RIGID LOCAL SYSTEMS WITH MONODROMY GROUP THE CONWAY
GROUP Co,

NICHOLAS M. KATZ, ANTONIO ROJAS-LEON, AND PHAM HUU TIEP

ABSTRACT. We first develop some basic facts about hypergeometric sheaves on the multi-
plicative group G,, in characteristic p > 0. Certain of their Kummer pullbacks extend to
irreducible local systems on the affine line in characteristic p > 0. One of these, of rank 23 in
characteristic p = 3, turns out to have the Conway group Coo, in its irreducible orthogonal
representation of degree 23, as its arithmetic and geometric monodromy groups.

CONTENTS
[ntroductionl 1
(1. The basic set up, and general results| 1
[2. The criterion for finite monodromyj 10
[3.  Theorems of finite monodromy| 11
4. Determination of the monodromy groups| 17
References 18
INTRODUCTION

In the first two sections, we give the general set up. In the third section, we apply known
criteria to show that certain local systems of rank 23 over the affine line in characteristic 3
have finite (arithmetic and geometric) monodromy groups. In the final section, we show that
the finite monodromy groups in question are the Conway group Cos in its 23-dimensional
irreducible orthogonal representation.

1. THE BASIC SET UP, AND GENERAL RESULTS

We fix a prime number p, a prime number ¢ # p, and a nontrivial Q" -valued additive
character ¢ of F,. For k/F, a finite extension, we denote by %/, the nontrivial additive
character of k given by vy := 9 o Traceyr,. In perhaps more down to earth terms, we fix a

nontrivial Q(y,)*-valued additive character ¢ of F,, and a field embedding of Q(u,) into Q,
for some ¢ # p.
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We fix two integers N > D > 1 which are both prime to p and with ged(N, D) = 1. We
first describe a rigid local system on G,,/F,, denoted
H(y, N, D),

which is pure of weight 2 and whose trace function at a point t € K*, K a finite extension
of F,, is given by the exponential sum

Z Vi (tz® JyN — Dx + Ny).
reKye KX
It will also turn out that after pullback by N*" power, the pullback system
F(, N, D) == [N]"H(y, N, D)

extends to an irreducible local system on A'/F,, whose trace function at a point t € K, K
a finite extension of F,, is given by the exponential sum

Z Vi (2P Jy™ — Dx +tNy).

reK,yc K%

[In the H sum, replace ¢t by ¢V, and then make the change of variable y + ty, to see what
happens over G,, .|
To understand this situation, we must relate H (i, N, D) to the hypergeometric sheaf

Hyp(p, N, D) := Hyp(

This hypergeometric sheaf is only defined on G,,/F,, with F,/F, an extension large enough

to contain all the N D' roots of unity. We know that it is an irreducible rigid local system on

G,,, which is not geometrically isomorphic to any nontrivial multiplicative translate of itself.
In terms of the Kloosterman sheaves

A := Kl(1,all characters of order dividing V)

¥, all characters of order dividing N;
all nontrivial characters of order dividing D /-

and
B := KI(3, all nontrivial characters of order dividing D),

we obtain Hyp(i, N, D) as the lower | multiplicative convolution
Hyp(, N, D) = A *y inv*B.
Lemma 1.1. We have a geometric isomorphism
Kl(+, all characters of order dividing N) = [N|,Ly(Nz)-

Proof. This is [Ka-GKM| 5.6.3]. The twisting factor over extensions K/F, containing the
N™ roots of unity is

A(Y, N, K) = H (—Gauss(¢g, p)).

characters p, pN=1
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The second member, [N],Ly(ng), makes sense on G,,/IF,, with trace function given by
te KX Y Pr(Ny).

yeK, yN=t

Lemma 1.2. We have a geometric isomorphism of

B := KIl(¢, all nontrivial characters of order dividing D)
with the local system By on G,,/F, whose trace function is
te K*— = ¢x(x”/t - Da).

zeK

Proof. 1t suffices to show that over every K/F, containing the D™ roots of unity, the two
local systems have trace functions related by

Trace( Froby ;|B) = Trace(EFrobg.¢|By) x A(w, D, K)/(#K),
for A(+, D, K) the twisting factor

A(%aDaK) = H (—GaUSSW_K, p))

characters p, pP=1

To show this, it is equivalent to show that their multiplicative Mellin transforms coincide.
For B, the Mellin transform is an explicit product of Gauss sums, cf.[Ka-ESDEl 8.2.8]. For
By, using the Hasse-Davenport relation [Ka-GKM| 5.6.1, line -1 on page 84|, we find that
the Mellin transform is another product of Gauss sums. The asserted identity is then a
straightforward if tedious calculation using Hasse-Davenport, which we leave to the reader.

O
Proposition 1.3. Hyp(v, N, D) is geometrically isomorphic to the lisse sheaf
Ao x5 1 inv* By
on G, /F, whose trace function is that of H(¢, N, D).
Proof. The trace function of Ag %4, inv*By is minus the multiplicative convolution of the

trace functions of Ay and of inv*By. Thus Hyp(i, N, D) is geometrically isomorphic to the
lisse sheaf on G,,/F, whose trace function is given by

weK* Y ( > Q/JK(Ny)> (Z Ve (2Pt — Da:))

siteK, st=u ‘ycK, yN=s zeK
(now solve for s = y™ t = u/s = u/y")
= Y tUx(Ny+uz”/yN - Da).
rzeK,ye K%

Because Hyp(v, N, D) is geometrically irreducible, the lisse sheaf H (¢, N, D) is geometrically
and hence arithmetically irreducible, and hence is uniquely determined by its trace function.
Thus we have an arithmetic isomorphism

H(, N, D) = Ag *x 1 inv*By.
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Lemma 1.4. The sheaf H(v, N, D) is pure of weight two. More precisely, we have an
arithmetic isomorphism over any extension K/F, containing the ND™ roots of unity,

H(¥,N,D)® (A(y, N, K)A(¥, D, K)/(#K)) = Hyp(y, N, D).

Proof. The twisting factor A(, D, K)/(#K) has weight D — 3, and the twisting factor
A, N, K) has weight N — 1. The hypergeometric sheaf Hyp(i), N, D) is pure of weight
N+ D —2, cf. [Ka-ESDEl 7.3.8 (5), page 264, and 8.4.13]. O

Lemma 1.5. For any integer M prime to p, the pullback [M]*H (1, N, D) is geometrically
irreducible. The pullback [N]*H (¢, N, D) extends to a lisse, geometrically irreducible sheaf
on A'/F,, whose trace function is given, at points u € K, K a finite extension of F,, by

u Z Vi (2P JyN — Dz + ulNy).

rzeKye KX

Proof. To see the asserted geometric irreducibility of [M]*H (¢, N, D), we argue as follows.
The inner product

((M]"H(¢, N, D), [M]"H (¢, N, D)) =
= <H(77Z)>Nv D)> [M]*[M]*H(¢7N’ D))

By the projection formula,

:H(¢,N>D)® @ ‘CX:

xoxM=1

= P £y@H N,D).

xoxM=1

In general, hypergeometric sheaves behave under tensoring with £, by

Ly @ Hyp(y, pis; Njs) = Hyp(, xpis; xAjs).

One knows that hypergeometric sheaves are determined geometrically up to multiplicative
translation by the sets of their upstairs and downstairs characters. Because N and D are
relatively prime, for any nontrivial x, the sheaf £, ® H(¢), N, D) will not have the same
upstairs and downstairs characters as H(i, N, D). Indeed, either the upstairs characters
change, or y is nontrivial of order dividing N, in which case the downstairs characters change.

That the [N]*H (1, N, D) pullback is lisse across 0 is obvious, since the local monodromy at
0 of H(v), N, D) is the direct sum of characters of order dividing N, so this local monodromy
dies after [N]*. The formula for the trace results from the formula for the trace of H (¢, N, D),
namely

u Z Vi (uz® Jy™ — Dz + Ny),
reKye KX

by replacing u by v and making the substitution y — uy. 0
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We now view H(v), N, D) as a representation of the arithmetic fundamental group
TG [By) 1= 1 (G F)
and of its normal subgroup
R (G F,) = 71 (G /By
We also view the pullback [N]*H (i, N, D) as a representation of
parith(AL/F,) = m (A /F,)

and of its normal subgroup o
T (AYFy) = m(AF,).

Lemma 1.6. (Primitivity Lemma) Suppose that N > D > 1 are both prime to p and have
ged(N, D) = 1. Then we have the following results.

(i) Unless D is 3 or 4 or 6, the local system [N|*H (v, N, D) on A'/F, is not geometrically
induced, i.e., there is no triple (U, 7,G) consisting of a connected smooth curve U/E,
a finite etale map f : U — Al/E of degree d > 2, and a local system H on U such that
there exists an isomorphism of m,.G with (the pullback to A'/F, of) [NJ*H(¢), N, D).

(ii) Unless D is 3 or 4 or 6, the local system H(, N, D) on G,,/F, is not geometrically
induced.

(iii) Suppose D = 3. Then [N|*H (i, N, D) is not geometrically induced unless N = 1+ q
for some power q of p. In this case, H(, N =1+ q, D = 3) is geometrically induced,
and hence so is [N[*H (¢, N, D).

(iv) Suppose D = 4. Then [N]*H (1, N, D) is not geometrically induced unless N = 1+ 2q
or N = 2+ q for some power q of p. In this case, both H(¢Y, N =1+ 2q,D = 4) and
H(p, N =2+4q, D = 4) are geometrically induced, and hence so are both [N]*H (¢, N =
142q,D =4) and [N[*H(),N =2+4¢q,D =4).

(v) Suppose D = 6. Then [N]*H(¢, N, D) is not geometrically induced (and hence H(¢, N, D)

is mot geometrically induced).

Proof. For (i), we argue as follows. The pullback sheaf [N]*H (), N, D) has Euler character-
istic zero, as its rank, NV, is equal to its Swan conductor. So if such a triple (U, m, G) exists,
we have the equality of Euler characteristics

EP(U,G) = EP(A'/F,,7,.G) = EP(A'/F,, [N[*H (s, N, D)) = 0.

Denote by X the complete nonsingular model of U, and by gy its genus. Then 7 extends to
a finite flat map of X to P!, and the Euler-Poincaré formula gives

0= EP(U,G) = rank(G)(2 — 2gx — #(r '(20))) = > _  Swan,(9).
wen—1—(00)

Thus gy = 0, otherwise already the first term alone is strictly negative. So now X = P!, and
we have
0 =rank(G)(2 — #(r '(00))) = > Swan,(9).
wen—1—(o00)
If #(7~*(00)) > 3, then already the first term alone is strictly negative. If #(77!(c0)) = 1,
then U is P!\ (one point) & A!, and so « is a finite etale map of A! to itself of degree > 1.
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But any such map has degree divisible by p, and hence 7,G would have rank divisible by p.
But its rank is N, which is prime to p. Thus we must have # (7 !(c0)) = 2 (and gx = 0).
Throwing the two points to 0 and oo, we have a finite etale map

7:G,, — AL
The equality of EP’s now gives
0 = Swany(G) + Swan.(G).

Thus H is lisse on G,, and everywhere tame, so a successive extension of lisse, everywhere
tame sheaves of rank one. But m,H is irreducible, so ‘H must itself be irreducible, hence of
rank one, and either Q; or an L,. [It cannot be Qy, because 7,Qy is not irreducible when 7
has degree > 1; by adjunction 7,Q, contains Q]

Now consider the maps induced by 7 on punctured formal neighborhoods

7(0) : G, (0)—= Al(c0), 7(00) : Gyp(o0) — Al(00).
The I(oo)-representation of F, p r, is then the direct sum
7(0).L, ® m(00) L.

Denote by dy and d, their degrees. Because G has rank one, the degree of m must be N,
and hence
Both dy and d, cannot be prime to p, for then the I(oo) representation would be the sum of
do + ds = N tame characters. But the I(oo) representation of [N|*H (¢, N, D) is the direct
sum of the D — 1 < N nontrivial characters of order dividing D and a wild part of rank
N—(D-1).

After interchanging 0 and oo if necessary, we may assume that dy is prime to p, and that
dp =niq

with n; prime to p and with ¢ a positive power of p. Then 7(0),L, consists of dy distinct
characters, the di roots of £,, while 7(c0),L, consists of n; distinct characters (the nyq™"
roots of £,), together with a wild part. As the total number of tame characters is D — 1, we
have the equalities
N:d0+n1q, D—1:d0+n1

There is now a further observation to be made. The d, tame characters occuring in 7(0),L,
are a torsor under the characters of order dividing dy. So the ratio of any two has order
dividing dy. But each of these dy characters has order dividing D, and hence so does any
ratio of them. Therefore dy divides D. Similarly, we see that n; divides D.

Thus we have D — 1 = dy + nq, with both dy and n; divisors of D. We will see that this is
very restrictive. Write

do=D/A, ny = D/B,

with A, B each divisors of D.

We first observe that both A, B must be > 2, otherwise one of the terms D/A or D/B is
D, already too large.

Suppose first D is even. We cannot have A = B = 2, because then D/A+ D/B = D is
too large. So the largest possible value of D/A+ D/B is D/2+ D/3 = 5D/6. This is too
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small, i.e. 5D/6 < D — 1, so long as 5D < 6D — 6, i.e., so long as D > 6. And we note that
for D = 6, we indeed have D — 1 =5 = 2 + 3 is the sum of divisors of D.

Suppose next that D is odd. Then the largest possible value of D/A+D/Bis D/3+D/3 =
2D/3. This is too small, i.e., 2D /3 < D —1, so long as D > 3. Notice that D—1=2=1+1
is the sum of divisors of D.

The case D = 2 cannot be induced, because the lowest value for D —1 = 11is 1+1 (coming
from N =1+ q), too large.

This concludes (!) the proof of (i).

Assertion (ii) follows trivially, since if a representation of the group is primitive, it is all
the more primitive on an overgroup.

For assertion (iii), the case D = 3, we can only achieve D — 1 = 2 as as the sum of two
divisors of D =3 as D —1=2=1+41,1ie. if N =1+ ¢. In this case, ¢ must be 1 mod 3
(simply because N = g + 1 is prime to D = 3, as is p and hence also ¢). In this case, one
checks that the finite etale map 7 : x — 1/(2%(z — 1)) from G,, \ {1} to G,, has

T(Lx3(7) @ L3 (),

for xs either character of order 3, geometrically isomorphic to a multiplicative translate of
Hyp(¥, N, D).

For assertion (iv), the case D = 4, we can only achieve D—1 =3 as 142, i.e. as N = 1+2¢q
or as N = 2+ ¢q. Here ¢ must be odd, as p is prime to D = 4. One checks that for both of
the finite etale maps 7 : x — 1/(z%(z — 1)?) and 7 : x — 1/(2*(x — 1)9),

mLxa(x(x — 1)),

for xo the quadratic character, is geometrically isomorphic to a multiplicative translate of
Hyp(¢, N, D).

For assertion (v), the case D = 6, we argue by contradiction. The two possibilities are
N =2+ 3q and N = 3+ 2¢q. In both cases, the tame characters at oo will be, for some
nontrivial character p, the union of the square roots of either p or of p? and the cube roots of
either p or of p?. These are to be the nontrivial characters of order dividing D = 6. Thus p is
the cube of some character of order dividing 6, but is nontrivial, so p must be the quadratic
character. But p is also the square of some character of order dividing 6, but being nontrivial
must have order 3. So this D = 6 case cannot be induced. A fortiori, in this D = 6 case
Hyp(, N, D) cannot be induced, cf. the proof of (ii). O

Lemma 1.7. (Determinant Lemma) Suppose that N > D > 1 are both prime to p and have
gcd(N, D) = 1. Then we have the following results.
(i) If N is odd, then det(H (v, N, D)(1)) is geometrically constant, It is of the form A9,
with A = ¢ for some root of unity ¢ € Z[(,).
(i) if N is even, then det([N|*H (v, N, D)(1)) is geometrically constant. It is of the form
Ades with A = ¢ for some root of unity ¢ € Z[(,)].
(iii) Suppose N is odd (respectively even) and we have the congruence

D =N+ 1(mod p—1).
Then H(, N, D)(1) (respectively [N]*H (v, N, D)(1)) has all Frobenius traces in Q, and

has determinant A%9 with A some choice of £1.
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(iv) Under the hypotheses of (iii), denote by d the degree of F,(un)/Fp. If N is odd, or if
N is even and either D is a square in F, or d is even, then A= 1. If N is even, and
D 1s a nonsquare in Fa, then A% = —1. In particular, if N and d are both odd, then we
have A =1 in (iii) above.
Proof. To prove (i) and (ii), we appeal to [Ka-ESDE, 8.11.6]. Here the upper characters
are all the characters of order dividing N, so their product is trivial when N is odd, and
the quadratic character xo when N is even. Thus the determinant is geometrically trivial
when N is odd, and is geometrically £,, when N is even. In the N even case, it becomes
geometrically trivial after [N]* (or just after [2]*). So we can compute A as the determinant
at, say, the point s = 1 (which is certainly an N*® power).
This determinant lies in Z[(,][1/p], and is pure of weight zero, i.e., it has absolute value
1 for every complex embedding of Q((,). Because Q((,) has a unique place over p, this
determinant and its complex conjugate have the same p-adic ord. So being of weight zero,
the determinant is a unit at the unique place over p. As it lies in Z[(,|[1/p], it is integral at
all /-adic places over primes ¢ # p. So by the product formula, it must be a unit everywhere,
and so is a root of unity in Q((,).
To prove (iii), we first show that under the asserted congruence, each sum

Z Vi (tz® JyN — Dx + Ny).
zeKye K~

lies in Z. Indeed, this sum lies in Z[(,], so it suffices to show that it is invariant under the
Galois group Gal(Q(¢,)/Q). This group is F\, with a € F,’ moving this sum to

Z Vi (atz? JyN — Dax + Noy) =

reK,ye KX

= Z Vi (t(ax)? /(ay)Y — Dax + Nay),
zeK,ye K%
(equality because o = a”~" by the congruence D = N + 1 mod p — 1) which is the original
sum after the change of variable x +— ax, y — ay. Once the traces lie in Q, the same
argument used in (ii) above now shows that the determinant is a root of unity in Q.

To prove (iv), we argue as follows. The assertion is about the sign of A%, which we can
compute for [N]*H(p, N, D)(1) at any point ¢t € F,a. We take the point ¢ = 0. We will
compute the trace over all extensions K = F, of F,« in order to calculate the eigenvalues of
Frob—or , on [N[*H (¢, N, D)(1). Over such a K, the trace is

> Uk(”/yN - Da)/g.

zeK,ye K%
In this sum, we may invert y, so the sum becomes
(1/Q)Z¢K(—Dx) Z 1/)K($DyN)-
zeK ye KX
Because all the characters of order dividing N exist over K, we rewrite the second term as

Yodk@Py) =Y dk@Py) Y plu).

ye KX ueKX* char.’s p,pN=1
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So our K sum becomes

1/9)> x(=Dx) > > vr(aPu)p(u).

zeK char.’s p,pN=1 u€K*

For each nontrivial p, the p term is
> v (@Pu)p(u) = p(z”)Gauss(vx, p).
uc KX

So each p # 1 term in the K sum is

> Wk (—Da)p(«”)Gauss(vx, p)/q = p” (D)Gauss(vr, ) Gauss(vc, p) /q.
zeK
The p =1 term in the K sum is

(1/q) Z¢K(—D$) Z Vi (zPu) =

zeK ue KX

= (1/g) Y ¥x(=Da)(=1+ ) vx(z"u)) =

reK ueK

= (1/q) Y vx(=Dx)(—=1)+ (1/g)(~1+q) = (1/g)(1+¢—1) = 1.

ze KX

Thus the eigenvalues are precisely 1 and, for each of the N — 1 nontrivial p of order dividing
N, the product

pD(D)GaUSS(¢de7pD)GaUSS(¢de7 p)/pd'
So the determinant is the product
I[I »"(D)Gauss(¥s ,,p")Gauss(ve ,, p)/p"].
pN=1, p#1

Because D is prime to N, the p? are just a rearrangement of the p. So defining

we see that the determinant is
AMD) I [Gauss(s,. p)Gauss(vx . p) /o] = A(D).
pN=1, p#1

If N is odd, then A = 1. If N is even, the A is the quadratic character of IF,,«. In this case,

A(D) =1 if either D is already a square in F, or if d is even, so that D becomes a square
inlF a. O
p
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2. THE CRITERION FOR FINITE MONODROMY
Denote by V' Kubert’s V-function

V: (Q/Z>prime to p — QEO-

It has the following property. For f > 1, ¢ := p/, Teich; : Fr — Qp(ptq—1) the Teichmuller
character (for a fixed p-adic place of Q,(p4—1)), and = € (Q/Z)prime to p Of order dividing
q — 1, we have

V(z) = ord,s(Gauss(¢, , Teich;(qfl)x)).

Lemma 2.1. Suppose that N > D > 1 are both prime to p and have gcd(N, D) = 1. Then
H(y, N,D)(—1) has algebraic integer traces, and hence finite arithmetic monodromy group
Garith, if and only if the following inequalities hold. For every x € (Q/Z)prime to p, we have
V(Nz)+V(—=Dx) —V(—x) > 0.
FEquivalently (since this trivially holds for x = 0), the condition is that for every nonzero
z € (Q/Z)prime to p, we have
V(Nz)+V(=Dz)+ V(x) > 1.
Proof. From Lemma we see that H (1, N, D)(—1) has algebraic integer traces if and only
if, for every finite extension K/F, containing the N D™ roots of unity, the hypergeometric
sheaf Hyp(1, N, D) has traces at K-points which are of the form A(N, K)A(D, K) times
algebraic integers. Equivalently, as explained in [Ka-RL-T), Proof of Theorem 2.7], it suffices

that the multiplicative Mellin transform of the trace function of Hyp(¢, N, D) on K* has all
values with ord at least that of A(N, K)A(D, K). The value at x is

0521 Gausstowonn) x (I Gousstin o))

p, pN=1 o,0P=1,0#1
The first product is, up to a root of unity factor,
A(N, K)Gauss(¢g, xV).
The second product is, up to a root of unity factor,

A(D, K)GBUSS(EK, YD)/GaUSS(EKv Y)
So the requirement is that for all x, the product

Gauss(tr, X ) Gauss(Vye, X7) /Gauss(1 i, X)

have nonnegative ord. This is precisely the
V(Nz)+V(=Dz) —V(-x) >0
version of the criterion. U

Remark 2.2. As Will Sawin pointed out to us, there are a number of sheaves Hyp(¢), N, D)
which, although not induced, are very nearly so. Namely, for any power ¢ of p, and for any
D > 2 prime to p, the direct image 7, Qy, for 7 : G,, \ {1} — G,, the finite étale map given
by z ++ P97 (2 — 1), is geometrically isomorphic to the direct sum of the constant sheaf Q,
and Hyp(, Dg — 1, D). The case D = 2 was the subject of the paper [G-K-T].
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From this direct image picture, we see that Hyp(v, Dg — 1, D) has finite geometric mon-
odromy, and hence that H(v, Dg — 1, D)(1) has finite Gyi5. In other words, the inequality
of Lemma is satisfied by the data N = Dq — 1, D in the characteristic p of which ¢ is a
power and to which D is prime.

The induced cases, being induced from rank one, also have finite geometric monodromy.
Thus H (v, q + 1,3)(1) has finite Gy for any prime power ¢ which is 1 mod 3 in the
characteristic of which ¢ is a power. And both H (v, q+ 2,4)(1) and H(v,2q + 1,4)(1) have
finite Gy, in the odd characteristic of which ¢ is a power. This gives other cases of data
satisfying the inequality of Lemma [2.1}

In the next section, we will exhibit another datum, not of either of these types, satisfying
the inequality. How many others are there?

3. THEOREMS OF FINITE MONODROMY
In this section, we will prove

Theorem 3.1. For p =3, N =23 and D = 4, the sheaf H(v, N, D)(1) has finite arithmetic
and geometric monodromy groups.

By lemma we need to show that for every nonzero x € (Q/Z)prime to 3, We have
V(23z) + V(—4x) = V(—z) >0
or, equivalently,
V(=23z) + V(4x) —
Applying the duplication formula V(z) + V(x + %)
twice, this is equivalent to

1—V(—23x)§V(2x+%>—l—V(:c—l—%).

For z = % this is obvious so, making the change of variable z — x + %, we get the equivalent

condition . '
1-V (—23x - 5) <V (Qx—i— 5) + V(z).

If # = § or 2 = 2 the inequality (equality in this case) is trivial. Otherwise, 2z + 5 # 0, and

we can rewrite it as
1 1
1—V(—23x—§) < 1—V(—2x—§) + V(z).

We now restate the inequality in terms of the function [ — ], := [ — ], defined in [R-1],
given by

Vi) >
= V(2 ) 3, see [Ka-G2hyper, p.206],

[2]5, = the sum of the 3-adic digits of the representative of
the congruence class of  modulo 3" — 1 in [1,3" — 1].
By [Ka-RL, Appendix| we have [z], = 2r(1 — V(—5%5)), so the finite monodromy condition

can be restated as
T—1 3" -1
<[]+ |2z + 5

for every r > 1 and every integer 0 < z < 3" — 1.
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For a non-negative integer z, let [x] denote the sum of the 3-adic digits of x. For use below,
we recall the following result from [Ka-RL Prop. 2.2]:

Proposition 3.2. For strictly positive integers x and y, and any r > 1, we have:

(1) [z +y] <[z] + [y];
(ii) [z], < [z];
(iti) [32] = [2].

Lemma 3.3. Letr > 1 and 0 < x < 3" an integer. Then

T

r

[23x+ } < [x] + {2:10—1— } + 2.

Moreover, ifr =1 and x # 1, r =2 and x # 3 or r > 3 and the first three 3-adic digits of x
(after adding leading 0’s so it has exactly v digits) are not 100 or 202, then

-1 -1
[231‘—1—3 5 ]S[x]+{2x+3 5 ]

Proof. We proceed by induction on r: for » < 3 one checks it by hand. Let r > 4 and
0<x <3,

Case 1: © =0 (mod 3).

Write x = 3y with 0 <y < 3”71, Then

3 —1 3t -1
23x + 5 = |3 23y+T +1

r—l_l
= [23@;4—3—] +1

3r1—1

<[yl + |2y + 5

|+

r 37“71_1
= [yl + |3 Y+ —5— ) +1| +2

r

= [z] + |22+ } +2
by induction. Since the first three digits of x and y are the same, the better inequality holds
when those three digits are not 100 or 202, also by induction.

Case 2: The last r — 3 digits of = contain the string 00 or the string 01.
Say the string is located at position s < r — 3, counting from the right. Write z = 3°y + z,
where y < 3" and z < 2-3°72. Then
s s _ 1

3
22 + <4-372 4

4 1
<3F(=+=) <3
(9+2) )
3" —1 | 3 —1
2 = 13%(2 _ 2
{x—i— 7 } {3<y+ 5 >—|— z+ 5 }

3 1 31
— 2+ ——| + |2
el

SO
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and therefore

3 — 1 3 1 3 —1
{23:1:4— 5 ]:[35<23y+—)+232+ 5 }

2
3 —1 3 -1
< |2 — 2
_[Sy—i— 5 }—I—[Sz—k 2}
3= 1 3 —1
S[y]+{2y+T]+2+[z]+[22+ 5 }
:[x]+[2a:+ — ]+2

by induction. Again, since the first three digits of x and y are the same, the better inequality
holds if they are not 100 or 202.

Case 3: The last r — 3 digits of x contain one of the strings 02, 10, 11 or 12, and the
previous digit is not a 2.

Say the string is located at position s < r — 3, counting from the right. Write x = 3°y + z,
where y < 3"% is not = 2 mod 3 and z < 2-3°"!. Then

3 =1 3 =1

2z + <4-3714

84 1 S
<3 (§+§)<2-3

and the last digit of 2y + (3"7° — 1)/2 is not 2, so

3 -1 -1 3 -1
2 = 13%(2 _ 2
2o ] (2 T ) e B
| 3 -1
= |2y + —— 2 .
e ¢ e

We conclude as in case 1 unless s = 2 and z = 3 (in which case we can apply case 1) or
s > 3 and the first three digits of z are 100 (in which case we can apply case 2).

If x is not included in the cases proved so far and the last » — 3 digits of x contain a 0, it
must be enclosed between two 2’s. If they contain a 1, it must be enclosed between two 2’s,
with the possible exception of the last two digits in the case when x ends with 211 or 21.

Case 4: The last r — 3 digits of x contain a 2 which is preceded by a 1 and the next two
digits (if they exist) are not 02.

Write © = 3%y + 2z, where y < 3"° is congruent to 1 mod 3 and z < 3° starts with 2 (but
not with 202). Then

S S

1
22 + <2-3S+T<38+1

and the last digit of 2y + (3" ° —1)/2is 0, so

3 -1 -1 3 -1
2 = 13%(2 _ 2
|:.CE+ 5 } {S(y%— 5 )+ z+ 5 }
3 -1 3 -1
o T e 21

We conclude as in the previous two cases.
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Case 5: A digit of x which is not one of the first four or the last two is a 1. By the note
after case 3, we can assume that the 1 is enclosed bewteen two 2’s. If the digit after the
following 2 is not 0 we apply case 4. If it is 0 and is the last digit, we apply case 1. Otherwise,
by case 4 we can assume that there is a 2 after the 0, so the last » — 3 digits of x contain the
string 21202. If the previous digit is 1 we apply case 4.

Otherwise, write x = 3%y + z, where the last three digits of y are 021 or 221, and the first
three digits of z are 202. Then the last 3 digits of 2y + (3"~* — 1)/2 are 000 or 100 and
22+ (35 —1)/2 < 32 s0

31 3r—s _ 1 35 _ 1
2 = 13%(2 _ 2
{x+ . } [3<y+ 5 >+z+ 2}
[y 1] 351
- |“Y 2 2 |-

On the other hand, the last three digits of 23y + (3"7* — 1)/2 are 110 or 210, and 23 = 2125.
Since 2123 - 2023 = 1220113, 23z + (3° — 1)/2 has exactly s + 3 digits, the first three of them
being at least 122. In any case, in the sum 3°(23y + (3"~° — 1)/2) + (232 + (3° — 1)/2) there
is at least one digit carry, so

o T o ) e
< |+ 25 }+{2 -2
S[y]+[2y+ 1}—1—2%—[2]%—[ 382_1}
— L+ [z T 42

As usual, if the first three digits of x (or y) are not 100 or 202 one gets the better bound.

Case 6: The last r — 1 digits of x contain the string 2202. Write z = 3°y + z, where
y < 3" % ends with 22 and z < 3° starts with 02. Then the last two digits of 2y+ (3"7° —1)/2
are 02, and 2z 4 (3° — 1)/2 has at most s + 1 digits. So

3 -1 3= -1 3°—1
2 = (3% 2 _ 2
2o Tl (e T ) e

=1 3 =1
2{2y+—2 ]—i—{ 5 ]—2.

On the other hand, the last two digits of 23y + (3"7° — 1)/2 are 22, and 23z + (3° — 1)/2 has
s+ 2 digits, the first two being at least 12. In any case, in the sum 3° (23y + (37 — 1)/2) +
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(232 + (3° — 1)/2) there is at least one digit carry, so

S G )[ o]

< |23y +° P Y

| ] =
<[y]+{2y+ 1}+2—|—[z]+[ 382_1]_2
<[:1:]—i—[ ]+2

As usual, if the first three digits of x (or y) are not 100 or 202 one gets the better bound.

Case 7: The last r — 1 digits of = contain the string 2222. This case is similar to the
previous one, with the difference that 23z + (3° — 1)/2 has now s + 3 digits, the first three
being 202, 210, 211 or 212.

For all remaining cases, all digits except for the first four and the last two must be 0’s and
2’s. Among them, there can not be two consecutive 0’s or four consecutive 2’s, and if there
is a string of two or three consecutive 2’s, it can not be followed by a 0. So the last r — 4
digits of x are of the form

(possibly a 0) + (a copies of 20) +
(1,2 or 3 2’s) + (possibly 1 or 2 1’s)

for some a > 0. Here is a table with the last digits of 2z + (3" — 1)/2 and 23z + (3" — 1)/2
in each case for a > 2:
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last digits of x \ last digits of 2x + % \ last digits of 23x + 3T2—71

ax20 2ax2 (a—1)x20
—— ~ ——
2020...202 22..22 2020...20112
ax20 2ax0 (a—2)%x20
—— ~ ——
2020...20 22 00...002 2020...20 210022
ax20 2ax0 (a—2)%x20
— ~ —
2020...20 222 00...0102 2020...20 2102122
ax20 2ax0 (a—1)x20
— ~ = —
2020...2021 00...000 2020...20 2110
ax20 2ax0 (a—1)x20
2020...20 221 00...0 100 2020...202101210
ax20 2ax0 (a—2)x20
—— ~ ——
2020...20 2221 00...01100 2020...20 21022210
ax20 2ax0 (a—1)%x20
—— —~ ——
2020...20211 00...0010 2020...20 22020
ax20 2ax0 (a—2)x20
— ~ —
2020...202211 00...01010 2020...20 21020020
ax20 2ax0 (a—2)%x20
— ~ = —
2020...2022211 00...011010 2020...20 211000020

In any case, when a > 2 adding an extra 20 block increases the digit sums of = and
23z + (3" —1)/2 by 2. So, by induction, we may assume that a < 2. It remains to check the
cases where a < 2, which can be done by a computer search. O

Corollary 3.4. Let r > 2 and 0 < z < 3" an integer such that x # 2 or 6 (mod 9). Then

[23x +

r

] < [z] + [2x+2+

T

|+2

Proof. If x # 2 or 6 (mod 9), then 2z + 21 # 7 or 8 (mod 9), and therefore

{Qx +

3 =1

3r—1
}S{Qw%—?—k 5 }

0

We can now finish the proof of theorem 3.1} Let > 2 and let 0 < x < 3" — 1 be an integer
such that z # 2 or 6 (mod 9). Then 2z + 2 + (3" — 1)/2 < 3"*! and

3
31— (22 +2
[ (2z +2+ 5

1)} —2(r+1) — {2x+2+3r;1}.

By the previous corollary, we have

T

3 =1

{2395%— }+{3T+1—3—2$— }S[w]+2r+4.
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3r—1 3r—1
2 21 — =
o] et

3 —1

Hence,

r—1
:{23$+ ] +{3(3’”—1)—2x—32 ] <

"1 3 =1
< {23x+ 5 ] + {37"“—3—%— 5 ] <
< [z]+2r+4=z], +2r+4.

Using [Ka-RL-T| Lemma 2.10], we conclude (as in the proof of [Ka-RL-T) Theorem 2.12])

that

3" =1
2

-1
[23x+ } +[—2x—3 5 } < [z],+2r

or, equivalently,
T

{233:—1— }Tg[x]r+{2x+3rz_1]r

If x =2 or 6 (mod9), then either z = 2020...20;5 = 3(3" — 1)/4 or x = 0202...025 =
(3" —1)/4, in which case the inequality is trivial, or we can multiply = by a suitable power
of 3 (which cyclically permutes its digits modulo 3" — 1) to obtain an z which is not = 2 or
6 (mod 9), to which we can apply the previous argument.

4. DETERMINATION OF THE MONODROMY GROUPS

In this section, we will determine the monodromy of H (1, 23,4)(1) in characteristic p = 3.
In this case, the field F3(u93) is the field Fsii. So by Lemma the arithmetic monodromy
group lies in SLo3(C). [In fact it lies in SO93(C), since it is an irreducible subgroup with real
(in fact integer) traces.]

Looking at the Frobenius F'rob_; r, at the point t = —1, we have, by computer calculation,
that its first seven powers have traces

0,-2,0,2,0,-2,7.
First we prove the following theorem on finite subgroups of SLy3(C):

Theorem 4.1. Let V = C® and let G < SL(V) be a finite irreducible subgroup. Let x denote
the character of G afforded by V', and suppose that all the following conditions hold:
(i) x is real-valued;
(i) x is primitive;
(iii) G contains an element v such that the traces of v,7>, ...,y acting on V are 0, —2, 0,
2,0, =2, 7, respectively.
Then G = Coq in its unique (orthogonal) irreducible representation of degree 23.

Proof. By the assumption, the G-module V is irreducible and primitive; furthermore, it is
tensor indecomposable and not tensor induced since dim V' = 23 is prime. Next, we observe
by Schur’s Lemma that condition (i) implies Z(G) = 1. Now we can apply [G-T), Proposition
2.8] (noting that the subgroup H in its proof is just G since G < SL(V')) and arrive at one
of the following two cases.
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(a) Extraspecial case: P<1G for some extraspecial 23-group of order 23* that acts irreducibly
on V. But in this case, x|p cannot be real-valued (in fact, Q(x|p) would be Q(exp(27i/23)),
violating (i).

(b) Almost simple case: S <G < Aut(S) for some finite non-abelian simple group S. In
this case, we can apply the main result of [H-M] and arrive at one of the following possibilities
for S.

e S = Ay, My, or PSLy(23). Correspondingly, we have that G = Ay or Soy, My, and
PSIL5(23) or PGL(23). In all of these possibilities, x(x) > —1 for x € G by [ATLAS],
violating (iii).

e S = PSLy(47). This is ruled out since Q(x|s) would be Q(+/—47), violating (i).

e 5 = Cos. In this case, G = Cogs, and this possibility is ruled out by the existence of the
(conjugacy class of the) element v in (iii). Now 77 has trace 7. In Cogs, the only class with
trace 7 is class 2 in Magma notation. The only class v with 47 in class 2 is either class 2 or
class 29. But v cannot be in class 2, because its trace is 0, not 7. So v must be in class 29,
which does have trace 0. However, the square of class 29 in Cog is class 16, whose trace is 2,
not —2. Therefore we do not have Cos.

e S = Coy. In this case G = Co,, as stated. O

Theorem 4.2. In characteristic 3, the rigid local system H(1,23,4)(1) on G,,/F3 has
Ggeom = Garith - COQ-

Proof. We know that [23]*H (v, 23,4)(1) is not geometrically induced, so a fortiori H (1), 23,4)(1)
is not geometrically induced, and hence H (v, 23,4)(1) is not arithmetically induced (as prim-
itivity passes to overgroups). We know that H (1), 23,4)(1) is geometrically irreducible, hence
all the more arithmetically irreducible. By the Determinant Lemma [I.7] and the finiteness
theorem, we know that # (v, 23,4)(1) has integer traces and trivial determinant. In view of
the Theorem , this forces Gopirp, to be Coa. Now Gyeonm, is a normal subgroup of Gy, and
it is nontrivial because it is itself irreducible. But Coy is a simple group, so Ggeon must be

COQ. O

Corollary 4.3. For any integer M > 1 prime to 3, the Kummer pullback [M]*H (1), 23,4)(1)
on Gy, /F3 has Ggeom = Garitn = Coa.

Proof. By Lemma [L.5, [M]*H (1, 23,4)(1) is geometrically irreducible. Its Ggeom is a then
a normal subgroup of the Gyeon of H(1),23,4)(1), namely Coy, with a quotient cyclic of
order dividing M. Because Coy is simple and nonabelian, this quotient must be trivial.
Thus [M]*H(¢,23,4)(1) on G,,/Fs has Ggeom = Coy. From Theorem [£.1] we see that Co,
is maximal (and from [ATLAS| that it is minimal as well, although we will not use this)
among finite irreducible subgroups of SOy3(C). Thus the G, of the pullback must itself
be COQ. OJ
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