic monodromy
groups

Ggeom < Garith C GLd(@E)

Proposition 2.1. Suppose we have (k,0,U,G) as above. Suppose fur-

ther that G is pure of weight zero for all embeddings of Q, into C.

Consider the following four conditions.

() Garitn 1 finite.

(b) All traces of G are algebraic integers. More precisely, for every fi-
nite extension L/k, and for every point u € U(L), Trace(Froby, ,|G)
1 an algebraic integer.

(¢) Ggeom 1s finite.

(d) det(G) is arithmetically of finite order.

Then we have the implications
(a) = (b) = (¢), (b) = (d),
and if G is geometrically irreducible, we have (a) <= (b) <= (c).

Proof. The implications (a) == (b) and (a) == (c) are both
obvious.

We next show that (b) = (c) and (b) = (d). If (b) holds, then
all the eigenvalues of each Frobenius are algebraic integers which, by
purity, have absolute value 1 at all archimedean places, hence are roots
of unity. Because G is realizable over some finite extension E) of Qy,
each of these roots of unity lies in a extension of E) of degree at most
the rank of G. As there are only finitely many such extensions inside
Qy, all eigenvalues are roots of unity in a fixed finite extension of Qy, so
are all N’th roots of unity for some N. Applying this same argument
to the rank one local system det(G), we see that det(G)® is trivial, i.e.
we see that (b) = (d). By Chebotarev and Zariski density, every
v € Garitn has v unipotent. In particular, every element in G geom, and
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hence every element in the identity component Gy, has N’th power

unipotent. By Deligne [De-Weil 1, 1.3.8 and 3.4.1 (iii)], Ggeom is a
semisimple algebraic group. Looking at elements of a maximal torus,
we see that Ggeom has rank 0, hence Ggeom is trivial and thus Geom, is
finite.

When G is geometrically irreducible, the implication (¢c) = (a),
using (d), is proven in [Ka-ESDE| 8.14.3.1]. d

Remark 2.2. Here is an example to show that geometric irreducibility
is needed to prove that (b) = (a). Take any U/k, and take on it
the pullback from Spec(k) of the geometrically constant local system
(%9 for B the upper unipotent matrix (1) 1 . Then all Frobenius
eigenvalues are 1, Ggeom is trivial, but Gg,i, is the upper unipotent
1 %
01 ) of SL(2).

On the other hand, suppose (b) holds. If we pass from G viewed as
a representation of ¢ +to its semisimplification G*¢, (which has the
same trace function as G), then Ggpip.gss is reductive. Then the fact
that every element in this group has N’power unipotent shows that the
identity component GY ., ges is trivial (look at a maximal torus), and
hence Gyyin,gss 1s finite.

subgroup

We now define the sort of multi-parameter local systems it will be
convenient to work with. We fix an integer D > 3 prime to p, and a
sequence of integers of length r > 1,

l=di<dy<...<d. <D,

each of which is itself prime to p. [Because of Artin-Schreier reduction,
requiring the d; to be prime to p is no loss of generality.] We form the
local system F(p, D,dy,...,d,, 1) on A""! whose trace function is as
follows: for K/F, a finite extension, and (¢ ...,t,) € A"(K), the trace

function is
(t, b)) = > g (P + > tah).
zeK i
When p is odd, we also form the local system F(p, D, dy,...,d., x2) on
A1 whose trace function is as follows: for K/F, a finite extension,

and (¢,...,t.) € A"(K), the trace function is
(..., t) — — Z i (x” + Ztﬂ?di)XzK(fC)-
TEKX i

Because d; = 1, these local systems are geometrically irreducible
(indeed, for r = 1 these are F(p, D, 2P 1) and F(p, D,z x2)). If r >
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2, their pullbacks to A! by freezing t, = ... =t, = 0 are F(p, D, 2", 1)
and F (p, D, 2P, x2). They are pure of weight one, for all embeddings
of Qy into C. Moreover, their traces lie in Z[().

For each of them, we now fix a version of a half Tate twist as follows:
we choose an algebraic integer o which is (some root of unity),/p,
typically some fourth root of p?.

Using our chosen «, we then define

G(p.D.dy,...,d, 1) :=F(p,D,dy,...,d, 1)@ (1/c)™,
and, when p is odd,
g(pa Da d17 s adra X2) = f(p7 D7 d17 s 7d7‘7 XQ) X (1/a)deg.

The local systems G, p 1 and, when p is odd, G, p f,,, are pure of
weight zero. Their determinants are arithmetically of finite order, cf.
the proof of [Ka-RL, Lemma 1.1].

For later use, we record the following facts about autoduality.

Lemma 2.3. Suppose that D and all the d; are odd. Then there is a
preferred choice of o, as follows.

(1) For « either choice of \/p, G(p, D,dy,...,d., 1) has

Ggeom < Gam’th - SpD—1<@)'

(2) Ifpis odd, write D = 26+1. Then for oo := —x2((—=1)°D)g(, x2)
(9(¢, x2) the quadratic Gauss sum overF, ), G(p, D,dy, ..., d,, x2)
has

Ggeom < Gam’th C SOD(@)

(3) Denote by Q((,)* the real subfield of Q((,)". In case (1),

the traces attained lie in Q((,)*(\/p). In case (2), they lie in

Q)™

Proof. Assertion (1) is Poincaré duality. Assertion (2) is proved in
[Ka-NG2, 1.7]. Assertion (3) is obvious from applying complex conju-
gation to the formulas for the traces. 0

The local system G(p, D, dy,...,d,,1) on A"/F, has its
Ggeom < Garith C GLD—I(@)'

Similarly, when p is odd, the local system G(p, D, ds, ..., d,, x2) on
A" /F, has its
Ggeom < Garith C GLD (QZ)
We now apply to these local systems.

Proposition 2.4. The following conditions are equivalent.
(a) G(p, D, dy,...,d., 1) has finite Ggeom.
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(a-bis) F(p,D,dy,...,d., 1) has finite Ggeom.
(b) G(p, D,dy,...,d., 1) has finite Garitp.
(c) All traces of G(p, D,dy,...,d,., 1) are algebraic integers.

When p is odd, we have these same equivalences for G(p, D,dy, ..., d,., x2).

We now perform two successive reduction steps. The first is to pull
back these local systems from A" to Gj,, i.e., requiring the coefficients
t; to all be invertible.

Lemma 2.5. The following conditions are equivalent.

(a) G(p, D,dy,...,d., 1) has finite Gypisp-
(b) The pullback of G(p, D,dy,...,d., 1) to G, has finite Gurisp-

If p is invertible, the same equivalence holds for G(p, D,dy, ..., d,., x2).

Proof. That (a) implies (b) is obvious. Because G, is a dense open set
of A", m1(G,) maps onto m;(A"), hence (b) implies (a). O

We now form local systems Gyy(p, D, dy,...,d,, 1) and, if p is odd,
Ghig(p, D, dy, ..., dy,x2) on GI1) by letting the coefficient of 2P also

vary over invertible scalars. Thus the trace function of G4 (p, D, dy, . .., d,, 1)
is
(tl,... r+1) EG T+1 —> Z@/}K r4+1L —{—th /adeg(K/Fp
zeK

When p is odd, the trace function of Gy,(p, D, dy, ..., d, x2) is
(t1, s tra1) € Gu(K)™ Z Vi (tra® +Ztl’ )Xo,k () /a8 Fr).
reEKX

Lemma 2.6. The following conditions are equivalent.

(a) Guig(p, D,dy,...,d,, 1) on G has finite G i

(b) The pullback of G(p, D,dy,...,d., 1) to G, has finite Gurisp-

If p is invertible, the same equivalence holds with 1 replaced by xs.
Proof. In both cases, it is obvious that (a) implies (b), since the second
local system is the pullback of the first to the locus ¢,,; = 1. To show

that (b) implies (a), we argue as follows. Over a finite extension K of
[F,, if we make the substitution x — Ax with A € K*, the sum

3 a3k
zeK
is equal to the sum

Z?/)K /\de +Z)\d1t 2% /adeg K/Fp)

zeK
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After the change of variable ¢; — t;/A%, this sum is

Zw /\de+th /adeg K/]Fp)

rzeK

still an algebraic integer. In other words, the pullback of Gy, (p, D, d, . . .,

on G to GI! by the finite etale galois map
(t1y ooyt ten) B (F1y ooty t2)

has all its traces algebraic integers, hence has finite G.;;n. But under
this finite etale map, the map of m’s makes the source a subgroup
of index D in the target. Thus the Gupitn for Guig(p, D, ds, ..., d,, 1)
contains a finite group as a subgroup of finite index, so is itself finite.

When p is odd, and x = x2, apply the identical argument. In this
case, the x — Az substitution moves the sum by a factor ya(\) = +1,

so does not change the fact that the sum is an algebraic integer.  [J
The sums
Z Vi (traa” + Zt x™
zeK

and, when p is odd, the sums

Z%K r1% +Ztl’ Xo, i (T

TEKX

lie in Z[(,]. The quantity « in all cases has a* = p*. The field Q((,)
has a unique place over p. So these sums will remain algebraic integers
when divided by a%&(5/F») if and only if the divided sums be p-integral.
Equivalently , whenever K is F,, and ord, is the p-adic ord, normalized
to have ord,(q) = 1, we must have

ord, Z Vi (trz —|—th >1/2,

reK=F,

and, when p is odd, we must have

ord, Z Vi (trra” + Ztixdi)XzK(l’) >1/2,

e KX =Fy

for every finite extension K/F, and every r + 1 tuple (t1,...,t41) €
(KX )'r—‘,—l .

We now give a generalization of [R-I Theorem 1] to these local
systems. In the formulation, we make reference to the ord, of various
Gauss sums over variable F,. We view these sums as taking values in
Q,(¢)™", the maximal unramified extension of Q,(¢,) (i-e., we adjoin

d,, 1)
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to Q,((p) all roots of unity of order prime to p). This field has a unique
p-adic ord.

Theorem 2.7. We have the following results, in which we write d,.,, =
D.

(1) Guig(p, D, d,....d., 1) has finite G, if and only if the following
condtion holds.

For every finite extension K = F, of F,, and for every r + 1

tuple of (possibly trivial) multiplicative characters (py, ..., pri1)

of K*, not all of which are trivial, such that ], p?i =1, we have

Ordq(H 9K, pi)) = 1/2.

(ii) If p is odd, then Gyy(p, D,dy, ... ,d., x2) has finite Gopirn, if and
only if the following condition holds.
For every finite extension K = F, of F,, and for every r + 1
tuple of (possibly trivial) multiplicative characters (p1,. .., pri1)
of K* such that [, p¥* = Xa.x, we have

ordy([T ot ) = 1/2.

Proof. We first explain the underlying idea. For a fixed K = F,, we
have a function on (K*)"™!, say

F(ty, ... try1),
whose values lie in Z[(,]. We wish to show that each divided value
F(ty,... toy1)/a%85/Fe) yemains an algebraic integer, or equivalently

that
ordq(F(tl, ce 7tr+1)) Z 1/2

For this, we consider the Mellin transform. Recall that for a finite
abelian group A, with Pontrayagin dual group

AY := Homgpoups (A4, C*),

the Mellin transform (also called the Fourier transform) Mellin is an
isomorphism

Mellin : Maps(A, C) = Maps(AY,C), F — Mellinp

defined as follows. For a function F': A — C, and a linear character
x:A—CY

Melling(x) := Y _ F(a)x(a).

a€A
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We apply this to the group (K*)""!. For each r + 1 tuple of multi-
plicative characters (p, ..., pr+1) of K*, we look at the the sum

Mellinp(pl,...,prJrl) = Z tl,... r41 le i
(b1, sty ) E(KX)H
We can recover F' from Melling by usual Mellin inversion, which involves
division by (¢—1)""!, a quantity prime to p. So it suffices to show that
each value Melling(p1, ..., py+1) has ord, > 1/2.
We first treat assertion (i). The functlon F(ty,...,t-11) at hand is

F(ti, ... tyy1) = Z¢K br1 +Zt$

zeK
r+1
=3 0kt = 1+ FX(t, . ),
zeK =1
with
r+1
Pt nto) = 3 (3 ta)

TEKX
When all the p; are trivial, we have

Melling(1,...,1) = (g — 1)"™ 4+ Mellinp« (1, ..., 1),
and
Melling« (1,...,1) = > FX(ty, ... teyy) =
(t1yetrg1) €(KX)rT1
r+1

DN VR ONEUE

TEKX (b1, tpg1)E(KX)rF1

= S TICSS wlta™)

reK*X 1 t,eKX
Each of the r + 1 summands inside the product is equal to —1, because
2% is nonzero, so t; — wK(tixdi) is a nontrivial additive character of
K, and we sum over the nonzero elements. So we find that

Mellingx (1,...,1) = (¢ — 1)(=1)"",
and hence
Melling(1,...,1) = (¢ — 1) + (¢ — 1)(=1)",
which is divisible by ¢.

When not all the p; are trivial, the constant term of F' dies, and we
have

Mellinp(p1 C 7,07~+1) = Mellian (pl Cen 7p7‘+1) =
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= > 11 D2 vxta®)pits)

zeK*X 1 t;, €KX

Here each of the r 4+ 1 summands inside the product is easily expressed
in terms of Gauss sums:

> brlta®)pits) = pi()g(brc, pi)-
tEK
So we get

Mellin (o ... prt) = ([T o 00) 3- ([T o) (@)

zeK* 1

The sum over x € K* vanishes unless [[, p%* = 1. If [, pf* = 1,

then we get (¢ — 1)(I; (¢, pi))-
The proof of case (ii) is analogous. Here F'is already F'*, and the

final formula is
Melling(p1 ..., pr1) = (] [ 9 0)) D (J] #f)(@)x,kc ().
i TeK*x 1

O

We now reformulate the previous Theorem in terms of Kubert’s
V' function

V . (Q/Z)prime to p — [07 1)
For F s a finite extension of F), and « € (Q/Z)prime to p With (p' 1)z €
7, we have

V(w) = ordys (g(ve ,, Teich @' ~1)),
for
Teichpf . F;f = l/!pf—l(@;r)
the Teichmuller character, characterized by the requirement that for

any r € F;f, Teich,s () lifts . For such an z, we have the Stickelberger
formula

V)= (1/f) Y, <pa>.

i(mod f)
It will also be convenient to introduce a slight variant of Kubert’s V'
function, Vg, defined by

Vre(x) = V(z) for © # 0, Vg(0) = 1.
The advantage of this is that the property of the V' function
V(z)+V(—z)=1if 2 #0



14  NICHOLAS M. KATZ, ANTONIO ROJAS-LEON, AND PHAM HUU TIEP

becomes the formula
V(z) 4+ Vgo(—z) =1, for all .
Thus we may reformulate Theorem as follows, where we “solve”
for zy in terms of (xa, ..., 2 41).
Theorem 2.8. We have the following results.
(1) Guig(p, D, d1,....d., 1) has finite Garun if and only if the follow-

ing condtion holds. For every list (xa,...,2.41) of elements of
(Q/Z) prime to p which are not all 0, we have the inequality

> Vi) +1/2 > Ve () di).

(ii) If p is odd, then Gyy(p, D,dy, ... ,dv,Xx2) has finite Gopirn, if and
only if the following condtion holds. For every list of elements
(x2,...,2r41) of elements of (Q/Z)prime to p» we have the inequal-
1ty

S V(@) +1/2> Var(1/2+)  dizy).
i>2 i>2

We now recall the explicit “sum of digits” recipe for V and for Vg,
cf. [Ka-RIJ, Appendix|. For an integer y, and a power p/ of p, we define

[y]p,f,—

to be the sum of the p-adic digits of the representative of y mod p/ —1
in [0, p/ — 2], and we define

[?J]pvf
to be the sum of the p-adic digits of the representative of y mod p/ —1
in [1,p/ — 1]. Then we have

V<M{1>:f@{Ubhﬂ’

Y 1
() =
7 —1) " Tk
With this notation, Theorem [2.§ can be restated as

Theorem 2.9. We have the following results.

(1) Gpig(p, D, dy,...,d,, 1) has finite Gorien, if and only if the following
condtion holds. For every positive integer f and every r-tuple of
integers 0 < xa,...,T,p1 < p/ — 1 which are not all 0, we have
the inequality

(2.9.1) [i dixi] f < i[xi]p,f, X f(pQ— 1)

=2



RIGID LOCAL SYSTEMS WITH MONODROMY GROUP Cos 15

(i) If p is odd, then Guy(p, D,ds, ..., d.,Xx2) has finite Garin if and
only if the following condtion holds. For every positive integer f
and every r-tuple of integers 0 < xo,...,T,41 < p/ — 1, we have
the inequality

(2.9.2) [TZd P 1] < TZ[xi]p,ﬁ_ + @.
p.f

1=2

We also have one further criterion that involves the simpler function
[z], := sum of the p-adic digits of z. We first prove the following

Lemma 2.10 (Hasse-Davenport relation). Let f, k be positive integers
and x € Z. Then we have

fE_1q ]

p

x| =k [z]yy
[pf_l p.fk ’

)

and

Y x} . =k-[z]p -

Proof. If x =y (mod p/ — 1) then pf ST = fk_lly (mod p’* — 1), so it
suffices to prove it for 0 < z < pf—1 (so - x < pf’C 1). But then the

P

result is clear since the p-adic expansion of .r is the concatenation

of k copies of the p-adic expansion of x (ﬁlled Wlth leading 0’s so that
it has exactly f digits). O

For use below, we recall the following result from [Ka-RL, Prop. 2.2],
whose inequalities are used in the proof of Theorem [2.12]

Proposition 2.11. For strictly positive integers x and y, and any f >
1, we have:

() [z +ul, < [aly + ol

(ii) [y, < [a]p;

(iii) [pz], = [z]p.
Theorem 2.12. We have the following results.

(1) Grig(p, D, dy,...,d,, 1) has finite Garien, if and only if there exists
some real A > 0 such that for every positive integer f and every
r-tuple of integers 0 < xa, ..., 2,11 < p/ — 1 which are not all 0,
we have the inequality

r+1 r+1 1)
(2.12.1) [Z dixi] < Z i), + A.
=2 D
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(i) If p is odd, then Guy(p, D,dy, ..., d., Xx2) has finite Garin if and
only if there exists some real A > 0 such that for every positive
integer f and every r-tuple of integers 0 < o, ..., x4 < pl — 1,
we have the z'nequality

[7‘+1 ] r+1 1)
(2.12.2) E:d@ <§:x, + A

Proof. We will prove that the hypotheses of this theorem are equivalent
to those of Theorem 2.9

Suppose that there exists A > 0 such that holds for every
f>1andevery 0 < z9,...,7,41 < p/ —1 which are not all zero. Then
ZTH d;x; > 0, and

r+1 r+1 7“+1 1)
=2 . f 1=2
r+1

-1
—Z%f + p2 oDy a

In particular, for every positive integer k,

T+1 fk—]_ T‘+1 fk—]_ k‘ _1
2 —1 2 ol —1 . 2
p.fk p,fk,

f
= P i=2

By Lemma [2.10} dividing by k we get

r+1 r+1 )
d;x; < i Alk.
b; x]f }:xpf4— 5 +A/
= D,

=2

and taking k — oo gives us (2.9.1). The proof for case (ii) is similar.
(2.9.1

Conversely, suppose that (2.9.1)) holds for every f > 1 and every
0 < Zg,...,2,41 < p’ — 1. Let [ be an integer such that >.d; < p.
Then, if 0 < zg,..., 2011 <pf =1, >, diw; < p' =1, 50

r+1 r+1 r+1
+D(p—1
[Z dﬂi] = [Z diiﬁi] < Z[xi]p,erl,f + %
=2 P =2 p.f+

=2
r+1

_ fe=1)  lp—1)
D
and ([2.12.1)) holds with A =1(p —1)/2.
Finally, suppose that (2.9.2) holds for every f > 1 and every 0 <
Ta, ..., 041 < p/ —1. Let | be an integer such that 2 > d; < p'. Then
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Soidiri+ (pf T —1)/2 < pf“ —1, s0
r+1

f—l r+1 f—l
p p

! r+1 f+l
p+1 p/™ —1
< | } + D dii+ ]
- p =2 P
p—1) | pi—1
=1+ 5 + Zdiﬂfi—i—
=2 p,f+l
r+1
+(p—1
<1+ +Z il — —f )2(p
r+1 1)
—1+sz +1i(p—1),

and holds with A =1I(p — 1). O

3. THEOREMS OF FINITE MONODROMY

From known results of Kubert, explained in [Ka-RLSAl 4.1,4.2,4.3],
and the result [G-K-T), Thm. 3.1], we know that Geom and G, for
FpDal o @ deg are finite when ¢ is a power of an odd prime p and
D is any of

g+1 ¢"+1
2 7 qg+1
We will refer to these as the known cases.

We stumbled upon the empirical fact that Fj o3 423 5, ® o~ deg seemed
to have finite (arithmetic and geometric) monodromy, although it was
not one of the known cases. As we will prove below, the monodromy
is in fact finite. A computer search for each of p = 3,5,7, 11 and each
2 < D < 10° found no other cases than this one and the known cases
with finite monodromy. It is not clear whether there should be infinitely
many (p, D) other that the known ones with finite monodromy, or
finitely many, or just this one.

In this section, we prove that F3 o3 523 ,, @™ deg has finite arithmetic
and geometric monodromy groups. More generally, we prove that the
two-parameter family

with odd n, 2¢g — 1.

G(3,23,1,5,x2),
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whose traces at points (s,t) € A%(K), for K/F3 a finite extension, are
the sums

(5:6) = = 3 wncla™ + 507 o+ t2)xoael) fa~ HKT)
ze KX

has finite arithmetic and geometric monodromy groups. We will do so
by applying the criterion from Theorem [2.12

Theorem 3.1. The two-parameter family
G(3,23,1,5,x2)
has finite arithmetic monodromy.

Proof. We will prove that for every positive integer f and every pair of
integers 0 < z,y < 3/ we have the inequality

3f—1

231 + 5y + < [zls+[yls + f+2.

3

The result follows then from Theorem 2.12]
We proceed by induction on f: for f < 4 one checks it by hand. Let
f>5and 0 < z,y < 37.

Case 1: x =0 (mod 3).
Write z = 3a,y = 3¢ + d with

a,c<37t d=0,1,2.

Then [5d + 1]3 < [d]3 + 1 (check by hand), so

3f -1 3f-1_1
23z + 5y + 5 = |3 23a+5c+T +5d+1
3 3

?WT_ILHMJA]?)
<lals+[czs+ (f+1)+[ds+1

= [2]s + [yls + f +2

< [23@ + 5c+

by induction.

Case 2. x =1 (mod 3).
Write = 9a + b, y = 9¢ + d with

a,c <372 be{1,4,7}, d <.
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Then [23b + 5d 4 4]3 < [b]3 + [d]3 + 2 (check by hand), so
I

3 —1 321
23x + 5y + =19 23a+5c+T +23b+5d+4
3

3
32 —1
3{23a+5c+—2 ] + 230+ 5d + 4]
3
< [a]S + [0]3 + f + [b]g + [d]g + 2
=[zls +[yls + f+2

by induction.

Case 3: x =2 (mod 3) but x # 8,17 or 20 (mod 27).
Write z = 27a + b, y = 27c + d with

a,c <373 be{2,511,14,23,26}, d < 27.

Then [23b + 5d + 13]5 < [b]3 + [d]3 + 3 (check by hand), s

& [ (o 50+
|

=31
23a+5c+ 5 }+[23b+5d+13]3
3

lals + [z + (f = 1) + [b]z + [d]s + 3
= [z]3 + [yls + f+2

f-3

3 1
230 + 5y + ° T)+23b+5al+13

3

IN

| A

by induction.

Case 4: x = 8,17 or 20 (mod 27).
Write x = 8la + b, y = 81c + d with

a,c < 374 be {8,17,20,35,44,47,62, 71,74}, d < 81.

341
T) + 23b + 5d + 40}

3f —
23z + 5y + ] (23a + 5¢ +

3

Then [23b + 5d + 40]5 < [b]3 + [d]3 + 4 (check by hand), s
]
< 23a+5c+ 5 ] + [23b 4+ 5d + 40]3

l
‘| |
lals+ [c]s + (f —2)+ [b]s + [d]s + 4

=[x13+[ Js+f+2

by induction. 0
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4. DETERMINATION OF THE MONODROMY GROUPS

In this section, we will show that with the correct choice [Ka-NG2,
1.7] of o, namely

a = —g(, x2),

with g(v, x2) the quadratic Gauss sum over F3, we can determine the
monodromy of Fj 93 ;23 5, ® deg and of some other related local sys-
tems, exactly. Recall from Lemma [2.3| that we have

Ggeom < Garith < SO23 (@)

Thus G yeom is an irreducible, primitive (by Lemma finite subgroup
of SO23(Qy). The larger group G is a fortiori also an irreducible,
primitive finite subgroup of SOq3(Qy).

The traces attained by Fja3,23,, ® a8 e the traces of ele-
ments of Gg.in, are all integers (being algebraic integers in Q((3)* =
Q). Over the field Fg;, the traces obtained are, by direct calculation,
{—2,-1,0,1,2,3}. Over Fyus, the traces attained are, by direct calcu-
lation, {—5,—2,—1,0,1,2}.

Finally, we recall that from Lemma that the image of the wild
inertia group is the additive group of Fss, the least extension of 3
containing the 22'nd roots of unity.

First we prove the following theorem on finite subgroups of SLgs(C):

Theorem 4.1. Let V = C* and let G < SL(V) be a finite irreducible
subgroup. Let x denote the character of G afforded by V', and suppose
that all the following conditions hold:

(i) x is real-valued;
(i) x is primitive;
(iii) x(g) < —1 for some g € G;
(iv) The 3-rank of G is at least 5.
Then G = Cog in its unique (orthogonal) irreducible representation of
degree 23.

Proof. By the assumption, the G-module V is irreducible and primi-
tive; furthermore, it is tensor indecomposable and not tensor induced
since dim V' = 23 is prime. Next, we observe by Schur’s Lemma that
condition (i) implies Z(G) = 1. Now we can apply [G-T| Proposition
2.8] (noting that the subgroup H in its proof is just G since G < SL(V))
and arrive at one of the following two cases.

(a) Extraspecial case: P <1 G for some extraspecial 23-group of order
233 that acts irreducibly on V. But in this case, x|p cannot be real-
valued (in fact, Q(x|p) would be Q(exp(27i/23)), violating (i).
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(b) Almost simple case: S <1G < Aut(S) for some finite non-abelian
simple group S. In this case, we can apply the main result of [H-M]
and arrive at one of the following possibilities for S.

o S = Ay, My, or PSLy(23). Correspondingly, we have that G = Agy
or Soyq, My, and PSLy(23) or PGLy(23). In all of these possibilities,
x(xz) > —1 for x € G by [ATLAS], violating (iii).

e S = PSLy(47). This is ruled out since Q(x|s) would be Q(+/—47),
violating (i).

e S = Co,. In this case, G = S, and a Sylow 3-subgroup P of
G has a normal extraspecial 3-subgroup ) = 3}r+4 of index 3, see
[ATLAS|. Since G has 3-rank > 5 by (iv), P contains an elemen-
tary abelian 3-subgroup of order 3°, whence () contains a subgroup
R = (C%. Identifying Z(Q) with F3, we see that the commutator map
induces a non-degenerate symplectic form on Q/Z(Q) = F;. As R is
abelian, this form is totally isotropic on Z(Q)R/Z(()) which has order
at least 33. But this is a contradiction, since any isotropic subspace in
I3 has dimension at most 2.

e S = Cos. In this case G = Cos, as stated. O

Theorem 4.2. We have the following results.

(1) For Fso3.2 , @~ %8 we have Gyeom = Garitn = Cos, the Conway
group Cos, in its irreducible orthogonal representation of dimen-
sion 23.

(ii) For the two-parameter family G(3,23,1,5, x2), we have Ggeom =
Garith = C03.

(iii) The local system on G,, x A?/F3 whose trace is given as follows:
for any finite extension K/Fs, and any (r # 0,s,t) € G,,(K) X
A*(K),

(r,s,t) = —xax(r) D Yk (ra® + s2° + ) xo i (x) fa™ B/,
TeEKX

has Ggeom - Garith = CO3.
(iv) For any finite extension K/F3, and any sy € K, the local sys-

tem on A'/K whose trace function, at points t € L, L a finite
extension of K, is given by

t— — Z Y (a® + sox® + tx)xo,p (1) /o 8L/ Fr),

has Ggeom - Ga’rith - C03'
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(v) The local system on A'/F3 whose trace function, at pointst € K,
K a finite extension of F3, is given by

tes = 7 r(a® + ta¥) o () fam EEE),
re KX

has Ggeom = Garith = CO3-

(vi) For any finite extension K of Fs, and any (so,ty) € A*(K) other
than (0,0), the local system on G,,/K whose trace function at
points r € L™, L a finite extension of K, is given by

r—= —x2,0(r) Z Ui (ra® + sox® + tox) xo.L(z) /e L/

zeLx
has Ggeom - Gam’th - COS-

Proof. We first note that among finite irreducible subgroups of SO43(C),
the Conway group Cos is both maximal and minimal. Indeed, the min-
imality is clear from the [ATLAS] list of maximal subgroups of Coz and
their character tables. The maximality is clear from Theorem [4.1]

The local system in (iv) has finite monodromy because its restriction
to the dense open set (G,,)*/F3 has finite monodromy, being the Gy,
partner, in the sense of Lemma [2.6] of two-parameter local system of
(ii). The x2(t) term in front keeps its Ggpin in SO23(C), by [Ka-NG2,
1.7]. Tt is geometrically irreducible because this is so already after
pullback to the (1,0, ) ¢-line, where it is Fj 93 423 1, ® o 9%,

We remark that the local system in (v) is geometrically irreducible,
because it is the Fourier Transform of [5],(Ly(23) ® Lyy(r)), a middle
extension sheaf (cf. [Ka-TLFM, proof of 3.3.1]) which is geometrically
irreducible. Indeed it is I(oco)-irreducible, because its five I(0c0)-slopes
are each 23/5, with exact denominator 5.

We also remark that the local system in (vi) is geometrically irre-
ducible, because it is L,, tensored with the Fourier Transform of
23] (L (spz54r02) @ Lyo(z)), @ middle extension sheaf (cf. [Ka-TLFM,
proof of 3.3.1]) which is geometrically irreducible. Indeed it is I(o0)-
irreducible, because its 23 I(o0o)-slopes are each either 5/23, with exact
denominator 23, if sy # 0, or each 1/23 if so = 0 but ¢ # 0.

Thus it suffices to prove (i). For then (ii) and (iii) follows from (i) and
the maximality of Cog as a finite irreducible subgroup of SO93(C), and
then (iv), (v) and (vi) each follow from (ii) and (iii) and the minimality
of Cos as a finite irreducible subgroup of SOy3(C).

For case (i), we apply Theoremto G arith, to conclude that G, =
Cos. Then we use minimality of Cog to conclude that Gyeop, = Coz. U
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