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It is known that the almost-Kéahler anti-self-dual metrics on a given
4-manifold sweep out an open subset in the moduli space of anti-
self-dual metrics. However, we show here by example that this sub-
set is not generally closed, and so need not sweep out entire con-
nected components in the moduli space. Our construction hinges
on an unexpected link between harmonic functions on certain hy-
perbolic 3-manifolds and self-dual harmonic 2-forms on associated
4-manifolds.
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An oriented Riemannian 4-manifold (M*, g) is said to be anti-self-dual if it
satisfies W, = 0, where the self-dual Weyl curvature W is by definition the
orthogonal projection of the Riemann curvature tensor R € ®2A? into the
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trace-free symmetric square ®3A™ of the bundle of self-dual 2-forms. This
is a conformally invariant condition, and so is best understood as a condi-
tion on the conformal class [g] := {u%g | u: M — R*} rather than on the
representative metric g. For example, any oriented locally-conformally-flat
4-manifold is anti-self-dual; indeed, these are precisely the 4-manifolds that
are anti-self-dual with respect to both orientations. One compelling reason
for the study of anti-self-dual 4-manifolds is that W, = 0 is exactly the in-
tegrability condition needed to make the total space of the 2-sphere bundle
S(A*) — M into a complex 3-fold Z in a natural way [3], and the Penrose
correspondence [21] then allows one to completely reconstruct (M*, [g]) from
the complex geometry of the so-called twistor space Z.

A rather different link between anti-self-dual metrics and complex ge-
ometry is provided by the observation that a Kihler manifold (M4, g, J) of
complex dimension two is anti-self-dual if and only if its scalar curvature
vanishes [18]. This makes a special class of extremal Ké&hler manifolds sus-
ceptible to study via twistor theory, and led, in the early 1990s, to various
results on scalar-flat Kahler surfaces that anticipated more recent theorems
regarding more general extremal Kahler manifolds.

Of course, the Kahler condition is far from conformally invariant. Rather,
in the present context, it should be thought of as providing a preferred
conformal gauge for those special conformal classes that can be represented
by Kéhler metrics. But even among anti-self-dual conformal classes, those
that can be represented by Kahler metrics tend to be highly non-generic.
The following example nicely illustrates this phenomenon.

Example. Let ¥ be a compact Riemann surface of genus g > 2, and let
M denote the compact oriented 4-manifold X x CP;. If we equip ¥ with
its hyperbolic metric of Gauss curvature K = —1 and equip S? = CP; with
its usual “round” metric of Gauss curvature K = +1, the product metric
on M =3 x S? is scalar-flat Kéhler, and hence anti-self-dual. Moreover,
since this metric admits orientation-reversing isometries, it is actually lo-
cally conformally flat. This last fact illustrates a useful consequence [3] of
the 4-dimensional signature formula: if M is a compact oriented 4-manifold
(without boundary) that has signature 7(M) = 0, then every anti-self-dual
metric on M is locally conformally flat.

Now the scalar-flat Kihler metric we have just described on M = 3 x §?
has universal cover H? x S2, where H? denotes the hyperbolic plane. In
fact, one can show [7, 14] that every scalar-flat Kihler metric on ¥ x S? has
universal cover homothetically isometric to this fixed model. Thus, start-
ing with the representation m (M) = m1(¥) — PSL(2,R) = SO4+(2,1) that
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uniformizes Y, any deformation of our example through scalar-flat Kahler
metrics of fixed total volume arises from a deformation though representa-
tions m1(X) < SO4(2,1) x SO(3). On the other hand, H? x S? is confor-
mally isometric to the complement S* — S! of an equatorial circle in the
4-sphere, so the general deformation of the locally conformally flat structure
on M =¥ x S? instead just corresponds to a family of homomorphisms
m1(X) — SO4(5,1) taking values in the group of Mobius transformations of
the 4-sphere. Remembering to only count these representations up to con-
jugation, we see that the moduli space of anti-self-dual conformal classes on
M has dimension 30(g — 1), but that only a subspace of dimension 12(y — 1)
arises from conformal structures that contain scalar-flat Kahler metrics. <

Because of this, we can hardly expect scalar-flat-Kéahler metrics to pro-
vide a reliable model for general anti-self-dual metrics, even on 4-manifolds
that arise as compact complex surfaces. However, the larger class of almost-
Kahler anti-self-dual metrics shares many of the remarkable properties of the
scalar-flat Kéahler metrics, and yet sweeps out an open region in the moduli
space of anti-self-dual conformal structures.

Recall that an oriented Riemannian manifold (M, g) equipped with a
closed 2-form w is said to be almost-Kdhler if there is an orientation-
compatible almost-complex structure J : TM — TM, J? = —1, such that
g =w(,J+); in this language, a Ké&hler manifold just becomes an almost-
Kahler manifold for which the almost-complex structure J happens to be
integrable. But because J is algebraically determined by ¢ and w, there is
an equivalent reformulation that avoids mentioning J explicitly. Indeed, an
oriented Riemannian 2m-manifold (M, g) is almost-Kéahler with respect to
the closed 2-form w iff xw = w™ ! /(m — 1)! and |w| = \/m, where the Hodge
star and pointwise norm on 2-forms are those determined by g and the fixed
orientation. In particular, we see that w is a harmonic 2-form on (M?™,g),
and that w is an orientation-compatible symplectic form on M.

But this also makes it clear that the 4-dimensional case is transpar-
ently simple and natural. Indeed, a compact oriented Riemannian 4-manifold
(M, g) is almost-Kéahler with respect to w iff w is a self-dual harmonic 2-form
on (M*, g) of constant length v/2. However, since the Hodge star operator is
conformally invariant on middle-dimensional forms, a 2-form on a 4-manifold
is harmonic with respect to g iff it is harmonic with respect to every other
metric in the conformal class [g]. Since a conformal change of metric g ~ u%g
changes the point-wise norm of a 2-form by |w| ~ u~2|w|, this means that
any harmonic self-dual form w that is merely everywhere non-zero determines
a unique § = u%g € [g] such that (M, §) is almost-Kéhler with respect to w.
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Moreover, the dimension by (M) = [bo(M) + 7(M)]/2 of the space of self-
dual harmonic 2-forms is a topological invariant of M, and the collection of
these forms depends continuously on the space of Riemannian metrics (with
respect, for example, to the C1® topology). Thus, if there is a nowhere-zero
self-dual harmonic 2-form w with respect to g, the same is true for every
metric § that is sufficiently close to ¢ in the C? topology. It therefore follows
that the almost-Kéhler metrics sweep out an open subset of the space of con-
formal classes on any smooth compact 4-manifold M*. We emphasize that
this is a strictly 4-dimensional phenomenon; it certainly does not persist in
higher dimensions.

Because of this, almost-Kéahler anti-self-dual metrics can provide an in-
teresting window into the world of general anti-self-dual metrics, at least
on 4-manifolds that happen to admit symplectic structures. Since the anti-
self-duality condition W = 0 largely compensates for the extra freedom in
the curvature tensor that would otherwise result from relaxing the Kéhler
condition, many features familiar from the scalar-flat Kahler case turn out
to persist in this broader context. One particularly intriguing consequence
is that it is not difficult to find obstructions to the existence of almost-
Kahler anti-self-dual metrics, even though the known obstructions to the
existence of general anti-self-dual metrics are few and far between. For ex-
ample, while we know [13, 22] that there are scalar-flat K&hler metrics (and
hence anti-self-dual metrics) on CPa#kCP; for k > 10, we also know [11, 19]
that almost-Kéhler anti-self-dual metrics definitely do not exist on such blow-
ups of the complex projective plane at k < 9 points. Is the latter indicative
of a deeper non-existence theorem for general anti-self-dual metrics? Or is
this merely the sort of false hope that arises from staring too long at a
mirage?

This paper will try to shed some light on these matters by investigating
a related question. If a smooth compact 4-manifold admits an almost-Kéahler
anti-self-dual metric, is every anti-self-dual metric in the same component of
the moduli space also almost-Kéahler? Since we have seen that the almost-
Kaéhler condition is open on the level of conformal classes, this question
amounts asking whether it is also closed in the anti-self-dual context. Our
results will show that the answer is no. Indeed, we will display a large family
of counter-examples that arise from the theory of quasi-Fuchsian groups.

Theorem A. There is an integer N such that, whenever ¥ is a compact
oriented surface of even genus g > N, the 4-manifold M = ¥ x S? admits
locally-conformally-flat conformal classes [g] that cannot be represented by
almost-Kdhler metrics. Moreover, certain such [g] arise from quasi-Fuchsian
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groups 1 (X) < SO4+(3,1) C SO4+(5,1), and so can be exhibited as locally-
conformally-flat deformations of the conformal structures represented by
scalar-flat Kahler product metrics on ¥ x S2.

While the examples described by this result are all locally conformally
flat, and thus live on 4-manifolds of signature zero, a variant of the same
construction produces many explicit examples that live on 4-manifolds with
7 < 0, and so are certainly not locally conformally flat. These arise in connec-
tion with the second author’s explicit construction [16] of scalar-flat Kéhler
metrics on blown-up ruled surfaces. The main idea is to deform the hyper-
bolic 3-manifolds that played a central role in the earlier construction, by
replacing Fuchsian with quasi-Fuchsian subgroups of PSL(2,C).

Theorem B. Let k> 2 be an integer, and let N be the integer of Theo-
rem A. Then if ¥ is a compact oriented surface of even genus g > N, the
connected sum M = (3 x S?)#kCPy admits anti-self-dual conformal struc-
tures that cannot be represented by almost-Kdahler metrics. Moreover, some
such [g] can be explicitly constructed from configurations of k points in quasi-
Fuchsian hyperbolic 3-manifolds diffeomorphic to ¥ x R, and so can be ez-
hibited as anti-self-dual deformations of conformal structures that are rep-
resented by scalar-flat Kdhler structures on blown-up ruled surfaces.
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paper and suggesting some useful clarifications of our exposition.
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2. Fuchsian and quasi-Fuchsian groups

Let H3 denote hyperbolic 3-space, which we will visualize using either the
Poincaré ball model or the upper-half-space model. Either way, we see a 2-
sphere at infinity; in the Poincaré model, it is simply the boundary 2-sphere
of the closed 3-ball D3, while in the upper-half-space model it becomes the
boundary plane plus an extra point, called oco. In either picture, isometries
of H3 extend to to the boundary sphere as conformal transformations, and
every global conformal transformation of S? conversely arises this way from
a unique isometry. We will henceforth choose to emphasize isometries of H?
and conformal maps of S? = CIP; that preserve orientation. The group of such
isometries is then exactly the complex automorphism group PSL(2,C) of
CPy; the fact that this can be identified with the Lorentz group SO4(3,1)
(which most naturally acts on yet a third model for 43, the hyperboloid of
unit future-pointing time-like vectors in Minkowski space) is one of those rare
low-dimensional coincidences in Lie group theory that underlie many impor-
tant phenomena in low-dimensional geometry and topology. Another rele-
vant coincidence is that SO (5,1) = PGL(2,H), so that oriented conformal
transformations of the 4-sphere can be understood as fractional linear trans-
formation of the quaternionic projective line HIP;; thus the natural exension
SO, (3,1) = SO, (5,1) of conformal transformations from S? to S* can
also be understood as arising from the inclusion PSL(2,C) — PGL(2,H)
induced by including the complex numbers C into the quaternions H.

A Kleinian group I is by definition [20] a discrete subgroup of PSL(2,C).
Since discrete means that the identity element is isolated, this implies that
the orbit of any point in H? C D? can only accumulate on the boundary
sphere. The set of accumulation points of any orbit is called the limit set,
and denoted A = A(I"); this can easily be shown to be independent of the
particular orbit we choose. A Fuchsian group is by definition a Kleinian group
which sends some geometric disk D? C S? to itself; and since the boundary
circle of any such disk is the image of RP! ¢ CP; under a Mdbius trans-
formation, this is equivalent to saying that a Fuchsian group is a Kleinian
group which is conjugate to a subgroup of PSL(2,R). In this case, the limit
set A(I") must be a closed subset of the invariant circle. A Fuchsian group is
said to be of the first type if A(I") is the whole circle. A Kleinian group I is
called quasi-Fuchsian if it is quasiconformally conjugate to a Fuchsian group
I'" of the first type, meaning that I' = ® 1 o " o ® for some quasiconfor-
mal homeomorphism ® of CP;. In particular, the limit set of such a group
is a quasi-circle, meaning a Jordan curve that is the image of a geometric
circle under some quasiconformal map. This implies [9] that the limit set
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has Hausdorff dimension < 2, and so in particular has Lebesgue area zero.
We note in passing that there are other equivalent characterizations of such
groups; for example, a finitely generated Kleinian group is quasi-Fuchsian if
and only if its limit set is a closed Jordan curve.

Figure 1: While the limit set of a type-one Fuchsian group is a geometric
circle, for a strictly quasi-Fuchsian group it is instead a quasi-circle that is
a self-similar Jordan curve of Hausdorff dimension > 1.

The special class of quasi-Fuchsian groups I' that will concern us here
consists of those I' that are group-isomorphic to the fundamental group
m1(X) of some compact oriented surface ¥ of genus g > 2. We will call
these! quasi-Fuchsian groups of Bers type, in honor of Lipman Bers’ pio-
neering contribution to the subject. Given two orientation-compatible com-
plex structures j and ;' on 3, Bers [4] showed that there is a quasi-Fuchsian
group 71 (X) < PSL(2,C) with limit set a quasi-circle A, such that (CP; —
A)/m1(X) is biholomorphic to the disjoint union (3,) U (3, —"). The hy-
perbolic manifold X = H3/m1(X) is then diffeomorphic to ¥ x (—1,1), and
the 3-manifold-with-boundary X := (D3 — A)/m(X), which is diffeomorphic
to ¥ x [—1,1], carries a conformal structure which extends the conformal
class of the hyperbolic metric on X C X and induces the two specified con-
formal structures on the two boundary components ¥ x {£1}. The quasi-
Fuchsian group that accomplishes this is moreover unique up to conjugation
in PSL(2,C), so that these Bers groups are classified by pairs of points in
Teichmiiller space.

!Since the standard terminology would instead describe such I' as finitely-
generated convex-co-compact quasi-Fuchsian groups without elliptic elements, the in-
troduction of a shorter name seems both necessary and appropriate!
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C ——=>

Figure 2: If I' is a quasi-Fuchsian group of Bers type, the associated hyper-
bolic 3-manifold H3/I" has two ends, and is characterized by the conformal
structures it induces on the two associated surfaces at infinity. In the Fuch-
sian case, the two conformal structures at infinity coincide.

3. Constructing anti-self-dual 4-manifolds

We will now construct a menagerie of explicit anti-self-dual 4-manifolds,
starting from any quasi-Fuchsian group I' C PSL(2,C) of Bers type. Re-
call that our definition requires I" to have limit set A(I") C CP; equal to a
quasi-circle, and to be group-isomorphic to 71 () for some compact oriented
surface ¥ of genus g > 2. Let X = H3/I" denote the associated hyperbolic
3-manifold, and let X := (D3 — A)/I" be its canonical compactification as
a 3-manifold-with-boundary. We will use h to denote the hyperbolic metric
on X, and will let [h] denote the conformal structure on X induced by the
Euclidean conformal structure on D3, all the while remembering that the
restriction of [h] to the interior X of X is just the conformal class [h] of the
hyperbolic metric h.

The simplest version of our construction proceeds by defining P to be
the 4-manifold X x S!, and then compactifying this as M = (X x S')/~,
where the equivalence relation ~ collapses (0X) x S! to X by contracting
each circle factor to a point. As a set, M is therefore just the disjoint union
of P and 0X. The point of interest, though, is that the topological space M
can be made into a smooth 4-manifold in a way that simultaneously endows
it with a locally-conformally-flat conformal structure. To see this, let us first
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recall that the Riemannian product H#3 x S is conformally flat, since

dx? + dy? + dz?
(3.1) 22< i +dt2> = (da® + dy?) + (d22 + 22dt?)
z
displays a certain conformal rescaling of its metric as the Euclidean metric
on R* —R? = R? x (R? — {0}), written in cylindrical coordinates. We can
generalize this by letting

u: X —[0,00)

be a smooth defining function for 90X, in the sense that 9X = «~1({0}) and
that du # 0 along OX. Inspection of (3.1) then demonstrates that

(3.2) g = u?(h+ dt?)

defines a smooth locally-conformally-flat metric on M, since near any bound-
ary point of X we can choose local coordinates (x,y, 2) that express h in the
upper-half-space model, and we then automatically have u = wz for some
smooth positive function w on the corresponding coordinate domain. Of
course, the metric g defined by (3.2) depends on the defining function u, but
its conformal class [g] does not. This gives M = (X x S1)/~ the structure of
a smooth oriented locally-conformally-flat 4-manifold in a very natural man-
ner. It follows that M is diffeomorphic to ¥ x 52, since X is diffeomorphic
to X x [~1,1], and collapsing each boundary circle of [~1,1] x S! exactly
produces a 2-sphere S2.
Of course, none of this should come as a surprise, since the inclusion

PSL(2,C) < PGL(2,H)

| |
SO+(3, 1) — SO+<5,1)

exactly allows I' to act on S* = HP; in a manner that is free and prop-
erly discontinuous outside the limit set A = A(I') € S% ¢ §*. The smooth
compact 4-manifold M we constructed above is exactly (S* —A)/I’, and
the locally-conformally-flat conformal structure [g] with which we endowed
it is simply the push-forward of the standard conformal structure on S*.
However, the approach we have just detailed has certain specific virtues;
not only does it nicely generalize to yield a construction of more general
anti-self-dual 4-manifolds, but it will also lead, in §4 below, to a concrete
picture of harmonic 2-forms on (M, [g]) in terms of harmonic functions on

(X, h).



754 C. J. Bishop and C. LeBrun

Before proceeding further, we should notice some other key features of
the metrics g defined by (3.2). The vector field £ = 0/t is a Killing field of
g, and generates an isometric action of S1 = U(1) on (M, g). We can usefully
restate this by observing that £ is a conformal Killing field of (M, [g]), and
that the special metrics g € [g] given by (3.2) are simply the metrics in the
fixed conformal class that are invariant under the induced circle action. Now
observe that X = M/S!, and that the inverse image P of X C X is a flat
principle circle bundle — namely, the trivial one! We now mildly generalize
the construction by instead considering arbitrary flat principal S'-bundles
(P,0) over X. On such a principal bundle, there is still a vector field £
that generates the free S'-action on P, and saying that € is a connection
1-form just means that it’s an S'-invariant 1-form on P such that 6(¢) = 1;
requiring that such a connection be flat then imposes the condition that
df = 0, and, since this then says that 6 is locally exact, is obviously equiv-
alent to saying that there is a system of local trivializations of P in which
6 = dt and ¢ = 3/0t. Given any smooth defining function u: X — [0, 00)
for 0X, the local arguments we used before now show that we can compact-
ify (P, u?[h + 6?]) as a smooth locally-conformally-flat 4-manifold (M, g) by
adding a copy of X. On the other hand, the extra freedom of choosing a
flat S'-connection on X is completely encoded in a monodromy homomor-
phism m(X) — S* = SO(2), and since 71 (X) =m(X) = I, the graph of
such a homomorphism is a subgroup I' C SO(3,1) x SO(2) that projects
bijectively to the quasi-Fuchsian group I' C SO4(3,1). Identifying I" with
its image under the natural inclusion SO, (3,1) x SO(2) — SO, (5,1) then
allows I to act conformally on S* with the same limit set A € S? € S* as I,
and the additional locally-conformally-flat structures on M ~ ¥ x S? intro-
duced above are exactly the ones that then arise as quotients (S* — A)/I".
For all of these conformal structures, (M, [g]) comes equipped with an S*-
action generated by a conformal Killing field &; moreover, they all have
X = M/S', with 0X exactly given by the image of the zero locus of &.

We will now describe a generalization of the above ansatz that con-
structs anti-self-dual 4-manifolds that are not locally conformally flat. Let
(X, h) once again be the hyperbolic 3-manifold associated with some quasi-
Fuchsian group I' C PSL(2,C) of Bers type; and let us emphasize that
we take H3 to have a standard orientation, so that X = H3/I" also comes
equipped with a preferred orientation from the outset. For some positive
integer k, now choose a configuration {pi,p2,...,pr} of k distinct points in
X. Our objective will be to construct a compact anti-self-dual 4-manifold
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(M, [g]) with a semi-free? conformally isometric S'-action with k isolated
fixed points {p1,p2...,Pr} and two fixed surfaces ¥ and ¥ _, such that
M/S! = X, with pj mapping to p;, and with the ¥} LJ¥_ mapping to 0X.
The construction will actually require the configuration {p1,pa,...,px} to
satisfy a mild constraint, but configurations with this property will turn out
to exist for all £ > 2.

The ingredients needed for our construction will include the Green’s
functions Gy, of the chosen points. By definition, each G, : X — {p;} — R
is a positive harmonic function that tends to zero at d.X, and solves

(3.3) AG),, =21y,

in the distributional sense, where A = —div grad is the (modern geometer’s)
Laplace-Beltrami operator of the hyperbolic metric h. This Green’s function
can be constructed explicitly by lifting the problem to H?, where the inverse
image of p; becomes the orbit I'g; of an arbitrarily chosen point g; in the
preimage. Superimposing the hyperbolic Green’s functions for the points in
the orbit then leads one to express the solution as a Poincaré series

1
(3.4) ENOEDY e2dist(¢q;.q) — 1’
oel’

where dist denotes the hyperbolic distance in H?. The fact that this expres-
sion converges away from the orbit I'g; follows from Sullivan’s theorem on
critical exponents [24] for Poincaré series, because the limit set A(I") has
Hausdorff dimension < 2. It is then easy to show that the singular function
defined by (3.4) solves (3.3) in the distributional sense, and elliptic regular-
ity therefore shows that G, is smooth on X — {p;}. Moreover, Sullivan’s
theorem also implies that G, extends continuously to the boundary of X
by zero. Regularity theory for boundary-degenerate elliptic operators [10,
Theorem 11.7] then implies that this extension of G, is actually smooth on
X — {p;}, and has vanishing normal derivative at 9X.

Let us next define a harmonic function V : X — {p1,pa,...,pr} — RT
by

(3.5) V =1+4Gp, +Gp,+ -+ G,

2 An action is called semi-free if it is free on the complement of its fixed-point set.
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Since V satisfies Laplace’s equation on the complement of {p1,...,px}, we
have d x dV = 0 in this region, and the 2-form defined there by

F =%dV

is therefore closed. Our construction now asks us to find a principal circle
bundle P — X — {p1,p2,...,pr} equipped with a connection form 6 whose
curvature is exactly F'. On any contractible region U C X — {p1,p2,...,Pr},
this can always be done simply by taking any 1-form ¥ with dv = F', and
then setting § = dt +1 on U x S'. However, there is a cohomological ob-
struction to gluing these local models together consistently; namely, we need
[%F | to be an integer class in deRham cohomology, because it will ulti-
mately represent the first Chern class ¢y (P) € H*(X — {p1,p2,...,pp}, 7).
This motivates the following definition:

Definition 3.1. If X = #H3?/I" is a quasi-Fuchsian hyperbolic 3-manifold
of Bers type, and if {p1,...,px} is a configurations of k£ > 0 distinct points
in X, we will say that {p1,...,px} is quantizable if % *dV represents an
element of H?(X — {p1,...,px},Z) C H*(X — {p1,...,pr},R) in deRham
cohomology.

This “quantization condition” is equivalent to demanding that i fY F
be an integer for every smooth compact oriented surface Y C X —
{p1,p2,.-.,pr} without boundary. However, Hao(X — {p1,p2,...,pk},Z) is
in fact generated by k£ small disjoint 2-spheres S1,Ss,...,S; around the k
points of the configuration {pi,po,...,pr}, together with a single copy of ¥
that is homologous to a boundary component ¥y of X in X — {p1,...,px}-
We can therefore check our quantization condition by just evaluating the in-
tegral of F' = xdV on these k + 1 generators.

In order to evaluate the corresponding integrals, it will often be helpful
to pass to the universal cover H? of X, where (3.4) then tells us that

*dGyp, = —% > ¢t

oel’

here o denotes the pull-back of the standard area form on the unit 2-sphere
52 in T, H? via the radial geodesic projection (H?® — {g;}) — S?, and ¢*«a
is the pull-back of this singular form via the action of ¢ € I' on H3. By
representing the sphere S; by a small 2-sphere around ¢; that is contained
in a fundamental domain for the action, we see that xdG), restricts to S; as
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—%oz plus an exact form, and that xdG), is exact on S; for ¢ # j. We thus
have

1 1 1 1
(3.6) — | F=— [ xdV =— ——a)|=-1€Z

2T S; 2 S; 2T S2 2
for every j = 1,...,k, and our quantization condition is therefore automat-
ically satisfied for the homology generators [Si], ..., [Sk].

However, the integral of xdG), on a surface ¥ C X — {p1,...,px} ho-
mologous to a boundary component ¥, of 0X is a bit more complicated.
The answer is best understood in terms of a special harmonic function on
X that will come to play a starring role in this article:

Definition 3.2. Let I' = 71(3) be a Bers-type quasi-Fuchsian group, let
X =H3/I" be the associated hyperbolic 3-manifold, and let X = [D? —
A(I')]/I" be the associated 3-manifold-with-boundary, where 0X = [CP; —
A(I')]/I". Let ¥4 be the component of X on which the boundary orienta-
tion agrees with the given orientation of 3, and let ¥_ be the other com-
ponent. Then the tunnel-vision function of X is defined to be the unique
continuous function f : X — [0, 1] which is harmonic on (X, k), equal to 1
on ¥, and equal to 0 on X_.

The inspiration for this terminology also motivates the proofs of several
of our results. Think of X as a tunnel leading from ¥_ to X, and imagine
that the tunnel mouth ¥, leads into bright daylight, while >_ leads into
darkest night. How big does the bright tunnel opening appear from a point
inside the tunnel? For an observer at p € X, this amounts to asking what
fraction of the geodesic rays emanating from p end up at ¥, where the
measure used to determine this fraction is the usual one on the unit 2-
sphere in 7, X. We can understand the answer by passing to the universal
cover H3 of X, and letting ¢ € H? be a preimage of p. The sphere at infinity
can then be decomposed as a disjoint union A LI Q4 UQ_, where A = A(I")
has Lebesgue area zero, and where €2, and {)_ are the universal covers of
>+ and ¥ _, respectively. The question is now equivalent to asking for the
fraction of geodesic rays emanating from ¢ that end up at Q.. But this
fraction is obviously just the average value of the characteristic function of
Q., computed with respect to the area measure on the sphere at infinity
induced by identifying it with the unit sphere in 7,3 via radial projection
along geodesics. However, the Poisson integral formula [8, Chapter 5] tells us
that, as ¢ varies, this spherical average defines a harmonic function f : H? —
R that tends to 1 on 4 and 0 on Q_. Since f is manifestly I'-invariant,
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it must moreover be the pull-back of a harmonic function on X, and since
this harmonic function tends to 1 at ¥ and to 0 at ¥_, it must therefore
coincide with the tunnel-vision function f. This proves that the apparent
area of the image of ¥, as seen from p, divided by the total area 472 of
the unit 2-sphere, is exactly f(p) = f(g). In other words, the value at p of
our tunnel-vision function f is equal to what some analysts would call the
harmonic measure w(p, ¥4, X) of ¥, in the space X in with respect to the
reference point p.

This geometric description of the tunnel-vision function f has a flip-side
that explains why we have chosen to introduce it at this particular juncture:

Lemma 3.3. Letp € X, and let ¥ C X be a surface which is homologous
to X4 in X — {p}. Then

/E Gy = 27 (p).

Proof. First notice that the 2-form xdG,, is smooth up to the boundary of
X. Indeed, if we use the upper- half—space model to represent the hyper-
bolic metric as h = (dx? + dy? + dz?)/2? near some boundary point of X,
we then have xdG, = z_lﬁf‘szp, where v is the Hodge star with respect to
the Euclidean metric da? + dy? + dz?. The fact that dG, is smooth up to the
boundary and vanishes there thus guarantees that xdG, extends smoothly
to all of X — {p}.

Since xdG), is consequently a smooth closed 2-form on X — {p}, and
because ¥ is homologous to >4 by hypothesis, Stokes’ theorem now imme-
diately tells us that fz *dGp = fE *dG,. To compute the latter integral, we
now remember that the universal cover of >y is exactly Q.. Letting /1 C Q4
be a fundamental domain for the action of I" on 24, our expression (3.4)
for the pull-back of G}, to H3 therefore tells us that

1
/&*de:/j;[*d ZW

pel’
"Z b*a "Z / / .
¢€F/ el (ﬂ) Qr

where ¢ is a preimage of p, and « is the pull-back of the area form on the
unit sphere S? C T, to H? — {q} via geodesic radial projection. However, we
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have just observed that the Poisson integral formula tells us that ﬁ fQ+ «
is exactly the tunnel-vision function f evaluated at p. It thus follows that

1 1
/Z*dap _ /Z+ “dGy = — /Q+ o=~ lnf ()] = ~2nf (7).

exactly as claimed. O

Adding up k such contributions now yields a useful corollary:

Lemma 3.4. Let {p1,...,px} be any configuration of k points in X, and
let V' be the positive potential defined by (3.5). If ¥ C X — {p1,...,px} is
a surface homologous to the boundary component ¥4 in X — {p1,...,pr},
then

1 k
— | xdV = —Zf(pj)'

2 b)) =

Since f : X — (0,1), it follows that our quantization condition can never
be satisfied if kK = 1. Fortunately, however, this problem does not reoccur for
larger values of k:

Proposition 3.5. Let (X,h) be any quasi-Fuchsian hyperbolic 3-manifold
of Bers type. Then for every integer k > 2, there are quantizable configura-
tions {p1,...,pr} of k distinct points in X.

Proof. According to Definition 3.1, the claim just means that there are con-
figurations {py,...,pr} of distinct points in X = H3/I" for which % *dV
represents an element of H?(X — {p1,...,px},Z) C H*(X — {p1,...,p:}, R)
in deRham cohomology. Since Ho(X — {p1,...,pr}) is generated by ¥ and
small 2-spheres S1,..., S, about the points p1,...,pr of the configuration,
we only need to arrange for the integrals of xdV" on these generating surfaces
to all be integers. However, since (3.6) shows that the integrals on Sy, ..., S
all equal —1, we only need to worry about the integral on 3, which equals
- Z?Zlf(pj) by Lemma 3.4. But because f : X — [0, 1] is continuous and
achieves the values 0 and 1 exactly on its two boundary components, and
because X is connected, every element of the interval (0,1) must occur as
the value of f at some point of X. Moreover, since the restriction of f to
(X, h) is harmonic, every such value is attained by uncountably many dif-
ferent points in X; indeed, the mean-value theorem guarantees that f(p)
also occurs as a value of f restricted to the sphere of radius p about p, for
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every o smaller than the injectivity radius of (X,h) at p. If £ is any in-
teger from 1 to k — 1, we can therefore pick distinct points py,...,pr € X
with f(p1) = -+ = f(px) = £/k, which then ensures that 5~ [ xdV = —¢. Of
course, the same reasoning also shows that this same goal can also be at-
tained by specifying the f(p;) to be any other k elements in (0, 1) that add
up to 4. O

In fact, the space of quantizable configurations is a real-analytic subva-
riety of the non-singular part of the k-fold symmetric product X, and is
locally cut out by the vanishing of a single harmonic function. However, this
space is disconnected if k > 3, since ¢ = Z?Zlf(pj) must be an integer for
every quantizable configuration, and every integer from 1 to k — 1 arises in
this manner.

by

Figure 3: One can construct an anti-self-dual M* from any quasi-Fuchsian
X3 ~ ¥ x (0,1) and any quantizable configuration {py,...,pr} of k points
in X. The resulting M comes equipped with an isometric S'-action such that
M/S!' = X ~ ¥ x [0,1]. This S'-action action has fixed points that project
to {p1,...,pr} UOX, but is free everywhere else. If I; is a segment in X that
joins the configuration point p; to 0X while avoiding other points of the con-
figuration, the inverse image of I; in M is then a 2-sphere of self-intersection
—1. If we choose a disjoint collection Iy, ..., I of k such segments and then
collapse the corresponding 2-spheres in M, we obtain an S?-bundle over X.
This last assertion, which implies that M =~ (X x S?)#kCPy, is best seen
by first observing that the pre-image in M of any segment that joins the
two components of 9X, while avoiding the configuration, is a 2-sphere with
trivial normal bundle.
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With Proposition 3.5 in hand, we now proceed to construct anti-self-
dual metrics on (¥ x S%)#kCPy associated with each quasi-Fuchsian hy-
perbolic manifold (X,h) and each quantizable configuration of k distinct
points pi1,...pr in X, in a manner illustrated by Figure 3. Indeed, given
a quantizable configuration, let V' be given by (3.5), set F' = xdV, and let
P — X —{p1,...,pr} be a principal circle bundle with first Chern class
c1(P) = [F] € H*(X — {p1,...,pc},Z). Let 6 be a connection 1-form on
P with curvature df = F, let u: X — [0,00) be a non-degenerate defining
function for X, and then equip P with the Riemannian metric

g=u>(Vh+V7'6%).

Because h is hyperbolic, V' is harmonic, and dff = xdV', this “hyperbolic
ansatz” metric is automatically anti-self-dual [15] with respect to a natural
orientation of P. Moreover, its metric-space completion is actually a smooth
anti-self-dual 4-manifold (1, g), obtained by adding one extra point p; for
each point p; of the configuration, and a pair of surfaces ¥+ conformal to the
two components of X; this can be proved [12, 15-17] by explicitly construct-
ing the completion, using local models near ¥4 and the p;. The resulting
smooth compact anti-self-dual 4-manifolds (M, g) are then all diffeomorphic
to (X x S?)#kCPy, and carry a conformally isometric semi-free S'-action
that is generated by a conformal Killing field £ of period 27. The invari-
ant £ € {1,...,k — 1} of the configuration now becomes an invariant of the
S'-action, because the fixed surfaces ¥, and ¥_ of the action now have
self-intersection numbers —¢ and —k + £, respectively.

However, it is also worth noting that (M, [g]) is not uniquely deter-
mined by (X,{pi1,...,pr}), because the principal-bundle-with-connection
(P, 0) is not determined up to gauge-equivalence by its curvature F'. Indeed,
if ¥ has genus g > 2, there is a 2g-dimensional torus H'(X,R)/H'(2,Z) of
flat S'-connections on X ~ ¥ x R, and this torus then acts freely on S'-
connections over X — {p1,...,pr} without changing their curvatures. This
additional freedom in the construction supplements our freedom to choose
(X, h,{p1,...,pr}), and generalizes the extra choice of a flat S!'-connection
we previously encountered in the locally-conformally-flat case.

When I' is a Fuchsian group, the anti-self-dual conformal class [g] on M
can actually be represented [16] by a scalar-flat K&hler metric, obtained by
using the specific defining function u = /f(1 — f) for 9X as our conformal
factor. However, this does not happen for other quasi-Fuchsian groups:
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Proposition 3.6. Let (M, [g]) be an anti-self-dual 4-manifold arising from
a quasi-Fuchsian group I’ of Bers type and a (possibly empty) quantizable
configuration of points in X = H3/I" via the hyperbolic-ansatz construction.
Then [g] is represented by a global scalar-flat Kdihler metric g € [g] if and
only if I' is a Fuchsian group.

Proof. When I' is Fuchsian, it was shown in [16] that the hyperbolic-ansatz
construction and an appropriate choice of conformal factor yield a scalar-flat
Kéhler metric. In particular, because [g] is represented by a global scalar-
flat metric in the Fuchsian case, the constructed conformal class has Yamabe
constant Y[, = 0. By contrast, however, one can show that Y|, <0 if I" is
quasi-Fuchsian but not Fuchsian. Indeed, Jongsu Kim [12], generalizing a
result of Schoen and Yau [23], showed that the Yamabe constant of an anti-
self-dual manifold (M4, [g]) arising from the hyperbolic ansatz is negative
whenever the limit set A(I") of the corresponding Kleinian group I has
Hausdorff dimension > 1. The claim therefore follows from a result of Bowen
[6] that dimgy A(I") > 1 for any a quasi-Fuchsian group of Bers type that is
not Fuchsian; cf. [5, 24]. O

4. Harmonic forms and harmonic functions

Given a quasi-Fuchsian hyperbolic 3-manifold X ~ ¥ x R of Bers type, we
have now seen how to construct anti-self-dual conformal classes [g] on
(X x $2)#kCPy, k # 1, from quantizable configurations of k points in X
Because these 4-manifolds M all have by = 1, each such (M, [g]) carries ex-
actly a 1-dimensional space of self-dual harmonic 2-forms; that is, there is a
non-trivial self-dual harmonic 2-form w on any such (M, g), and this form is
unique up to multiplication by a non-zero real constant. Our next goal is to
translate the question of whether w # 0 everywhere into a question about
the quasi-Fuchsian hyperbolic manifold (X, h).

We begin with a local study of the problem. Recall that an open dense set
P of M was constructed as a circle bundle P — X — {p1,...,px}, equipped
with a connection 1-form 6 whose curvature F' = df is given by xdV, where
V is the positive harmonic function on (X — {p1,...,pr}, h) given by (3.5).
We then equipped P with a conformal class that is represented on P by

(4.1) go=Vh+ V6%

although we have until now generally tended to focus on conformally rescal-
ings g = u?go that were chosen so as to extend to the compact manifold M.
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We emphasize that (P, gg) carries an isometric Sl-action that is generated
by a Killing field £ that satisfies 6(§) = 1.

Now suppose that w is a self-dual 2-form on P which is invariant under
the fixed isometric S'-action on P. Here, we fix our orientation conventions
so that, if e!,e? e is an oriented orthonormal co-frame on (X, h), then
V12 V1/2e2 Y1/263 7/ =1/20 ig an oriented orthonormal co-frame with re-
spect to gg. It follows that

e AN+ VEENED

is a self-dual 2-form on (P, gy) of point-wise norm v/2, and, since SO(3) C
SO(4) acts transitively on the unit sphere in AT, this implies that any
&-invariant self-dual 2-form field of norm /2 can locally be expressed in
this way by choosing an appropriate oriented orthonormal frame on X. It
therefore follows that any &-invariant self-dual 2-form on P can be uniquely
written as

(4.2) w=1pAO+V %0

for a unique 1-form ¥ on X — {p1,...,px}, where x is the Hodge star of the
oriented 3-manifold (X, h).

Let us now suppose that the self-dual 2-form w is also closed; of course,
since w = *w, where * denotes the 4-dimensional Hodge star, this then im-
plies that w is co-closed, and hence harmonic. Since w is invariant under the
flow of £, Cartan’s magic formula for the Lie derivative of a differential form
therefore tells us that

0=Lew=¢E1dw+d(Eow) = —dy,

so that ¢ must be a closed 1-form on X — {p1,...,pr}. However, if we let
pp, denote the volume 3-form of (X, h), we also have

0=dw
=Y ANdO+d(V x1)
=Y AKXV +dV Axp + V(d* 1)
==, dV)pn + (dV, ) — V(d* )
=-V(dx)

and we therefore conclude that the 1-form v is strongly harmonic, in the
sense that

dp =0,  dxip=0.



764 C. J. Bishop and C. LeBrun

Conversely, if 1 is any strongly harmonic 1-form on X — {p1,...,px}, the
2-form w defined on (P, g) by (4.2) is closed and self-dual, and hence har-
monic. We note in passing that this argument does not depend on the fact
that h has constant curvature or that (P, go) is anti-self-dual; one just needs
go to be expressed as (4.1) for some metric h, some positive harmonic func-
tion V', and some connection 1-form 6 on P with curvature F' = xdV .

Notice that the relationship between w and 1 codified by (4.2) entails
a simple relationship between the point-wise norms of these forms. Indeed,
notice that

WAW=2ANOANV %1 =2V () A*p) A = 2V||2 pup A6 .
On the other hand, since gy has volume form
fgy = V2l AV AV A V120 = Vi A6
the self-duality of w thus implies that
|w’g2yougo = w Aw = 204l g,
and hence that
(4.3) wlgo = V2[¢]n-
This will allow us to invoke the following removable singularities result:

Lemma 4.1. Let p be a point of a smooth, oriented Riemannian n-manifold
(Y,g), n > 2, and let ¢ be a differential {-form on'Y — {p} that is strongly
harmonic, in the sense that dp =0 and dxp = 0. Also suppose that ¢ is
bounded mear p, in the sense that there is a meighborhood U of p and a
positive constant C' such that the point-wise norm |p| satisfies |p| < C on
U —{p}. Then ¢ extends uniquely to Y as a smooth strongly harmonic
L-form.

Proof. Let a be any smooth, compactly supported (n — ¢ — 1)-form on Y.
Letting B, denote the e-ball around p for any small €, and setting S, = 0Bk,
we then have

/go/\da:lim pAda
Y e—0 Y_BF
=+ lim dlpNa)=Flim | pAa=0,

e—0 Y_B6 e—0 Se
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because ¢ A « is bounded, and the area of S, tends to zero as ¢ — 0. Hence
the L form ¢ satisfies dy = 0 in the sense of currents. Similarly, if 5 is any
smooth, compactly supported (¢ — 1)-form on Y, then

/ @ A *df = lim (dB) N *p
Y e—0 Y—-B.

= lim d(ﬁA*gp):—lim/ BAxp =0,
e—0 Y—BF e—0 S‘

so that d(xp) = 0 in the sense of currents, too. Thus Ay = 0 in the distri-
butional sense, and elliptic regularity then guarantees that ¢ is a smooth
f-form on Y. Since ¢ is both closed and co-closed on the open dense subset
Y — {p}, it therefore follows by continuity that its extension is also closed
and co-closed on all of Y. 0

We now restrict our attention to the problem at hand. Let (M, [g]) be
a smooth compact 4-manifold produced from a quasi-Fuchsian hyperbolic
3-manifold (X, k) and a (possibly empty) quantizable configuration of points
{p1,...,pr} by the hyperbolic-ansatz construction. Thus, (M, [g]) comes
equipped with a conformally isometric S!-action such that X = M/S!, and
such that P — X — {p1,...,px} is the union of the free S!-orbits. We can
thus represent [g] by a smooth metric of the form g = u%gy, where go is
given by (4.1), and where u : X — [0, 00) is a smooth non-degenerate defin-
ing function for X = ¥_ U Y, . Let w be a non-trivial self-dual 2-form on
(M, [g]). In particular, the restriction of w to the dense subset P is also non-
trivial, and our previous calculations then show that ¢ = —&_w therefore
defines a strongly harmonic 1-form on (X — {p1,...,px}, h). However, |w|,
is bounded on M by compactness, so |w|g, = #%|w|, is uniformly bounded
on P. Equation (4.3) therefore tells us that [¥|, = |w|g,/v/2 is uniformly
bounded on X — {p1,...px}, and 1) consequently extends to all of X as a
strongly harmonic 1-form by Lemma 4.1.

However, even more is true. Notice that we can define a smooth Rie-
mannian metric on X by h:= u«?h, and we then have [¢|; = u~ ||, =
u Y wlg, /vV2 = ulw|y/v/2. This shows that ¢ has a continuous extension to
the boundary of X by zero. Now notice that any loop in X ~ ¥ x (0,1) is
freely homotopic to a loop that is arbitrarily close to X, and on which the
integral of 1) is therefore as small as we like. But 1 is closed, and its integral
on a loop is therefore invariant under free homotopy. This shows that the
integral of 1 on any loop must vanish, and that [¢)] € H'(X,R) therefore
vanishes. Thus 1 is exact, and we therefore have 1 = df for some smooth
function on X. Moreover, since d x ¢ = 0, we have Af = —xd*df =0, s0 f
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is therefore a harmonic function on (X, h). Since we can explicitly construct
f from ¢ by integration along paths from a base-point, and since ¥ — 0
at 0X, this harmonic function on X tends to a constant on each boundary
component, and, since df = v # 0, the values on the two boundary compo-
nents must moreover be different by the maximum principle. By adding a
constant if necessary, we can now arrange for f to tend to zero at ¥_, and,
at the price of perhaps replacing w with a constant multiple, we can then
also arrange for f to tend to 1 along ¥ . This means that we have arranged
for f to exactly be the tunnel-vision function f of Definition 3.2. This proves
the following result:

Proposition 4.2. Let (M, [g]) be an anti-self-dual 4-manifold arising via
the hyperbolic ansatz from a quasi-Fuchsian hyperbolic 3-manifold (X, h) of
Bers type and a (possibly empty) quantizable configuration {p1,...,px} of
points in X. Then any self-dual harmonic form on (M, |g]) restricts to the
open dense subset P C M as a constant multiple of

wi=df N0+ V xdf,

where f and % are respectively the tunnel-vision function and Hodge star
of the quasi-Fuchsian hyperbolic 3-manifold (X, h), while V is the potential
assigned to the configuration {p1,...,pr} by (3.5), and 0 is the connection
1-form with df = xdV used to construct [g] via (3.2).

To fully exploit this observation, however, we will still need one other
key fact about the tunnel-vision function:

Lemma 4.3. Let (X, h) be a quasi-Fuchsian hyperbolic 3-manifold of Bers
type, and let f : X — [0, 1] be its tunnel-vision function. Then at every point
of 0X, the first normal derivative of £ is zero, but the second normal deriva-
tive of f is non-zero.

Proof. Recall that 0X = X, LIX_. It will suffice to show that

e near any point of ¥_, there are two local non-degenerate local defining
functions u and @ for X such that u? < f < @? near the given point;
and that

e near any point of ¥4, we can similarly find two local non-degenerate
local defining functions v and @ such that w<1-— f< @2 near the
given point.
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Let us first see what happens in the Fuchsian case. Here, the decomposi-
tion CP; = Q4 UQ_ LA is just the decomposition of the sphere at infinity
into a geometric circle and two geometric open disks. In the upper half-
space model, we can thus take (1, and €2_ to be the halves of the zy-plane
respectively given by y > 0 and y < 0. In this prototypical situation, the
tunnel-vision function just pulls back to become

_ 1 Y
P\ Ve

which is harmonic on z > 0 with respect to h = (dz? + dy? + dz?) /22, equals
1 when y > 0 and z = 0, and equals 0 when y < 0 and z = 0. Now notice
that, when z is small, f = (2/2y)? + O((z/y)?) when y < 0, while 1 — f; =
(2/2y)? + O((2/y)*) when y > 0. It thus follows that \/f and /1 — f are
themselves smooth non-degenerate defining functions for these boundary
half-planes, and we are thus free to take u = 4 to be these defining functions
to emphasize that the claim is certainly true in this prototypical case.

Now, in the general quasi-Fuchsian case, we again have CP; = Q4 U
Q_UA, but A will just be a quasi-circle, and the open sets 21 could be
dauntingly complicated. However, if p is any point of ¥, we can still repre-
sent it in the universal cover by some g € €4, and, since {24 is open in CP;,
we may choose some closed geometric disk D4 such that y € Dy C Q;
moreover, since §)_ is also open, we can also choose a second closed disk
D_ C CP; such that 2 C D_ by taking CP; — D_ to be a small open disk
around some g € Q_. Now let £ be the harmonic functions on H? whose
values at p are the average values of the characteristic functions of D4 with
respect to the visual measure at p. We then immediately have

(4.4) f<f<f

everywhere, because D, C 2y C D_. On the other hand, our discussion

of the Fuchsian case shows that v = /1 — f and u = /1 — f; are non-

degenerate defining functions for S = 9H3 near g, and our last inequality
then becomes

uw? <1—f<a?

as desired. On the other hand, if we instead take g € Q_ to represent a given
point p € ¥_, our Fuchsian discussion shows that uw = /f; and & = \/f_ are
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non-degenerate defining functions for S = 9H3 near g7, and we then have

exactly as required. This shows that f has vanishing first , normal derivative
but non-zero second normal derivative at every point of 9.X, as claimed. [J

This now allows us to prove the main result of this section.

Theorem 4.4. Let (M,[g]) be an anti-self-dual 4-manifold arising via the
hyperbolic ansatz from a quasi-Fuchsian 3-manifold (X, h) of Bers type and
a (possibly empty) quantizable configuration of points in X. Then the anti-
self-dual conformal class [g] contains an almost-Kdhler metric g € [g] if and
only if the tunnel-vision function f : X — (0,1) has no critical points.

Proof. The conformal class [g] contains an almost-Kéahler representative iff
the non-trivial self-dual harmonic form w satisfies w # 0 everywhere. We
have just shown that, possibly after multiplying w by a non-zero constant,
we may assume that it is associated with the 1-form ¢ = df on X. Since this
means that v/2|df|; = u|w|, with respect to any S'-invariant metric in the
conformal class [g], a necessary condition for w to be everywhere non-zero
is that we must have df # 0 away from 0X. Conversely, if f has no critical
points in X, the same calculation implies that w must be non-zero away
from the surfaces >, and ¥_. On the other hand, regardless of the detailed
behavior of f, Lemma 4.3 shows that »~!|df|; always has non-zero limit at
every point of 90X, so we always have w # 0 at every point on the surfaces
>4. This shows that w # 0 on all of M unless the tunnel-vision function f
has a critical point somewhere in X C X. O

5. Tunnel-vision critical points

Theorems A and B will now follow from Theorem 4.4 if we can produce an
appropriate sequence of quasi-Fuchsian hyperbolic 3-manifolds (X, h) whose
tunnel-vision functions f : X — (0,1) have critical points. The first step is
to show that any Jordan curve can be approximated by the limit set of
a suitable quasi-Fuchsian group I'. Our proof is based on the measurable
Riemann mapping theorem in this section, even though a more elementary
and constructive proof can be given using concrete reflection groups. This
lemma is sometimes attributed to Sullivan and Thurston [25], who used the
idea to construct 4-manifolds with unusual affine structures.
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In what follows, we will work in the upper-half-space model of #3, so that
C = R? will represent the complement of a point in the sphere at infinity,
even though, as a matter of convention, we will find it convenient to endow
it with its usual Euclidean metric. The latter will in particular allow us
to speak of the Hausdorff distance between two compact subsets, meaning
by definition the infimum of all € > 0 so that each set is contained in the
e-neighborhood of the other.

Lemma 5.1. For any piecewise smooth Jordan curvey C C and any e > 0,
there is a positive integer N such that, for every compact oriented surface
Y of genus g > N, there is quasi-Fuchsian group I' = m(X) of Bers type
whose limit set A(I') C C C CPy is a quasi-circle whose Hausdorff distance
from ~y is less than €. Moreover, if v is invariant under ¢ — —(, and if g is
even, we can arrange for A(I") to also be invariant under reflection through
the origin.

Proof. Since any piecewise smooth Jordan curve can be uniformly approxi-
mated by smooth ones, we may assume for simplicity that the given Jordan
curve v is actually smooth. With this proviso, the Riemann mapping theo-
rem allows us to construct a diffeomorphism W : C — C that is holomorphic
outside the unit disk and maps the unit circle T = {|¢| = 1} to v. The dif-
feomorphism ® : C — C defined by ®(¢) = ¥({/[1 — €]) is then holomorphic
outside the disk D = {|(| < 1 — €} and maps the unit circle to an approxi-
mation v, = ®(T) of v whose Hausdorff distance from « may be taken to be
smaller than €/2 by choosing € to be sufficiently small.

Given any 0 € (0,¢), we now construct some T-preserving Fuchsian
groups with fundamental domains containing the disk {|¢| < 1 — §}. To this
end, endow the open unit disk in C with the hyperbolic metric
41d¢|?/(1 — |¢|?)?, and, for an arbitrary positive integer g > 2, let ? be the
regular hyperbolic 4g-gon whose vertices are all equidistant from 0, and
whose interior angles at these vertices are all equal to 7/24. By drawing
geodesic segments from 0 to the 44 vertices and the 44 midpoints of the
sides of P, we can then dissect P into 8¢ hyperbolic isosceles right trian-
gles, with interior angles (7/2,7/4g,7/44). Now label the oriented edges
of P as a1, by, al_l, bl_l, cevy Gy, by, aéfl, bﬂfl, starting at some reference
point and proceeding counter-clockwise, as indicated in Figure 4. We can
then construct a genus-g hyperbolic surface ¥ by identifying the edges of
P in pairs according to this labeling scheme. The universal cover of ¥ then
becomes the open unit disk, and the fundamental group 71 (%) is then rep-
resented as a T-preserving Fuchsian group I'; with fundamental domain 2,
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where the relevant deck transformations form a finite-index subgroup of the
(2,44,4g) triangle group that is generated by reflections through the sides of
the isosceles right triangles into which we dissected . Now let s denote the
hyperbolic distance from 0 to the midpoint of a side of P, and let R denote
the hyperbolic distance from 0 to a vertex of 2. Then P contains the disk
of hyperbolic radius a about 0, and is contained in the disk of hyperbolic
radius R with the same center. Moreover, since our isosceles right triangles
have sides s, s1, and R, we have R < 2a by the triangle inequality. Since the
hyperbolic area of ? is 47(g — 1), and since P is contained in a disk of hy-
perbolic radius R, with hyperbolic area 2w (coshrR — 1) < mwe®, it thus follows
that 4(g — 1) < e® < €. On the other hand, if r is the Euclidean radius of
the disk of hyperbolic radius s1, we have s = log[(1 +r)/(1 — r)]. Thus

2

1+r
> > 2./ —1
1—r 1—r J

and hence

r>1-—

g1
This shows that if
1
g2 NE) =145

our fundamental domain 2 for the Fuchsian group I'; = 7 (3) will contain
the disk of Euclidean radius 1 — ¢ about 0.

Now assume that g > N(6), and let u = ®z/®; be the complex dilata-
tion of ®. Since u is supported in the disk D of radius 1 — 4, and since our
assumption guarantees that D C 2, it now follows that p is supported in
the fundamental domain 2 of I';. We can therefore [1, Chapter VI] extend p
uniquely as a I'j-equivariant bounded measurable function s on C which is
supported in the unit disk and has L* norm < 1; namely, we first decompose
the unit disk as Uger, ¢(P), then set s := [(%)u] o ¢! on each ¢(P), and
finally declare that us = 0 outside the unit disk. The Measurable Riemann
Mapping Theorem [2] then guarantees the existence of a quasiconformal
map ®s with dilatation equal to us, and the I'j-equivariance of ps more-
over guarantees that I's = ®so0l', o <I>5_1 is a quasi-Fuchsian group of Bers
type. However, because the region where y # s is contained in the annulus
{C]1—=46 < |¢] <1}, it follows that &5 — ® on compact subsets of the unit
disk as ¢ N\, 0. The limit set As = ®5(T) therefore converges to ®(T) = ~,
in the Hausdorff metric as we decrease §. By choosing ¢ sufficiently small,
we thus can arrange for As to be within Hausdorff distance £/2 of ., and
hence within Hausdorff distance € of ~, as desired.
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Figure 4: Omne can construct an explicit hyperbolic metric on a surface
Y of genus g > 2 by starting with a regular hyperbolic 4g-gon ? whose
internal angles all equal 7/2g, and then identifying the sides of 2 in the
manner indicated. If the hyperbolic plane is represented by the the unit disk,
equipped with the Poincaré metric, the Euclidean radius of the in-circle of
P approaches 1 as the genus g tends to infinity.

If « is invariant under reflection through the origin, then ¥ and ¢ can
be chosen to share this symmetry, and the dilatation u is then consequently
reflection-invariant, too. The line joining our reference point to the origin
now separates the sides of 2 into two counter-clockwise lists of 24 sides. If
g is even, the number of entries on each of these lists is divisible by 4, and
since our listing of the sides as ..., a;, b; aj_l, bj_l, ...breaks them into
quadruples, our rules for identifying the sides do not mix the two lists. Since
reflection through the origin is the same as a 180° rotation, this involution
compatibly intertwines with our rules for identifying the sides of P to ob-
tain ¥, and so induces an orientation-preserving isometry of the hyperbolic
surface ¥ with two fix points — namely, the origin and the equivalence class
consisting of all the vertices of 2. It follows that I'; and reflection through
the origin generate a group extension

1—>F£—>IA“£—>ZQ—>O,
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where fg is a larger Fuchsian group, but is no longer torsion-free. Notice
that each of the halves into which P is divided by our reference line is now
a fundamental domain for the action of f on the unit disk. The reflection
symmetry of p thus guarantees that our F equ1var1ant extension pgs of p is
actually F -equivariant, so that F(; =®;50 F ody 1 defines a larger quasi-
Fuchsian group. However, A is also the hrmt set of the group I 5. On the
other hand, fg is exactly the group generated by Is and reflection through
the origin. Thus, in this situation, all of the constructed limit sets As ap-
proximating -y are reflection-invariant, and all our claims have therefore been
proved. U

When I is a quasi-Fuchsian group of Bers type, recall that we have
defined the tunnel-vision function f of X = H3/I" to be the unique harmonic
function on X which tends to 0 at one component ¥_ of 9X and tends to
1 at the other component X, of 9X. The limit set A = A(I") then divides
CIPy into two connected components {2 and €2, which may be respectively
identified with the universal covers of ¥_ and ¥4 and the pull-back f of f
to H3 then tends to 0 at €2 and tends to 1 at {2;. This means that we can
reconstruct f from the open set Q, using the Poisson kernel of H3. This
2-form on the sphere at infinity, depending on a point in hyperbolic 3-space,
is explicitly given [8] in the upper half-space model by P, , .yd§ A dn, where

1 z 2
7 [(z = &)+ (y —n)? + 22

(5.1) Play,» (& n) =

Note that the factor of 1/7 is inserted here to make the form have total mass
1. Up to a constant factor, P, .yd§ Adn is just the “visual area form”
obtained by identifying the unit sphere in T(I,%Z)’HS with the sphere at
infinity by following geodesic rays starting at (x,y,z). Given a bounded
measurable function F'(£,7) on the sphere at infinity, we can uniquely extend
it to H? as a bounded harmonic function f via the hyperbolic-space version
of the Poisson integral formula

(52) F@n2) = [ (&) Py (€0) s A i

for more details, see [8, Chapter 5]. For us, the importance of this formula
stems from the fact that when F'= xq, is the indicator function of €2,

the resulting f is exactly the pull-back f of the tunnel-vision function of
X =H3/TI.
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In the proof that follows, we will never use the precise formula (5.1) for
the Poisson kernel, but will instead just make use of the following qualitative

properties of P, .y(§,7):
(I) For any A > 0,

Poon(&m =A"Foon(A & A ),

so that the Poisson kernel scales under dilations to preserve its mass;

(II) On any compact disk D, = {¢?+n? < ¢*}, the Poisson kernel
P(07071)(§, n) is bigger than a positive constant, depending only on p;

(ITI) Pp,0,1)(€,m) < 1 on the whole plane; and
(IV) fRQ\DQ P(O,O,l) (5777) d& A d77 — 0 as 0 — O0.

These facts can all be read off immediately from (5.1), although some readers
might instead prefer to deduce them from the Poisson kernel’s geometric
interpretation in terms of visual area measure.

Given a quasi-Fuchsian group I' of Bers type, we will now choose our
upper-half-space model of H3 so that the point at infinity belongs to Q_ =
Q_(I'). Thus, the limit set A = A(I") will always be presented as a Jordan
curve in R? = C, and Q = Q, (I") will always be the bounded component of
the complement of A C C. Given a measurable subset F of the plane, we will
let fg denote the function f produced by (5.2) when F' = xg is the indicator
function of E. In particular, fo, is exactly the pull-back f : H3 — (0,1) of
the tunnel-vision function £ of X = H3/T.

Theorem 5.2. There is an integer N such that, for every closed oriented
surface ¥ of even genus g > N, there is a quasi-Fuchsian group I' = m1(X)
for which the corresponding tunnel-vision function f has at least two critical
points.

Proof. Given € > 0, set € = €3, and let I. be any quasi-Fuchsian group of

Bers type whose limit set A, is invariant under ¢ — —( and lies within
Hausdorff distance ¢ of the boundary of the “dogbone” domain

1 1
Q€:{z:\z—l\<4}U{z:|z+1\<4}U{z:]z\<l,]1m(z)|<€3}.

illustrated by Figure 5. By Lemma 5.1, such I, exist for all even genera
g > N, for some N depending on ¢, and hence on €, but we will not choose
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a specific € until much later, so our notation will help remind us of this point.

Figure 5: A “dogbone” domain. The harmonic measure of the interior de-
fines a harmonic function in the upper half-space that has at least two critical
points. This phenomenon persists when the boundary curve is approximated
by quasi-Fuchsian limit sets, using Lemma 5.1.

As before, we work in the upper-half-space model R? x RT of H3, with co-
ordinates (z,y, z), and follow the convention that Q. . := Q4 (I%) is always
taken to be the region inside the Jordan curve A, = A(I}). By Lemma 5.1,
the limit set A, can always be chosen to be symmetric with respect to re-
flection though the origin in the ¢ = & + in plane, and this symmetry then
implies that the corresponding harmonic function fe := fo, _ is then invari-
ant under the isometry of H? represented in our upper-half-space model by
reflection (z,y, z) — (—x, —y, z) through the z-axis. Since this means that
the gradient V f. = h=!(df.,-) of f. with respect to the hyperbolic metic h
is also invariant under this isometry, it follows that, along the hyperbolic
geodesic represented by the positive z-axis, the gradient V f. must be every-
where tangent to the axis. Thus, to show that f. has a critical point on the
positive z-axis, it suffices to show that its restriction to the z-axis is neither
monotonically increasing nor decreasing. However, the maximum principle
guarantees that 0 < f. < 1 on all of %3, and we also know that

1‘ € ) ) 17
Zl\r’% fc(0,0, 2)
lim f.(0,0,2) =0,
by fe( )

since by construction 0 € {24 . and oo € _ .. We thus just need to show
that f. is not monotonically decreasing along the positive z-axis.
We will do this by showing that

(5.3) fe(0,0,¢€) < £c(0,0,1)

whenever e is sufficiently small. To see this, first observe that property (II) of
the Poisson kernel implies that f(0,0,1) is bigger than a positive constant
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independent of €, since, for € < 1/2, the region €2 . is contained in the disk
of radius 3/2 about { = 0, and contains a pair of disks of Euclidean radius
1/8. On the other hand, if we dilate the upper half-space by a factor of
1/€, thereby mapping (0,0, €) to (0,0, 1), property (I) tells us that we can
calculate fc(0,0,€) by instead calculating the Poisson integral at (0,0,1)
while replacing 2 . with its dilated image. However, the dilated copy of {1 .
meets the disk of radius 1/¢ in a region of Euclidean area < 4¢, so property
(ITI) guarantees that the contribution of this large disk to the integral is
O(e); meanwhile, property (IV) guarantees that the the contribution of the
exterior of this increasingly large disk tends to zero as € N\, 0. This establishes
that (5.3) holds for all small €, since f¢(0,0,1) is bounded away from zero.
Moreover, this argument shows that this holds for a specific small € that is
independent of the detailed geometry of the approximating limit sets A., just
as long as they are within Hausdorff distance ¢ = €3 of the “dogbone” curve
specified by the parameter e. Thus, there is some specific small € such that
the restriction of the pulled-back tunnel-vision function f = f. associated
with any allowed A., where ¢ = €, has the property that its restriction to
the z-axis has at least two critical points — namely, a local minimum and a
local maximum. Indeed, we can even arrange for # to have different values
at these two critical points of the restriction to the axis by insisting that
the local maximum be the first local maximum after the local minimum.
Since we have also arranged for the approximating limit sets to be invariant
under ¢ — —(, these critical points of the restriction are actually critical
points of £. Since f assumes different values at these points, this shows that
f X — R must have at least two critical values whenever its limit set A,
satisfies our approximation hypotheses. Fixing this €, and applying Lemma
5.1 with € = €3, we thus deduce that there is some N such that, for every
oriented surface ¥ of even genus g > N, there is a quasi-Fuchsian group
I' = 11(X) for which the the tunnel-vision function f of X = H3/I" has at
least two critical points. O

Theorem A now follows immediately from Theorem 5.2, given the fact
that any quasi-Fuchsian group is a deformation of a Fuchsian one. To prove
Theorem B, we merely need to observe that we can simultaneously deform
any quantizable configuration as we deform the relevant Fuchsian group
into a given quasi-Fuchsian one. Indeed, suppose that we have a family of
quasi-Fuchsian groups smoothly parameterized by the closed interval [0, 1].
For any specific ¢ € [0,1], Lemma 4.3 implies that there is some § such that
the tunnel-vision function f : X — (0,1) does not have any critical values
in (0,0) U (1 —4,1), and we may moreover choose this ¢ to be independent
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of t € [0,1] by compactness. By following the gradient flow of /(1 — f)
on X, we may therefore construct, for each ¢, a diffefomorphism between
F7H(0,8) U (1 —6,1)] and ¥ x [(0,8) U (1 — 6,1)] such that f becomes pro-
jection to the second factor; moreover, the diffeomorphism constructed in
this way will then also smoothly depend on t. We now assume that X is Fuch-
sian when ¢t = 0, so that f initially has no critical points. Recall that the
quantization condition on {p,...,pr} amounts to saying that > f(px) = ¢
for some integer ¢ with 0 < ¢ < k. By first smoothly varying our configura-
tion within the original Fuchsian X, we may then first arrange that £ > 1 —§
for ¢ of the points, and that f < § for the rest. Once this is done, we may
then just consider our configuration as a subset of 3 x [(0,d) U (1 —4,1)],
and our family of diffeomorphisms will then carry {p1,...,px} along as a
family of quantizable configuration as we vary ¢ € [0, 1]. Theorem B is now
an immediate consequence.

Let us now conclude our discussion with a few comments concerning
Theorem 5.2. First of all, the restriction to very large genus g appears to be
an inevitable limitation of our method of proof, because for any fixed genus
the possible limit sets A(I") only depend on a finite number of parameters,
and so cannot provide arbitrarily good approximations of a freely specified
curve. On the other hand, the requirement that the genus g be even is merely
a technical convenience. For example, after replacing our dogbone regions
with analogous domains that are invariant under Z, for some prime p other
than 2, a similar argument then shows that the same phenomenon occurs
for all genera g that are sufficiently large multiples of p.

In fact, there is a more robust version of our strategy that should lead
to a proof of the existence of critical points without imposing a symmetry
condition. Given an €24 that approximates a dogbone with an extremely
narrow corridor between the two disks, we would like to understand the
level sets S; of the corresponding f : H® — (0,1). When ¢ is a regular value
close to 1, this surface hugs the boundary of hyperbolic space and is a close
approximation to the bounded region {24. Now, if 2 were exactly a limiting
dogbone consisting of two disks joined by a “corridor” of width zero, one
could write down the surfaces in closed form; when # is close to 1, the surfaces
S then consists of two “bubbles” over the disks, but as ¢ decreased these
two bubbles eventually touch and then merge by adding a handle joining
the two original components. We expect this change of topology to survive
small perturbations of the regions in question, so that one should be able to
prove the existence of a critical point by a careful Morse-theoretic argument,
just assuming that Q4 closely approximates a dogbone with a very narrow
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corridor between the disks. A careful implementation of this argument would
then enable us to remove the even-genus restriction of Theorem 5.2. However,
we will not attempt to supply all the details in this paper.

Another issue we have not addressed here is whether some of our critical
points of the tunnel-vision function are non-degenerate in the sense of Morse.
This is intrinsically interesting from the standpoint of 4-manifolds, because,
as long as the critical point does not belong to the quantizable configuration
{p1,...,pk}, it is equivalent to asking whether the corresponding harmonic
2-form is transverse to the zero section. When such transversality occurs, it is
stable is under small perturbations of the metric, and the failure of the metric
to be conformally almost-Kéhler then persists under small deformations of
the conformal class. As a matter of fact, we have actually discovered a way
to arrange for at least one of our critical points to be non-degenerate in the
sense of Morse. Indeed, if the corridor of our dogbone is so narrow as to be
negligeable, direct computation in the spirt of the last paragraph shows that
one obtains a critical point at which the Hessian is non-degenerate, and, as
long the corridor remains sufficiently thin, one can therefore show that the
“second” critical point of our main argument will remain in the region where
the determinant of the Hessian is non-zero. Approximation of the relevant
dogbone curve by limit sets then leads to quasi-Fuchsian 3-manifolds for
which the tunnel vision function has at least one non-degenerate critical
point. Precise details will appear elsewhere.

Finally, while we have proved the existence of two critical points in
certain specific situations, it seems natural to expect that there might be
many more when the conformal structures on the two boundary compo-
nents of X /I" become widely separated in Teichmiiller space. When this
happens, the limit set becomes very chaotic, and a better understanding of
the tunnel-vision function in this setting might eventually allow one to prove
the existence of critical points even when the genus g is small. Conversely,
it would be interesting to characterize those quasi-Fuchsian manifolds for
which the tunnel-vision function has relatively few critical points; in partic-
ular, it would obviously be of great interest to have a precise characterization
of those I' for which the tunnel-vision function has no critical points at all.

Indeed, while this article has used Theorem 4.4 to construct anti-self-
dual deformations of scalar-flat Kahler manifolds that are not conformally
almost-Kahler, one could in principle use this same result to instead con-
struct specific examples that are conformally almost-Kéahler. For example, it
would be interesting to thoroughly understand the tunnel-vision functions of
the nearly Fuchsian 3-manifolds X first studied by Uhlenbeck [26]. By def-
inition, these are the quasi-Fuchsian 3-manifolds of Bers type that contain
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a compact minimal surface ¥ C X of Gauss curvature > —2. Is the tunnel-
vision function of a nearly Fuchsian manifold always free of critical points?
If so, then Theorem 4.4 would imply that the anti-self-dual 4-manifolds
arising from these special quasi-Fuchsian manifolds are always conformally
almost-Kahler.

In these pages, we have just scratched the surface of a fascinating subject
with deep connections to many natural questions in geometry and topology.
We can only hope that some interested reader will take up the challenge,
and address a few of the questions we have left unanswered here.
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