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Dedicated to the memory of Kay Magaard

ABSTRACT. We prove an “n'® moment = 1” result for irreducible Weil representations

of degree (¢™+1)/(q+1) of special unitary groups SU,(q) for any odd n > 3 and any
prime power q.

1. INTRODUCTION

For an odd integer n > 3, and a prime power ¢ > 2, the irreducible representations

(over C) of lowest degree after the trivial representation of the group SU,(¢q) are a sym-

. . . . n_41 n_ . . .
plectic representation of dimension % —1= %, and q representations of dimension
g"+1

e When ¢ is odd, exactly one of these ¢ representations is orthogonal, otherwise
none is. The direct sum of these g + 1 representations is called the (big, or reducible)
Weil representation of SU,(q), and the g 4+ 1 individual representations are referred to
as (irreducible) Weil representations, see e.g. [TZ1, Theorem 4.1] and [TZ2, §4].

In the paper [KT1], we wrote down ¢ + 1 rigid local systems on the affine line A'/F,
whose geometric monodromy groups we conjectured to be the images of SU,,(¢q) in these
q + 1 representations. We were able to prove this only in the case when n = 3 and
ged(n, g + 1) = 1. In the sequel [KT3], we used a completely different method, which
starts with results of Gross [Gr| and relies on [KT2], to prove these conjectures for any
odd n > 3 and for any odd prime power q.

In the course of thinking about these questions, we stumbled upon a striking repre-
sentation-theoretic fact about the ¢ Weil representations of SU,(q) ( n > 3 odd) of

dimension =X, For each of them, their n'* moment (i.e. the dimension of the space

g+l -
of invariants in the n'® tensor power of the representation in question) is exactly one.

For the irreducible representation of dimension qur_+11 — 1, the n* moment vanishes. At

present we do not have a conceptual explanation for this phenomenon.
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Theorem 1. Let q be a prime power, n > 3 any odd integer, and let G = SU,(q).
Suppose in addition that (n,q) # (3,2). Let V be one of the ¢ + 1 complez irreducible
Weil modules of G, of dimension (¢" + 1)/(q¢ + 1) or (¢" — q)/(q + 1). Then the
subspace of G-invariants on V" has dimension 1 if dim(V) = (¢" +1)/(¢+ 1), and 0

if dim(V) = (¢" — q)/(q +1).

As stated in Theorem 1, each of the Weil modules of SU,(q) of dimension (¢" +
1)/(¢ + 1) has a unique (up to scalar) polynomial invariant of degree n. It would be
interesting to know what is the geometric significance of this polynomial invariant, and
to find an explicit construction of it.

Given this result about n'® moments for SU,(q) when n is odd, it is natural to
wonder about the situation for n'" moments when n is even. [For n even and ¢ >
3 a prime power, the irreducible representations (over C) of lowest degree after the
trivial representation of the group SU,,(¢q) are an orthogonal representation of dimension
q;—_ll +1= ‘J;—Jrl‘], and ¢ representations of dimension q;T_ll.] Already for n = 4, the result
is not so nice, cf. Theorem 4.1.

For the Weil representations of finite special linear groups SL,(q) and symplectic
groups Sp,(q), the latter with ¢ odd, one also does not expect any nice regularity
about the n'" moments. We record however a curious fact about the 4" moments of
Weil representations of Sp,,,(3), see Proposition 4.2.

2. PRELIMINARIES

Let ¢ = p/ be any prime power and n > 2. It is well known, see e.g. [TZ2, §4], that
the function

n dimp ., Ker(g—1yw)
Grg =G i g (1) (=g) e T
defines a complex character, called the (reducible) Weil character, of the general unitary

group GU,(q) = GU(W), where W = [ is a non-degenerate Hermitian space with
Hermitian product o. Note that the F,-bilinear form

(ulv) = Traces ,r,(fu o u)

on W, for a fixed 6 € F(IXQ with #7971 = —1, is non-degenerate symplectic. This leads to
an embedding

G = GUn(q) = Spa,(q)-
Moreover, if g is odd then the restriction of any of the two big Weil characters (of degree
¢", and denoted Weil; 5 in [KT2]) of Sp,,(¢) to GU,(q) is exactly x2(,, where x5 is the
unique linear character of order 2 of G, cf. [TZ2, §4]. We will also denote by ¢, the

restriction of ¢, to the special unitary group G := SU,(q).
Fix a generator o of IF; and set p := 0971, We also fix a primitive (¢> — 1) root of

unity o € C* and let p = 09!, Then

=0
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decomposes as the sum of ¢ 4+ 1 characters of G, where

(_1)n ipil(_q>dimKer(g—pl-lw),
q+1 =0

(2.0.2) Ginlg) =

see [TZ2, Lemma 4.1]. In particular, {;, has degree (¢" — (=1)")/(¢+ 1) if i > 0 and
(" +(=1)"q)/(¢g+1)if i = 0. )

We will let (;, denote the restriction of (;,, to G = SU,(q), for 0 < i < ¢q. If
n > 3, then these ¢ + 1 characters are all irreducible and distinct. If n = 2, then
Gin 1s irreducible, unless ¢ is odd and i = (¢ + 1)/2, in which case it is a sum of
two irreducible characters of degree (¢ — 1)/2, see [TZ2, Lemma 4.7]. Formula (2.0.2)
implies that Weil characters (;,, enjoy the following branching rule while restricting to
the natural subgroup H := Stabg(w) = SU,,_1(¢) (w € W any anisotropic vector):

(2'0'3) C@n‘H: Z Cj,nfl-

J=0, j#i

Furthermore, the complex conjugation fixes EO,n and sends fj,n to CNqH,m when1 <5 <
q. Asn > 3 1is odd, it is also known that Eo,n is of symplectic type; let Uy : G — Sp(V)
be a complex representation affording this character. If 2 { ¢, then f(qﬂ) J2n is of
orthogonal type; let W g 1y/2 : G — O(V) be a complex representation affording this
character. In the remaining cases, let ¥; : G — GL(V) be a complex representation
affording the character @n

3. ODD-DIMENSIONAL UNITARY GROUPS

In this section, we will consider special unitary groups G := SU,,(q) = SU(W') where
q is any prime power and n > 3 is odd. In fact, up until Theorem 3.11 we will assume
that n = 2k + 1 > 5, and fix a basis (e,..., e, f1,-.., fr, w) of the Hermitian space
W=TF ZQ, in which the Hermitian form o takes values

(3.0.1) eioej=fiofj=eow=fiow=0,eo0f=0; wow=1.
We also fix the notation
P1 = Stabg(<€1>1pq2) = QlLly Pk = Stabg<<61, e ,€k>1pq2) = QkLka

where Q1 = O,(P1), Qr = O,(FPy), Ly = GLi(¢*). The action of any X € Ly, = GLx(¢?)
in the indicated basis of W is given by diag(X, X 9 det(X)?!), see [ST, §5.1].

As shown in [GMST, Lemmas 12.5, 12.6], the Levi subgroup L has a unique orbit
O on Irr(Z(Qy)) ~ {1z, } of smallest length (¢** —1)/(¢ + 1), which then occurs in
the restriction of any Weil character (;,. Moreover, any A € O can only lie under an
irreducible character of degree ¢ of Q. In particular, this shows that

Lemma 3.1. Suppose n =2k +1 > 5. Then (o, is irreducible over Py. If 1 < i <gq,
then (i nlp, = vi+6;, where 0; € Irr(Py) affords the orbit O, and v; is a linear character
of Py, trivial at Z(Qy,).
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Lemma 3.2. In the notation of Lemma 3.1, assume that 1 < i < q. Then Ker(v;) >
Qr, and if X € Ly has determinant o' as an element in GLg(q*) with t € Z, then
l/Z(X> = O'(q_l)it.

Proof. As noted in Lemma 3.1, v; is trivial at Z(Qy), and it is Py-invariant. But Ly acts
transitively on the ¢** — 1 nontrivial linear characters of Qy/Z(Q%), so Ker(v;) > Q.
Next, [Lg, Ly] = SLi(¢?) is perfect, so v; is trivial at [Ly, Ly]. Thus there is some
0 < s < ¢* — 2 such that 1;(X) = o for the listed X € L. To find s, it suffices to
evaluate v;(X) for some Xy that generates Ly modulo [Lg, L|. Let v be a generator of

F such that ~@*=D/(@*=1) = 5 and choose X, € Ly, conjugate to

2k—2

diag(y,7*, ..., )
over F,, so that det(Xy) = o. Since no eigenvalue of X; belongs to F,2, X, cannot fix
any A € O, see formula (20) of [ST]), and so 6;(Xo) = 0 and v;(Xy) = (;n(Xo). The
absence of eigenvalues in F 2 and the equality det(Xo)?! = p imply by (2.0.2) that
(in(Xo) = p' =@ Vi ie s=(q—1)ias stated. O

Proposition 3.3. Suppose n = 2k+1>5. Then (¢,)" contains ¢, ,, with multiplicity
one if 1 > 0, and zero if i = 0.

Proof. Note that ((,)? is just the permutation character of G acting on the point set
of W. Hence (¢,)"! is the permutation character of G acting on the set Q of ordered
k-tuples w = (vy,...,v), v; € W. Let 7, = Indgw(lgw) denote the permutation
character of G acting on the G-orbit of w = (vy,...,v;), where G, = Stabg(w), and
suppose that ¢, ,, is an irreducible constituent of 7,,. Then

(3.3.1) 0 < [T, Ginle = [Laws Gimlau]w;

in particular, 1¢, is an irreducible constituent of (; ,|c,, -

(i) First we consider the case where X := (vi,...,v)r, is contained in a non-
degenerate subspace Y of W of codimension > 2. Without loss we may assume that
e, fi € Y. Then G, contains a natural subgroup M := SU({e1, fi)r,2) = SUa(q)
(that acts trivially on Y'). The branching rule (2.0.3) then shows that (; | is a sum
of Weil characters (jo of M. As mentioned above, an irreducible constituent A of ;o
can have degree 1 only when (¢,7) = (2,# 0) or (¢,7) = (3,(¢ +1)/2). In the former
case, one can check that X is actually the sign character of M = SU(2) = Sym;. In
the latter case, A(z) # 1 for some element z of M = SU,(3) of order 3. Thus A can
never be equal to 1y, contradicting (3.3.1).

In particular, we have shown that X cannot be non-degenerate.

(ii) Suppose now that 0 # X N Xt has dimension j < k — 1. By Witt’s lemma, we
may then assume that X = (eq,...,ej,wy,... ,wk_j)lng, where (wy, ... ,wk_j)]qu is a
non-degenerate subspace of

<€j+17 <oy Gk, fj+17 s 7.fk’>Fq2'
But then X is contained in the non-degenerate subspace

Y = <€1,---7€j7f17"'7fj7w17"'7wk*j>]Fq2



MOMENTS OF WEIL REPRESENTATIONS OF FINITE SPECIAL UNITARY GROUPS 5

of codimension n — (k + j) > 2, contradicting (i).
(iii) We have shown that dim(X N X+) =k, i.e. X is totally singular of dimension

k. There is only one G-orbit of such w, and we may assume that w = (ey,...,¢ex). The
description of Py given in [ST, §5.1] shows that G, = Q. Now Lemmas 3.1, 3.2, and
(3.3.1) show that [, (;n]e = 1 — do,, as stated. O

Next we define the following linear characters \; of the parabolic subgroup P, =
Stabg(<el>1pq2) for 1 < i < q if g € P, sends e; to of for 0 < t < ¢ — 2, then

Ai(g) = o=@V and set
A; :=Ind$ ().

Proposition 3.4. Suppose n =2k +1 > 5, (n,q) # (5,2), and 1 < i < q. Then A;
enters the character (¢,)?, and [(¢;n)? Ag) > 1.

Proof. (i) As discussed in [GMST, §11], P := Stabg(e;) = @1 x L}, where L} =
Stabg(e1) NStabg(f1) = SU,_2(q). Note that A; enters the character Indg,(lp{), which
in turn enters the character (¢,)?. Furthermore, L; acts transitively on the ¢ — 1
nontrivial linear characters of Z((Q);) (which has order ¢), and for each such character
« there is a unique irreducible character of @, of degree ¢" 2, which then extends to
a unique character M, of P/. We fix some nontrivial a € Irr(Z(Q;)) and let K :=
Stabp, (o) = Py - Cy41. By its uniqueness, M, extends to K. Note that

Gn(1) = (¢"+1)/(g+1) <2¢" (g — 1) = 2(q — 1) Ma(1).
It follows by Clifford’s theorem that
(3.4.1) Cimlp, = Bi + Ind i (M),

for some extension to K of M, which we also denote by M,, and for some character j;
of Py of degree (¢"*+1)/(q+1), with Z(Q1) < Ker(f;). Next, M|z, = Cuoa. Applying
(2.0.3) to the standard subgroup L} and using (3.4.1), we get

q
Biley = Gl — (@ = 1)Gu—2 = Z G2y — (@ —1) Z Cn-2,7 = Cn—2,i-
J#i, §'#) J'=0
In particular, §; € Irr(Py).

(ii) As usual, x denotes the complex conjugate of any character x. Note that
Stabp (@) = K. Hence, (3.4.1) implies that

Observe that M, affords the Z(Q;)-character ¢"~2a and is irreducible over Pj. By the

aforementioned uniqueness, M, agrees with Mg on P/, where M, is the K-character
of the a-isotypic component in (,|p. As K/P; = Cy4q, these two characters differ
from each other by a linear character of K/P], which extends to a linear character § of

Py/P] = C,_1. We have shown that
(3.4.3) Ind% (M) = IndR! (Mg - §|x) = Indi! (M) - 6.
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and
(344) Ci,n|P1 - ﬁz + IndIP;l (Mo_z)a

(iii) We aim to show that we one can take § = ); in (3.4.3). Let 7 be an element
of 7y, of order g%~ 4+ 1 chosen such that (@ '+D/(¢+) — , Then we can find an

element h € K such that h(e;) = pe; and h is conjugate to

2

diag(p, p, 772, 7%, 7720 . ,7_2(_‘1)%72)

over F2. Since k > 2 and (k,q) # (2,2), by [Zs] there is a prime divisor ¢ of ¢**~2 — 1
that does not divide H4k %(¢/ — 1). In particular, ¢ divides (¢**~* + 1), and moreover

the (-part of |Py| is equal to the ¢-part of §;(1), whence f3; is an irreducible character
of P of (-defect zero. On the other hand, for any 1 <t < ¢, ¢ divides |hf|, whence
Bi(t) = 0, and so we obtain by using (2.0.2), (3.4.2), (3.4.4) that

Ind (Ma)(h) = Gin(h') = —(q = 1)p",
Indy (Mo)(h') = G (k') = —(g = 1)p™"
It now follows from (3.4.3) that
J(h') = p~2" = pl= D = N(n"),
whence 6(g) = \i(g) for all g € K, since the choice of h ensures that h generates K
modulo P|. Together with (3.4.3), we have shown that
(3.4.5) (Indg (Ma) - 6)(9) = (Indi! (Ma) - Xi)(9)

for all g € K. If g € Py~ K then Ind%! (M3)(g) = 0 since K <1 Py, and so (3.4.5) holds
for g as well. Consequently,

Ind}} (M,) = Indj} (Ma) - \;.
This identity, together with (3.4.2) and (3.4.4), implies by Frobenius’ reciprocity that
[(Gin)? Aile = [Ginli, Cinle = [Gin - IndF, (N), Gl
= [Ind%, (Ginlp - M)y Ginle = [Ginlpy - i Gl
> [Ind! (Mg) - N, Indi (My)]p, = 1,
as stated. OJ
Proposition 3.5. Supposen =2k +1>5 and 0 <i < q. Then [(Az)k,z o =1

Proof. Recall G acts transitively on the set = of isotropic 1-spaces in W = IF >, with
P, = Stabg(m), where we set 7; = (ej>1gq2 for 1 < j < k. Hence the character A; is
afforded by a CG-module

V = IndIGpl(Vm) = Dgrieq/P Vg(r1)s

where V;, = (vg,)c is a one-dimensional Pj-module with character \;, and G permutes
the summands via h(Vj(z,)) = Vigm). It follows that (A;)* is afforded by the G-module

V®k = <U5 | 5 S Ek>(;,
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where ve = Vg, ® Vg, ® ... @ g, for £ = (&1, &2, ..., &).
Consider the G-orbit II of the k-tuple 7 := (m,m,...,m) € =ZF. Then the G-
submodule

V() := (ve | € € e
of V& affords the character Ind%(u), where R := ﬁ?zlstabg(@j)]yqz), and

k¢

w(h) = o @i 1t
if hiej) =0 for0<t; <¢*—2and1<j<k.
Note that Qr < R < P, and Q) < Ker(u). Furthermore, if h € Ly belongs to R and
h(e;) = o', then det(h) (as an element in GL(¢?) is 02514 and so
7i(h) = o~ @ DIZiat = 4(p)

for the character v; considered in Lemma 3.2, i.e. 7;|gp = p. By Lemma 3.1, we have
therefore shown that

0 < [t Cimlrlr = Md5(w), G nle < (M), Gl

On the other hand, (A;)* enters the character (¢,)"~" by Proposition 3.4, whence the
upper bound [(A;)*,¢;,,] <1 follows from Proposition 3.3. O

Next we will study some see-saw dual pairs (cf. [Ku]) to determine various branching
rules. Our consideration is based on the following well-known formula [LBST, Lemma
5.5]:

Lemma 3.6. Let w be a character of the direct product S x G of finite groups S and

G. Then
w = Z D, ® a,
a€lrr(S)
where )
D,:g— Sl Za(z)w(xg)
TE€S

18 either zero, or a character of G.

We will work with a finite group I' that contains two dual pairs 57 x G and Sy x G,
where GG; > G5 and Sy > 5.

Lemma 3.7. Let w be a character of I', and decompose
w’G1><Sl = Z Da®a7 w|G2><SQ = Z 7®E’y
a€lrr(Sy) vEIrr(G2)
as in Lemma 3.6. Then, for any a € Irr(S) and any v € Irr(Gy) we have that
[Da‘G2>7]G2 = [a? E’Y’51]51>

and hence

Da|G2 = Z [E’Y’SNQ]SI e

~velrr(G2)



8 NICHOLAS M. KATZ AND PHAM HUU TIEP

Proof. Write aq . := [Da|cy, Ve, SO that

Da|G2 = Z Qo Y-

vEIrr(G2)
Then
W|GaxS1 = Z Qo 7Y X o
a€lrr(Sy), velrr(Ga)
Sy e Y aa
~velrr(G2) a€lrr(Sy)
Thus E,[s, = > enn(sy) dan@; and the statements follow. O

First we consider the dual pair
(371) G2 X SQ

inside I" := GUy,(¢), where Sy = GUjy(q) and G2 = SU,(¢q), and w = (3, = (an,4- More
precisely, we view Sy as GU(U), where U = (v1,v2)r,, is endowed with the Hermitian

form o, with an orthonormal basis (v1,v2). Next, Gy = SU,(q) is SU(W), where
W = F}, is endowed with the Hermitian form o defined in (3.0.1). Now we consider
V=U®r,W with the Hermitian form o defined via

(u@w)o (W @w) = (uou)(wouw)

for u € U and w € W. The action of G5 x S3 on V' induces a homomorphism G5 x Sy —
I':=GU((V).
Now V' is the orthogonal sum V) & V5, where V; := v; ® W. This gives us a subgroup

Gy :=SU(V;) x SU(V3) 2 SU,(q) x SU,(q)

of I' that contains (the image of) Gs. In fact, G5 embeds diagonally in Gi: ¢g —
diag(g, g). Next,

S = GU({u)e,,) x GU((i3)s ) = GU; (g) x GU; (g)
is just the non-split diagonal torus of Ss.
In the above basis (v1,vs) of U and for 0 < 4,5 < g, we consider the character
i« diag(p®, p°) > p'*t

of S;. Then, as explained in [TZ2, §4], (;, corresponds to the p‘-eigenspace of the
generator p - 1y of Z(GU,(q)), so that

(3.7.2) Dyi; = Gin ® Gim

for the dual pair G; x 5j.
We use the notation of [E| for the irreducible characters of Sy = GUjy(q) (with the
parameter ¢ + 1 in the superscripts of characters changed to 0). For instance

th) |31 = /\t,t-
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The decomposition
(3.7.3) Wsxa = Y a®C,
a€lrr(S2)
was described in [LBST, Proposition 6.3]. In particular, the Go-characters
(3.7.4) Co=Cy —ky - 1g,,

«

where o € Irr(Ss), are irreducible and pairwise distinct, and k, € {0,1} is listed in
Table I.

TABLE I. Degrees of C?¢ for Gy = SU,(q)

Lo [e)[GO [ |
X 1 ("= ()" + ()" /(@ + D@ -1) | 1
XWot#£0 |1 (@ = (D)) + (=D))/ @+ D@ -1) |0
Xy ¢ @+ (D" = (D" /(g+ (-1 |1

X t£0 | g (= (D) +(-D"9)/(a+ D@ -1 |0
o w0 [g—1](@" = ()¢ = (-1)"¢)/(g + 1)’ 0
Xt w0 g—1](¢" = (=D)")(¢" "+ (=1)")/(g + 1)? 0
Xl g+1[(" = (D)@ + (=)")/(@ - 1) 0

This implies
Corollary 3.8. For the decomposition
w|G2><SQ - Z 7®E'77

vEIrr(G2)
we have that
a, v = C?2 for some a € Irr(Sy),
0
E’Y: Xg)—i_xl(])? 7:1G27
0, otherwise.

Proposition 3.9. Suppose n = 2k +1 > 5 and (n,q) # (5,2). For 0 <i < q, and in
the notation of (3.7.3)~(3.7.4) we have

N=C o+ C q.
X1 Xq
Among these two irreducible constituents, only C’Xm enters (Ci,n)Q-
Proof. (i) First, an application of Mackey’s formula reveals that A; is the sum of two
distinct irreducible characters of Gy = SU,(q). Clearly, [A;, 1¢,] = 0. By Proposition
3.5, A; enters ((,)* = w|g,, s0
Ai =G, + G,
for some ) # P € Irr(S2). Next,
A1) = (¢" = (=D)")(@" "+ (=1)")/(¢* — 1),
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so 51, B2 # Xqﬂ, see Table I.
By Proposition 3.4, at least one of v; := Cj , j = 1,2, is an irreducible constituent of

(Ci,n>2 = D/\“
see (3.7.2). As v; # 1g,, by Lemma 3.6 and Corollary 3.8 we have

[Diiiless vila, = iy By lsilss = [Mias Bilsi]s,

G2

We have shown that ng, is an irreducible constituent of (Ci,n)2 precisely when A;; is an
irreducible constituent of 5|, .

(ii) As in the proof of Proposition 3.4, let 7 be an element of F ., of order A |
chosen such that 7(¢*"+1D/(a+) — ) Then we fix an element g € Ly such that g(e;) =
oe1, g(f1) = 079f1, and ¢ is conjugate to

_q)2k—2)
over F 2. By [Zs] there is a prime divisor £ of ¢**~2—1 that does not divide H4k (g7 -1).
In particular, ¢ divides |7|. It follows that o and ¢~7 are the only eigenvalues of g that
belong to F

Assume in addition that ¢ > 2; in particular, o # 07%. Then, (e1)r, and (f1)r , are
the only two g-invariant isotropic 1-spaces in W, and so

(3.9.1) Ai(g) =2p"

Next, for any = € Sy = GUsy(q), w(gx) = 1, unless = has, at least one, and therefore

2
. 4 _
diag(o, 09, 7,70, 79, ... 7l

both, of 0=1 and o7 as its eigenvalues. In this exceptional case, x belongs to class C’i_l)
in the notation of [E], and w(gx) = ¢*. It follows from Lemma 3.6 that

(ph, a=y\", 0<t<yq
2, a=x\",
Colg) =% p ' a=xy, 0<t<q
0, a=xy,
L 0, azxg_l),()gt,ugq.

Together with (3. 9 1), this readily implies that {81, 8} = {x\",x\’}. Note that
)|51 = A, but xq )|51 does not contain )\, ;, so we are done.

(iii) Now we consider the case ¢ = 2 As shown in (i), we may assume that (s,
contains \;;. It follows that 3, € {X1 , X (2,0) }. However degree consideration using

q—1
1(;—1 and shows that g, = Xg). Again by degree consideration we

now see that 8 = x((f) for some t € {1,2}. Furthermore, g fixes exactly three isotropic
lI-spaces in W (namely, the ones spanned by e, fi, and e; + f1), so A;(g) = 3p™".

Table I rules out x



MOMENTS OF WEIL REPRESENTATIONS OF FINITE SPECIAL UNITARY GROUPS 11
Arguing as in (ii), we see that

pt, a=x" 0<t<yq,

. 2, a=x\",
Ca(g) = —t . %t)
2p7", a=xq¢, 0<t <gq,
0, o= X((IO).
Hence 8 = X((Ii), and we are done since Xff)| s, does not contain A; ;. UJ

We will now work with three new dual pairs. First, we consider the dual pair G5 x S3
inside I' := GUag,(q), where S5 = GUg(q) and G35 = SU,(q), and w = Conk = Conkq-
More precisely, we view S5 as GU(U), where U = <Ul,...,U2k>]Fq2 is endowed with
the Hermitian form o, with an orthonormal basis (vy,...,ve). Next, G5 = SU,(q) is
SU(W), where W = F7; is endowed with the Hermitian form o defined in (3.0.1). Now
we consider V = U ®F 2 W with the Hermitian form - defined via

(u@w)o (U ®@w') = (uou)(wouw)

for u € U and w € W. The action of GG3 x S3 on V induces a homomorphism Gz x S5 —
I':=GU((V).
Now V is the orthogonal sum @, V;, where V; := v; @ W. This gives us a subgroup

Gy = SU(V1) x SU(Va) x ... x SU(Vax) & SU, (g)*

of I' that contains (the image of) G3. In fact, G3 embeds diagonally in Gi: g —
diag(g,g,...,9). Next,

S1:= GU({e)e,) X GU({oa),) X . % GU((ua)s,,) = GU» (g)*

is just the non-split diagonal torus of S3. In the above basis (vq,vs, ..., v ) of U and
for 1 <i < ¢, we consider the character

(3.9.2) wi - diag(p™, p®, ..., p*%*) — pi(Zﬁﬁlaj)

of Sl.

Next, for each 1 < j < k we embed one copy of SU(W) in
SU((vaj-1, v25)r,. @ W)
(by letting it act only on W). This gives an embedding of G5 := SU,,(¢)* in G, via

diag(gla g2, .. 7g]€) = diag(.gh 91,925,925 - - -, Gk, gk)

At the same times, G3 embeds diagonally in Gs via g — diag(g, g,...,g). The action
of Gy is centralized by

52 = GU(<U1,U2>Fq2) X GU(<U3,U4>]Fq2) X ... X GU(('UQk—LU%::)IFqQ) = GUg(q)k
Recall the characters C,, of SU,(¢) introduced in (3.7.3).

Proposition 3.10. Suppose n =2k +12>5, (n,q) # (5,2), and 0 <i < q. Then both
(CX@))’“ and (C;n)" "t contain Cim-
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Proof. (i) First we decompose
w|G3><53 = Z 7®E’Y
~v€ElIrr(Gs)

for the dual pair G5 x S;. By Proposition 3.3, w|g, = ((,)""! contains (;, with
multiplicity one. It follows that the G3-character Ezm has degree 1, so there is some
0 < m =m; < ¢q such that
Be (X)=p™
whenever X € GUg(¢) has determinant equal to p'.
(ii) Next we decompose

w|52XG2: Z B®FB

BeIrr(Ss)
for the dual pair Sy x G5. Note by (3.7.3) that if

B=5®PF...Q 0k,
then
(3.10.1) Fg = 051 ®052 X ... ®Cﬁk'

By Lemma 3.7, 3
[Fslas: Cinlas = 16, Bz, |salsa-

Since Ey has degree 1, we see that Zm is an irreducible constituent of Fj|q, precisely

i,m

when = E@,n| s,, that is when

k .
ﬂ(XngQ, e 7Xk‘) — pmzj':lt]

whenever X; € GUy(q) has determinant equal to p% for 1 < j < k. In the notation of
[E] we then have

(3.10.2) B=x"exi"e. oxi".
k

(iii) Recall by Proposition 3.4 that A; enters ((,)2. It follows that AP% = AROA®... QAN

-
k

enters w|g,. Next, by Proposition 3.5, Zm is an irreducible constituent of (A;)* =

A%*|,. Furthermore, by Proposition 3.9, A; = CX@) + CX@). Hence, using (3.10.1) we
1 q

see that

ANF= > Guelue.. 80,
1<j<k, Bie{x{" X}
= Z F51®52®~~®5k'

1<5<k, Bre{n”x"}
Applying the result (3.10.2) of (ii), we conclude that m = i and (,,, is an irreducible
constituent of
_ Nk
Fmgyme_axmles = (C o).
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(iv) The same argument as in (ii), but applied to the decomposition

w’S1><G1 = Z OZ®Da

a€lrr(S1)
for the dual pair S; x G; implies that ZM is an irreducible constituent of D, |, precisely
when oo = E; |g,, that is when a = p,;, as introduced in (3.9.2). As m was shown to

be equal to 7 in (iii), we now have that Zm is an irreducible constituent of

Da|Gs = DM|G3 = (Ci,n)n_l'

We can now prove Theorem 1, which we restate:

Theorem 3.11. Let q be a prime power and let G = SU,(q) with n = 2k + 1 > 3.
Suppose in addition that (n,q) # (3,2). Then ((n)" contains 1g with multiplicity
exactly one if 1 <1 < q and zero if i = 0.

Proof. For n = 3, the statement was checked by A. Schaeffer Fry using the package
Chevie [GHLMP]. Likewise, the case (n,q) = (5,2) was checked using the package GAP
[GAP]. So we may assume that n > 5 and (n,q) # (5,2). Now for ¢ = 0 the statement
follows from Proposition 3.3. For 1 <7 < ¢ we have

[(Ci,n)n_lvzi,n](? = [(Ci,n)n’ 1G}
is at most 1 by Proposition 3.3 and at least 1 by Proposition 3.10. U

4. MOMENTS OF WEIL REPRESENTATIONS OF SUy(q)

Theorem 1 naturally brings up the question: what are the n' moments of Weil
representations of SU,(¢) when 2|n? Preliminary analysis indicates that the even-
dimensional case does not behave as nicely as in the odd-dimensional case (particularly
because real-valued characters usually have large even moments). We restrict ourselves
to record the following result:

Theorem 4.1. Consider the irreducible Weil characters ¢ ,,, 0 <1 < ¢, of G := SU,(q)
as gwen in (2.0.2), and suppose n = 4. Then

qg+1, i=0,
R q—1, 4l(¢+1), i=(¢+1)/4, 3(g+1)/4,
1, otherwise.

Proof. (i) We will use the dual pairs G; x S; = SU,(q)? x GUi(¢q)? and Gy x Sy =
SU,(q) x GUjy(q) as in (3.7.1). By [LBST, Proposition 6.3],

(,L)|G2><S2: Z Ca®Oé: Z ’y@E,y

a€lrr(S2) ~velrr(G2)

= Y CGeatla e’ +x")
a€lrr(Ss2)

Y
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where C3(1) are listed in Table I. The only new feature that arises in the case n =4 is
that, according to [LBST, Proposition 6.5],

(a) If a # 3, then Cp = Cj precisely when {a, 8} = {th),xgqﬂ_t)} for some t €
{1,2,..., ¢}~ {(g +1)/2}; and

(b) All C are irreducible, except when 2t ¢ and o = ng+1)/ ?in which case Cyis a
sum of two distinct irreducible characters (of degree (¢* + 1)(¢* —q +1)/2).
Hence, instead of Corollary 3.8 now we have

Q, if v is an irreducible constituent
of C¢2 for some a € Irr(GUz(q)),
(4.1.1) E, = 0) 0 a1
X1 tXq¢, ULy=lg,
0, otherwise.

On the other hand,
w]01X51 = Z D, ® a,

a€lrr(Sy)
where D, is given in (3.7.2) for a« = \;; € Irr(GU;(¢)?). Applying Lemma 3.7 we then
get

(4.1.2) (Cz‘,4)2|SU4(q) =Dy, la

Z [E'Y|GU1(Q)2’ /\z',z‘]GUl(q)Z e

~veIrr (G2

Direct computations show for a € Irr(GUz(q)) that

( 5t,z‘> a = th)>
5t,2z', a = X(t+)1a
(4.1.3) [alau, ()2 Mdlaui@? = § Oruis = X?tf‘l)7
5t,z‘+(q+1)/27 o= th), 2 T q,
L 0, Q= Xq ; 2|q,

and 0;; is defined to be 1 if ¢ = j(modg + 1) and 0 otherwise. Recall that in the
notation for a € Irr(GUy(q)), the superscripts are viewed as elements of Z/(q + 1)Z if
a(1) < ¢, and as elements of Z/(¢*> — 1)Z if a(1) = q + 1. Moreover, Xét_’ul) = X((;ﬁ? and

t t
X¢(1+)1 Xc(1+1q)‘

(ii) Consider the case 2|g. Then (4.1.1)—(4.1.3) imply that
(Coa)? = 1g + C;<10) + Z Clun + Z Ctstas)

—1 +1
1<t<q/2 1<s<(q—2)/2 Xa

As (o4 is real-valued, it follows that [(¢o4)?, 16]e = ¢ + 1.
Likewise, if i # 0, then the irreducible summands of ({;4)* are C° o C° it with

t # i, and C° « With s = 2i(mod ¢+ 1) (and s # O(mod ¢ — 1)); all Wlth mult1phc1ty

Xg+1
one. It follows that the only common irreducible constituent of ((;4)* and ({;4)? =

(Cpr1-ia)? is C;g” = C';gqﬂ_i), cf. (a) above. Thus [(¢;4)* 1g]le = 1. In fact, this
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argument also applies to the case where 2 1 ¢ and (¢ + 1) t 4¢, where there is an extra
irreducible summand C° 1)) (also with multiplicity 1) in (G .4)*.
Xq

(iii) Assume now that 2 1 ¢. Then (4.1.1)—(4.1.3) imply that
(Co)? —1G+C<o>+ Z C(t t)+CO T Z CO (s(a+1)
1<s< 953

1<t<et 1
vielding [(¢o4)?, 1g]e = q + 1. Likewise,
(C&;v ) = ]-G + Co<q+1 + Z CO (t, t) + c° (0) + Z CO (g+1)) -
1<t<ect 1<s< 923 q“

Since (g+1 a1 4 is real-valued and C° it is the sum of two distinct irreducible summands,

[(Cer2 ) Lele = q +2.

Finally, the irreducible summands of (Cm74)2 are C° (ot (O (a4l C°<t s, with

afly
1

q 1 Xq— 1

t # £(¢ +1)/4, and C° (23+1)(q+1)/2, all with multiplicity one. As mentioned in (a),
C g+1, — CO_<E
X1

) i)

X1 _

irreducible summands between (Cos1, ,)? and (@ 47 = (Cawsn ;) Tt follows that
4 b

[(C%l,4)47 lgle=q—1. ]

We also record a curious fact about 4" moments of Weil representations of Sp,,(q),
which holds specifically in the case ¢ = 3.

Thus all of these characters, except for the first one, are common

Proposition 4.2. Let n > 2 and let £, denote an irreducible Weil character of G =
SPs, (3) of degree (3" +1)/2 and (3™ — 1)/2, respectively. Then

(€4 16]e =1 = [n*, 1c)e-

Proof. Tt was shown in [MT, Proposition 5.4] that if y € {&, 7} then Sym?(x) and A?()
are irreducible, of distinct degrees. Furthermore, Lemma 3.3(ii) and formula (3.5) of
[GMT] show that

Sym?(€) = Sym®(€), Sym*(n) # Sym®(7), A*(€) # A*(§), A*(n) = A*(D).

Since x? = Sym?(x) + A%(x), the statement follows. O
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