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Abstract. We first develop some basic facts about hypergeometric sheaves on the multi-
plicative group Gm in characteristic p > 0. Certain of their Kummer pullbacks extend to
irreducible local systems on the affine line in characteristic p > 0. One of these, of rank 23 in
characteristic p = 3, turns out to have the Conway group Co2, in its irreducible orthogonal
representation of degree 23, as its arithmetic and geometric monodromy groups.
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Introduction

In the first two sections, we give the general set up. In the third section, we apply known
criteria to show that certain local systems of rank 23 over the affine line in characteristic 3
have finite (arithmetic and geometric) monodromy groups. In the final section, we show that
the finite monodromy groups in question are the Conway group Co2 in its 23-dimensional
irreducible orthogonal representation.

1. The basic set up, and general results

We fix a prime number p, a prime number ` 6= p, and a nontrivial Q`
×

-valued additive
character ψ of Fp. For k/Fp a finite extension, we denote by ψk the nontrivial additive
character of k given by ψk := ψ ◦ Tracek/Fp . In perhaps more down to earth terms, we fix a

nontrivial Q(µp)
×-valued additive character ψ of Fp, and a field embedding of Q(µp) into Q`

for some ` 6= p.
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We fix two integers N > D > 1 which are both prime to p and with gcd(N,D) = 1. We
first describe a rigid local system on Gm/Fp, denoted

H(ψ,N,D),

which is pure of weight 2 and whose trace function at a point t ∈ K×, K a finite extension
of Fp, is given by the exponential sum∑

x∈K,y∈K×
ψK(txD/yN −Dx+Ny).

It will also turn out that after pullback by N th power, the pullback system

F(ψ,N,D) := [N ]?H(ψ,N,D)

extends to an irreducible local system on A1/Fp, whose trace function at a point t ∈ K, K
a finite extension of Fp, is given by the exponential sum∑

x∈K,y∈K×
ψK(xD/yN −Dx+ tNy).

[In the H sum, replace t by tN , and then make the change of variable y 7→ ty, to see what
happens over Gm.]

To understand this situation, we must relate H(ψ,N,D) to the hypergeometric sheaf

Hyp(ψ,N,D) := Hyp
(

ψ, all characters of order dividing N ;
all nontrivial characters of order dividing D

)
.

This hypergeometric sheaf is only defined on Gm/Fq, with Fq/Fp an extension large enough
to contain all the NDth roots of unity. We know that it is an irreducible rigid local system on
Gm which is not geometrically isomorphic to any nontrivial multiplicative translate of itself.

In terms of the Kloosterman sheaves

A := Kl(ψ, all characters of order dividing N)

and

B := Kl(ψ, all nontrivial characters of order dividing D),

we obtain Hyp(ψ,N,D) as the lower ! multiplicative convolution

Hyp(ψ,N,D) = A ∗×,! inv?B.

Lemma 1.1. We have a geometric isomorphism

Kl(ψ, all characters of order dividing N) ∼= [N ]?Lψ(Nx).

Proof. This is [Ka-GKM, 5.6.3]. The twisting factor over extensions K/Fp containing the
N th roots of unity is

A(ψ,N,K) =
∏

characters ρ, ρN=1

(−Gauss(ψK , ρ)).

�
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The second member, [N ]?Lψ(Nx), makes sense on Gm/Fp, with trace function given by

t ∈ K× 7→
∑

y∈K, yN=t

ψK(Ny).

Lemma 1.2. We have a geometric isomorphism of

B := Kl(ψ, all nontrivial characters of order dividing D)

with the local system B0 on Gm/Fp whose trace function is

t ∈ K× 7→ −
∑
x∈K

ψK(xD/t−Dx).

Proof. It suffices to show that over every K/Fp containing the Dth roots of unity, the two
local systems have trace functions related by

Trace(FrobK,t|B) = Trace(FrobK,t|B0)× A(ψ,D,K)/(#K),

for A(ψ,D,K) the twisting factor

A(ψ,D,K) =
∏

characters ρ, ρD=1

(−Gauss(ψK , ρ)).

To show this, it is equivalent to show that their multiplicative Mellin transforms coincide.
For B, the Mellin transform is an explicit product of Gauss sums, cf.[Ka-ESDE, 8.2.8]. For
B0, using the Hasse-Davenport relation [Ka-GKM, 5.6.1, line -1 on page 84], we find that
the Mellin transform is another product of Gauss sums. The asserted identity is then a
straightforward if tedious calculation using Hasse-Davenport, which we leave to the reader.

�

Proposition 1.3. Hyp(ψ,N,D) is geometrically isomorphic to the lisse sheaf

A0 ?×,! inv
?B0

on Gm/Fp whose trace function is that of H(ψ,N,D).

Proof. The trace function of A0 ?×,! inv
?B0 is minus the multiplicative convolution of the

trace functions of A0 and of inv?B0. Thus Hyp(ψ,N,D) is geometrically isomorphic to the
lisse sheaf on Gm/Fp whose trace function is given by

u ∈ K× 7→
∑

s,t∈K, st=u

( ∑
y∈K, yN=s

ψK(Ny)

)(∑
x∈K

ψK(xDt−Dx)

)
(now solve for s = yN , t = u/s = u/yN)

=
∑

x∈K,y∈K×
ψK(Ny + uxD/yN −Dx).

BecauseHyp(ψ,N,D) is geometrically irreducible, the lisse sheafH(ψ,N,D) is geometrically
and hence arithmetically irreducible, and hence is uniquely determined by its trace function.
Thus we have an arithmetic isomorphism

H(ψ,N,D) ∼= A0 ?×,! inv
?B0.

�
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Lemma 1.4. The sheaf H(ψ,N,D) is pure of weight two. More precisely, we have an
arithmetic isomorphism over any extension K/Fp containing the NDth roots of unity,

H(ψ,N,D)⊗ (A(ψ,N,K)A(ψ,D,K)/(#K)) ∼= Hyp(ψ,N,D).

Proof. The twisting factor A(ψ,D,K)/(#K) has weight D − 3, and the twisting factor
A(ψ,N,K) has weight N − 1. The hypergeometric sheaf Hyp(ψ,N,D) is pure of weight
N +D − 2, cf. [Ka-ESDE, 7.3.8 (5), page 264, and 8.4.13]. �

Lemma 1.5. For any integer M prime to p, the pullback [M ]?H(ψ,N,D) is geometrically
irreducible. The pullback [N ]?H(ψ,N,D) extends to a lisse, geometrically irreducible sheaf
on A1/Fp, whose trace function is given, at points u ∈ K, K a finite extension of Fp, by

u 7→
∑

x∈K,y∈K×
ψK(xD/yN −Dx+ uNy).

Proof. To see the asserted geometric irreducibility of [M ]?H(ψ,N,D), we argue as follows.
The inner product

〈[M ]?H(ψ,N,D), [M ]?H(ψ,N,D)〉 =

= 〈H(ψ,N,D), [M ]?[M ]?H(ψ,N,D)〉.
By the projection formula,

[M ]?[M ]?H(ψ,N,D) = H(ψ,N,D)⊗ [M ]?Q` =

= H(ψ,N,D)⊗
⊕

χ,χM=1

Lχ =

=
⊕

χ,χM=1

Lχ ⊗H(ψ,N,D).

In general, hypergeometric sheaves behave under tensoring with Lχ by

Lχ ⊗Hyp(ψ, ρ′is; Λ′js)
∼= Hyp(ψ, χρ′is;χΛ′js).

One knows that hypergeometric sheaves are determined geometrically up to multiplicative
translation by the sets of their upstairs and downstairs characters. Because N and D are
relatively prime, for any nontrivial χ, the sheaf Lχ ⊗ H(ψ,N,D) will not have the same
upstairs and downstairs characters as H(ψ,N,D). Indeed, either the upstairs characters
change, or χ is nontrivial of order dividing N , in which case the downstairs characters change.

That the [N ]?H(ψ,N,D) pullback is lisse across 0 is obvious, since the local monodromy at
0 of H(ψ,N,D) is the direct sum of characters of order dividing N , so this local monodromy
dies after [N ]?. The formula for the trace results from the formula for the trace ofH(ψ,N,D),
namely

u 7→
∑

x∈K,y∈K×
ψK(uxD/yN −Dx+Ny),

by replacing u by uN and making the substitution y 7→ uy. �
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We now view H(ψ,N,D) as a representation of the arithmetic fundamental group

πarith1 (Gm/Fp) := π1(Gm/Fp)
and of its normal subgroup

πgeom1 (Gm/Fp) := π1(Gm/Fp).
We also view the pullback [N ]?H(ψ,N,D) as a representation of

πarith1 (A1/Fp) := π1(A1/Fp)
and of its normal subgroup

πgeom1 (A1/Fp) := π1(A1/Fp).

Lemma 1.6. (Primitivity Lemma) Suppose that N > D > 1 are both prime to p and have
gcd(N,D) = 1. Then we have the following results.

(i) Unless D is 3 or 4 or 6, the local system [N ]?H(ψ,N,D) on A1/Fp is not geometrically

induced, i.e., there is no triple (U, π,G) consisting of a connected smooth curve U/Fp,
a finite etale map f : U → A1/Fp of degree d ≥ 2, and a local system H on U such that

there exists an isomorphism of π?G with (the pullback to A1/Fp of) [N ]?H(ψ,N,D).
(ii) Unless D is 3 or 4 or 6, the local system H(ψ,N,D) on Gm/Fp is not geometrically

induced.
(iii) Suppose D = 3. Then [N ]?H(ψ,N,D) is not geometrically induced unless N = 1 + q

for some power q of p. In this case, H(ψ,N = 1 + q,D = 3) is geometrically induced,
and hence so is [N ]?H(ψ,N,D).

(iv) Suppose D = 4. Then [N ]?H(ψ,N,D) is not geometrically induced unless N = 1 + 2q
or N = 2 + q for some power q of p. In this case, both H(ψ,N = 1 + 2q,D = 4) and
H(ψ,N = 2+ q,D = 4) are geometrically induced, and hence so are both [N ]?H(ψ,N =
1 + 2q,D = 4) and [N ]?H(ψ,N = 2 + q,D = 4).

(v) Suppose D = 6. Then [N ]?H(ψ,N,D) is not geometrically induced (and henceH(ψ,N,D)
is not geometrically induced).

Proof. For (i), we argue as follows. The pullback sheaf [N ]?H(ψ,N,D) has Euler character-
istic zero, as its rank, N , is equal to its Swan conductor. So if such a triple (U, π,G) exists,
we have the equality of Euler characteristics

EP (U,G) = EP (A1/Fp, π?G) = EP (A1/Fp, [N ]?H(ψ,N,D)) = 0.

Denote by X the complete nonsingular model of U , and by gX its genus. Then π extends to
a finite flat map of X to P1, and the Euler-Poincaré formula gives

0 = EP (U,G) = rank(G)(2− 2gX −#(π−1(∞)))−
∑

w∈π−1−(∞)

Swanw(G).

Thus gX = 0, otherwise already the first term alone is strictly negative. So now X = P1, and
we have

0 = rank(G)(2−#(π−1(∞)))−
∑

w∈π−1−(∞)

Swanw(G).

If #(π−1(∞)) ≥ 3, then already the first term alone is strictly negative. If #(π−1(∞)) = 1,
then U is P1 \ (one point) ∼= A1, and so π is a finite etale map of A1 to itself of degree > 1.
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But any such map has degree divisible by p, and hence π?G would have rank divisible by p.
But its rank is N , which is prime to p. Thus we must have #(π−1(∞)) = 2 (and gX = 0).

Throwing the two points to 0 and ∞, we have a finite etale map

π : Gm → A1.

The equality of EP’s now gives

0 = Swan0(G) + Swan∞(G).

Thus H is lisse on Gm and everywhere tame, so a successive extension of lisse, everywhere
tame sheaves of rank one. But π?H is irreducible, so H must itself be irreducible, hence of
rank one, and either Q` or an Lρ. [It cannot be Q`, because π?Q` is not irreducible when π

has degree > 1; by adjunction π?Q` contains Q`.]
Now consider the maps induced by π on punctured formal neighborhoods

π(0) : Gm(0)→ A1(∞), π(∞) : Gm(∞)→ A1(∞).

The I(∞)-representation of Fp,D,f,χ is then the direct sum

π(0)?Lρ ⊕ π(∞)?Lρ.
Denote by d0 and d∞ their degrees. Because G has rank one, the degree of π must be N ,

and hence
N = d0 + d∞.

Both d0 and d∞ cannot be prime to p, for then the I(∞) representation would be the sum of
d0 + d∞ = N tame characters. But the I(∞) representation of [N ]?H(ψ,N,D) is the direct
sum of the D − 1 < N nontrivial characters of order dividing D and a wild part of rank
N − (D − 1).

After interchanging 0 and ∞ if necessary, we may assume that d0 is prime to p, and that

d1 = n1q

with n1 prime to p and with q a positive power of p. Then π(0)?Lρ consists of d0 distinct
characters, the dth0 roots of Lρ, while π(∞)?Lρ consists of n1 distinct characters (the n1q

th

roots of Lρ), together with a wild part. As the total number of tame characters is D− 1, we
have the equalities

N = d0 + n1q, D − 1 = d0 + n1.

There is now a further observation to be made. The d0 tame characters occuring in π(0)?Lρ
are a torsor under the characters of order dividing d0. So the ratio of any two has order
dividing d0. But each of these d0 characters has order dividing D, and hence so does any
ratio of them. Therefore d0 divides D. Similarly, we see that n1 divides D.

Thus we have D− 1 = d0 + n1, with both d0 and n1 divisors of D. We will see that this is
very restrictive. Write

d0 = D/A, n1 = D/B,

with A,B each divisors of D.
We first observe that both A,B must be ≥ 2, otherwise one of the terms D/A or D/B is

D, already too large.
Suppose first D is even. We cannot have A = B = 2, because then D/A + D/B = D is

too large. So the largest possible value of D/A + D/B is D/2 + D/3 = 5D/6. This is too



RIGID LOCAL SYSTEMS WITH MONODROMY GROUP Co2 7

small, i.e. 5D/6 < D − 1, so long as 5D < 6D − 6, i.e., so long as D > 6. And we note that
for D = 6, we indeed have D − 1 = 5 = 2 + 3 is the sum of divisors of D.

Suppose next that D is odd. Then the largest possible value of D/A+D/B is D/3+D/3 =
2D/3. This is too small, i.e., 2D/3 < D−1, so long as D > 3. Notice that D−1 = 2 = 1+1
is the sum of divisors of D.

The case D = 2 cannot be induced, because the lowest value for D−1 = 1 is 1+1 (coming
from N = 1 + q), too large.

This concludes (!) the proof of (i).
Assertion (ii) follows trivially, since if a representation of the group is primitive, it is all

the more primitive on an overgroup.
For assertion (iii), the case D = 3, we can only achieve D − 1 = 2 as as the sum of two

divisors of D = 3 as D − 1 = 2 = 1 + 1, i.e. if N = 1 + q. In this case, q must be 1 mod 3
(simply because N = q + 1 is prime to D = 3, as is p and hence also q). In this case, one
checks that the finite etale map π : x 7→ 1/(xq(x− 1)) from Gm \ {1} to Gm has

π?(Lχ3(x)⊗ Lχ2
3(x)),

for χ3 either character of order 3, geometrically isomorphic to a multiplicative translate of
Hyp(ψ,N,D).

For assertion (iv), the case D = 4, we can only achieve D−1 = 3 as 1+2, i.e. as N = 1+2q
or as N = 2 + q. Here q must be odd, as p is prime to D = 4. One checks that for both of
the finite etale maps π : x 7→ 1/(xq(x− 1)2) and π : x 7→ 1/(x2(x− 1)q),

π?Lχ2(x(x− 1)),

for χ2 the quadratic character, is geometrically isomorphic to a multiplicative translate of
Hyp(ψ,N,D).

For assertion (v), the case D = 6, we argue by contradiction. The two possibilities are
N = 2 + 3q and N = 3 + 2q. In both cases, the tame characters at ∞ will be, for some
nontrivial character ρ, the union of the square roots of either ρ or of ρq and the cube roots of
either ρ or of ρq. These are to be the nontrivial characters of order dividing D = 6. Thus ρ is
the cube of some character of order dividing 6, but is nontrivial, so ρ must be the quadratic
character. But ρ is also the square of some character of order dividing 6, but being nontrivial
must have order 3. So this D = 6 case cannot be induced. A fortiori, in this D = 6 case
Hyp(ψ,N,D) cannot be induced, cf. the proof of (ii). �

Lemma 1.7. (Determinant Lemma) Suppose that N > D > 1 are both prime to p and have
gcd(N,D) = 1. Then we have the following results.

(i) If N is odd, then det(H(ψ,N,D)(1)) is geometrically constant, It is of the form Adeg,
with A = ζ for some root of unity ζ ∈ Z[ζp].

(ii) if N is even, then det([N ]?H(ψ,N,D)(1)) is geometrically constant. It is of the form
Adeg, with A = ζ for some root of unity ζ ∈ Z[ζp].

(iii) Suppose N is odd (respectively even) and we have the congruence

D ≡ N + 1(mod p− 1).

Then H(ψ,N,D)(1) (respectively [N ]?H(ψ,N,D)(1)) has all Frobenius traces in Q, and
has determinant Adeg with A some choice of ±1.
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(iv) Under the hypotheses of (iii), denote by d the degree of Fp(µN)/Fp. If N is odd, or if
N is even and either D is a square in Fp or d is even, then Ad = 1. If N is even, and
D is a nonsquare in Fpd, then Ad = −1. In particular, if N and d are both odd, then we
have A = 1 in (iii) above.

Proof. To prove (i) and (ii), we appeal to [Ka-ESDE, 8.11.6]. Here the upper characters
are all the characters of order dividing N , so their product is trivial when N is odd, and
the quadratic character χ2 when N is even. Thus the determinant is geometrically trivial
when N is odd, and is geometrically Lχ2 when N is even. In the N even case, it becomes
geometrically trivial after [N ]? (or just after [2]?). So we can compute A as the determinant
at, say, the point s = 1 (which is certainly an N th power).

This determinant lies in Z[ζp][1/p], and is pure of weight zero, i.e., it has absolute value
1 for every complex embedding of Q(ζp). Because Q(ζp) has a unique place over p, this
determinant and its complex conjugate have the same p-adic ord. So being of weight zero,
the determinant is a unit at the unique place over p. As it lies in Z[ζp][1/p], it is integral at
all `-adic places over primes ` 6= p. So by the product formula, it must be a unit everywhere,
and so is a root of unity in Q(ζp).

To prove (iii), we first show that under the asserted congruence, each sum∑
x∈K,y∈K×

ψK(txD/yN −Dx+Ny).

lies in Z. Indeed, this sum lies in Z[ζp], so it suffices to show that it is invariant under the
Galois group Gal(Q(ζp)/Q). This group is F×p , with α ∈ F×p moving this sum to∑

x∈K,y∈K×
ψK(αtxD/yN −Dαx+Nαy) =

=
∑

x∈K,y∈K×
ψK(t(αx)D/(αy)N −Dαx+Nαy),

(equality because α = αD−N by the congruence D ≡ N + 1 mod p− 1) which is the original
sum after the change of variable x 7→ αx, y 7→ αy. Once the traces lie in Q, the same
argument used in (ii) above now shows that the determinant is a root of unity in Q.

To prove (iv), we argue as follows. The assertion is about the sign of Ad, which we can
compute for [N ]?H(ψ,N,D)(1) at any point t ∈ Fpd . We take the point t = 0. We will
compute the trace over all extensions K = Fq of Fpd in order to calculate the eigenvalues of
Frobt=0,F

pd
on [N ]?H(ψ,N,D)(1). Over such a K, the trace is∑

x∈K,y∈K×
ψK(xD/yN −Dx)/q.

In this sum, we may invert y, so the sum becomes

(1/q)
∑
x∈K

ψK(−Dx)
∑
y∈K×

ψK(xDyN).

Because all the characters of order dividing N exist over K, we rewrite the second term as∑
y∈K×

ψK(xDyN) =
∑
u∈K×

ψK(xDu)
∑

char.′s ρ,ρN=1

ρ(u).
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So our K sum becomes

(1/q)
∑
x∈K

ψK(−Dx)
∑

char.′s ρ,ρN=1

∑
u∈K×

ψK(xDu)ρ(u).

For each nontrivial ρ, the ρ term is∑
u∈K×

ψK(xDu)ρ(u) = ρ(xD)Gauss(ψK , ρ).

So each ρ 6= 1 term in the K sum is∑
x∈K

ψK(−Dx)ρ(xD)Gauss(ψK , ρ)/q = ρD(D)Gauss(ψK , ρ
D)Gauss(ψK , ρ)/q.

The ρ = 1 term in the K sum is

(1/q)
∑
x∈K

ψK(−Dx)
∑
u∈K×

ψK(xDu) =

= (1/q)
∑
x∈K

ψK(−Dx)(−1 +
∑
u∈K

ψK(xDu)) =

= (1/q)
∑
x∈K×

ψK(−Dx)(−1) + (1/q)(−1 + q) = (1/q)(1 + q − 1) = 1.

Thus the eigenvalues are precisely 1 and, for each of the N − 1 nontrivial ρ of order dividing
N , the product

ρD(D)Gauss(ψF
pd
, ρD)Gauss(ψF

pd
, ρ)/pd.

So the determinant is the product∏
ρN=1, ρ6=1

ρD(D)[Gauss(ψF
pd
, ρD)Gauss(ψF

pd
, ρ)/pd].

Because D is prime to N , the ρD are just a rearrangement of the ρ. So defining

Λ :=
∏

ρN=1, ρ6=1

ρ,

we see that the determinant is

Λ(D)
∏

ρN=1, ρ6=1

[Gauss(ψF
pd
, ρ)Gauss(ψF

pd
, ρ)/pd] = Λ(D).

If N is odd, then Λ = 1. If N is even, the Λ is the quadratic character of Fpd . In this case,
Λ(D) = 1 if either D is already a square in Fp, or if d is even, so that D becomes a square
in Fpd . �



10 NICHOLAS M. KATZ, ANTONIO ROJAS-LEÓN, AND PHAM HUU TIEP

2. The criterion for finite monodromy

Denote by V Kubert’s V -function

V : (Q/Z)prime to p → Q≥0.
It has the following property. For f ≥ 1, q := pf , Teichf : F×q → Qp(µq−1) the Teichmuller
character (for a fixed p-adic place of Qp(µq−1)), and x ∈ (Q/Z)prime to p of order dividing
q − 1, we have

V (x) = ordpf (Gauss(ψFq ,Teich
−(q−1)x
f )).

Lemma 2.1. Suppose that N > D > 1 are both prime to p and have gcd(N,D) = 1. Then
H(ψ,N,D)(−1) has algebraic integer traces, and hence finite arithmetic monodromy group
Garith, if and only if the following inequalities hold. For every x ∈ (Q/Z)prime to p, we have

V (Nx) + V (−Dx)− V (−x) ≥ 0.

Equivalently (since this trivially holds for x = 0), the condition is that for every nonzero
x ∈ (Q/Z)prime to p, we have

V (Nx) + V (−Dx) + V (x) ≥ 1.

Proof. From Lemma 1.4, we see that H(ψ,N,D)(−1) has algebraic integer traces if and only
if, for every finite extension K/Fp containing the NDth roots of unity, the hypergeometric
sheaf Hyp(ψ,N,D) has traces at K-points which are of the form A(N,K)A(D,K) times
algebraic integers. Equivalently, as explained in [Ka-RL-T, Proof of Theorem 2.7], it suffices
that the multiplicative Mellin transform of the trace function of Hyp(ψ,N,D) on K× has all
values with ord at least that of A(N,K)A(D,K). The value at χ is

(−1)N−D
( ∏
ρ, ρN=1

Gauss(ψK , χρ)

)
×
( ∏
σ,σD=1,σ 6=1

Gauss(ψK , χρ)

)
.

The first product is, up to a root of unity factor,

A(N,K)Gauss(ψK , χ
N).

The second product is, up to a root of unity factor,

A(D,K)Gauss(ψK , χ
D)/Gauss(ψK , χ).

So the requirement is that for all χ, the product

Gauss(ψK , χ
N)Gauss(ψK , χ

D)/Gauss(ψK , χ)

have nonnegative ord. This is precisely the

V (Nx) + V (−Dx)− V (−x) ≥ 0

version of the criterion. �

Remark 2.2. As Will Sawin pointed out to us, there are a number of sheaves Hyp(ψ,N,D)
which, although not induced, are very nearly so. Namely, for any power q of p, and for any
D ≥ 2 prime to p, the direct image π?Q`, for π : Gm \ {1} → Gm the finite étale map given
by x 7→ xDq−1(x− 1), is geometrically isomorphic to the direct sum of the constant sheaf Q`

and Hyp(ψ,Dq − 1, D). The case D = 2 was the subject of the paper [G-K-T].
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From this direct image picture, we see that Hyp(ψ,Dq − 1, D) has finite geometric mon-
odromy, and hence that H(ψ,Dq − 1, D)(1) has finite Garith. In other words, the inequality
of Lemma 2.1 is satisfied by the data N = Dq − 1, D in the characteristic p of which q is a
power and to which D is prime.

The induced cases, being induced from rank one, also have finite geometric monodromy.
Thus H(ψ, q + 1, 3)(1) has finite Garith for any prime power q which is 1 mod 3 in the
characteristic of which q is a power. And both H(ψ, q + 2, 4)(1) and H(ψ, 2q + 1, 4)(1) have
finite Garith in the odd characteristic of which q is a power. This gives other cases of data
satisfying the inequality of Lemma 2.1.

In the next section, we will exhibit another datum, not of either of these types, satisfying
the inequality. How many others are there?

3. Theorems of finite monodromy

In this section, we will prove

Theorem 3.1. For p = 3, N = 23 and D = 4, the sheaf H(ψ,N,D)(1) has finite arithmetic
and geometric monodromy groups.

By lemma 2.1, we need to show that for every nonzero x ∈ (Q/Z)prime to 3, we have

V (23x) + V (−4x)− V (−x) ≥ 0

or, equivalently,
V (−23x) + V (4x)− V (x) ≥ 0.

Applying the duplication formula V (x) + V (x + 1
2
) = V (2x) + 1

2
, see [Ka-G2hyper, p.206],

twice, this is equivalent to

1− V (−23x) ≤ V

(
2x+

1

2

)
+ V

(
x+

1

2

)
.

For x = 1
2

this is obvious so, making the change of variable x 7→ x+ 1
2
, we get the equivalent

condition

1− V
(
−23x− 1

2

)
≤ V

(
2x+

1

2

)
+ V (x).

If x = 1
4

or x = 3
4

the inequality (equality in this case) is trivial. Otherwise, 2x+ 1
2
6= 0, and

we can rewrite it as

1− V
(
−23x− 1

2

)
≤ 1− V

(
−2x− 1

2

)
+ V (x).

We now restate the inequality in terms of the function [ − ]r := [ − ]3,r defined in [R-L],
given by

[x]3,r = the sum of the 3-adic digits of the representative of

the congruence class of x modulo 3r − 1 in [1, 3r − 1].

By [Ka-RL, Appendix] we have [x]r = 2r(1− V (− x
3r−1)), so the finite monodromy condition

can be restated as [
23x+

3r − 1

2

]
r

≤ [x]r +

[
2x+

3r − 1

2

]
r

for every r ≥ 1 and every integer 0 < x < 3r − 1.
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For a non-negative integer x, let [x] denote the sum of the 3-adic digits of x. For use below,
we recall the following result from [Ka-RL, Prop. 2.2]:

Proposition 3.2. For strictly positive integers x and y, and any r ≥ 1, we have:

(i) [x+ y] ≤ [x] + [y];
(ii) [x]r ≤ [x];

(iii) [3x] = [x].

Lemma 3.3. Let r ≥ 1 and 0 ≤ x < 3r an integer. Then[
23x+

3r − 1

2

]
≤ [x] +

[
2x+

3r − 1

2

]
+ 2.

Moreover, if r = 1 and x 6= 1, r = 2 and x 6= 3 or r ≥ 3 and the first three 3-adic digits of x
(after adding leading 0’s so it has exactly r digits) are not 100 or 202, then[

23x+
3r − 1

2

]
≤ [x] +

[
2x+

3r − 1

2

]
.

Proof. We proceed by induction on r: for r ≤ 3 one checks it by hand. Let r ≥ 4 and
0 ≤ x < 3r.

Case 1: x ≡ 0 (mod 3).
Write x = 3y with 0 ≤ y < 3r−1. Then[

23x+
3r − 1

2

]
=

[
3

(
23y +

3r−1 − 1

2

)
+ 1

]
=

[
23y +

3r−1 − 1

2

]
+ 1

≤ [y] +

[
2y +

3r−1 − 1

2

]
+ 3

= [y] +

[
3

(
2y +

3r−1 − 1

2

)
+ 1

]
+ 2

= [x] +

[
2x+

3r − 1

2

]
+ 2

by induction. Since the first three digits of x and y are the same, the better inequality holds
when those three digits are not 100 or 202, also by induction.

Case 2: The last r − 3 digits of x contain the string 00 or the string 01.
Say the string is located at position s ≤ r− 3, counting from the right. Write x = 3sy+ z,

where y < 3r−s and z < 2 · 3s−2. Then

2z +
3s − 1

2
< 4 · 3s−2 +

3s − 1

2
< 3s

(4

9
+

1

2

)
< 3s,

so [
2x+

3r − 1

2

]
=

[
3s
(

2y +
3r−s − 1

2

)
+ 2z +

3s − 1

2

]
=

[
2y +

3r−s − 1

2

]
+

[
2z +

3s − 1

2

]
,
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and therefore[
23x+

3r − 1

2

]
=

[
3s
(

23y +
3r−s − 1

2

)
+ 23z +

3s − 1

2

]
≤
[
23y +

3r−s − 1

2

]
+

[
23z +

3s − 1

2

]
≤ [y] +

[
2y +

3r−s − 1

2

]
+ 2 + [z] +

[
2z +

3s − 1

2

]
= [x] +

[
2x+

3r − 1

2

]
+ 2

by induction. Again, since the first three digits of x and y are the same, the better inequality
holds if they are not 100 or 202.

Case 3: The last r − 3 digits of x contain one of the strings 02, 10, 11 or 12, and the
previous digit is not a 2.

Say the string is located at position s ≤ r− 3, counting from the right. Write x = 3sy+ z,
where y < 3r−s is not ≡ 2 mod 3 and z < 2 · 3s−1. Then

2z +
3s − 1

2
< 4 · 3s−1 +

3s − 1

2
< 3s

(4

3
+

1

2

)
< 2 · 3s

and the last digit of 2y + (3r−s − 1)/2 is not 2, so[
2x+

3r − 1

2

]
=

[
3s
(

2y +
3r−s − 1

2

)
+ 2z +

3s − 1

2

]
=

[
2y +

3r−s − 1

2

]
+

[
2z +

3s − 1

2

]
.

We conclude as in case 1 unless s = 2 and z = 3 (in which case we can apply case 1) or
s ≥ 3 and the first three digits of z are 100 (in which case we can apply case 2).

If x is not included in the cases proved so far and the last r − 3 digits of x contain a 0, it
must be enclosed between two 2’s. If they contain a 1, it must be enclosed between two 2’s,
with the possible exception of the last two digits in the case when x ends with 211 or 21.

Case 4: The last r − 3 digits of x contain a 2 which is preceded by a 1 and the next two
digits (if they exist) are not 02.

Write x = 3sy + z, where y < 3r−s is congruent to 1 mod 3 and z < 3s starts with 2 (but
not with 202). Then

2z +
3s − 1

2
< 2 · 3s +

3s − 1

2
< 3s+1

and the last digit of 2y + (3r−s − 1)/2 is 0, so[
2x+

3r − 1

2

]
=

[
3s
(

2y +
3r−s − 1

2

)
+ 2z +

3s − 1

2

]
=

[
2y +

3r−s − 1

2

]
+

[
2z +

3s − 1

2

]
.

We conclude as in the previous two cases.
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Case 5: A digit of x which is not one of the first four or the last two is a 1. By the note
after case 3, we can assume that the 1 is enclosed bewteen two 2’s. If the digit after the
following 2 is not 0 we apply case 4. If it is 0 and is the last digit, we apply case 1. Otherwise,
by case 4 we can assume that there is a 2 after the 0, so the last r− 3 digits of x contain the
string 21202. If the previous digit is 1 we apply case 4.

Otherwise, write x = 3sy + z, where the last three digits of y are 021 or 221, and the first
three digits of z are 202. Then the last 3 digits of 2y + (3r−s − 1)/2 are 000 or 100 and
2z + (3s − 1)/2 < 3s+2, so

[
2x+

3r − 1

2

]
=

[
3s
(

2y +
3r−s − 1

2

)
+ 2z +

3s − 1

2

]
=

[
2y +

3r−s − 1

2

]
+

[
2z +

3s − 1

2

]
.

On the other hand, the last three digits of 23y + (3r−s− 1)/2 are 110 or 210, and 23 = 2123.
Since 2123 · 2023 = 1220113, 23z + (3s − 1)/2 has exactly s+ 3 digits, the first three of them
being at least 122. In any case, in the sum 3s

(
23y+ (3r−s− 1)/2

)
+
(
23z + (3s− 1)/2

)
there

is at least one digit carry, so

[
23x+

3r − 1

2

]
=

[
3s
(

23y +
3r−s − 1

2

)
+ 23z +

3s − 1

2

]
≤
[
23y +

3r−s − 1

2

]
+

[
23z +

3s − 1

2

]
− 2

≤ [y] +

[
2y +

3r−s − 1

2

]
+ 2 + [z] +

[
2z +

3s − 1

2

]
= [x] +

[
2x+

3r − 1

2

]
+ 2.

As usual, if the first three digits of x (or y) are not 100 or 202 one gets the better bound.

Case 6: The last r − 1 digits of x contain the string 2202. Write x = 3sy + z, where
y < 3r−s ends with 22 and z < 3s starts with 02. Then the last two digits of 2y+(3r−s−1)/2
are 02, and 2z + (3s − 1)/2 has at most s+ 1 digits. So

[
2x+

3r − 1

2

]
=

[
3s
(

2y +
3r−s − 1

2

)
+ 2z +

3s − 1

2

]
≥
[
2y +

3r−s − 1

2

]
+

[
2z +

3s − 1

2

]
− 2.

On the other hand, the last two digits of 23y+ (3r−s− 1)/2 are 22, and 23z + (3s− 1)/2 has
s+ 2 digits, the first two being at least 12. In any case, in the sum 3s

(
23y+ (3r−s− 1)/2

)
+
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23z + (3s − 1)/2

)
there is at least one digit carry, so

[
23x+

3r − 1

2

]
=

[
3s
(

23y +
3r−s − 1

2

)
+ 23z +

3s − 1

2

]
≤
[
23y +

3r−s − 1

2

]
+

[
23z +

3s − 1

2

]
− 2

≤ [y] +

[
2y +

3r−s − 1

2

]
+ 2 + [z] +

[
2z +

3s − 1

2

]
− 2

≤ [x] +

[
2x+

3r − 1

2

]
+ 2.

As usual, if the first three digits of x (or y) are not 100 or 202 one gets the better bound.

Case 7: The last r − 1 digits of x contain the string 2222. This case is similar to the
previous one, with the difference that 23z + (3s − 1)/2 has now s + 3 digits, the first three
being 202, 210, 211 or 212.

For all remaining cases, all digits except for the first four and the last two must be 0’s and
2’s. Among them, there can not be two consecutive 0’s or four consecutive 2’s, and if there
is a string of two or three consecutive 2’s, it can not be followed by a 0. So the last r − 4
digits of x are of the form

(possibly a 0) + (a copies of 20) +

(1, 2 or 3 2’s) + (possibly 1 or 2 1’s)

for some a ≥ 0. Here is a table with the last digits of 2x + (3r − 1)/2 and 23x + (3r − 1)/2
in each case for a ≥ 2:
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last digits of x last digits of 2x+ 3r−1
2

last digits of 23x+ 3r−1
2

a×20︷ ︸︸ ︷
2020...20 2

2a×2︷ ︸︸ ︷
22...2 2

(a−1)×20︷ ︸︸ ︷
2020...20 112

a×20︷ ︸︸ ︷
2020...20 22

2a×0︷ ︸︸ ︷
00...0 02

(a−2)×20︷ ︸︸ ︷
2020...20 210022

a×20︷ ︸︸ ︷
2020...20 222

2a×0︷ ︸︸ ︷
00...0 102

(a−2)×20︷ ︸︸ ︷
2020...20 2102122

a×20︷ ︸︸ ︷
2020...20 21

2a×0︷ ︸︸ ︷
00...0 00

(a−1)×20︷ ︸︸ ︷
2020...20 2110

a×20︷ ︸︸ ︷
2020...20 221

2a×0︷ ︸︸ ︷
00...0 100

(a−1)×20︷ ︸︸ ︷
2020...20 2101210

a×20︷ ︸︸ ︷
2020...20 2221

2a×0︷ ︸︸ ︷
00...0 1100

(a−2)×20︷ ︸︸ ︷
2020...20 21022210

a×20︷ ︸︸ ︷
2020...20 211

2a×0︷ ︸︸ ︷
00...0 010

(a−1)×20︷ ︸︸ ︷
2020...20 22020

a×20︷ ︸︸ ︷
2020...20 2211

2a×0︷ ︸︸ ︷
00...0 1010

(a−2)×20︷ ︸︸ ︷
2020...20 21020020

a×20︷ ︸︸ ︷
2020...20 22211

2a×0︷ ︸︸ ︷
00...0 11010

(a−2)×20︷ ︸︸ ︷
2020...20 211000020

In any case, when a ≥ 2 adding an extra 20 block increases the digit sums of x and
23x+ (3r − 1)/2 by 2. So, by induction, we may assume that a ≤ 2. It remains to check the
cases where a ≤ 2, which can be done by a computer search. �

Corollary 3.4. Let r ≥ 2 and 0 ≤ x < 3r an integer such that x 6≡ 2 or 6 (mod 9). Then[
23x+

3r − 1

2

]
≤ [x] +

[
2x+ 2 +

3r − 1

2

]
+ 2.

Proof. If x 6≡ 2 or 6 (mod 9), then 2x+ 3r−1
2
6≡ 7 or 8 (mod 9), and therefore[

2x+
3r − 1

2

]
≤
[
2x+ 2 +

3r − 1

2

]
.

�

We can now finish the proof of theorem 3.1. Let r ≥ 2 and let 0 < x < 3r−1 be an integer
such that x 6≡ 2 or 6 (mod 9). Then 2x+ 2 + (3r − 1)/2 < 3r+1, and[

3r+1 − 1−
(
2x+ 2 +

3r − 1

2

)]
= 2(r + 1)−

[
2x+ 2 +

3r − 1

2

]
.

By the previous corollary, we have[
23x+

3r − 1

2

]
+

[
3r+1 − 3− 2x− 3r − 1

2

]
≤ [x] + 2r + 4.
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Hence, [
23x+

3r − 1

2

]
r

+

[
−2x− 3r − 1

2

]
r

=

=

[
23x+

3r − 1

2

]
r

+

[
3(3r − 1)− 2x− 3r − 1

2

]
r

≤

≤
[
23x+

3r − 1

2

]
+

[
3r+1 − 3− 2x− 3r − 1

2

]
≤

≤ [x] + 2r + 4 = [x]r + 2r + 4.

Using [Ka-RL-T, Lemma 2.10], we conclude (as in the proof of [Ka-RL-T, Theorem 2.12])
that [

23x+
3r − 1

2

]
r

+

[
−2x− 3r − 1

2

]
r

≤ [x]r + 2r

or, equivalently, [
23x+

3r − 1

2

]
r

≤ [x]r +

[
2x+

3r − 1

2

]
r

If x ≡ 2 or 6 (mod 9), then either x = 2020 . . . 203 = 3(3r − 1)/4 or x = 0202 . . . 023 =
(3r − 1)/4, in which case the inequality is trivial, or we can multiply x by a suitable power
of 3 (which cyclically permutes its digits modulo 3r − 1) to obtain an x which is not ≡ 2 or
6 (mod 9), to which we can apply the previous argument.

4. Determination of the monodromy groups

In this section, we will determine the monodromy of H(ψ, 23, 4)(1) in characteristic p = 3.
In this case, the field F3(µ23) is the field F311 . So by Lemma 1.7, the arithmetic monodromy
group lies in SL23(C). [In fact it lies in SO23(C), since it is an irreducible subgroup with real
(in fact integer) traces.]

Looking at the Frobenius Frob−1,F3 at the point t = −1, we have, by computer calculation,
that its first seven powers have traces

0,−2, 0, 2, 0,−2, 7.

First we prove the following theorem on finite subgroups of SL23(C):

Theorem 4.1. Let V = C23 and let G < SL(V ) be a finite irreducible subgroup. Let χ denote
the character of G afforded by V , and suppose that all the following conditions hold:

(i) χ is real-valued;
(ii) χ is primitive;

(iii) G contains an element γ such that the traces of γ, γ2, . . . , γ7 acting on V are 0, −2, 0,
2, 0, −2, 7, respectively.

Then G ∼= Co2 in its unique (orthogonal) irreducible representation of degree 23.

Proof. By the assumption, the G-module V is irreducible and primitive; furthermore, it is
tensor indecomposable and not tensor induced since dimV = 23 is prime. Next, we observe
by Schur’s Lemma that condition (i) implies Z(G) = 1. Now we can apply [G-T, Proposition
2.8] (noting that the subgroup H in its proof is just G since G < SL(V )) and arrive at one
of the following two cases.
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(a) Extraspecial case: PCG for some extraspecial 23-group of order 233 that acts irreducibly
on V . But in this case, χ|P cannot be real-valued (in fact, Q(χ|P ) would be Q(exp(2πi/23)),
violating (i).

(b) Almost simple case: S C G ≤ Aut(S) for some finite non-abelian simple group S. In
this case, we can apply the main result of [H-M] and arrive at one of the following possibilities
for S.
• S = A24, M24, or PSL2(23). Correspondingly, we have that G = A24 or S24, M24, and

PSL2(23) or PGL2(23). In all of these possibilities, χ(x) ≥ −1 for x ∈ G by [ATLAS],
violating (iii).
• S = PSL2(47). This is ruled out since Q(χ|S) would be Q(

√
−47), violating (i).

• S = Co3. In this case, G = Co3, and this possibility is ruled out by the existence of the
(conjugacy class of the) element γ in (iii). Now γ7 has trace 7. In Co3, the only class with
trace 7 is class 2 in Magma notation. The only class γ with γ7 in class 2 is either class 2 or
class 29. But γ cannot be in class 2, because its trace is 0, not 7. So γ must be in class 29,
which does have trace 0. However, the square of class 29 in Co3 is class 16, whose trace is 2,
not −2. Therefore we do not have Co3.
• S = Co2. In this case G = Co2, as stated. �

Theorem 4.2. In characteristic 3, the rigid local system H(ψ, 23, 4)(1) on Gm/F3 has
Ggeom = Garith = Co2.

Proof. We know that [23]?H(ψ, 23, 4)(1) is not geometrically induced, so a fortioriH(ψ, 23, 4)(1)
is not geometrically induced, and hence H(ψ, 23, 4)(1) is not arithmetically induced (as prim-
itivity passes to overgroups). We know that H(ψ, 23, 4)(1) is geometrically irreducible, hence
all the more arithmetically irreducible. By the Determinant Lemma 1.7, and the finiteness
theorem, we know that H(ψ, 23, 4)(1) has integer traces and trivial determinant. In view of
the Theorem 4.1, this forces Garith to be Co2. Now Ggeom is a normal subgroup of Garith, and
it is nontrivial because it is itself irreducible. But Co2 is a simple group, so Ggeom must be
Co2. �

Corollary 4.3. For any integer M ≥ 1 prime to 3, the Kummer pullback [M ]?H(ψ, 23, 4)(1)
on Gm/F3 has Ggeom = Garith = Co2.

Proof. By Lemma 1.5, [M ]?H(ψ, 23, 4)(1) is geometrically irreducible. Its Ggeom is a then
a normal subgroup of the Ggeom of H(ψ, 23, 4)(1), namely Co2, with a quotient cyclic of
order dividing M . Because Co2 is simple and nonabelian, this quotient must be trivial.
Thus [M ]?H(ψ, 23, 4)(1) on Gm/F3 has Ggeom = Co2. From Theorem 4.1, we see that Co2
is maximal (and from [ATLAS] that it is minimal as well, although we will not use this)
among finite irreducible subgroups of SO23(C). Thus the Garith of the pullback must itself
be Co2. �
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