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Dedicated to our good friend Michel Broué

ABSTRACT. Donovan’s conjecture implies a bound on the dimensions of cohomology
groups in terms of the size of a Sylow p-subgroup and we give a proof of a stronger bound
(in terms of sectional p-rank) for dim H'(G, V). We also prove a reduction theorem for
higher cohomology.

1. INTRODUCTION

Let G be a finite group, p a prime and k an algebraically closed field of characteristic p.
Donovan’s conjecture (cf. [Ke]) asserts that for a fixed p-group D, there are only finitely
many blocks B of any group algebra kG with defect group D up to Morita equivalence.

A trivial consequence of this conjecture is that there is a bound on the dimension of
Ext-groups between irreducible modules (depending only on the defect group of the block
containing the irreducibles).

Our main result considers what happens for the projective cover of the trivial module
k and H' under a weaker condition, where we do not fix the (isomorphism type of) Sylow
p-subgroups but only their sectional p-rank. Recall that the sectional p-rank of a finite
group G is the maximal rank of an elementary abelian group isomorphic to L/K for some
subgroups K <1 L of G. Even considering the case that G = P is cyclic, one sees that there
is no upper bound on the composition length of the projective cover of k. We do prove:

Theorem 1.1. Let G be a finite group, p a prime and k an algebraically closed field of
characteristic p. Let r be the sectional p-rank of G. There exists a constant C = C(p,r)
such that if J is the radical of the projective cover of the trivial G-module k, then J/J? is
a direct sum of at most C' irreducible kG-modules.

We conjecture that the constant can be chosen to depend only on the sectional p-rank
and not on the prime p. The proof we give shows that the only obstruction to proving
this is the case of simple groups. We first prove a reduction to the case of simple groups.
The sectional rank assumption implies that (for a fixed p) aside from finitely many simple
groups, it suffices to consider cross characteristic modules of finite simple groups of Lie
type and of bounded rank. We then use the main result of [GT] which essentially proves
the theorem in that case. The results of [GT] show that the constant C' can be chosen to
be |W|+ e where W is the Weyl group and e is the twisted rank of G. We improve this
result in Section [l
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We also conjecture that this is true for all projective indecomposable modules for G
(assuming bounded sectional p-rank of the defect group of the block). Some evidence
for this follows from results of Gruber and Hiss [GHi] about classical groups (but with
restrictions on the primes).

There are also some related results of Malle and Robinson [MR] aimed towards proving
their conjecture that the number of simple modules in a given p-block is at most p” where
r is the sectional rank of the defect groups of the block. One cannot hope to bound this
number independently of p.

A restatement of Theorem is the following:

Corollary 1.2. Let G be a finite group, p a prime and k an algebraically closed field of
characteristic p. Let r be the sectional p-rank of G. Then there exist constants A(p,r) and
B(p,r) such that

(i) the number of irreducible kG-modules V with H*(G,V) # 0 is at most A(p,r);
and

(ii) if V is an irreducible kG-module, then dim H(G,V) < B(p,r).

If one works with indecomposable modules, it is easy to see, using the Green corre-
spondence, that the problem reduces to the case that the Sylow p-subgroups are normal.
However, there are indecomposable P-modules V' with arbitrarily large dim H'(P, V) for
most p-groups P. The one case where this does yield information is when G has a cyclic
Sylow p-subgroup (i.e. the sectional p-rank is 1). It is well known (using the Green cor-
respondence) that dim H"(G, V) < 1 for an indecomposable module V in characteristic p
(cf. [GKKL, Lemma 3.5]).

In [Gul], the first author asked whether there is a universal constant C' such that
dim HY(G,V) < C for V any faithful absolutely irreducible G-module with G a finite
group. This is still open but likely false (see [Lu] for examples with very large dim H(G,V)).
The existence of absolutely irreducible modules for simple groups with large first coho-
mology group depends on the validity of Lusztig’s conjecture and on knowing that certain
coefficients of Kazhdan-Lusztig polynomials can be very large (this gives examples for
groups of Lie type and modules in the natural characteristic). In particular, there are no
known examples in small characteristic.

Of course, dim H'(G, k) can be arbitrarily large but is bounded if the sectional rank of
the Sylow p-subgroups is bounded (indeed, it is bounded in terms of the Frattini quotient
of a Sylow p-subroup). Thus, one needs to assume faithfulness or some condition on
the Sylow p-subgroups to get upper bounds. For faithful absolutely irreducible modules,
the upper bounds for dim H! reduce to the case of finite simple groups. It is known
[CPS, IGT] that for G a finite simple group of Lie type of bounded rank s, there is a bound
dim H'(G,V) < C(s) for V any absolutely irreducible kG-module.

There are recent papers [EL, [EEL] giving a reduction in the case of abelian defect groups
and proving Donovan’s conjecture when p = 2 and the defect group is abelian. There are
also reductions to quasisimple groups [Du] (in the case of nonabelian defect groups, the
reduction is in terms of Cartan matrices rather than Morita equivalence).

Consider the following question, where |G|, denotes the p-part of the order |G].

Question 1.3. Does there exist a constant C = C(r,n) such that dim H"(G,V) < C for
any finite group G with |G|, < p" and V' an irreducible kG-module ?

One can ask whether there is such a bound in terms of sectional rank (and perhaps the
constant depends on p as well). Likely this can be reduced to two questions. The first is
whether this holds for finite simple groups. The second is whether there is a bound on
dim H™(P, k) for a p-group P (in terms of sectional rank). There is a result of Quillen
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(see [AE] for a generalization to any module) showing that the growth rate of H"(P, k) is
determined by the maximal rank of an elementary abelian subgroup of P.

We do reduce Question to the case of simple groups.

Theorem 1.4. Let k be an algebraically closed field of characteristic p and let n,r > 0 be
any integers. Suppose that there exists a a constant C = C(p,r,n) such that dim H’(S,V) <
C for every finite simple group S with |S|, < p”, any irreducible kS-module, and for all
0 < j < n. Then the same statement is true for all finite groups G with |G|, < p", but
with possibly a different constant C' = C'(p,r,n).

One can also raise a similar question about Ext. There should be a reduction to the case
of simple groups. We give an example showing that dim Ext};(V, W) can be arbitrarily
large even for V,W absolutely irreducible faithful modules. See [GKKL] for a similar
example for H2.

We also improve our H'! results from [GT] giving bounds in terms of the sectional rank
but also depending upon the prime. Here are some of the results in this direction:

Theorem 1.5. Let G be a finite simple group of Lie type in characteristic £. Let W be the
Weyl group of G. Let p # £ be a prime and k an algebraically closed field of characteristic
p. Then the following statements hold.

(i) The number of irreducible kG-modules V with H' (G, V) # 0 is at most |Trr(W)|+3.

(ii) Suppose that p t [G; : B] for any minimal parabolic subgroup G; properly containing
a fized Borel subgroup B of G. Then the number of irreducible kG-modules V' with
HYG,V) # 0 is less than |Trr(W)|.

Theorem 1.6. Let G be a finite simple group of Lie type in characteristic £ of twisted
rank e. Let W be the Weyl group of G. Let p # £ be a prime and k an algebraically closed
field of characteristic p. Let V be an irreducible kG-module. Let G1,...,G. denote the
minimal parabolic subgroups properly containing a fixed Borel subgroup B of G.

() If pt|Gi| for 1 <i<e, then dim H'(G,V) < dimV? < |[W|/2.
(ii) If p1|B|, then dim H (G, V) < |W|'/2.
(iii) In general, dim HY(G,V) < e — 1+ |W|Y2. If VB =0, then dim HY(G,V) < 1.
(iv) Moreover, if Vi,...,Vy, are pairwise non-isomorphic representatives of isomor-
phism classes of irreducible kG-modules with V;B #0 and V; 2 k, then
> (dim HY(G,V;) + 1 —¢/2)> <me®/4+ [W|+ e+ 1.
i=1
Theorem (iii) shows that the sum of squares of dim H'(G, V'), adjusted suitably, with
V running over all isomorphism classes of irreducible kG-modules, is also bounded roughly
by |W1|, and m < |Irr(W)| —1 by Theorem See Section 4 for details and other related

results.

2. SECTIONAL RANK AND H!

Fix a prime p and k an algebraically closed field of characteristic p. If G is a finite
group, let s(G) = s,(G) be the sectional p-rank of G. If V' is a kX-module for a group X,
we let Cx (V) be the kernel of the representation sending X to GL(V) and let VX denote
the submodule of X-fixed points in V.

A key result is the following easy consequence of the main result of [GT]. Again, we
conjecture that the constants can be chosen independently of p.

Theorem 2.1. Let S be a finite nonabelian simple group with s(S) = s fized. Then there
exist constants A(p,s) and B(p, s) such that:
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(i) if V is an drreducible kS-module, then dim H*(S,V) < B(p, s); and
(ii) there are at most A(p, s) irreducible kS-modules V with H'(S,V) # 0.

Proof. Excluding only finitely many simple groups (depending upon s and p), we see that
it suffices to prove the statement in the case where S is a finite simple group of Lie type
in characteristic other than p. The result now follows by [GT] (see also Section 4] below
for better results) where it was shown that dim.J/J? < |W| + e, where J is the radical
of the projective cover of k, G is a finite simple group of Lie type of twisted rank e with
Weyl group W and p is not the characteristic of G. O

We first give a quick proof of Corollary [1.2[ii).
Corollary 2.2. There exists a constant C(p, s) such that
dim HY(G,V) < C(p, s)
for any finite group G with s,(G) = s and any irreducible kG-module V.

Proof. Let @ := Cg(V). By the inflation-restriction sequence in cohomology (or by

Lemma ,
dim H'(G,V) < dim H(G/Q, H (Q,V)) + dim H(G/Q, V).

Since @ acts trivially on V, HY(G/Q, HY(Q,V)) = Homg(Q,V) = Homg(Q/Q1,V),
where Q/Q1 is the largest elementary abelian p-group quotient of Q. Since |Q/Q1| < p®,
we can view Q/Q; as an Fp,G-module of dimension < s. Note that Homg(Q/Q1,V) is a
vector space over k.

As V is irreducible, it follows that dimy Homg(Q/Q1,V) < s/(dim V). So it suffices to
assume that @ = 1 and V is faithful.

In that case, it follows from [Gu2] that dim HY(G,V) < dim H(S, W) where S is a
subnormal simple subgroup of G and W is an S-submodule of V' that is irreducible. Now

apply Theorem O

We now turn towards the proof of Corollary (1) We essentially split the problem
into two cases. The first is when the module occurs as a split chief factor in the group
and the second is when H'(G/Cg(V),V) # 0. Recall that a split chief p-factor of a finite
group G is a chief factor H/K with K <« H and H/K a p-group such that H/K has a
complement in G/K.

Lemma 2.3. Let G be a finite group of sectional p-rank s. In any minimal normal series
of G, there is a bound D(s) on the number of split chief factors of G that are p-groups.

Proof. Consider a minimal counterexample. We may assume that the Frattini subgroup
®(G) =1, whence ®(F*(G)) = 1. We may also assume that O, (G) = 1.

By induction, we may also assume that F(G) = 1. Thus, F*(G) is an elementary
abelian p-group and is a semisimple G-module. Thus, |G| < p*|GLs(p)|. Thus, it suffices
to consider the problem for completely reducible subgroups of GL4(p). We just make the
trivial observation that since the Sylow p-subgroup of G has order at most p*6T1/2  the
result is now clear. O

Note that in Lemma [2.3] we do need to consider split chief factors; indeed, in a cyclic
group of order p®, the sectional rank is 1 but the number of chief factors is a. If one only
wanted a bound on the number of p-chief factors up to G-isomorphism, the proof above
can be modified to obtain this (and this is all we need). We reiterate that the bound
above does not depend on p. One could prove a much stronger statement using results in
[GMP].
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It is convenient to introduce s, (G) which we define to be the maximal sectional p-rank
of a section H/K of G that is a direct product of non-abelian simple groups.

Lemma 2.4. Let G be a finite group with s’ := s,,(G). There exist constants C;(p, s') such
that:

(i) The number of irreducible kG-modules V such that HY(G/Cg(V),V) # 0 is at
most C1(p, s').
(ii) dim H'(G/Cg(V),V) < Ca(p, 8).

Proof. Certainly, s,(G/Cg(V)) < ', so by induction on |G| we may assume that V' is
faithful. Since O,(G) acts trivially on any irreducible kG-module, we may assume that
0,(G) = 1. If Oy (G) acts nontrivially on V', then by the restriction-inflation sequence,
we see that H1(G/Cg(V),V) = 0. Thus, we may also assume that O, (G) = 1.

So F*(G) = S; X ... x S; where the S;’s are non-abelian simple groups (and clearly
t < s'). By the above, F'*(G) acts nontrivially on V', and so H(F*(G), V) = 0. Decompose
V| Fr(Q) =€ 69?21 W;, where the W; are G-conjugate, pairwise non-isomorphic irreducible
kF*(G)-modules and ¢ > 1. Also write W; = W;1 ® ... ® W; 4, where W ; is a simple S;-
module. If at least two of the W7 ;’s are nontrivial, then by the Kiinneth formula and the
inflation-restriction sequence, H*(F*(G),W;) = 0 and so H'(G/Cq(V),V) = 0. Thus we
may assume that Wy 1 2 k but Wy ; = k for all j > 1. Now G permutes the S;’s. Assume
this action is intransitive, say S; is not G-conjugate to S7. Then the described shape of
Wy implies that W;; = k for all ¢ and so S; < Cg(V), contrary to our assumption. Hence,
we may assume that F*(@G) is the unique minimal normal subgroup of G and all the S;’s
are G-conjugate.

The argument above shows that H'(G,V) # 0 implies that V = Indgc(sl)(W) for
some irreducible kN-module W with N := Ng(S51) (in fact, W|p«(q) = cW1). Note that
modding out by Cg(S1) > Sa x ... x S; does not change the computation for H'. Thus,
it suffices to consider the case that F*(G) = S is a simple group (with bounded s,(S5)).

Using Shapiro’s Lemma once more, we may assume that S acts homogeneously on V
and so (passing to a central p’-cover if necessary), we may assume that V = W ® U where
U is a G/S module.

Applying the inflation-restriction sequence again, we see that
HYG,V)=H"G/S,H(S,V)).

By taking a G-resolution and restricting to S, we see that H/(N,V) = HI(S,W)® U
as a G/S-module. By Theorem this gives the bound on dim H' and also shows there
is a bound on the number of possible modules W so that H'(S,W) # 0 (and so also
HY'(N,V) # 0). Thus, there are only finitely many simple modules of N that we need to
consider and so we may fix this.

Now HY(N/S,H'(S,W) ® U)) is nonzero if and only if U is a quotient (as an N/S-
module) of H'(S,W) and so there are only finitely many possibilities for U, whence the
result. g

We can now prove Corollary (which is equivalent to Theorem [1.1)).
We have already shown in Corollary that there is a bound on dim H'(G, V).

Next we show there is a bound on the number of irreducible kG-modules V with
HY(G,V) # 0. By Lemma there are only finitely many such modules which occur
as split chief factors of G and so we may assume that V is not a chief factor of G. Thus,
by [AG, 2.10], we have that HY(G,V) = HY(G/Cs(V),V) and then Lemma [2.4] applies.
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3. HIGHER COHOMOLOGY

We fix a prime p and an algebraically closed field k of characteristic p.

We first note the trivial result:

Lemma 3.1. Let H be a finite group and V = W1 @ Wy a tensor product of kH-modules
with Wy irreducible. Then dim HY(H, V) < (dim W7)/(dim Wy).

We need the following result that follows from an easy spectral sequence argument. See
[Ho] or [GKKL), Lemma 3.7].

Lemma 3.2. Let G be a finite group, N a normal subgroup of G and V' a kG-module.
Then dim H"(G,V) < " dim H'(G/N, H" (N, V)).

Proof of Theorem[I.4} We induct on n+7r+|G|. If r = 0 or n = 0, then the result is clear.

Let V be an irreducible kG-module. If V' = k, then the cohomology ring H*(G, k)
embeds in H*(P, k) for P a Sylow p-group and the result holds. So assume that V' is
nontrivial.

By Shapiro’s Lemma, we may assume that V' is a primitive kG-module (otherwise
V = Ind% (W) for some proper subgroup H).

Let N be a maximal (proper) normal subgroup of G. Set S = G/N. Then N acts
homogeneously on V' by primitivity. Passing to a p’-central cover of G if necessary, V =
W1 ® Wy where Wi is a kG-module that is N-irreducible and Ws is an irreducible G/N-
module. In this bigger group, the quotient need no longer be simple but modulo a center
of p’-order, it is (but that can only reduce the size of the cohomology groups). By Lemma

B2 .
dim H™(G,V) < Y dim H'(G/N,H""*(N,V)).
i=0
As we observed earlier, we see that H/(N,V) = H/(N,W;) ® Wy as a G-module.
If p does not divide |S|, then we see by irreducibility of W5 that

dim H™(G, V) < dim HY(G/N, H"(N,W}) @ W) < dim H™(N, Wy).
Thus we may assume that G/N has no nontrivial p’-quotients; in particular, |N|, < |G|,.

If G/N has order p, then as we noted dim H?(G/N,k) < 1 and so dim H?(G/N,W) <
dim W. Also, in this case Wi = V and using Lemma [3.2] we have

dim H™(G,V) <) dim H'(N, V),
=0
and this is at most »7_ C(p,r — 1,7) and the result holds.

More generally, if G/N has order at most some integer e, we can pass to Gy where
Go/N is a Sylow p-subgroup of G/N. Then the restriction map on cohomology from G
to Gy is injective. Note that V restricted to Gg has at most dim Wy < el/2 composition
factors (all isomorphic to W; as N-modules). Using the previous case and induction, we
get a bound for dim H"(G, V).

The remaining case is when S = G/N is a nonabelian simple group of sufficiently large
order e. Let _
M := max{dim H’ (N, W) | 0 < j < n}.
As |S], < p" is bounded, we may choose e sufficiently large so that S is a simple group
of Lie type of rank ry and defined over a field [, in characteristic # p. (Indeed, if S is
alternating group of degree m then m < pr and so |S| < (pr)!. If S is a simple group of Lie
type in characteristic p, then |S| < p3".) Now, the Landazuri-Seitz-Zalesskii bound [KIJ,
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Theorem 5.3.9] implies that, if the smallest dimension of nontrivial simple kS-modules is
at most M then both the rank rg and the size ¢ of the definition field of S are at most
some constant M;, whence | S| is at most some constant Ms (depending on M). Choosing
e sufficiently large, we can ensure that any simple S-module of dimension at most M is
trivial. Then

dim H™(G,V) < Cy - Y _ dim HI(S, W),
j=0
where Cj is an upper bound for dim H’(N, W7) and the result follows. O

4. CrOss CHARACTERISTIC H!

In this section, we take G to be a finite simple group of Lie type of twisted rank e over
the field of size q. Fix a Borel subgroup B of G with unipotent radical Q. Let G1,...,G,
denote the minimal parabolic subgroups properly containing B. Let p be a prime not
dividing ¢ and k an algebraically closed field of characteristic p.

Our goal is to improve the bounds from [GT] on dim H'(G,V) with V an irreducible
kG-module.

We first prove Theorem [I.5] that improves the bound for the number of irreducible kG-
modules with nontrivial H*. This critically depends on results of Geck and Rouquier (see
[GP]) as well as results from [GT]. The original bound from |GT] was of the magnitude
of the order of the Weyl group W.

Theorem 4.1. The number of irreducible kG-modules with nontrivial H' is at most
Irr(W)| + 3. If p1 [Gi : B] for 1 <i <e, then this number is less than |[Irr(W)].

Proof. 1t follows from results of Geck and Rouquier (see [GP}, 7.5.6, 8.2.5]) that the number
of distinct simple kG-modules V' with VB = 0 is at most |[Irr(W)|. By [GT, Theorem
1.3(ii)] and Corollary [4.5 (below), there are at most 4 irreducible kG-modules with V5 =
0 # HY(G,V) and there are none if p { [G; : B| for all i. Also note that H!(G,k) = 0 as
G is perfect. Hence both statements follow. O

Next we derive upper bounds on dim H'(G, V). Note that if S is a simple kG-module,
then, by Frobenius reciprocity, the multiplicity of S in the socle of M = Indg(k) = kg is
dim SB. We also recall, see Lemma 2.1 and Proposition 3.1(ii)] of [GT], that S¢ = S& if
S is a submodule of M and that SB # 0 if and only SO»(B) £ 0.

In particular, this gives that

> (dim $F)? < |W| = dim Endg (k5),
S
where the sum is over all (isomorphism classes of) simple kG-modules.

First we record an elementary result.

Lemma 4.2. Let H be a finite group. Assume that H is generated by subgroups Hi and
Hs and set A := Hi N Hy. Let V be a kH-module and assume that

HY(H,,V)=H'(Hy,V)=0.
Then dim H'(H,V) < dim V4.
Proof. Let D := Der(H,V') and consider the restriction map
7m: D — Der(Hp,V) x Der(Hs, V).

Since the H; generate H, m is injective. For § € D, let ¢; be the image of § in Der(H;, V)
with ¢ = 1,2. By assumption, ¢§; is the inner derivation §(v;) corresponding to some
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v; € V. Since &; — 3 vanishes on A, we see that dim7(D) < dim V + dim V4, whence the
result. ]

This has the following corollary.

Corollary 4.3. Assume that p{|G;| for alli. IfV is any kG-module, then dim H(G,V) <
dim VB, If V is irreducible, then dim HY(G,V) < |W|'/2.

Proof. Split the set A of positive simple roots into two subsets A;, 7 = 1,2, so that the
root subgroups in each subset commute (this is easy to do). Let H; be the subgroup
of G generated by B and the roots subgroups corresponding to £A; for j = 1,2. The
construction of A; and the assumption that p { |G;| for all ¢ imply that p t |H;|. In
particular, H'(H;,V) = 0. Clearly, G = (Hy, H) as it contains all (positive simple) root
subgroups, and H; N Hy = B. Now the first statement follows by applying Lemma [£.2]
The second statement also follows, since dim VZ < |W|'/? as noted above. 0

We generalize the previous results.

Lemma 4.4. Let H be a finite group. Assume that H is generated by subgroups Hy and
Hs and set A:= Hi N Hsy. Let V be a kH-module. Assume that the restriction maps from
H'(H;,V) to H'(H,V) are injective. Then dim H'(H,V) < dim H'(A, V) + dim V4.

Proof. This is very similar to the proof of Lemma Let § € Der(H,V) and let §; be
the restriction of 6 to H;.

Consider the restriction map 71 from Der(H,V) — Der(H;,V). Since G is generated
by H; and Hs, Ker(m) embeds into Derp (Hs, V'), the space of the derivations on Ha that
are 0 on A. Now, if 6 € Ders(Ha,V), then § is inner on H and so also on Hs (since the
restriction map is injective on H'). Thus, Ders(Hs, V) can be identified with V4, and
the result follows. 0

This gives:

Corollary 4.5. Let V' be a kG-module. Assume that pt|G;: B| for alll1 <i<e. IfV
1s any kG-module, then the following statements hold.

(i) dim HY(G,V) < dim HY(B,V) + dim V5.

(i) If V is irreducible, then dim H (G, V) < (e 4+ 1)dim V' < (e + 1)|W /2,
(iii) If V is any kG-module, then dim H'(G,V) < (e +1)dim V<.

(iv) If V is a submodule of k§, then dim H'(G,V) < (e + 1) dim V5.

Proof. Let Hy and Hs be constructed as in the proof of Corollary Then the Hj,
J = 1,2, are parabolic subgroups and p { [H; : B]. Now apply Lemma to see that (i)
holds.

We next prove (ii) and so assume that V is irreducible. If V2 = 0, then H'(G,V) =0
by [GT, Theorem 6.1], and we are done. So we may assume that VB £ 0.

Setting R := Oy(B), we have V = [R,V]® V% and H'(B,[R,V]) = 0. Also, VE =VP
by [GT), Proposition 3.1], and so H'(B,V) = HY(B,V®) = H'(B,V?). As B/R has rank
< e as an abelian group, dim H'(B,V?) < edim V? (and is in fact 0 if p { | B|). As noted
previously, dim VB < [W|'/2, whence (ii) follows.

Now (iii) follows from (ii) by the long exact sequence in cohomology since dim V® is

additive over composition factors. Finally (iv) follows from (iii), since dim V¥ = dim V©
for any submodule V' of kG by [GT), Proposition 3.1(ii)]. O

So we have obtained an upper bound of the magnitude of |W|'/2 unless p divides [G; : B]
for some G;. There cannot be a result in general that bounds dim H'(G,V) in terms of
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dim VP since there are (albeit very few) examples with VB = 0 and dim H'(G,V) = 1,
see [GT) §6].

We will give another bound in all cases, using the property that
dim H'(G,V) = dim HY(G, V*) (4.1)

for any irreducible kG-module V with VZ # 0 (in cross characteristic, and G is a finite
simple group of Lie type as before). For classical groups, any irreducible module V' is
quasi-equivalent to its dual [DGPS, 2.1, 2.4] and [T7Z] (i.e. V* is a twist of V' by an
automorphism) whence holds (without the extra assumption that VB # 0). The
equality for exceptional groups of Lie type follows from the following results about
the socle and the head of indecomposable summands of M = kg.

Lemma 4.6. Let M = k:g.

(i) M is a direct sum of indecomposable modules with simple socle and simple head
which are isomorphic.
(ii) If Y is an indecomposable summand of M, then the isomorphism class of Y is
determined by its socle (or head).
(iii) If Y is an indecomposable summand of M, then its socle and head are self-dual

kG -modules.

Proof. (i) and (ii) follow by [CEl 1.20, 1.25, 1.28]. Next we prove (iii). Let Y be an
indecomposable summand of M with simple socle S. We claim that Y =& Y*. If we prove
this, then by (i) and (ii), S = S* and the result follows. Note that since M is self-dual,
Y* is a summand of M as well.

Let E := Endg(M) and let X be the projective indecomposable E-module given by
the Morita correspondence (i.e. X = Homg(Y, M) and X* the corresponding projective
module). Let O be a discrete valuation ring in characteristic 0 with residue field contained
in k and let K be the quotient field of O. Let M’ := Ind% () be the corresponding induced
module over O and let E' := Endg(M’) be the corresponding endomorphism ring. Then
there is a bijection between the indecomposable projective summands of F and E'.

Then L := Endgg(Ind§(K)) = K® E' is a Hecke algebra and by a result of Lusztig (see
[GPL 8.4.7, 9.3.9]) is split semisimple over Q[¢'/2, ¢~ /2], whence all its projective modules
are defined over R. In particular, we can take O to be contained in R. Thus, the projective
indecomposable summands of E’ are defined over O and so by (i) and (ii), the same is
true for the socle (and head) of each summand. It follows by the Morita correspondence

that the Brauer character of every indecomposable summands of M is real, whence (iii)
follows. .

Note that if p 1 | BJ, then M is projective and the first two statements of Lemma [4.6/hold
trivially (since they hold for any projective indecomposable kG-module). The self-duality
statement (iii) critically requires Lusztig’s result. For G classical, one has a much easier
proof of the fact that every simple kG-module is quasiequivalent to its dual (i.e. equivalent
via an automorphism) and so the cohomology groups are isomorphic (which is the result
we use below).

Corollary 4.7. Let V be an irreducible kG-module with VB # 0.

(i) Then V has multiplicity diim VB in the socle of kS, and V = V*.

(ii) Let Vi be an irreducible kG-module with Vi # 0 and Vo % V. Suppose that L is
a kG-module with soc(L) = Vi 2V and L/Vi 2 V3"™ for some m > 0, and that
L=Vio V;Bm as B-module. Let X; denote an indecomposable direct summand of
kg with socle V; fori=1,2. Then L embeds in X;.
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Proof. (i) As previously noted, the first statement follows by Frobenius reciprocity. Next,
V embeds in an indecomposable summand Y of k§. By Lemma [4.6(i) and (iii), we now
have V = soc(Y) and V = V*.

(ii) Let f; := dimV,;” > 0 for i = 1,2. Then
dim Homg (L, k§) = dim Homp(L, k) = fi + mfo,
whereas
dim Homg(L/ Vi, kS) = dim Homp(L/Vi, k) = mfo.

Now we apply Lemma to decompose kzg into a direct sum of its indecomposable direct
summands. Let Y be such a summand with soc(Y) = W. Note that Homg(L,Y) = 0 if
W 2 V1, V. (Otherwise a nonzero quotient L' of L embeds in Y, and so either V; or V3
embeds in soc(Y) = W.) A similar argument shows that

dim Homg (L, X2) = dimHomg(L/V1, X2) = m - dim Homg(Va, X2) = m.
As X; has multiplicity f; in k:g, it follows that

fi 4+ mfs = dimHomg(L, k§) = f1 - dim Homg (L, X1) + f» - dim Homg(L, X»)
= f1 -dim Homg (L, X1) + mfa,

and so dim Homg (L, X7) = 1. Also note that dim Homg(L/Vi, X1) = 0 as soc(X1) # Va.
Hence L embeds in X7, as stated. ]

Next we need to relate dim H'(G, V) with the multiplicity of V mnot in the socle of
M = k% but in soc(M/k). Note that if p does not divide |B|, the projective cover P(k)
of the trivial module is a direct summand of kg and so the multiplicity of any irreducible
module V in P(k)/k is precisely dim Ext{,(V, k) = dim H'(G, V*).

We start by computing a related quantity.

Lemma 4.8. Let V be an irreducible kG-module with dim VB = f > 0 and V 2 k, and set
h:=dim HY(G, V). Let a be the dimension of the image of Res$ : HY(G,V) — HY(B,V)
in HY(B,V). Let X be an indecomposable summand of k§ with socle V., and let J be the
indecomposable summand of kg with trivial socle.

(i) dim(X/V)¢ =h —a and a < e/f.

(ii) The image of ResG : Exts(V, k) — ExtL(V, k) has dimension a in ExtL(V, k).
(iii) There exists a submodule N of J with N/k a direct sum of h — a copies of V.

Proof. (a) Let D := Der(G, V). Then D is the (unique) module with socle V' and trivial
head of dimension h. By the definition of a, there is a subspace Dy with V' C Dy C D,
dim D/Dy = a, such that Dy 2V @ k®(h—a) a5 B-modules. Of course V is still the socle
of Dy. By Corollary (ii), Dy embeds in X. We may then identify Dg with a submodule
of X, and soc(Dy) with soc(X) =V, and then have
dim(X/V)¢ > dim(Dy/V)¥ = h — a.
Conversely, if dim(X/V)% = h — b, then there exists a submodule Y C X with socle V
and Y/V = k®(h=b)_Since VY C X C kG, we know by [GT] Proposition 3.1(ii)] that
dimY? =dimY® = (h—b) +dimV® = (h —b) + dim VZ = (h — b) + f.

Next, the B-module Y decomposes as [Y, Q@Y ?, and likewise V = [V, Q]@®V?. Counting
the dimensions, we see that [V, Q] = [Y, @], and thus

Y =[V,QaYe,
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as B-module, with B acting trivially on Y¢ D V9. We have therefore shown that Y splits
as V @ kP~ as a B-module. Since Y embeds in D, this implies by the definition of @
that h — b < h — a, whence dim(X/V)% = h — a as stated.

By Corollary (i), V occurs in the socle of k% with multiplicity f. It follows by Lemma
that X occurs as a direct summand of k:g with multiplicity f. Hence,
f-dim HY(G, X) < dim HY(G, k%) = dim H*(B, k) < e,
the latter inequality because the abelian group B/@ has rank < e. We have shown that
dim HY(G, X) < e/f. (4.2)

(b) We again look at the above constructed submodule Dy of X, and consider the short
exact sequence
0— Dy— X — X/Dy — 0.

This gives rise to the sequence
0 — H°G,X/Dy) - H'(G,Dy) - HY (G, X). (4.3)
Recall that Do/V = k(=) and dim(X/V)® = h — a as shown in (a). Together with
H'Y(G, k) = 0, this implies that H°(G, X/Dgy) = 0. Using ([4.2) and (4.3]), we now see that
g
dim H'(G, Do) < dim HY(G, X) < ¢/f. (4.4)
We now claim
dim H'(G, Do) = a (4.5)
Consider the short exact sequence 0 — V — Dy — k®(=4) — 0. Thus, we have
0= H(G, Do) - H(G,k*"~) — HY(G,V) — H'(G, Do) — H'(G,k*"~) =,
and the claim follows. Thus, a < e/f as stated in (i).
(c) Note that the natural isomorphism from H'(G,V) = Ext&(k, V) to Exth(V* k)

gives an isomorphism of the subspaces of them which are trivial on B, since if a short
exact sequence splits for B, so does its dual. It follows that the image of

Res$ : Exts(V*, k) — Exth(V*, k)
has dimension a = h — dim(X/V)%. Now (ii) follows since V = V* by Corollary (1)

(d) By (ii), there exists a G-module N with socle k and N/k = V(=) guch that
N = k@ V®*h=9) a5 B-module. By Corollary [4.7(ii), N embeds in .J. O

Proof of Theorem[1.6. (i) is established in Corollary We now prove (iii) and (iv). By
[GT, Corollary 6.5], it suffices to consider V1, ..., V},, pairwise non-isomorphic representa-
tives of isomorphism classes of irreducible kG-modules V with V' % 0 and V 2 k. Note
that H'(G, k) = 0.

Keep the notation as in Lemma[4.8] but with the index i attached to the objects defined
for V;. So V; is an irreducible kG-module, with dim V;B = fi >0, h; = dim HY(G, V;),
J is the indecomposable summand of kg with trivial socle, and N; is a submodule of
J with N;/k = Vi@(hi_ai), and a; < e/f;. Working in J/k, we obtain a G-submodule
N D k = soc(J) with

Clearly, dim HY(G, N/k) = 3", hi(h; — a;). By considering

0—+kk—N—N/k—D0,

we have

0=HYG,k) - H(G,N) — H'(G,N/k) — H*(G, k).
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Let x := dim H?(G, k). Note that x = 0 if p does not divide |B|. If p||B|, then x < 1
unless p = 2 and G is of type D,,, with m even in which case x = 2. Thus,
dim H'(G,N) > Y " hi(h; — a;) — k. (4.6)

On the other hand, using
0—N-—=J—=J/N—=O0,

we see that
dim HY(G, N) < dim HY(G, J) 4 dim H°(G, J/N). (4.7)
We do not have a very good control over the last term. But note that
dim H°(G, J/N) < dim H(Q, J/N) = dim H*(Q, J) — dim H°(Q, N).

By [GT, Proposition 3.1(ii)], H(Q, k%) = H°(B, k%) has dimension |W|. Let X; denote
an indecomposable summand of kg with socle V;. We have seen in the proof of Lemma
that dim H°(Q, X;) > f; + (h; — a;) and X; occurs with multiplicity f; as a summand
of k:g. As V; 2 k, we get

dim H(Q, J) < W[ =} _(f2 + fi(hi — a)).

(2

On the other hand, dim H%(Q, N) =1+ Y, fi(hi — a;), and so
dim H*(Q, J/N) < [W| =1 =3 (f +2fi(hi — a:)).

)

Also we have that
dim H'(G, J) + Y _ f; - dim HY(G, X;) < dim H'(G, k§) = dim H'(B, k) < e,

and dim H1(G, X;) > dim HY(G, Dy ;) = a; by (4.4) and (4.5). Hence
dim H'(G,J) < e — Zaifi.

7

Putting all this in (4.6 and (4.7) yields:
D hilhi—ai) < (=Y aifi) + W4k —1=> (7 +2fi(hi — a;)).

7

Equivalently,
S (hi+ f)(hi+ fi —ai) < W+ e+ k-1 (4.8)

7
In particular, for any 7 we have

(hi + fi)(hi + fi —ai) < [W|+e+k—1.
As a; < e/f; by Lemma and f; > 1, we obtain for each ¢ that

2 2
a; az e e
hz-+fz-<2’+\/4’+1W1+e+/<;—1<2+\/4+1W1+e+/<;—1<e+|W|1/2.
Thus h; < e + |[W|/2 — 1, as stated in (iii).
In general,

(hi + fi)(hi + fi — ai) > (hi + fi)(hi + fi — e/ f;) > (hi + 1) (hi +1 —¢),
and so implies (iv).

A much simpler version of the previous proof gives a slightly better bound if p 1 |B|. In
that case H'(B,V) =0= H'(B,k) and k = 0. This yields Theorem (ii):

Theorem 4.9. If p does not divide | B|, then dim H (G, V) < |W|'/2.
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Thus we have completed the proof of Theorem O

We point out some easy corollaries.

Corollary 4.10. Let L be a kG-submodule of k§. Then dim H(G, L) < |W|+dim H(B, k).

Proof. This follows from the long exact sequence in cohomology applied to
0= L=k =X —0.

If LY # 0, then this gives dim H'(G, L) < dim H(G, X) + dim H(G, k%), and the result
holds since

dim H(G, X) < dim H°(Q, X) < dim H(Q, k%) = |[W|.
If L& = 0, then replace k‘g by the sum Z of all indecomposable summands of l{:g not con-
taining the G-fixed space and argue similarly (noting that dim H'(G, Z) < dim H*(G, k§) =
dim HY(B, k)). 0

If we assume that p does not |G;| for any i, we can get some stronger results.

Corollary 4.11. Assume that p t |G;| for all i. Let L = X/Y with Y < X kG-
submodules of kG. Then dim HY(G, L) < dim L? = dim X? — dim Y2 < |W|. Moreover,
dim HY(G, X) < |[W|/2.

Proof. The first statement follows by Corollary (1) since p{ |B|. Let M = k% as above,
and suppose that X is a kG-submodule of M. Arguing as in the proof of Corollary [4.10]
we see that dim H(G, M/X) = dim H!(G, X). We also have that

dim HY(G, X) < dim X7 = dim X©.
Thus,
dim H'(G, X) = (1/2)(dim HY(G, X) 4+ dim H(G, M/ X))
< (1/2)(dim X9 4 dim(M/X)9)
(1/2) dim M© = |W|/2.

This allows us to say something about H? (but only for submodules of k%).
Corollary 4.12. Assume that p { |G;| for all i. Let L be a kG-submodule of kG. Then
dim H?(G, L) < |W| — dim L5.

Proof. Consider the short exact sequence 0 — L — k:g — X — 0. This yields
0=HYG,kS) — HY(G, X) — H*(G,L) - H*(G, k%) = 0.
Thus, H*(G,L) = H'(G, X) and the previous corollary applies. O

We can do a bit better for irreducible kG-modules with nontrivial B-fixed points.

Corollary 4.13. Assume that p 1 |G;| for alli. Let X be the set of isomorphism classes
of the nontrivial irreducible kG-modules and let fy := dim VC. Then

S fv-dimHXG, V) < (W= Y £

Vex Vex

Proof. Let L be the complement to k£ in the socle of kG Then L is the direct sum of fy
copies of each V € X. Now apply Corollary |4 noting that dim LB = Y ver f‘Q/ O
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In particular, this implies that if f := dim V" > 0 and V is an irreducible kG-module,
then dim H?(G,V) < |W|/f.
One can weaken the assumption that p does not divide |G;| and obtain some weaker

results. Unfortunately, these results do not yield any information about modules with no
B-fixed points.

5. AN EXAMPLE

Here we give an easy example showing that one cannot in general bound dim Exté(V, W)
for V, W faithful absolutely irreducible G-modules. There are examples known as well us-
ing Kazhdan-Lusztig polynomials for G a simple finite group of Lie type and V, W modules
in the defining characteristic. There are no such examples known for cross characteristic
modules. We give a trivial example for semisimple groups.

Let G = 51 x ... x S be a direct product of ¢ finite non-abelian simple groups. Let V;
be an absolutely irreducible S;-module with dim Extéwi(Vi, Vi)=e;. Let V=V®...0 V.
Then by the Kiinneth formula, we see that dim Ext(V,V) = S°i_, ;. Since there are
examples with e; > 0, we see that dim Ext},(V, V) can grow arbitrarily large with ¢ (but
if the sectional rank of the Sylow p-groups is bounded, then so is t).
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