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Abstract

We analyze families of Markov chains that arise from decomposing ten-
sor products of irreducible representations. This illuminates the Burnside-
Brauer theorem for building irreducible representations, the McKay corre-
spondence, and Pitman’s 2M — X theorem. The chains are explicitly di-
agonalizable, and we use the eigenvalues/eigenvectors to give sharp rates of
convergence for the associated random walks. For modular representations,
the chains are not reversible, and the analytical details are surprisingly intri-
cate. In the quantum group case, the chains fail to be diagonalizable, but a
novel analysis using generalized eigenvectors proves successful.
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1 Introduction

Let G be a finite group and Irr(G) = {x0, X1, - -, X¢} be the set of ordinary (com-
plex) irreducible characters of G. Fix a faithful (not necessarily irreducible) char-
acter « and generate a Markov chain on Irr(G) as follows. For y € Irr(G), let
ax = Zle a;Xi, where a; is the multiplicity of ; as a constituent of the ten-
sor product cvy. Pick an irreducible constituent y’ from the right-hand side with
probability proportional to its multiplicity times its dimension. Thus, the chance
K(x, x') of moving from x to x’ is

Nl XOX'()
KO, x') = W’

where (x,1) = |G|™! >_gec X(9)¥(g) is the usual Hermitian inner product on
class functions , 1) of G.

(1.1



These tensor product Markov chains were introduced by Fulman in [37], and
have been studied by the hypergroup community, by Fulman for use with Stein’s
method [36], [37], and implicitly by algebraic geometry and group theory commu-
nities in connection with the McKay correspondence. A detailed literature review
is given in Section 2] One feature is that the construction allows a complete di-
agonalization. The following theorem is implicit in Steinberg [77/]] and explicit in
Fulman [37]].

Theorem 1.1. ([37]]) Let o be a faithful complex character of a finite group G.
Then the Markov chain K in (1.1) has as stationary distribution the Plancherel
measure

m(x) = (x € Irr(G)).

The eigenvalues of K are a(c)/a(l) as ¢ runs over a set C of conjugacy class
representatives of G. The corresponding right (left) eigenvectors have as their xth-
coordinates:

w00 =X = m = 1 ()00,

where |cC| is the size of the conjugacy class of ¢, and Cg(c) is the centralizer
subgroup of ¢ in G. The chain is reversible if and only if « is real.

We study a natural extension to the modular case, where p divides |G| for p
a prime, and work over an algebraically closed field k of characteristic p. Let
00, 01 - - - , Or be (representatives of equivalence classes of) the irreducible p-mo-
dular representations of G, with corresponding Brauer characters xo, X1,-- -, Xr»
and let « be a faithful p-modular representation. The tensor product o; ® « does
not have a direct sum decomposition into irreducible summands, but we can still
choose an irreducible composition factor with probability proportional to its mul-
tiplicity times its dimension. We find that a parallel result holds (see Proposition
[3.1I). It turns out that the stationary distribution is

ey x(@)
m(x) = BT

where p, is the Brauer character of the projective indecomposable module asso-
ciated to the irreducible Brauer character y. Moreover, the eigenvalues are the
Brauer character ratios «(c)/a(1), where now c runs through the conjugacy class
representatives of p-regular elements of G. The chain is usually not reversible; the
right eigenvectors come from the irreducible Brauer characters, and the left eigen-
vectors come from the associated projective characters. A tutorial on the necessary



representation theory is included in Appendix II (Section [0); we also include a
tutorial on basic Markov chain theory in Appendix I (Section|g).
Here are four motivations for the present study:

(a) Construction of irreducibles. Given a group G it is not at all clear how to
construct its character table. Indeed, for many groups this is a provably intractible
problem. For example, for the symmetric group on n letters, deciding if an irre-
ducible character at a general conjugacy class is zero or not is NP complete (by
reduction to a knapsack problem in [66]). A classical theorem of Burnside-Brauer
[L7, [16] (see [S1, 19.10]) gives a frequently used route: Take a faithful charac-
ter a of G. Then all irreducible characters appear in the tensor powers o, where
1<k <wv(r0 <k <wv—1, alternatively) and v can be taken as the num-
ber of distinct character values a(g). This is exploited in [78], which contains
the most frequently used algorithm for computing character tables and is a basic
tool of computational group theory. Theorem [I.1] above refines this description
by showing what proportion of times each irreducible occurs. Further, the analytic
estimates available can substantially decrease the maximum number of tensor pow-
ers needed. For example, if G = PGL,,(¢q) with ¢ fixed and n large, and « is the
permutation character of the group action on lines, then « takes at least the order
of n971/((q — 1)!)? distinct values, whereas Fulman [37, Thm. 5.1] shows that
the Markov chain is close to stationary in n steps. In [6], Benkart and Moon use
tensor walks to determine information about the centralizer algebras and invariants
of tensor powers o* of faithful characters « of a finite group.

(b) Natural Markov chains. Sometimes the Markov chains resulting from tensor
products are of independent interest, and their explicit diagonalization (due to the
availability of group theory) reveals sharp rates of convergence to stationarity. A
striking example occurs in one of the first appearances of tensor product chains
in this context, the Eymard-Roynette walk on SU3(C) [32]. The tensor product
Markov chains make sense for compact groups (and well beyond). The ordinary
irreducible representations for SU3(C) are indexed by N U {0} = {0,1,2,...},
where the corresponding dimensions of the irreducibles are 1,2, 3, ... . Tensoring
with the two-dimensional representation gives a Markov chain on N U {0} with
transition kernel

1

K(ii—1) = (1 !
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) (i21), K@it)= (1+¢+11> (i > 0).

(1.2)
This birth/death chain arises in several contexts. Eymard-Roynette [32] use the
group analysis to show results such as the following: there exists a constant C such




that, as n — oo,

X, 2 [* )
R

where X, represents the state of the tensor product chain starting from O at time
n. The hypergroup community has substantially extended these results. See [42],
[[14]), [71]] for pointers. Further details are in our Section

In a different direction, the Markov chain (1.2)) was discovered by Pitman [67]
in his work on the 2/ — X theorem. A splendid account is in [S8]]. Briefly, consider
a simple symmetric random walk on Z starting at 1. The conditional distribution of
this walk, conditioned not to hit —1, is precisely (I.2). Rescaling space by 1//n
and time by 1/n, the random walk converges to Brownian motion, and the Markov
chain (I.2)) converges to a Bessel(3) process (radial part of 3-dimensional Brownian
motion). Pitman’s construction gives a probabilistic proof of results of Williams:
Brownian motion conditioned never to hit zero is distributed as a Bessel(3) pro-
cess. This work has spectacular extensions to higher dimensions in the work of
Biane-Bougerol-O’Connell ([12]], [13]]). See [44. final chapter] for earlier work on
tensor walks, and references [10], [11] for the relation to ‘quantum random walks’.
Connections to fusion coefficients can be found in [24]], and extensions to random
walks on root systems appear in [S7] for affine root systems and in [[15] for more
general Kac-Moody root systems. The literature on related topics is extensive.

In Section[3.2] we show how finite versions of these walks arise from the mod-
ular representations of SLo(p). Section [7| shows how they arise from quantum
groups at roots of unity. The finite cases offer many extensions and suggest myriad
new research areas. These sections have their own introductions, which can be read
now for further motivation.

All of this illustrates our theme: Sometimes tensor walks are of independent
interest.

(c) New analytic insight. Use of representation theory to give sharp analysis of
random walks on groups has many successes. It led to the study of cut-off phe-
nomena [29]. The study of ‘nice walks’ and comparison theory [27]] allows careful
study of ‘real walks’. The attendant analysis of character ratios has widespread
use for other group theory problems (see for example [9], [60]). The present walks
yield a collection of fresh examples. The detailed analysis of Sections high-
lights new behavior; remarkable cancellation occurs, calling for detailed hold on
the eigenstructure. In the quantum group case covered in Section [/} the Markov
chains are not diagonalizable, but the Jordan blocks of the transition matrix have
bounded size, and an analysis using generalized eigenvectors is available. This is
the first natural example we have seen with these ingredients.



(d) Interdisciplinary opportunities. Modular representation theory is an extremely
deep subject with applications within group theory, number theory, and topology.
We do not know applications outside those areas and are pleased to see its use in
probability. We hope the present project and its successors provide an opportunity
for probabilists and analysts to learn some representation theory (and conversely).

The outline of this paper follows: Section 2] gives a literature review. Section [3]
presents a modular version of Theorem and the first example SLy(p). Section
M) treats SLo(p?), Section [3] features SL2(2"), and Section [6| considers SL(p). In
Section [7, we examine the case of quantum SLj at a root of unity. Finally, two ap-
pendices (Sections[§]and [9) provide introductory information about Markov chains
and modular representations.
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2 Literature review and related results

This section reviews connections between tensor walks and (a) the McKay corre-
spondence, (b) hypergroup random walks, (c) chip firing, and (d) the distribution
of character ratios.

2.1 McKay correspondence

We begin with a well-known example.

Example 2.1. For n > 2 let BD,, denote the binary dihedral group

BD, = (a,z | a®" = 1,22 =a", 2 taz = a7 !)



of order 4n. This group has n+3 conjugacy classes, with representatives 1, 22, =, za
and @’/ (1 < j < n — 1). It has 4 linear characters and n — 1 irreducible characters
of degree 2; the character table appears in Table 2.1. Consider the random walk

Table 2.1: Character table of BD,,

’ Hl\ 2 \aﬂ(1<j<n71)\1\xa‘

A1 1 1 1 1 1

A2 1 1 1 -1 -1

A3 (n even) 1 1 (1) 1] -1

A4 (n even) 1 1 (—1)7 -1 1

A3 (n odd) 1 -1 (1) i | —i

A4 (n odd) 1 -1 (—1)7 —i |
Xr(L<r<n—-1)[ 2| 2(-1)" 2 cos (=F) 0] 0

(T.1) given by tensoring with the faithful character x;. Routine computations give

ALX1 = A2X1 = X1, A3X1 = MX1 = Xn—1,
XrX1 = Xr—1+Xr1 (257 <n—2),

X3 = X2+ A1+ A,

Xn—1X1 = Xn—2 + A3 + Ag.

Thus, the Markov chain can be seen as a simple random walk on the following
graph (weighted as in (I.1)), where nodes designated with a prime ’ correspond
to the characters \;, j = 1,2,3,4, and the other nodes label the characters x,
1<r<n—-1).

1) 1 (2) a 0-2)—@m-1)— @)

2) 3)

Figure 1: McKay graph for the binary dihedral group BD,,

For example, when n = 4, the transition matrix is



AA2 X1 X2 X3 A3 M
M/0O 0 1 0 0 0 O
X0 0 1 0 0 0 O
xilt 7 o L 0o o0 o0
x2[0 0 3 0 % 0 o0
xsl 0o o o L o I %
X3l 0 0 0 0 1 0 O
AMM\NO 0 0 0 1 0 O

The fact that the above graph is the affine Dynkin diagram of type D, 42 is a
particular instance of the celebrated McKay correspondence. The correspondence
begins with a faithful character « of a finite group G. Let k be the number of irre-
ducible characters of G, and define a k£ x k matrix M (the McKay matrix) indexed
by the ordinary irreducible characters ; of G by setting

M;; = (axi, X;j) (the multiplicity of x; in ax;). 2.1)

The matrix M can be regarded as the adjacency matrix of a quiver having nodes
indexed by the irreducible characters of G and M;; arrows from node 7 to node j.
When there is an arrow between ¢ and j in both directions, it is replaced by a single
edge (with no arrows). In particular, when M is symmetric, the result is a graph.
John McKay [64] found that the graphs associated to these matrices, when « is
the natural two-dimensional character of a finite subgroup of SU3(C), are exactly
the affine Dynkin diagrams of types A, D, E. The Wikipedia page for ‘McKay
correspondence’ will lead the reader to the widespread developments from this
observation; see in particular [[77]], [70], [4] and the references therein.
There is a simple connection with the tensor walk (I.T)).

Lemma 2.2. Let « be a faithful character of a finite group G.

(a) The Markov chain K of (1.1) and the McKay quiver matrix M of 2.1)) are

related by
1

K=—D"'MD 2.2
where D is a diagonal matrix having the irreducible character degrees x;(1)
as diagonal entries.

(b) Ifvis a right eigenvector of M corresponding to the eigenvalue \, then D~ v
is a right eigenvector of K with corresponding eigenvalue ﬁ)\.



(¢) If w is a left eigenvector of M corresponding to the eigenvalue \, then wD is
a left eigenvector of K with corresponding eigenvalue ﬁ)\.

Parts (b) and (c) show that the eigenvalues and eigenvectors of K and M are
simple functions of each other. In particular, Theorem [I.1]is implicit in Steinberg
[77]. Of course, our interests are different; we would like to bound the rate of
convergence of the Markov chain K to its stationary distribution 7.

In the BD,, example, the ‘naive’ walk using K has a parity problem. However,
if the ‘lazy’ walk is used instead, where at each step staying in place has probability
of % and moving according to 1 has probability of %, then that problem is solved.
Letting K be the transition matrix for the lazy walk, we prove

Theorem 2.3. For the lazy version of the Markov chain K on Irr(BD,,) starting
from the trivial character 1 = A1 and multiplying by x1 with probability % and
staying in place with probability %, there are positive universal constants B, B’
such that

Be72ﬂ’2€/n2 SH RE — HTVS 3167271'2@/712.

In this theorem, [|K* — 7|,y = 537, cirep,) [K (1, X) — 7(x)] is the total
variation distance (see Appendix I, Section . The result shows that order n?

steps are necessary and sufficient to reach stationarity. The proof can be found in
Appendix I, Section

2.2 Hypergroup walks

A hypergroup is a set X with an associative product x * ¢ such that y * ¢ is a
probability distribution on X (there are a few other axioms, see [14] for example).
Given a € X, a Markov chain can be defined. From y € X, choose ¢ from « * .
As shown below, this notion includes our tensor chains.

Aside from groups, examples of hypergroups include the set of conjugacy
classes of a finite group G: if a conjugacy class € of G is identified with the cor-
responding sum ) __. c in the group algebra, then then product of two conjugacy
classes is a positive integer combination of conjugacy classes, and the coefficients
can be scaled to be a probability. In a similar way, double coset spaces form a hy-
pergroup. The irreducible representations of a finite group also form a hypergroup
under tensor product. Indeed, let XX = Irr(G), and consider the normalized charac-
ters Y = ﬁx for x € X. If « is any character, and ay = Zd}ex ay ¢ (with ay,
the multiplicity), then

a(x(Dax = Y apv =Y ayb(1)¢

peX PpeX
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yielding the Markov chain (1.1).

Of course, there is work to do in computing the decomposition of tensor prod-
ucts and in doing the analysis required for the asymptotics of high convolution
powers. The tensor walk on SU5(C) was pioneering work of Eymard-Roynette
[32]] with follow-ups by Gallardo and Reis [42] and Gallardo [41], and by Voit [80]
who proved iterated log fluctuations for the Eymard-Roynette walk. Impressive
recent work on higher rank double coset walks is in the paper [71] by Rosler and
Voit. The treatise of Bloom and Hyer [14] contains much further development.
Usually, this community works with infinite hypergroups and natural questions re-
volve around recurrence/transience and asymptotic behavior. There has been some
work on walks derived from finite hypergroups (see Ross-Xu [72, [73l], Vinh [79]).
The present paper shows there is still much to do.

2.3 Chip firing and the critical group of a graph

A marvelous development linking graph theory, classical Riemann surface theory,
and topics in number theory arises by considering certain chip-firing games on a
graph. Roughly, there is an integer number f(v) of chips at each vertex v of a finite,
connected simple graph (f(v) can be negative). ‘Firing vertex v’ means adding 1
to each neighbor of v and subtracting deg(v) from f(v). The chip-firing model is a
discrete dynamical system classically modeling the distribution of a discrete com-
modity on a graphical network. Chip-firing dynamics and the long-term behavior
of the model have been related to many different subjects such as economic mod-
els, energy minimization, neuron firing, travel flow, and so forth. Baker and Norine
[3] develop a parallel with the classical theory of compact Riemann surfaces, for-
mulating an appropriate analog of the Riemann-Roch and Abel-Jacobi Theorems
for graphs. An excellent textbook introduction to chip firing is the recent [22]. A
splendid resource for these developments is the forthcoming book of Levin-Peres
[59]]. See M. Matchett Wood [82] for connections to number theory.

A central object in this development is the critical group of the graph. This is
a finite abelian group which can be identified as ZIV'| /ker(L), with |V| the number
of vertices and ker(L) the kernel of the reduced graph Laplacian (delete a row and
matching column from the Laplacian matrix). Baker-Norine identify the critical
group as the Jacobian of the graph.

Finding ‘nice graphs’ where the critical group is explicity describable is a nat-
ural activity. In [S)], Benkart, Klivans, and Reiner work with what they term the



‘McKay-Cartan’ matrix C = «(1)I — M rather than the Laplacian, where M is
the McKay matrix determined by the irreducible characters Irr(G) of a finite group
G, and « is a distinguished character. They exactly identify the associated critical
group and show that the reduced matrix C obtained by deleting the row and column
corresponding to the trivial character is always avalanche finite (chip firing stops).
In the special case that the graph is a (finite) Dynkin diagram, the reduced matrix
C is the corresponding Cartan matrix, and the various chip-firing notions have nice
interpretations as Lie theory concepts. See also [40] for further information about
the critical group in this setting.

An extension of this work by Grinberg, Huang, and Reiner [43]] is particularly
relevant to the present paper. They consider modular representations of a finite
group G, where the characteristic is p and p divides |G|, defining an analog of the
McKay matrix (and the McKay-Cartan matrix C) using composition factors, just as
we do in Section[3] They extend considerations to finite-dimensional Hopf algebras
such as restricted enveloping algebras and finite quantum groups. In a natural way,
our results in Section|7|on quantum groups at roots of unity answer some questions
they pose. Their primary interest is in the associated critical group. The dynamical
Markov problems we study go in an entirely different direction. They show that
the Brauer characters (both simple and projective) yield eigenvalues and left and
right eigenvectors (see Proposition [3.1). Our version of the theory is developed
from first principles in Section 3]

Pavel Etingof has suggested modular tensor categories or the Z,-modules of
[31, Chap. 3] as a natural further generalization, but we do not explore that direc-
tion here.

2.4 Distribution of character ratios

Fulman [37/]] developed the Markov chain on Irr(G) for yet different purposes,
namely, probabilistic combinatorics. One way to understand a set of objects is to
pick one at random and study its properties. For G = S,,, the symmetric group on
n letters, Fulman studied ‘pick x € Irr(G) from the Plancherel measure’. Kerov
had shown that for a fixed conjugacy class representative ¢ # 1 in S, x(c)/x(1)
has an approximate normal distribution — indeed, a multivariate normal distribution
when several fixed conjugacy classes are considered. A wonderful exposition of
this work is in Ivanov-Olshanski [S0]. The authors proved normality by computing
moments. However, this does not lead to error estimates.

Fulman used ‘Stein’s method’ (see [20]), which calls for an exchangeable pair
(x, x') marginally distributed as Plancherel measure. Equivalently, choose x from
Plancherel measure and then y’ from a Markov kernel K(x, x) with Plancherel
measure a stationary distribution. This led to (I.I). The explicit diagonalization

10



was crucial in deriving the estimates needed for Stein’s method.

Along the way, ‘just for fun’, Fulman gave sharp bounds for two examples
of rates of convergence: tensoring the irreducible characters Irr(S,,) with the n-
dimensional permutation representation and tensoring the irreducible representa-
tions of SL,, (p) with the permutation representation on lines. In each case he
found the cut-off phenomenon with explicit constants.

In retrospect, one may try to use any of the Markov chains in this paper along
with Stein’s method to prove central limit theorems for Brauer characters. A referee
points out that the approach in [37]] uses Fourier analysis on groups which may need
to be developed. There is work to do, but a clear path is available.

Final remarks. The decomposition of tensor products is a well-known difficult
subject, even for ordinary characters of the symmetric group (the Kronecker prob-
lem). A very different set of problems about the asymptotics of decomposing tensor
products is considered in Benson and Symonds [8]]. For the fascinating difficulties
of decomposing tensor products of tilting modules (even for SL3(K)), see Lusztig-
Williamson [61), 162].

3 Basic setup and first examples

In this section we prove some basic results for tensor product Markov chains in the
modular case, and work out sharp rates of convergence for the groups SLa(p) with
respect to tensoring with the natural two-dimensional module and also with the
Steinberg module. Several analogous chains where the same techniques apply are
laid out in Sections Some basic background material on Markov chains can
be found in Appendix I (Section [§), and on modular representations in Appendix
II (Section [9).

3.1 Basic setup

Let G be a finite group, and let k be an algebraically closed field of characteristic p.
Denote by G, the set of p-regular elements of G, and by € a set of representatives
of the p-regular conjugacy classes in G. Let IBr(G) be the set of irreducible Brauer
characters of G over K. We shall abuse notation by referring to the irreducible KG-
module with Brauer character x, also by x. For y € IBr(G), and a kG-module
with Brauer character p, let (x, o) denote the multiplicity of x as a composition
factor of . Let p, be the Brauer character of the projective indecomposable cover
of x. Then if x € IBr(G) and p is the Brauer character of any finite-dimensional

11



kG-module,

X ZI E:

€G,, €G,/

The orthogonality relations (see [81, pp. 201, 203] say for ¢ € I1Br(G), g € G,
and c a p-regular element that

0 if ,
(X, 0) = { i x#e 3.1)
1 if x = o.

— Jo if g¢c“,
> pxlgx(o) = {rcc(cn . . (3.2)

X€IBr(G) if gec,

where ¢ is the conjugacy class of ¢, and |Cg(c)] is the size of the centralizer of c.

Fix a faithful KG-module with Brauer character «, and define a Markov chain
on IBr(G) by moving from y to x’ with probability proportional to the product of
X' (1) with the multiplicity of X’ in x ® «, that is,

(X'sx ® a)x'(1)
a(1)x(1)

As usual, denote by K the transition matrix of this Markov chain after ¢ steps.

K(x,x') = (3.3)

Proposition 3.1. For the Markov chain in (3.3)), the following hold.

(1) The stationary distribution is

w0 = U (e tgr(e).

(ii) The eigenvalues are a(c)/ca(1), where c ranges over a set C of representa-
tives of the p-regular conjugacy classes of G.

(iii) The right eigenfunctions are r. (¢ € C), where for x € IBr(G),

_ x(o)
rc(X) - X(l)
(iv) The left eigenfunctions are L. (¢ € C), where for x € IBr(G),
Px(c)x(1)
le(x) = ==,
]

12



Moreover, {1(x) = 7(x), ri(x) =1, and for ¢,c € C,

Y Llore () = dee

X€EIBr(G)

(V) Fort > 1,

—\/
KOGx) = (Z‘Eg) re(X) Le(X').

ceC

In particular, for the trivial character 1 of G,

K1) | (2@ el o
() 1—221(@(1)) pe(D)

Proof. (i) Define 7 as in the statement. Then summing over x € IBr(G) gives

px(1 X X ®a)x'(1)
> mO0K( ) ’G’Z

- (Da(D)

X'(1 ) ,
’G’ a(l) e (prx(l)x> ® a)

YU) kG@a) as py(l) = (x.kG)

~ [6[a(1)

_ XMy as o = (kG)®a)
Glo(D) (1){(x', kG) kG ® a = (kG)
X' (Dpy (1)

B

This proves (i).
(ii) and (iii) Define r. as in (iii). Summing over x’ € IBr(G) and using the

13



orthogonality relations (3.1)), @]) we have

ZK(X,X')%(X’) = Zx )X x ®
Zx | QGEG:/ P (9)x(9) alg)
= (e 2020 2 peto)
:x()l(\GI'CG o) %:Gag by
= el
= 38 re(X)-

This proves (ii) and (iii).
(iv) Define /. as in (iv), and sum over x € IBr(G):

D LKLY = (Xl(l), Z P () (X, X ® @)
X

gEG /

~ a(1)|Ce(0)]|G] \CG )G Z MOEIO)SENCN

_ X
~ a(1)[G] g_le:CG Py (9)alg) by

ale) —— o ale) pp(@x (1)
a(|e P X W= T " e o)
(o),

\
The relations 1 (x) = 7(x) and r1(x) = 1 follow from the definitions, and the fact
that 3~ cigr(c) Le()re (X) = ¢, for ¢, ¢’ € Cis a direct consequence of (3.2).
This proves (iv).
(v) For any function f : IBr(G) — C, we have f(x') = > ce acle(x’) with
=> v fXr re(x) by (iv). For fixed , apply this to K(x, x) as a function of

14



', to see that KE(x, X') = 3. acle(X'), where

—\ 4
o= SR - (25 7

The first assertion in (v) follows, and the second follows by setting x = 1 and
using (i)—(iii). ]

Remark. The second formula in part (v) will be the workhorse in our examples, in
the following form:

KAL) = 7y = 5 S KAL) = ()
2

I KAL) ,

=5 EX, ’ﬂx’) - 1‘ (x) (3.4)
1 K1, X)

= gy W0d>_1«

32 SLy(p)

Let p be an odd prime, and let G = SLy(p) of order p(p? — 1). The p-modular
representation theory of G is expounded in [1I]: writing K for the algebraic closure
of Fp,, we have that the irreducible kG-modules are labelled V(a) (0 < a < p—1),
where V(0) is the trivial module, V(1) is the natural two-dimensional module, and
V(a) = S*(V(1)), the a’* symmetric power, of dimension a + 1. Denote by x, the
Brauer character of V(a), and by p, := p,, the Brauer character of the projective
indecomposable cover of V(a). The p-regular classes of G have representatives
1, -1,2"(1 <r < %) and y* (1 < s < %) where 1 is the 2 x 2 identity
matrix, x and y are fixed elements of G of orders p — 1 and p + 1, respectively; the
corresponding centralizers in G have orders |G|, |G|, p — 1 and p + 1. The values
of the characters x, and p, are given in Tables and In particular, we have
Pa(l) = pfora = 0 orp — 1, and p,(1) = 2p for other values of a. Hence by
Proposition [3.1{1), for any faithful KG-module «, the stationary distribution for the
Markov chain given by is

1 if a=0,
T(Xa) = %%? if 1<a<p-2, (3.5)
p2p_1 if azp—l
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Table 3.1: Brauer character table of SLa(p)

[ 1 [ -1 | »a<r<®’) | y(<s<t)
X0 1 1 1 1
L[ 27r L 27s
X1 2 -2 2 cos (p—l) 2 (COb p+1)

14 L T £ j TS
gX;(O?‘Ze_“)l CH1 |1 [ 1+2 80 eos (U7) | 142100 cos (477)

. k odd L= j T EoL j TS
ka(# 1 ) k+1| —(k+1) | 23,2, cos (7(4]+f) ) 237,20 cos (7(42:21) )

Xp—1 D D 1 —1

Table 3.2: Characters of projective indecomposables for SLy(p)

[1] -1 [or(a<r<®B)[y(<s<?) |
Po p p 1 1— 2cos ;ﬁ)
P1 2p —2p 2 cos (if’l’) —9cos (pﬁil)
P2 2p 2p 2 cos (;ﬁ’i) —2cos (Eﬁ)
pe(3<k<p-2) [ 2| (-1"2 | 2008 (Z7) | —20c0s (CEET)
Pp—1 p p 1 -1

We shall consider two walks: tensoring with the two-dimensional module V(1),
and tensoring with the Steinberg module V(p — 1). In both cases the walk has
a parity problem: starting from 0, the walk is at an even position after an even
number of steps, and hence does not converge to stationarity. This can be fixed by
considering instead the ‘lazy’ version %K + %I: probabilistically, this means that
at each step, with probability % we remain in the same place, and with probability
1

5 we transition according to the matrix K.

3.2.1 Tensoring with V(1)

As we shall justify below, the rule for decomposing tensor products is as follows,
writing just a for the module V(a) as a shorthand:

1 if a=0,
a®l=<(a+1)/(a—1) if1<a<p-2, (3.6)
(p—2)%/1 if a=p—1.



Remark 3.2. The notation here and elsewhere in the paper records the composition
factors of the tensor product, and their multiplicities; so the @ = p— 1 line indicates
that the tensor product (p—1)®1 has composition factors V(p—2) with multiplicity
2, and V(1) with multiplicity 1 (the order in which the factors are listed is not
significant).

We now justify (3.6). Consider the algebraic group SLy(Kk), and let T be the
subgroup consisting of diagonal matrices ¢, = diag(A, A~!) for A € k*. For 1 <
a < p—1, the element ¢ acts on V(a) with eigenvalues A%, \*~2, ... A~(@=2) \~¢
and we call the exponents

a,a—2,...,—(a—2),—a
the weights of V(a). The weights of the tensor product V(a) ® V(1) are then
a+1,(a—1)% ..., —(a—1)% —(a+1),

where the superscripts indicate multiplicities (since the eigenvalues of ¢y on the
tensor product are the products of the eigenvalues on the factors V(a) and V(1)).
For a < p — 1 these weights can only match up with the weights of a module with
composition factors V(a + 1),V(a — 1). However, for a = p — 1 the weights
+(a + 1) = =p are the weights of V(1)(®), the Frobenius twist of V(1) by the
p'"-power field automorphism. On restriction to G = SLy(p), this module is just
V(1), and hence the composition factors of V(p — 1) ® V(1) are as indicated in the
third line of (3.6).

From , the Markov chain corresponding to tensoring with V(1) has transi-
tion matrix K, where

1 1
@a+ )= (14 47) Kaa-1
1
Kp—1p-2)=1--, Klp-1,1)=
p

(3.7)

and all other entries are 0.

Remark. Note that, except for transitions out of p— 1, this Markov chain is exactly
the truncation of the chain on {0, 1,2, 3, ...} derived from tensoring with the two-
dimensional irreducible module for SU3(C) (see ). It thus inherits the nice
connections to Bessel processes and Pitman’s 2M — X theorem described in (b) of
Sectionabove. As shown in Section the obvious analogue on {0, 1,...,n—1}
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in the quantum group case has a somewhat different spectrum that creates new phe-
nomena. The ‘big jump’ from p — 1 to 1 is strongly reminiscent of the ‘chutes and
ladders’ chain studied in ([26], [28]]) and the Nash inequality techniques developed
there provide another route to analyzing rates of convergence. The next theorem
shows that order p? steps are necessary and sufficient for convergence.

Theorem 3.3. Let K be the Markov chain on {0,1,...,p — 1} given by (3.7)
starting at 0, and let K = %K + % I be the corresponding lazy walk. Then with
as in (3.5)), there are universal positive constants A, A’ such that

() || KE =7 ||7y> Ae ™% forall £ > 1, and
(i) || K — 7 ||, < Ale™ ™% forall € > p?.
Proof. By Proposition the eigenvalues of K are 0 and 1 together with

),
Ly,

11 e ((2kn
gtgeos(277) (I<k
27
1)

IN
IN
"U

IN
S
VNN

1,1
5 + 5 cos

IN

J

To establish the lower bound in part (i), we use that fact that ||Kf — Ty =

%sup”fnooglmé(f) — 7 (f)] (see |i in Appendix I). Choose f = r,, the right

eigenfunction corresponding to the class representative « € G of order p — 1. Then

re(x) = &f; for x € IBr(G). Clearly ||ry||cc = 1, and from the orthogonality

relation ,

() = w0000 = gy 2 prlDx(x) = 0.

X

From Table the eigenvalue corresponding to r;, is % + % cos (%) and so

Kf(rx): (%—F%COS (%)) rz(0) = (%—F%COS <p2_7T )) .
It follows that
17 1 Z 2 e
L 1,1 2 1 1

This yields the lower bound (i), with A = 1 + o(1).
Now we prove the upper bound (ii). Here we use the bound

K(1,x)
m(x)

— 1
l
| K" =7 || < imaxx

_1’
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given by (3.4). Using the shorthand K*(0,a) = K*(xo, xa), Where xo = 1, and
Proposition 3.1(v), we show in the SLa(p) case that

p—3 4
p+1>,2 (% + 1 cos (ET)> cos (—i"_’r{)
¢

p—1
—(p-1)>.2% (% + %COS

p+‘1
(v prg 1 1 2mr ¢
K (0, a) p+1)>,2 (5 + 3 cos (p_l )
T p—1 ¢
m(a) -(p-1)>.2% (%Jr%cos (;_ﬁ)) (a=p-1),
¢

(r+ 137 (5 + deos (225))
+(p—1) ZE (% + 1 cos (5%))@ (1 — 2cos (;ﬁ)) (a =0).
(3.8)
To derive an upper bound, on the right-hand side we pair terms in the two sums
forl <r=s< p%. Terms with r, s > p% are shown to be exponentially small.
The argument is most easily seen when a = 0. In this case, the terms in the sums
in the formula li are approximated as follows. First assume 7, s < p%. Then we
claim that

V4 _7727'22 ﬁ _m r2¢
(a) (%4—%005(2”2)) =e 7’ +O<P3):e »? <1+O(%)>;

p—

l _71'2522 ﬁ _m s2¢
(b) (%4—%005(2“)) —e 7’ +O(P3):e »? <1+O(%));

p+1

4 o 422 2
(©) 1—2cos<pﬁ)——1+ 7;25 —i—O(;—g).

The justification of the claim is as follows. For (a), observe that

2
bedeos () =3ed (- () w0 () =1 g e o (3)

_ 1 _ m*r? 2 1 r
=1="F <1+P+O(p2) +O<p4>>
2 2 4
—1-2210(5)+0(%)
2,2 2
:1—”p§ +0 :? (as r2 < p)
Hence,
VA 7r27'2 7"2 7r2r22 rze
(% + %COS (5?;)) = eélog(l— p2 +O<F>) —e +O(F>,
giving (a).
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Part (b) follows in a similar way. Finally, for (c),
1—2cos(;1ﬁ) 1 2(1—(‘;1152+0 T)) 4’;f)2+0(;—i)
= 14 A (1+0< ))+o(z)
-1+ { o(5)

This completes the proof of claims (a)-(c). Note that all the error terms hold uni-
formly in £, p, r, s for r, s < p%.
.. . 1. .
Combining terms, we see that the summands with r = s < p2 in 1} (with
a = 0) contribute

2,2, 2,2,

(p+1)e 7% (1 + O(%)) t(p—1e 2 (1 n 0(;1))) (_1 " O(;;))

x2r2g

=e ” (24 0(1)).

The sum over 1 < r < oo of this expression is bounded above by a constant times
_n2%e
e »°,provided ¢ > p°.

27h

=1l 5 p—
For 5= > b= 7‘s>p2wehave‘2 2005<i1

)‘ <1- %,sothesumsin
'l
the right-hand side of are bounded above by p?e” », which is negligible for
0> p?.
This completes the argument for a = 0 and shows

720

Q2 — 1] < ae75

At the other end, for the Steinberg module V(p—1), a similar but easier analysis
of the spectral formula (3.8) with a = p — 1 gives the same conclusion.

Consider finally 0 < a < p—1in . To get the cancellation for r2, s2 <p,
use a Taylor series expansion to write

cos ((2“;;41)”5) = cos (?}Tf) ﬁﬁ sin (2‘”3> +0 ( )

Then

(p+1)cos (i‘”f) —(p—1)cos <(2a;+41)w) =0(r)

and we obtain

_ w27l _ LZZ
Z e »r<Ae v
1<r<,/p
as before. We omit further details. O
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3.2.2 Tensoring with the Steinberg module V(p — 1)

The Steinberg module V(p — 1) of dimension p is the irreducible for SLy(p) of
largest dimension, and intuition suggests that the walk induced by tensoring with
this should approach the stationary distribution (3.5)) much more rapidly than the
V(1) walk analyzed in the previous subsection. The argument below shows that
for a natural implementation, order of log p steps are necessary and sufficient. One
problem to be addressed is that the Steinberg representation is not faithful, as —1
is in the kernel. There are two simple ways to fix this:

Sum Chain: Let K be the Markov chain starting from V(0) and tensoring with
V(1) aV(ip—1).

Mixed Chain: Let K,;, be the Markov chain starting from V(0) and defined by
‘at each step, with probability 1 5 tensor with V(p — 1) and with probability % tensor
with V(1)

Remark Because the two chains involved in Kg and K,,, are simultaneously di-
agonalizable (all tensor chains have the same eigenvectors by Proposition[3.1)), the
eigenvalues of K, K,,, are as in Table

Table 3.3: Eigenvalues of K, and K,

’classHl‘ -1 ‘ " (1<r< 2) ‘ ys(lﬁsﬁpz;l) ‘
Ks 1 p—iz(p—2) p%(l—i— S(; r)) p—12(2cos (;ﬁ)—l)
Ko 1 0 % (% + cos (2 T)) % (cos (sﬁ — %)

Sum Chain: The following considerations show that the sum walk K; is ‘slow’:

it takes order p steps to converge. From Table[3.3] the right eigenfunction for the

second eigenvalue 1 — I% isr_1, where r_1(x) = 95(1)) Let X, be the position

of the walk after ¢ steps, and let F/; denote expectation, starting from the trivial

¢
representation. Then Eq(r_1(Xy)) = (1 - —) . In stationarity, Fs(r_1(X)) =

P2

14
0. Then || K{ — 7 ||> 4 (1 - zﬁ) shows that ¢ must be of size greater than p

to get to stationarity, using the same lower bounding technique as in the proof of
Theorem [3.3] In fact, order p steps are sufficient, in the ¢, distance (see[8.2)), but
we will not prove this here. We will not analyze the sum chain any further.
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Mixed Chain: We now analyze K,,. Arguing with weights as for tensoring with
V(1) in (3.6), we see that tensor products with V(p — 1) decompose as follows:

Table 3.4: Decomposition of V(a) ® V(p — 1) for SLa(p)

] a I a®(p—1) \
0 p—1
1 (r—2)7%1
2 (p—1)/(p—3)*/2/0
a>3odd | (p—2)7*/(p—4)>*/---/p—a—1)%/a/(a—2)*/--- /1
a>4even | (p—1)/(p=3)°/---/p—a—1)*/a/(a—2)*/---/2°/0

Note that when a > %, some of the terms a,a — 2, ... canequal termsp—1,p —
2, ..., giving rise to some higher multiplicities — for example,

p-20p@-1)=@-27>@-4" - /14
p-1)@@—-1)=p-1>2/(p-3)*---/2*/0%

These decompositions explain the ‘tensor with V(p — 1)” walk: starting at V(0),
the walk moves to V(p — 1) at the first step. It then moves to an even position with
essentially the correct stationary distribution (except for V(0)). Thus, the tensor
with V(p — 1) walk is close to stationary after 2 steps, conditioned on being even.
Mixing in V(1) allows moving from even to odd. The following theorem makes
this precise, showing that order log p steps are necessary and sufficient, with respect
to the ¢, norm.

Theorem 3.4. For the mixed walk K,,, defined above, starting at V/(0), we have for
allp > 23 and ¢ > 1 that

() || K = 7 |joo> e~ (Rlog2)(E+1)+(4/3)logp g
(i) H K¢ — 1 HooS e—t/4+2logp.

In fact, the mixed walks K., have cutoff at time logs, p?, when we let p tend to co.

Proof. Using Proposition [3.1[v) together with Table [3.2] we see that the values of

K%ég;“) — 1 are as displayed below.
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Table 3.5: Values of % — 1 for SLa(p)

.
00 S (3 o (3) —3)) o (52)

For the upper bound, observe that if p > 23, then

p=3 p=1
KL (0,a) ‘ 1< ( 1)4 p—1< ( 1)4
< 1+-) + 1+ -
w 2 ) T iy

2

l
< % (1 + 1) < efé(longl/p)+2logp < efé/4+2logp
p

This implies the upper bound (ii) in the conclusion. Moreover, if we let p — oo
and take ¢ ~ (1 + €)logy(p?) with 0 < € < 1 fixed, then £/p is bounded from

above, and so
KL, (0 2 1\" e/?
‘m(’“)—1'<pé(1+> <5 (3.9)
7(a) 2 P p2e

tends to zero.
For the lower bound (i), we use the monotonicity property (8.3) and choose

ly € {¢,0+ 1} to be even. Observe thatif 1 < r < (p — 1)/6, then cos (52) >
1/2. As [(p—1)/6] > (p —5)/6, it follows that

V4
K (0,0) > P+ 1P =5) 20  (21082)¢0+(4/3)logp
7(0) 6

when p > 23. Now the lower bound follows by (8.2).
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To establish the cutoff, we again let p — oo and consider even integers
(=~ (1 —¢€)log, p?
with 0 < € < 1 fixed. Note that when 0 < z < +/log 2, then
cos(z) > 1—x?/2 > e’

Hence, there are absolute constants C, Cy > 0 such that when 1 < r < [C1(p/+/logp)]
we have

cos < 27rr1> t1/p > e~ 4712/ (=1)? 5 o~Ca/(ogp)
D

and so

l
(COS < 27TT1> + 1/p> 2 e—CQZ/(lng) Z e—QCQ.
p J—

It follows that

Kf (0’ 0) 1 Cle7202p2 N Cle7202p26
7(0) 20 /logp  logp
tends to co. Together with (3.9)), this proves the cutoff at log, (p?). O

Remark. The above result uses ¢, distance. We conjecture that any increasing
number of steps is sufficient to send the total variation distance to zero. In principle,
this can be attacked directly from the spectral representation of Kf;l((), a), but the
details seem difficult.

4 Sls(q),q =p?

4.1 Introduction

The nice connections between the tensor walk on SLa(p) and probability suggest
that closely related walks may give rise to interesting Markov chains. In this sec-
tion, we work with SLy(q) over a field of ¢ = p? elements. Throughout, K is an
algebraically closed field of characteristic p > 0, p odd. We present some back-
ground representation theory in Section In Section 4.3, we will be tensoring
with the usual (natural) two-dimensional representation V. In Section the 4-
dimensional module V ® V() will be considered.

We now describe the irreducible modules for G = SLy(p?) over k. As in Sec-
tion[3.2] let V(0) denote the trivial module, V(1) the natural 2-dimensional module,
and for 1 < a < p—1,let V(a) = S*(V(1)), the a’” symmetric power of V(1)
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(of dimension a -+ 1). Denote by V(a)®) the Frobenius twist of V(a) by the field
automorphism of G raising matrix entries to the p** power. Then by the Steinberg
tensor product theorem (see for example [63), §16.2]), the irreducible KG-modules
are the p> modules V(a) ® V(b)P), where 0 < a,b < p — 1 (note that the weights
of the diagonal subgroup T on these modules are given in below). Denote
this module by the pair (a,b). In particular, the trivial representation corresponds
to (0, 0) and the Steinberg representation is indexed by (p — 1, p — 1). The natural
two-dimensional representation corresponds to (1,0). For p = 5, the tensor walk
using (1, 0) is pictured in Table The exact probabilities depend on (a, b) and
are given in below. Thus, from a position (0, b) on the left-hand wall of the
display, the walk must move one to the right. At an interior (a, b), the walk moves
one horizontally to (a — 1,b) or (a + 1,b). At a point (p — 1, b) on the right-hand
wall, the walk can move left one horizontally (indeed, it does so with probability
1— %) or it makes a big jump to (0,0 — 1) orto (0,6 + 1) if b # p — 1 and a big
jump to (0,p — 2) or to (1,0) when b = p — 1. The walk has a drift to the right,
and a drift upward.

Throughout this article, double-headed arrows in displays indicate that the
module pointed to occurs twice in the tensor product decomposition.

(0,4) 14 24 34 44

(0,3)

“4,3)

0,2) (4,2)

(0,1)

4,1)

0,0) 1,0) (2,0) (3,0) (4,0)

Figure 2: Tensor walk on irreducibles of SLo(p?), p = 5

Heuristically, the walk moves back and forth at a fixed horizontal level just like

25



the SLo(p)-walk of Section As in that section, it takes order p? steps to go
across. Once it hits the right-hand wall, it usually bounces back, but with small
probability (order %), it jumps up or down by one to (0,b £ 1) (to (0,p — 2),(1,0)
when b = p — 1). There need to be order p? of these horizontal shifts for the
horizontal coordinate to equilibriate. All of this suggests that the walk will take
order p* steps to totally equilibriate. As shown below, analysis yields that p* steps
are necessary and sufficient; again the cancellation required is surprisingly delicate.

4.2 Background on modular representations of SL,(p?).

Throughout this discussion, p is an odd prime and G = SLy(p?). The irreducible
kG-modules are as described above, and the projective indecomposables are given
in [76]. The irreducible Brauer characters x(q,5) = Xa Xp) € IBr(SLQ(p2)) are
indexed by pairs (a,b), 0 < a,b < p— 1, where ‘a’ stands for the usual symmetric
power representation of SLy(p?) of dimension a+1, and b(P)* stands for the Frobe-
nius twist of the bth symmetric power representation of dimension b + 1 where the
representing matrices on the bth symmetric power have their entries raised to the
pth power. Thus x4 has degree (a + 1)(b+ 1). The p-regular conjugacy classes
of G = SLy(p?), and the values of the Brauer character X(1,0) of the natural module
are displayed in Table where = and ¥ are fixed elements of orders p> — 1 and
p? + 1, respectively.

Table 4.1: Values of the Brauer character x(; o) for SLy(p?)

’classrep.cH 1 ‘—1‘SUT(1§T<p22_1)‘ys(1§5<p22+1)‘
Ca()] [ 1G]] 6] PP -1 Pl
xaom) | 2 | -2 2 cos <p227rj1) 2 cos (p%T1>

We will also need the character p, ; of the projective indecomposable module
P(a, b) indexed by (a, b), that is the projective cover of x, . Information about the
characters is given in Table .2 with the size of the conjugacy class given in the
second line.

The order of G = SLy(p?) is p?(p* — 1), and by Proposition 3. 1]i), the station-
ary distribution 7 is roughly a product measure linearly increasing in each variable.
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Table 4.2: Characters of projective indecomposables for SLo(p?)

[1 ] 12 [aoa<r<s) [ ya<s<?)
2 2 2mr 1- (4(:05 (2(1;?;-"1-);—5) X
P(0,0) 3p 3p 4cos (p+1> -1 cos (2(l)+1)7rs) )
p2+1
4cos <72(p717a)m x | —4cos (72(;;717@” X
Pastlap? | (—1)e+0 ap? 1)1y 1)1 e
(a,b<p—1) cos (7” . ’”) cos (71’ st “)
Po—1b |l 92 | (_1)boy2 2cos(2unb+1y—uwr) _2cos(2unb+1»+uws)
(b<p—1) P (=1)"2p p?-1 Pl
Pa,p—1 2 ao,.2 2(p—1—a)7r 2(p—1—a)7s
(a<p71) 2p (—1) 2p 2cos (W) —2cos (W)
Pp—1,p—1 P’ P’ 1 —1

Explicitly, the values of the stationary distribution 7 are:

’ (a,b) ‘ m(a,b) ‘
(0,0) =
ab<p—1 4(a+1)_(11)+1)
(p—1b),b<p—1 21;&61-11) 4.1)
(a.p—1),a<p—1]| 22D
(p—1p—1) P

4.3 Tensoring with (1,0)

In this section we consider the Markov chain given by tensoring with the natural
module (1,0). The transition probabilities are determined as usual: from (a, b)
tensor with (1,0), and pick a composition factor with probability proportional to
its multiplicity times its dimension.

The composition factors of the tensor product (a, b) ® (1, 0) can be determined
using weights, as in Section Note first that the weights of the diagonal sub-
group T on (a, b) are

(a—2i)+p(b-2j) (0<i<a, 0<j<D). (4.2)
The tensor product (a, b) ® (1, 0) takes the form
V(a) @ V()P @ V(1). (4.3)
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For a < p — 1, we see as in Section that V(a) ® V(1) has composition
factors V(a + 1) and V(a — 1), so the tensor product is (a — 1,b)/(a + 1,b)
(with only the second term if @ = 0). For a = p — 1, a weight calculation gives
V(p— 1)@ V(1) = V(p — 2)2/V(1)®), so if b < p — 1 the tensor product
has composition factors (p — 2,b)2/(0,b — 1)/(0,b + 1). If b = p — 1, then
V(1)®) & V(b)®) has composition factors V(p — 2)®) (twice) and V(1)®*), and
for G = SLy(p?), the latter is just the trivial module V(0). We conclude that in all
cases the composition factors of (a,b) ® (1,0) are

(l,b) a =0,
(a—1,b)/(a+1,b) 1<a<p-1,
(p—2,0)2/(0,b—1)/(0,b+ 1) a=p—1,b<p—1,
(- 2p—1) /(0,p=2)?/(1,0) a=b=p-L

(a,b) ® (1,0) = 4.4)

Translating into probabilities, for 0 < a,b < p — 1, the walk from (a, b) moves to
(a — 1,b) or (a + 1, b) with probability

4.5)
(a_lab) (a+17b)
K((a,0),) PICERY 2(05;21)

For these values of a and b, the chain thus moves exactly like the SLy(p)-walk.
For (p — 1,b) with b < p — 1 on the right-hand wall, the walk moves back left

to (p — 2,b) with probability 1— l to (0,b — 1) with probability 5 STy Or to
(0, b+1) with probability 2p(b +1)
irreducible module for SLy(p?) that is also projective. Tensoring with (1, 0) sends
(p—1,p—1)to (p—2,p—1) with probability 1 — ;1), to (0, p —2) with probability
21 orto (1,0) with probability z%

b+1) s
The Steinberg module (p—1, p—1) is the unique

The main result of this section shows that order p* steps are necessary and
sufficient for convergence. As before, the walk has a parity problem: starting at
(0,0), after an even number of steps the walk is always at (a, b) with a + b even.
As usual we sidestep this by considering the lazy version.

Theorem 4.1. Let G = SLy(p?), and let K be the Markov chain on 1Br(G) given by
tensoring with (1,0) with probability 5, and with (0, 0) with probablllty (start-
ing at (0,0)). Then the stationary distribution 7 is given by . and there are
universal positive constants A, A’ such that

x2e
p

Q) || KE =7 ||;y> Ae foralll > 1, and
_x%e
() || KE =7 || < Ale” 9" forall € > p*.
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X(a,b) (@)
X(a,b)(1)
eigenfunction with eigenvalues £ + 3 cos <p227r_7"1>. Clearly |f(a,b)| < 1 for all
a,b,r. Using the fact that 3, , fr(a,b)w(a,b) = 0 for 7 # 0, we have (see (8.1)
in Appendix I)

Proof.  For the lower bound, we use the fact that f,(a,b) := is a right

H K€_7T HTV %Squ‘KZ(f) _W(f)‘

> 5IKE(fr)] )
= % (%—i—%cos (%)) .

Taking r = 1, we have

(b +deos (325)) = (1- g +0 ()"

This proves the lower bound.
For the upper bound, we use Proposition V) to see that for all (a, b),

2
K ((0,0),(ab pi-1 £ oo ()
W —-1= p*(pP*+1)>.,3% (% + 3 cos (P%Tl)) ;<a2>é)
241

p°+ l s
2/, 2 (1,1 2 P(a,b)(y°)
+p (p - 1) 25221 <§ + 2 Ccos p27f1> P(a,b)(l) .
(4.6)
The terms in the two sums are now paired with » = s for 1 < r; s < p as in the

proof of Theorem [3.3] The cancellation is easiest to see at (a, b) = (0, 0). Then

P0,0)(1) = 3p%,  p(o,0)(z") = 4cos? (iﬂ) -1,

P(0,0)(y°) =1 —4cos (%) cos (%) ‘

‘We now use the estimates

2,2 2
40082(1%)—1:3—16?%4-0 7)o

1—4cos (2(};;31”5) cos (2(3;1;11)1”5) =3+ 16;# + 0 (;—2) )

It follows that the » = s terms of the right-hand side of pair to give

J4
Pt 1) (34 oos (3)) (3 22 1 0 ()

+p%(p? — 1) (% + %cos p%’fl) (—3 + 716;2232 +0 (
2 22 )

w3
% Rd=

)

W

p
_m%s

= e T-O(

<%
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The sum of this over 1 < s < p is dominated by the lead term efTQZ up to
multiplication by a universal constant. As in the proof of Theorem [3.3] the terms
for other 7, s are negligible (even without pairing). This completes the upper bound
argument for (a,b) = (0,0). Other (a, b) terms are similar (see the argument for

SLa(p)), and we omit the details. O

Remark. For large p, the above SLo(p?) walk is essentially a one-dimensional
walk which shows Bessel(3) fluctuations. A genuinely two-dimensional process
can be constructed by tensoring with the 4-dimensional module (1,1) = V(1) ®
V(1)®). We analyze this next.

4.4 Tensoring with (1,1)

The values of the Brauer character x ;1) are:

7 — i
11| wsasr<th) | y* (1<s < B2 |
4| 4 | 2cos (51’1) + 2 cos (;ﬂ) 2 cos (%) + 2cos <%>

and the rules for tensoring with (1, 1) are given in Table — these are justified in
similar fashion to {#.4).

Thus, apart from behavior at the boundaries, the walk moves from (a, b) one
step diagonally, with a drift upward and to the right: for a,b < p — 1 the transition
probabilities are

y [(a—=1,0-1)[(a=1,b+1) | (a+1,b=1) [ (a+1,b+1) |

ab a(b+2) (a+2)b (a+2)(b+2)
K((a,b),-) I(a+1)(b+1) A(a+1D)(b+1) I(a+1D)(b+1) A(a+1)(b+1)
4.7)

At the boundaries, the probabilities change: for example, K((0,0),(1,1)) =1 and
for the Steinberg module St = (p — 1,p — 1),

(p_27p_2) (p—S,O) (p—LO) (07])—3) (0,])—1) (171)

4(p—1)°2 p—2 j2 p=2 p 4
Kt ) 4p? 4p? 4p? 4p? 4p? 4p?

Heuristically, this is a local walk with a slight drift, and intuition suggests that it
should behave roughly like the simple random walk on a p x p grid (with a uniform
stationary distribution) — namely, order p? steps should be necessary and sufficient.
The next result makes this intuition precise. We need to make one adjustment, as
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Table 4.3: Tensoring with (1,1)

H (a,b) ® (1,1) ‘
ab<p-1] @-Lb-Dja-Lb+tD/atLb-1)/(atLbt1)

b<p—2 || (p—2b—1)2/(p—2,b+1)2/(0,)2/(0,b—2)/(0,b+ 2)

b=p—2 (p—2,p—3)?/(p—2,p—1)%/(0,p —2)*/(1,0)
a=b=p—1 (p—2.p—2)"/(p—3,07%/(p— 1,0)?/
(0,p—3)%/(0,p—1)*/(1,1)

the representation (1, 1) is not faithful. We patch this here with the ‘mixed chain’
construction of Section Namely, let K be defined by ‘at each step, with
probability 5 tensor with (1, 1) and with probability 3 tensor with (1,0)".

Theorem 4.2. Let K be the Markov chain on 1Br(SLy(p?)) defined above, starting
at (0,0) and tensoring with (1,1). Then there are universal positive constants

A, A’ such that for all £ > 1,

_n2e )
Ae” 7 < KE =7 | < Ale 7.

Proof. The lower bound follows as in the proof of Theorem using the same
right eigenfunction as a test function. For the upper bound, use formula (#.6),
replacing the eigenvalues there by

Bar = % + % (COS (27”) + cos (513)) =1- WZQTQ +0 (g)

p—1
By =+ 4 (cos (2520 ) 4 cos (27l ) ) =1 - T5 4 0 (%)

Now the same approximations to p(q)(z"), P(a,s)(¥°) Work in the same way to
give the stated result. We omit further details. O

Remark 4.3. For the walk just treated (tensoring with (1,1) for SLy(p?)), the
generic behavior away from the boundary is given in (4.7) above. Note that this
exactly factors into the product of two one-dimensional steps of the walk on SLa(p)
studied in Section[3.2.1} K ((a,b), (¢/, 1)) = K(a, a’)K(b,b'). In the large p limit,
this becomes the walk on (N U {0}) x (NU {0}) arising from SU2(C) x SU3(C)
by tensoring with the 4-dimensional module C? @ C2. Rescaling space by ﬁ and

time by %, we have that the Markov chain on SLy(p?) converges to the product of
two Bessel processes, as discussed in the Introduction.
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5 SLy(2")

5.1 Introduction

Let G = SLy(2"), ¢ = 2", and K be an algebraically closed field of character-
istic 2. The irreducible KG-modules are described as follows: let Vi denote the
natural 2-dimensional module, and for 1 < 4 < n — 1, let V; be the Frobenius
twist of V1 by the field automorphism o +— a2 Set N = {1,...,n}, and for
I ={i1 <izg <...<ir} C NdefineVy =V;, ®V;, ® ---®V,,. By Stein-
berg’s tensor product theorem ([63] §16.2]), the 2" modules V; form a complete
set of inequivalent irreducible KG-modules. Their Brauer characters and projective
indecomposable covers will be described in Section[5.2]

Consider now the Markov chain arising from tensoring with the module V.
Denoting V; by the corresponding binary n-tuple x = z; (with 1’s in the positions
in I and O’s elsewhere), the walk moves as follows:

(1) from z = (0, *) go to (1, ); 5.1

(2) if z begins with i 1’s, say z = (1%, 0, *), where 1 < i < n — 1, flip fair coins
until the first head occurs at time k: then

if 1 <k <4, change the first £ 1’s to 0’s
if £ > 7, change the first ¢ 1’s to 0’s, and put 1 in position ¢ + 1;

(3) ifz = (1,...,1), proceed as in (2), but if & > n, change all 1’s to 0’s and
put a 1 in position 1.

Pictured in Figureis the walk for tensoring with V1 for SL5(2?). We remind
the reader that a double-headed arrow means that the module pointed to occurs with
multiplicity 2.

We shall justify this description and analyze this walk in Section [5.3] The
walk generated by tensoring with V; has the same dynamics, but starting at the j th
coordinate of x and proceeding cyclically. We shall see that all of these walks have
the same stationary distribution, namely,

m(z) =4 1
@) { 1 if

q+1

£

18

(5.2)

o 1o

[

Note that, perhaps surprisingly, this is essentially the uniform distribution for ¢
large.

Section [5.2] contains the necessary representation theory for G, and in Sections
and[5.4 we shall analyze the random walks generated by tensoring with V; and
with a randomly chosen V.
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Figure 3: Tensor walk on irreducibles of SLy(23)

5.2 Representation theory for SL,(2")

Fix elements z,y € G = SLy(q) (¢ = 2") of orders ¢ — 1 and ¢ + 1, respectively.
The 2-regular classes of G have representatives 1 (the 2 x 2 identity matrix), ="
A<r<d-Dandy® (1 <s<Z+1). DefineV;andVy (I € N ={1,...,n})
as above, and let x;, xs be the corresponding Brauer characters. Their values are

given in Table

Table 5.1: Brauer characters of SLa(q), ¢ = 2"

| [T (v 0EE0] Fa5E] ]
Ce (o) a(¢® = 1) q—1 g+1
Xi 2 2 cos (3;1? ) 2 cos (?;j:f )
XTI 2k ok H’;zl cos (i‘:’?) 2"7]_[’;:1 cos <2(;T18)
I={i,..., i}
XN 2" 1 —1

The projective indecomposable modules are described as follows (see [2]]). Let
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I = {iy,...,ix} C N, with I # (), N, and let I be the complement of I. Then
the projective indecomposable cover P of the irreducible module V; has character
p; = X1 ® xn. The other projective indecomposables P and Py are the covers
of the Steinberg module V and the trivial module Vy;, and their characters are

PN = XN, Po= XA — XN-

The values of the Brauer characters of all the projectives are displayed in Table[5.2]

Table 5.2: Projective indecomposable characters of SLa(q), ¢ = 2"

| 1 o (i<r<$-1] v (1<s<9) |

k iaﬂ_ Lk b
p;, [ C N 2k g ok [I,_; cos % —9ok [I,_; cos quls
I={i1,... i}
N on 1 1
Po ¢ —q 0 2

From Tables[5.1and[5.2] we see that the stationary distribution is as claimed in

pr(1) xr(1) oMt g
G S WA TP for I # 0,
2
q°—q 1
0) = =

Cq(?-1) g+ 1

Next we give the rules for decomposing the tensor product of an irreducible
module V; with V. These are proved using simple weight arguments, as in Sec-
tions[3.2.1Jand[4.3] Suppose I # ), N, and let i be maximal such that {1, 2, ...,i} C
I (500 <4< n—1). Letx = z; be the corresponding binary n-tuple, so that
x = (1%,0, *) (starting with i 1’s). Then

w(l) =

Vi@ Vy = (0,171,0,%)%/(021772,0,%)2/ - -- /(0%,0,%)%/ (0%, 1, %).
And for I = (), N, the rules are Vg ® V1 = V; and
V@V = (0,177 1)2/(0°1"72)2 /- /(0™)?/(1,0"1).

These rules justify the description of the Markov chain arising from tensoring with
V; given in (5.1).
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5.3 Tensoring with V,: the Markov chain

In this section, we show that for the Markov chain arising from tensoring with V;
order ¢ steps are necessary and sufficient to reach stationarity. As explained above,
the chain can be viewed as evolving on the n-dimensional hypercube. Starting at
z = 0, it evolves according to the coin-tossing dynamics described in Section
Beginning at = 0, the chain slowly moves 1’s to the right. The following theorem
resembles the corresponding result for SLo(p) (Theorem , but the dynamics are
very different.

Theorem 5.1. Let K be the Markov chain on |1Br(SL2(q)) (¢ = 2™) by tensoring
with the natural module V1, starting at the trivial module. Then

(a) foranyl > 1,

1 or \\¢! 1 o 1\\*
K¢ — > = L)) =2 (12 =
| ™z <COS<(J—1>) 2( q? +O<q4>>

(b) there is a universal constant A such that for any £ > ¢,

2y

| K'—m HTVS Ae .

Proof. From Proposition the eigenvalues of K are indexed by the 2-regular
class representatives, 1, ", y° of Section They are

27r q 27s q
B1 =1, Bur = cos <q—1) (1<r< 5—1), Bys = cos <q+ 1> (1<s< 5)

To determine a lower bound, use as a test function the right eigenfunction corre-
sponding to 1, which is defined on z = (x(1),z(2),...,z(n)) by

( 2]50(3)77>
H COS .

(Here as in Section we are identifying a subset I of N with its corresponding
binary n-tuple x = (z(1),z(2),...,2(n)) having 1’s in the positions of I and
0’s everywhere else. Characters will carry n-tuple labels also, and we will write
K(z, y) rather than the cumbersome K(xz, xy)-)

Clearly, || f||oo < 1. Further, the orthogonality relations (3.1, (3.2) for Brauer
characters imply

p:c :c g(@)_
()= X stapnte) = 3 PG o

z




where p, is the character of the projective indecomposable module indexed by z.
Then (8.1)) in Appendix I implies

Il = 12 i) =) = 5 (eos (25))

This proves (a).
To prove the upper bound in (b), use Proposition (v):

K0, ) _ 0 Py @
Ty b= c#zlﬂc py(1) €7 6

where the sum is over p-regular class representatives ¢ # 1, and |c“| is the size
of the class of c¢. We bound the right-hand side of this for each 4. There are three
different basic cases: (i) y = 0 (all 0’s tuple corresponding to 0), (ii) y=1(@ll1’s
tuple corresponding to V), and (iii) y#0,1: a

K00 8 2ms
(i) (0) 1—2;(305 <q+1>’

. KK(Q,l)_ B i of 20\ 2 o[ 27s
(ii) ) 1—(q+1);cos (q—1> (q 1);cos (q+1>’

K‘(0,y) (k

9 80 g S (22 s (22

W(g) r=1

a2 2ms b 2%y
—(g—1 cos’ cos ,
e )52 <q+1>H <q+1>

b=1

where y has ones in positions i1, 4, . . ., 4. These formulas follow from (3.3)) by
using the sizes of the 2-regular classes from Table [5.1]and the expressions for the
projective characters in Table For example, when y = 0, then from Table
po(z") = 0 and po(y®) = 2, while po(1) = ¢ — ¢, and the order of the class of y*
is |c¥| = q(q — 1). The other cases are similar.

The sum (i) (when y = 0) is exactly the sum bounded for a simple random
walk on Z/(q + 1)Z; the work in [25, Chap. 3] shows it is exponentially small
when ¢ >> (q + 1)2. The sum (ii) (corresponding to y = 1) is just what was
bounded in proving Theorem [3.3] Those bounds do not use the primality of p, and
again £ >> q2 suffices. For the sum in (iii) (general y # 0 or 1), note that the
products of the terms (for r and s) are essentially the same and are at most 1 in
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absolute value. It follows that the same pair-matching cancellation argument used
for y = 1 works to give the same bound. Combining these arguments, the result is
proved. O

5.4 Tensoring with a uniformly chosen V.

As motivation recall that the classical Ehrenfest urn can be realized as a simple
random walk on the hypercube of binary n-tuples. From an n-tuple x pick a coor-
dinate at random, and change it to its opposite. Results of [30] show that this walk
takes inlogn + Cn to converge, and there is a cut off as C varies. We conjec-
ture similar behavior for the walk derived from tensoring with a uniformly chosen
simple V;, 1 < j <n. Asin (.3),

K (0,y) Py(c)
) —1=) g ) %) (5.4)
) c#1 Py
and the eigenvalues 3, are
1S (2720
B1=1, [ = anos(q_1> 1§r§g—1,
=0
1= 212 q
By n;cos(q_i_l) _5_2

Consider the eigenvalues closest to 1, which are 3, with r = 1 and 3,5 with
s = 1. It is easy to see that as n goes to oo,

Bo=1-2(1+0(1)) with ~v=37 (1-cos(%)).

Note further that the eigenvalues 3.~ have multiplicities: expressing r as a binary
number with n digits, any cyclic permutation of these digits gives a value r’ for
which 8~ = 8 ,». Hence, the multiplicity of 3,+ is the number of different val-
ues 7’ obtained in this way, and the number of distinct such eigenvalues is equal
to the number of orbits of the cyclic group Z,, acting on Zi by permuting coordi-
nates cyclically. The number of orbits can be counted by classical Polya Theory:
there are ), ¢(d) 27/ of them, where ¢ is the Euler phi function. Similarly, the
eigenvalues (y*) have multiplicities. For example, 3(y) has multiplicity n.
Turning back to our walk, take y = 0 in . Then, because po(z") = 0,

q/2

{4
0o
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and the eigenvalue closest to 1 occurs when s = 1 and S(y) has multiplicity n.
The dominant term in this sum is thus 2n(1 — (1 + 0(1))/n)€. This takes ¢ =
nlogn + Cn to get to e~C. We have not carried out further details but remark that
very similar sums are considered by Hough [45] where he finds a cutoff for the
walk on the cyclic group Z, by adding +2¢, for 0 < i < m = |logy p|, chosen
uniformly with probability ﬁ

6 SLs(p)

6.1 Introduction

This section treats a random walk on the irreducible modules for the group SL3(p)
over an algebraically closed field K of characteristic p. The walk is generated by re-
peatedly tensoring with the 3-dimensional natural module. The irreducible Brauer
characters and projective indecomposables are given by Humphreys in [48]]; the
theory is quite a bit more complicated than that of SLa(p).

The irreducible modules are indexed by pairs (a,b) with 0 < a,b < p — 1.
For example, (0, 0) is the trivial module, (1,0) is a natural 3-dimensional module,
and (p — 1,p — 1) is the Steinberg module of dimension p3. The Markov chain
is given by tensoring with (1,0). Here is a rough description of the walk; details
will follow. Away from the boundary, for 1 < a,b < p — 1, the walk is local, and
(a,b) transitions only to (¢ — 1,b + 1), (a + 1,b) or (a,b — 1). The transition
probabilities K((a, b), (a’,b")) show a drift towards the diagonal a = b, and on the
diagonal, a drift diagonally upward. Furthermore, there is a kind of discontinuity
at the line a +b = p — 1: for a + b < p — 2, the transition probabilities (away from
the boundary) are:

| (cd) | K((a,b), (¢, d)) |
(a—1,b+1) %( —a#“)(ljtw%)
(@+10) [ 3(1+5) (1+50) @D
(a,b—1) % (1 H%) (1 - a+11)+2>
whereas for a + b > p they are as follows, writing f(z,y) = %xy(w +v)
[ (cd) | K((a,b), (¢, d)) |
(a-1,0+1) | 3 (sl )
(a+10) | §(HeEi i) ¢
(0-1) |} (i featsiy)

38



The stationary distribution 7 can be found in Table[6.5] As a local walk with
a stationary distribution of polynomial growth, results of Diaconis-Saloffe-Coste
[28] show that (diameter)? steps are necessary and sufficient for convergence to
stationarity. The analytic expressions below confirm this (up to logarithmic terms).

Section [6.2] describes the p-regular classes and the irreducible and projective
indecomposable Brauer characters, following Humphreys [48], and also the de-
composition of tensor products (a,b) ® (1,0). These results are translated into
Markov chain language in Section [6.3] where a complete description of the tran-
sition kernel and stationary distribution appears, and the convergence analysis is
carried out.

6.2 p-modular representations of SL3(p)

For ease of presentation, we shall assume throughout that p is a prime congruent
to 2 modulo 3 (so that SL3(p) = PSL3(p)). For p = 1 mod 3, the theory is very
similar, with minor notational adjustments. The material here largely follows from
the information given in [48, Section 1].

(a) p-regular classes

Let G = SL3(p), of order p*(p® — 1)(p*® — 1), and assume x,y € G are fixed
elements of orders p? + p + 1, p? — 1, respectively. Let 1 be the 3 x 3 identity
matrix. Assume J and K are sets of representatives of the nontrivial orbits of the
pt"-power map on the cyclic groups (z) and (y), respectively. Also, for ¢,n € F¥,
let ¢, be the diagonal matrix diag(¢,n,¢ ~In=1) € G. Then the representatives
and centralizer orders of the p-regular classes of G are as follows:

representatives ‘ no. of classes ‘ centralizer order ‘
1 1 |G

r PPtp 2

zreJ 3 p°+p+1

ys c K p22—P p2 -1

2c (CEF, C#1) p-2  |pp*-1)(p-1)
—1 — .. 2 (p—3
2 (G, ¢ty distinet) | =320 (p—1)°

(b) Irreducible modules and dimensions

As mentioned above, the irreducible kKG-modules are indexed by pairs (a,b) for
0 < a,b < p— 1. Denote by V(a,b) or just (a,b) the corresponding irreducible
module. The dimension of V(a, b) is given in Table expressed in terms of the
function f(z,y) = Lzy(z +y).
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Table 6.1: Dimensions of irreducible SL3(p)-modules with f(z,y) = Lzy(z + y)

’ (a,b) ‘ dim(V(a,b)) ‘
(a,0), (0,a) fla+1,1)
(pilva)v (aapil) f(CLJrl,p)
(a,b),a+b<p—2 fla+1,b+1)

(a’b)aa‘+b2p_1a f(a—l—l,b—i—l)—f(p—a—l,p—b—l)
1<a,b<p-—2

The Steinberg module St = (p — 1, p — 1) has Brauer character

S

12" | y° | Zec | Zm
Stp?|1]-1] p | 1 6.3

(c) Projective indecomposables

Denote by p(, ;) the Brauer character of the projective indecomposable cover of
the irreducible (a, b). To describe these, we need to introduce some notation. For
any r, 7, £, m define

t=q +d +d where g = >/ P 1)
uj =g} + g where gy = 2™/ (7* 1), (6.4)
W=+ +a" " where g, = >/ 1),

Vem = qﬁ +q5" + q;{g*m where g3 = e2mi/(p=1)

Now for 0 < a,b < p — 1, define the function s(a, b) on the p-regular classes of
G as in Table Then the projective indecomposable characters p(, ) are as in
Table

Table displays the projective characters. There, St stands for the character
of the (irreducible and projective) Steinberg module (p — 1,p — 1) (see (6.3)) and
s(a, b) is the function in Table[6.2]

(d) 3-dimensional Brauer character

The Brauer character of the irreducible 3-dimensional representation « = x(1,¢) is:

1 z" ys chygk Z<€7<m

all 3]t | u | Vig Vim 6.5

where ( is a fixed element of F, ¢ # 1.
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Table 6.2: The function s(a, b)

| (1] o | Y’ [ oo | e (E£M)
(0,0) 1 1 1 1
S((l7 0) 3 tar u;zs Vak,ak Vat,am
a#0
s(0,b) || 3 topr u’p, V_bk,—bk V_be,—bm
b#0
S(CL, b) 6 tr(afbp) Us(a+b+bp) 2Vk(a+2b),k(a7b) Ve(a+b)+mb,—Lb+ma
ab 7é 0 +tr(apfb) +us(a7bp) +VZb+m(a+b),7£afmb
HUs(—a(1+p)-b)

(e) Tensor products with (1,0)

The basic rule for tensoring an irreducible SL3(p)-module (a, b) with (1,0) is
(a,0)® (1,0) = (a— 1,b+1)/(a+1,b)/(a,b— 1),

but there are many tweaks to this rule at the boundaries (i.e. when a or bis 0,1 or
p — 1), and also when a + b = p — 2. The complete information is given in Table

6.4

We shall need the following estimates.
Lemma 6.1. Let n > 7 be an integer; and let L := {2mj/n | j € Z}.
() If0 < x < /3 then sin(x) > x/2 and cos(x) < 1 — 2%/4.
(ii) Suppose x € L ~\ 2wZ. Then cos(x) < 1 — w2 /n?. Furthermore,

12 + cos(z)| <3 —7?/n?, |1 +2cos(z)| <3 —21%/n?.

(iii) Suppose that x,y,z € L withx +y + z € 2nZ but at least one of x,y, z is
not in 21Z. Then | cos(z) + cos(y) + cos(z)| < 3 — 212 /n?.

Proof. (i) Note that if f(z) := sin(x) — /2 then f'(z) = cos(x) —1/2 > 0 on
[0, 7/3], whence f(x) > f(0) = 0 on the same interval.

Next, for g(z) := (1 — 2%/4) — cos(x) we have ¢'(z) = f(z), whence g(z) >
g(0) =0for0 <z <m/3.

(ii) Replacing x by 27wk + x for a suitable k£ € Z, we may assume that 277 /n <
x < 7. If moreover x > 7/3, then cos(z) < 1/2 < 1 — w?/n? asn > 5. On
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Table 6.3: Projective indecomposable Brauer characters p(q ) for SL3 (p)

’ (a,b) ‘ P(a,b) ‘ dimension ‘
(p—1Lp-1) St p°
(p — 17 0) (S(p — 17 O) — S<O7 O)) St 2p3
(p—2,0) (s(p—1,1) —s(0,1))St 3p°
(0,0) (s(p—1,p—1) +s(1,1) +5(0,0) 7P’
—s(p—1,0) —s(0,p— 1)) St
(a,0) (s(p—1,p—a—1)+s(a+1,1) 9p3
0<a<p-—2 —s(0,p—a — 1)) St
(a,b), ab # 0 sp—b—1,p—a—1)St 6p°
a+b>p—2
(a,b), ab# 0 (s(p—b—1,p—a—1) 12p°
a+b<p—2 +s(a+1,b+1)) St

the other hand, if 27/n < 2 < 7/3, then by (i) we have cos(z) < 1 — 22/4 <
1 — % /n?, proving the first claim. Now

1<2+cos(z) <3—n%/n? —1<1+2cos(z) <3 —2n°%/n
establishing the second claim.

(iii) Subtracting multiples of 27 from z, y, z we may assume that 0 < z,y, z <
2 and x + y + « € {2, 47 }. If moreover some of them equal to 0, say =z = 0,

then 0 < y < 27 and
| cos(z) + cos(y) + cos(z)| = |1+ 2cos(y)| < 3 — 2n%/n?
by (ii). So we may assume 0 < = < y < z < 2. This implies by (ii) that
cos(x) + cos(y) + cos(z) < 3 — 372 /n?.
If moreover x < 27/3, then cos(z) > —1/2 and so
cos(x) + cos(y) + cos(z) > —5/2 > —(3 — 21%/n?) (6.6)

asn > 7, and we are done. Consider the remaining case x > 27/3; in particular,
x +y+ z = 4m. It follows that 47/3 < v < 2m, cos(z) > —1/2, whence (6.6)
holds and we are done again. O
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Table 6.4: Tensor products with (1,0)

| (a,b) \ (a,b) ® (1,0)
ab#0,a+b<p-—3 (a—1,6+1)/(a+1,b)/(a,b—1)
ora+b>p—1,2<a,b<p-—2
’ ab#0,a+b=p—2 \ (a—1,b+1)/(a+1,b)/(a,b—1)2
(a,0),a<p—2 (a—1,1)/(a+1,0)
(p—1,0) (r—2,1)*/(p —3,0)/(1,0)
(0,6),b<p-—3 (1,6)/(0,b—1)
(07]?—2) (1;]7_ 2)/(07]9_3)2
(0,p—1) (Lp—1)/(0,p—2)
(I,p—1) (L,p—2)*/(2,p —1)/(0,p —3)/(0,1)
(17])_2) (2,]7_ 2)/(0,])— 1)
(p—1,1) (p—2,2)°/(p—1,0)/(p —4,0)/(1,1)/(0,0)
(p_271) (p_3a2)/(p_171)
(p—1,0),2<b<p-3 (p—2,b+1)*/(p—1,0—-1)/(p—3—1,0)/
(1,0)/(0,6—1)
(a,p—1),2<a<p-—2 (a,p—2)%/(a+1,p—1)/(a—1,1)/
(a—2,0)/(0,p—a—2)
(p—1,p-2) (p—2,p—1)%/(0,p—3)*/(p—1,p—3)/(1,p—2)
(p—1,p—1) (r—Lp-27°/(p—-2,1)°/(1,p-1)/

(p — 37 0)4/(0717 — 2)

6.3 The Markov chain

Consider now the Markov chain on IBr(SL3(p)) given by tensoring with (1,0).
The transition matrix has entries

{(a’,¥), (a,b) ® (1,0)) dim(a’, t')

K((CL, b), (alv b/>) - 3dim(a, b) )

and from the information in Tables [6.1| and we see that away from the bound-
aries (i.e for a,b # 0,1,p — 1), the transition probabilities are as in (6.1)), (6.2).
The probabilities at the boundaries of course also follow but are less clean to write
down.

The stationary distribution 7 is given by Proposition [3.1{i), hence follows from
Tables [6.1] and [6.31 We have written this down in Table Notice that on the

43



diagonal

7 if a=0

12 1)3 'f1< <2
r(a,a) (P -1)(pP—1) = § 2O , i

6((a+1)*—(p—a—1)*) if &~ <a<p—1

p3 1fa— -1

In particular, 7(a, a) increases cubically on [0, pT] and on [Z5= —L p—1], and drops
quadratically from (p — 3)/2to (p — 1)/2.

Table 6.5: Stationary distribution for SL3(p) with f(z,y) = szy(z + y)

’ (aab) ‘ 71'((1, b) i (p3 — 1)(1)2 — 1) ‘
0,0 7
( _170)7 (0,]?—1) 2f(p>1)
(p_2a0)5(07P_2) 3f(p_151)
(a,0),(0,a) (0 <a<p-—2) 9f(a+1,1)

ab#0,a+b<p—2

12f(a+1,b+1)

ab#0,a+b=p—2

6f(a+1,b+1)

a,b£0orp—1land a+b>p—1

6(fla+1,b+1)—f(p—a—1,p—b—1))

(aap_ 1),(]9_ 15a> (a’ 7& Oap_ 1)

6f(a+1,p)

(p—1,p—1)

pS

From Proposition[3.1[(ii) and (6.5), we see in the notation of (6.4) that the eigen-

values are
/81 - 17
IBJTT - 1t’l”7
Bys = 3us, (6.7)
Bk ok = 3Vhks
'BZCZ,C’” = 3Vem
Now Proposition[3.1(v) gives
K“((0,0), (a, b P(a)(€)
ﬂ-(av ) #1 p(a )( )
where the sum is over representatives c of the nontrivial p-regular classes.
We shall show below (for p > 11) that
3
Bo<1-= (6.9)
p
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for all representatives ¢ # 1. Given this, implies

¢ 3 ¢
1 KE(0,0),) = 7() [l < p° (1 _ pz) |

This is small for ¢ of order p? log p. More delicate analysis allows the removal of
the log p term, but we will not pursue this further.

It remains to establish the bound (6.9)). First, if ¢ = Zek withl <k <p-2,

then we can apply Lemma ii) to 8. = %vkk In all other cases, 8. = (cos(x) +
cos(y) + cos(z))/3 with z,y, z € (2w /n)Z, x + y + z € 2nZ, and at least one of
x,y, z notin 2rZ, where n € {p — 1,p? — 1, p> + p+ 1}. Now the bound follows
by applying Lemma [6.1(ii).
Summary. In this section we have analyzed the Markov chain on IBr(SL3(p))
given by tensoring with the natural 3-dimensional module (1,0). We have com-
puted the transition probabilities (6.1)), (6.2), the stationary distribution (Table[6.5)),
and shown that order p? log p steps suffice for stationarity.

7 Quantum groups at roots of unity

7.1 Introduction

The tensor walks considered above can be studied in any context where ‘tensoring’
makes sense: tensor categories, Hopf algebras, or the Z; modules of [31]. Ques-
tions abound: Will the explicit spectral theory of Theorems and
[5.1] still hold? Can the rules for tensor products be found? Are there examples
that anyone (other than the authors) will care about? This section makes a start
on these problems by studying the tensor walk on the (restricted) quantum group
Ug (sl2) at a root of unity £ (described below). It turns out that there is a reason-
able spectral theory, though not as nice as the previous ones. The walks are not
diagonalizable and generalized spectral theory (Jordan blocks) must be used. This
answers a question of Grinberg, Huang, and Reiner [43], Question 3.12]. Some ten-
sor product decompositions are available using years of work by the representation
theory community, and the walks that emerge are of independent interest. Let us
begin with this last point.

Consider the Markov chain on the irreducible modules of SLa(p) studied in
Section[3.2] This chain arises in Pitman’s study of Gamblers’ Ruin and leads to his
2M — X theorem and a host of generalizations of current interest in both probability
and Lie theory. The nice spectral theory of Section 3 depends on p being a prime.
On the other hand, the chain makes perfect sense with p replaced by n. A special
case of the Markov chains studied in this section handles these examples.
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Example 7.1. Fix n odd, n > 3 and define a Markov chain on {0,1,...,n — 1}
by K(0,1) =1 and

1 1
K(a,a—l)z(l— > 1<a<n-2,
2 a+1
Kaa+1) == (14——) 0<a<n—2 (7.1)
’ 2 a+1 -~ ’
1
Kn—1,n—2)=1—— K(n—-1,0) = —.
m-1n-2=1-1  Kn-10=1

Thus, when n = 9, the transition matrix is

O O OO oD =
O O O Oww ORlw D N

o)

Il
0T W RO
Bvo o oo o orro O
OO O OoOSROooRDO O W
O O oo © O K
O Offcoso oo o w
opNogNoc oo oo o
SORroc 0o oo o
ohlvrococococococ o ®w

o
o

18

The entries have been left as un-reduced fractions to make the pattern readily ap-
parent. The first and last rows are different, but for the other rows, the sub-diagonal
entries have numerators 1,2, ...,n — 2 and denominators 4,6, ..., 2(n — 1). This
is a non-reversible chain. The theory developed below shows that

o the stationary distribution is

7)) =20 0<j<n-2, wn-1)=1 (7.2)

n? n?

o the eigenvalues for the transition matrix K are 1 and
Aj = cos (2%) L 1<) < (n-1)/2; (7.3)
e aright eigenvector corresponding to the eigenvalue J; is
Ry = [sin (22), bsin (422, ;Lysin (20507 ,or, (7.4)
where T denotes the transpose;
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e a left eigenvector corresponding to the eigenvalue \; is
Lj= [cos (%) ,2cos (%) yoooy(n—1)cos (W) ,%}; (7.5)

Note that the above accounts for only half of the spectrum. Each of the eigen-
values \j,1 < j < %(n — 1), is associated with a 2 x 2 Jordan block of the form

A1 e . . P
( 5 X > giving rise to a set of generalized eigenvectors R;, L; with

Lol U o l—15 . Il _ Lyt -1,
KR} = Xj R + €A, R; LK = ALy + OX; L (7.6)

for all £ > 1. The vectors R;. and L; can be determined explicitly from the expres-
sions for the generalized eigenvectors X} and Y} for M given in Proposition
Using these ingredients a reasonably sharp analysis of mixing times follows.

Our aim will be to show for the quantum group ug(sl2) at a primitive nth root
of unity & for n odd that the following result holds.

Theorem 7.2. For n odd, n > 3, tensoring with the two-dimensional irreducible
representation of ug(sly) yields the Markov chain K of with the stationary
distribution m in (1.2)). Moreover, there exist explicit continuous functions fi, fa
from [0,00) to [0,00) with f1(£/n?) < ||K® — 7||y, for all £, and ||K* — 7||,, <
f2(€/n?) for all £ > n?. Here fi(x) is monotone increasing and strictly positive
at x = 0, and fo(x) is positive, strictly decreasing, and tends to 0 as x tends to

infinity.

Section introduces ug(sly) and gives a description of its irreducible, Weyl,
and Verma modules. Section describes tensor products with the natural 2-
dimensional irreducible u(slz)-module V1, and Section [7.4 focuses on projective
indecomposable modules and the result of tensoring V; with the Steinberg mod-
ule. Analytic facts about the generalized eigenvectors of the related Markov chains,
along with a derivation of (7.I)-(7.5), are in Section[7.5] Theorem|[7.2]is proved in
Section Some further developments (e.g. results on tensoring with the Stein-
berg module) form the content of Section We will use [[18]] as our main refer-
ence in this section, but other incarnations of quantum SLs exist (see, for example,
Sec VL5 of [54] and the many references in Sec. V1.7 of that volume or Sections
6.4 and 11.1 of the book [19] by Chari and Pressley, which contains a wealth of
material on quantum groups and a host of related topics.) The graduate text [52] by
Jantzen is a wonderful introduction to basic material on quantum groups, but does
not treat the roots of unity case.
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7.2 Quantum sl; and its Weyl and Verma modules

Let & = e2mi/n ¢ C, where n is odd and n > 3. The quantum group (slp) is an
n3-dimensional Hopf algebra over C with generators e, f, k satisfying the relations

n=0, =0, K"=1

kek™' =&, kfkT =E72f, [efl=ef - fe=

k— k1
E-¢ v

The coproduct A, counit &, and antipode S of u¢(sly) are defined by their action
on the generators:

Ale)=e@k+1®e, A(f)=fR1+k'af, Ak =kek,
6(6):0:5(f)7 E(k)zlv S(e):_ek_17 S(f):_fk', S(k?):k‘_l

The coproduct is particularly relevant here, as it affords the action of u¢(slz) on
tensor products.

Chari and Premet have determined the indecomposable modules for ug(sly) in
[18]], where this algebra is denoted UT*?. We adopt results from their paper using
somewhat different notation and add material needed here on tensor products.

For r a nonnegative integer, the Weyl module V, has a basis {vg,v1,...,v,}
and ug(sly)-action is given by

kvj =& %v;,  evy=[r—j+1vim1,  fop=[+ v, (77

where vs = 0if s ¢ {0,1,...,r} and [m] = 55 f . In what follows, [0]! = 1
and [m]! = [m][m — 1] ---[2][1] for m > 1. The modules V, for0 < r <n —1
are irreducible and constitute a complete set of irreducible u¢ (slz)-modules up to
isomorphism.

For 0 < r < n — 1, the Verma module M,. is the quotient of u¢(sl>) by the left
ideal generated by e and k — £". It has dimension n and is indecomposable. Any
module generated by a vector vy with evg = 0 and kvy = £ vg is isomorphic to a
quotient of M. When 0 < r < n — 1, V, is the unique irreducible quotient of M,
and there is a non-split exact sequence

(0) = Vp—r—2 = M, =V, — (0). (7.8)

Whenr =n — 1, M,,_1 =2 V,,_1, the Steinberg module, which has dimension 7.

We consider the two-dimensional ug (sl2)-module V1, and to distinguish it from
the others, we use ug, u; for its basis. Then relative to that basis, the generators
e, f, k are represented by the following matrices

e—><8 (1)>, f—>((1) 8), k—><g 591>.
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7.3 Tensoring with V,

The following result describes the result of tensoring an irreducible u¢ (slz)-module
V, for r # n — 1 with V. In the next section, we describe the projective indecom-
posable u(slz)-modules and treat the case r = n — 1.

Proposition 7.3. Assume V1 = spang{ug,u1} and V, = spanc{vo,vi,..., v}
for0<r<n-—1

(i) The ug(sly)-submodule of V1 ® V, generated by ug & vg is isomorphic to
Vi,

() VoV =Vy,andVi @V, =2V, 11 V,_1whenl <r <n-—1

Proof. (i) Let wg = ug ® vg, and for j > 1 set
wj = Eup ® vj + U ® V-1

Note that w; = 0 when j > r + 1. Then it can be argued by induction on j that the
following hold:

ewp = 0, ewj=r+1—j+1wj1=[r+2-jlw_1 (j>1)

kw; = 120y, (7.9)
J
fwj = [j + 1Jw;41 (in particular, w; = f(u{o'}iavo) for0 <j<n-—1).
J1:
Thus, W := spanc{wp, w1, ..., wr4+1} is a submodule of V; ® V, isomorphic to

V1.
(i) Whenr < n — 1, W 2V, is irreducible. In this case, set

Yo 1= fruO X vy — [r]ul & g,

and let Y be the ug (sl2)-submodule of V; ® V,. generated by y. It is easy to check
that kyo = & 'yo and eyg = 0. As Y is a homomorphic image of the Verma
module M,._1, Y is isomorphic to either V,_; or M,_;. In either event, the only
possible candidates for vectors in Y sent to 0 by e have eigenvalue £"~! or £7~"~1
relative to k. Neither of those values can equal £"!, since ¢ is an odd root of 1 and
r # n — 1. Thus, Y cannot contain wy, and since W is irreducible, W N'Y = (0).
Then dim(W) 4+ dim(Y) = r + 2 + dim(Y) < 2(r + 1), forces Y = V,_; and
VioV, =2V, 1 &V, ]
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7.4 Projective indecomposable modules for u(sl;) and V; @ V,,_;.

Chari and Premet [18] have described the indecomposable projective covers P,
of the irreducible ug(sly)-modules V,. The Steinberg module V,,_; being both
irreducible and projective is its own cover, P,_; =V, _1. For0 < r <n — 1, the
following results are shown to hold for P, in [18| Prop., Sec. 3.8]:

1 if j=rorn—2-—r
i) [P, :M;] =
@ [P = Mj] {0 otherwise
(ii) dim(P,) = 2n.
(iii) The socle of P, (the sum of all its irreducible submodules) is isomorphic to V..

(iv) There is a non-split short exact sequence

(0) > Mp—p—2 = P, = M, — (0). (7.10)
Using these facts we prove

Proposition 7.4. For ug(sly) with & a primitive nth root of unity, n odd, n > 3,
V1 ® Vy,_1 is isomorphic to P,,_s. Thus,

Vi®Vp_1:Vpo] =2=[VI ®V,_1: V.

Proof. We know from the above calculations that V1 ® V,,_1 contains a submodule
W which is isomorphic to V,, and has a basis wq, w1, . .., w, with wg = ug ® vy
and

wj 1= f_qu R V; + U Q V-1 for 1 <j <n.

It is a consequence of (7.9) that
ew; =n—142—1wy=0, fwy=w,
fwn—1 =[nlw, =0, ew,=[n—14+2—nlw,—1 =wp_1.
It is helpful to visualize the submodule W as follows, where the images under e

and f are up to scalar multiples:

e f
0«—wo Wp— ()

e e f e f e f Z
W1 —> W —> s e/ Wp2——Wn—1]

Figure 4: The submodule W of V| ® V,,_;
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Now since ew; = 0 and kw; = £" 2wy, there is a ug (slz)-module homomor-
phism V,,_o — W' := spang{wy, ..., w,— 1} mapplng the basis g, U1, .. ., Un—2
of V,,_9 according to the rule 7y — w1, 0; = m 0 f[ 1]‘? e W'. AsV,,_q is irre-
ducible, this is an isomorphism. From the above considerations, we see that W /W’
is isomorphic to a direct sum of two copies of the one-dimensional u¢ (slz)-module
Vo. (In fact, spang{wi, ..., wp_1,w,} = My.)

Because V,,_1 is projective, the tensor product V; ® V,,_; decomposes into a
direct sum of projective indecomposable summands P,.. But V; ® V,,_; contains a
copy of the irreducible module V,,_2, so one of those summands must be P,,_5 (the
unique projective indecomposable module with an irreducible submodule V,,_5).
Since dim(P,_2) = 2n = dim(V; ® V,,_1), it must be that V1 @ V,,_1 = P,,_o.
The assertion [V1 ® Vy,—1 : Vo] =2 = [V1 ® V.1 : V] follows directly from
the short exact sequence (0) — Mg — P,,—o — M,,_2 — (0) (as in (7.10) with
r = n — 2) and the fact that [M; : Vo] =1 = [M; : V,, 5] for j =0,n — 2. O

In Figure 5, we display the tensor chain graph resulting from Propositions
and

Figure 5: Tensor walk on irreducibles of ug(slz)

Remarks 7.5. (i) Proposition shows that V; ® V,,—1 = P,,_5. Had we been
interested only in proving that [V, ® V,,—1 : Vo] = 2 = [V1 @ V1 @ V2],
we could have avoided using projective covers by arguing that the vector xg =
ug ® vy & W is such that kxg = £" 21 and exg = —wp. Thus, (V1 ® V,,_1) /W
is a homomorphic image of M,,_o, but since (V; ® V,,_1) /W has dimension n—1,
(Vi ®Vp—1) /W = V,,_o. From that fact and the structure of W, we can deduce
that [V; ® V-1 @ Vo] = 2 = [V1 ® Vj,—1 : Vy,—2]. The projective covers will
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reappear in Section when we consider tensoring with the Steinberg module
Vo1

(ii) The probabilistic description of the Markov chain in will follow from
these two propositions. It is interesting to note that even when n = p a prime, the
tensor chain for u¢(sly) is slightly different and the spectral analysis more compli-
cated (as will be apparent in the next section) from that of SLy(p). In the group case
(see Table [3.2.2), when tensoring the natural two-dimensional module V(1) with
the Steinberg module V(p — 1), the module V(1) occurs with multiplicity 1 and
V(p — 2) with multiplicity 2. But in the quantum case, V; ® V,,_; has composition
factors Vo, V2, each with multiplicity 2 by Proposition

(iii) The quantum considerations above most closely resemble tensor chains for
the Lie algebra sls over an algebraically closed field k of characteristic p > 3. The
restricted irreducible sly-representations are Vo, V1, ...,V,_1 where dim(V;) =
J+1. The tensor products of them with V; exactly follow the results in Proposition
[7.3]and [7.4| with n = p. (For further details, consult ([68], [7], [74], and [69]).

7.5 Generalized spectral analysis

Consider the matrix K in (7.I). As a stochastic matrix, K has [1,1,..., 1]Tas a
right eigenvector with eigenvalue 1. It is easy to verify by induction on n that
7= [m(0),7(1),...,m(n—1)], where 7(7) is as in (7.2) is a left eigenvector with
eigenvalue 1. In this section, we determine the other eigenvectors of K. A small
example will serve as motivation for the calculations to follow.

Example 7.6. Forn = 3,

e the transition matrix is

K=

whho O =

0
1
1
1
3

and the stationary distribution is w(j) = =5~ (j = 0,1), 7(2) = % SO
that

e the eigenvalues are \; = cos(%)7 0 < 5 <1, with A\ occurring in a block
of size 2, so
(Aos A1) = (L, —3);
e the right eigenvectors Ry, Ry in (7.4) are
T
Ro = [17 L, 1}T> Ry = [Sin(Zﬂ—) 3 sin(%ﬂ),O]T = [@7 _§70] )

32
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e the generalized right eigenvector R for the eigenvalue —1/2 is

T
3 2 .
Rll = [Oa%viﬁ} ’

o the left eigenvectors Ly, Ly in (1.5) are

Lo =, Ly = [cos(3F),2cos(4F), 3] = [-3,-1,3];
e the generalized left eigenvector L for the eigenvalue —1/2 is

L =[-2,2,0].

Note that LiRy = 0, LR} = L/Ry( = —%) in accordance with Lemma
below.

Now in the general case, we know that K has [1,1,...,1]T as a right eigen-
vector and 7 = [7(0),7(1),...,m(n — 1)] as a left eigenvector corresponding
to the eigenvalue 1. Next, we determine the other eigenvalues and eigenvectors
of K. To accomplish this, conjugate the matrix K with the diagonal matrix D
having 1,2,...,n down the diagonal (the dimensions of the irreducible u(sl>)-
representations), and multiply by 2 (the dimension of V;) to get

o1 0 O ... 00O
10 1 0 ... 000
01 0 1 ... 000
2DKD71:M: . : ‘. . .ol . . , (711)
0 0 ... 1 0 10O
0 O 0 1 010
0 0 ... 0 0 101
2 0 ... 0 0 020

a matrix that, except for the bottom row, has ones on its sub and super diagonals
and zeros elsewhere. The bottom row has a 2 as its (n,1) and (n,n — 1) entries
and zeros everywhere else. In fact, M is precisely the McKay matrix of the Markov
chain determined by tensoring with V in the u¢(sly) case as in Propositions
and A cofactor (Laplace) expansion shows that this last matrix has the same
characteristic polynomial as the circulant matrix with first row [0,1,0, ..., 0, 1],
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that is

1 0 0 01
1 0 1 0 00
01 0 1 . 000
. : . Lo (712)
0 0 1 0 100
0 O 0 1 010
0 0 0 0 1 01
1 0 0 0 010

As is well known [23]], this circulant matrix has eigenvalues 2 COS(%), 0<5<
n — 1. Dividing by 2 gives (7.3).

Determining the eigenvectors in (7.4)- are straightforward exercises, but
here are a few details. Rather than working with K, we first identify (generalized)
eigenvectors for M (see Corollary . Since M = 2DKD™!, a right eigenvec-
tor v (resp. left eigenvector w) of M with eigenvalue A yields a right eigenvector
D~'v (resp. left eigenvector wD) for K with eigenvalue %/\, just as in Lemma
Similarly, if v, w’ are generalized eigenvectors for M with Mv' = Av' 4+ v and
w'M = Aw'+w, then KD~ 1’ = IAD~1/+3ID lvand w'DK = 1A w'D+3wD.

Proposition 7.7. For the matrix M defined in (/.11), corresponding to its eigen-

value 2cos(3) = ¢/ 4679, j=1,2,...,m = 2(n — 1), we have the following:

n

(a) Let X; = [x;(0), x;(1),...,Xj(n— 1)]%, where Xj(a) = £(@+1)i — ¢=(at1)j
for0<a<n-—1 Then
X = [gj _ 57j7€2j _ 5—2;'7 o 7§(n71)j . gf(nfl)j70]T’ (7.13)

and X;j is a right eigenvector for M.

(b) Let Y; = [Y;(0), Y;(1), ..., Yj(n—1)]T, where Yj(a) = (@i 4 ¢=(at1)j
for0<a<n-—2andYj(n—1) =1 Then

Yj= [0 467,65 4 eI 4 gm(nmli ) (7.14)
and Y; is a left eigenvector for M.
(c) Setn, = e — €730 for 0 < a < n — 1, so that ng = 0, and Nn—a = —MNa
fora=1,...,m. The vector X = [X;(0), X;(1), ..., Xj(n — 1)]" with
Xj(a) = ang+(a=2)ng—2+ -+ (a =2[§]) naga).  (7.15)
Jor 0 < a <n —1 satisfies

MX; = 2cos(2Z1)X) + X; = (& + £77)X, + X;. (7.16)
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(d) Letyo = 1, and for 1 < a < n —1, set v, = &% + £79% Let 6o = 1, and
for1l <b<m, set

0 = V-1 +M-3+ " T Wpor-g bzt (7.17)

(n —1)], where

(a4+1—n)dgt1 fo<a<m-—1,
(n—1—a)dp—1-4 if m<a<n-1,

then

Y; = [(1 =n)d1, (2= n)d2, ..., (m —=n)dp | M, (M —1)dp1, ..., 01, 0]

(7.18)
21y
and Y;M = 2 cos(52)Y; + Y.

Proof. (a) Recall that the eigenvalues of M are 2 cos(%) = &I+, so there are

only %(n + 1) distinct eigenvalues (including the eigenvalue 1). For showing that

X; is aright eigenvector of M for j = 1,...,m = 3(n—1), note that % — ¢~% =

(&9 4+ €77) (&7 — £77). This confirms that multiplying row 0 of M by the vector X;

in (7.13) correctly gives (&7 + £77)x;(0). Forrows a = 1,2,...,n — 2, use

glami _g=(a=)j 4 glatl)j _ e=(atl)j — (&d 4 ¢77)(£9 — =),
Lastly, for row n — 1 we have
267 —2¢77 42617 _9¢=(n=i — 9¢7 _9e7T 49677 —2¢7 = 0 = (&0 +£77)-0.

(b) The argument for the left eigenvectors is completely analogous. Multiply the
vector Yj in on the right by column 0 of M. The resultis €%/ + ¢=% +2 =
(& +&77)(& +€77), whichis (¢ +£77)Y;(0). Fora =1,2,...,n—2, entry a of
(EF4HE7)Y;is €9 69 +£(0t2)i e (a+2)) — (&7 g7 (glatD)i g—(at1)]) =
(&7 + £79)Y;(a). Finally, entry n — 1 of (&7 + £77)y; is €17 4 ¢=(=1J =
(& +&7) 1= (g +&7)y(n—1).

(c) The vector X; = [X}(0), X}(1),...,xj(n — 1)]" in this part has components
given in terms of the values 1, = /% — 7% for 0 < a < n — 1 in (7.13). For
example, whenn = 7and 1 < j < 3,

X = [0, m1, 202, 303+ 01, 4ng + 202, 505 + 303 + 1, 61 + A + 210] "
To verify that I\/IX;. =2 COS(%)X} + Xj, use the fact that n,_, = —n, and
2c08(Z )1 = (&0 4+ € )a = N1 + Mas1 foralll <a<n—1. (7.19)
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In this notation, X; = [11,72,...,7n—1,0]" and X,,_; = —X;. Checking that (c)
holds just amounts to computing both sides and using (7.19). Thus, span¢{X, X;}
for j = 1,...,m forms a two-dimensional generalized eigenspace corresponding
to a 2 x 2 Jordan block with & + 77 =2 COS(%) on the diagonal.

(d)Sety, = &%+ ¢ I%fora =1,2,...,n— 1. Theny; = 2COS(27U) and
'y% =y + 27 Y1Ya = Ya+1 + Ya—1 fora > 2. (720)

From , a left eigenvector of M corresponding to the eigenvalue 2 cos(2%Z)
is Y, = [71,72, ey Yms Yms> Ym—1, - - > V1, 1]. We want to demonstrate that the
vector Y; in satisfies Y; M = 2cos(2%)Y3 + Y;. An example to keep in
mind is the following one for n = 9 (a vertical line is included only to make the
pattern more evident):

Y} = [_8? —771’ _6(72 + ]-)7 _5(73 + ’Yl) | 4(’73 + 71), 3(’7/2 + 1)a 271’ 170]

More generally, assume g = 1,and forb =1,2,...,m, letdp = y_1+7p-3+
R SR in (7.17). Thus, 61 =y =1, d2 =71, 03 =72+ =
Yo+ 1,04 = v3+ 1, 05 = v4 + 2 + 1, etc. Recall from (7.18) that

Y; = [(1 =n)d1, (2 —n)d2,...,(Mm —n)dm | Mm, (M — 1)0p—1, ...,01, 0]

Verifying that Y; M= ’le; + Y; uses (/.20) and the fact that

1+71+72+...+7m:0_ O

Assume now that D is the n x n diagonal matrix D = diag{1,2,...,n} having
the dimensions of the simple u¢(sl2)-modules down its diagonal. We know that 1 is
an eigenvalue of the matrix K with right eigenvector [1, 1, .. .,1]T and correspond-
ing left eigenvector the stationary distribution vector 7 = [7(0),...,m(n — 1)].
As a consequence of Proposition (7.7|and the relation K = %D_l MD, we have the
following result.

Corollary 7.8. Suppose ; = %forj =1,...,m=3%i(n—1)andi= /-1 Set

— 1p-1y. R /_1 1 L 1
R; = 5:D7'Xxj, Lj=5Y,D  R;=5D7X), L; = 3Y;D,

where X;, Yj, X’ and Y;, are as in Proposition Then corresponding to the
eigenvalue COS(ZW ),
(a) R; = [sin(0;), 3 sin(26;),..., 25 sin((n — 1)6;),0]" is a right eigenvector
for K;



(b) L;j = [cos(f}),2cos(20;),...,(n—1)cos((n—1)8;), 5] is a left eigenvector
for K;

(©) ifR;‘: [R;(0), R (1),...,Rj(n — )], where Ri(a) = mx;(a) =

BEICEs)) X (a) and X;(a) is the ath coordinate of X; given in (7T.13)), then

/ 279\ ! .
KR = cos(Z})R} + R;

n
(@) if L = [L5(0),L5(1), ..., L(n — V)], where L;(a) = atl Y}(a) and Y (a)
is the ath coordinate of Y} given in (T.18), then L'K = COS(Q%)L;- +L;.

For the results in the next section, we will need to know various products such
as L; R; and L;- R;. These two expressions are equal, as the following simple lemma
explains. Compare (8.5).

Lemma 7.9. Let A be an n X n matrix over some field K. Assume L (resp. R) is a
left (resp. right) eigenvector of A corresponding to an eigenvalue \. Let L' (resp.
R')beal x n(resp. n x 1) matrix over K such that

UA=X'+L and AR =\R +R
so that L' and R’ are generalized eigenvectors corresponding to \. Then
LR = 'R
Proof. This is apparent from computing L'AR’ two different ways:
L'AR = (LA)R = (A\L' + L)R = \L'R + LR
=L'(AR) =L'(A\R + R) = A\L'R + L'R. O
To undertake a detailed analysis of convergence, the inner products d; =
LjR; = LjRjand d; = LR}, 1 < j < (n — 1)/2 are needed. We were

/
J 77
surprised to see that d; came out so neatly.

Lemma 7.10. For L; and R; as in Corollary

n—1 .

4 n+1 2mj

d =L (k)Rj(k) = — - here 0; = =2
’ — Lj(k)R; (k) 32 <sin(«9j) sin3(9j)> R C A

Proof. Recall that L;- = %Y;D and R; = %Dflxj, where i = /—1, D is the

diagonal n X n matrix with 1,2, ..., n down its main diagonal, and ij and X; are
as in Proposition Therefore

1 1 1
dj :L;-Rj = <2Y3D> <22D 1Xj> = ZiY;Xj,
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so it suffices to compute Y} X; = S, Y (k) X; (k).
With m = $(n — 1) and £ = e’n", we have from and Corollary 7.8 that

Y. = [(1 = n)d1, (2 —n)da, ..., (m —n)dm | M&m, (m — 1)6m_1, ..., 01, 0]

J

with 0, = Vo1 +Yp—3+ - +’yb_1_2Lb_T1J and y, = &% 4 ¢ = 2005(%);

T
X] = [7717772a"'777m7_77m7"'a_n1’0] )
. . . 27 jb _ 2migb
withy, = &% — ¢ =™ —e " = —p .

Thenng =nn =0, YoM = Natb + Mp—g for 1 < b < 'm, and

m m
Vix; = =n > by = =n Y (o1 s ey )
b=1 b=1

=-—n(mn+(m—1n3+- -+ 2m2m-3 + N2m—1)
= —2ni (m sin(6;) + (m — 1) sin(36;) + ---
+ 2sin((2m — 3)0;) + sin((2m — 1)@)).

The argument continues by summing the (almost) geometric series using

Smer-aet = @y
a=1

As a result,
Y, x; = —n{@fw(@— 1) = (m+ 1) - 1))

-1
~ (e 1))}

= €122 1) {5(5_2 - 1)((5 —1)— (m+1)(& - 1))

—e@-n(Et - - e - 1>)}

= m —n(% ))2 {2i<sin(39j) — 3sin(9j)> + 4i(m+ 1) sin(ﬂj)}
— cos(26;

B 2(1 - cos(29j))2 { sin(36;) + (2m — 1) sin(ej)}_
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Now use cos(26;) = 1 — 2sin?(6;) and sin(36;) = 3sin(d;) — 4sin®(6;), to get

vox, = i ntl and d; = [ Rj = —- i ntl
77778 1sin(8;)  sin®(6;) 7T 32 sin(0;)  sin®(6;)

O

Remark 7.11. We have not been as successful at understanding d;». This is less
crucial, as d; appears in the numerator of various terms, so upper bounds suffice.
We content ourselves with the following.

Proposition 7.12. For L; and R} defined in Corollary the inner product d;; =
LiR’; satisfies |d| < An® for a universal positive constant A independent of j.

Proof. Since d;- = % Ygxg, we can work instead with the vectors

Y; = [(1=n)d1, (2 —=n)d2, ..., (m —n)dm, My, (M — 1)0m_1, ..., 01, 0]

X; = [0,7m1,2n2,3n3 + 1, 4na +2n2,. ., (0= 1)1 + (0 = 3)0n—3 + ... + 2m].

Since |d,| < 2a and [n,| < 1, the inner product d’; is bounded above by

4<§:(n—a)a-a2+§:b2(n—b)2> < A'nd. O

a=1 b=1

7.6 Proof of Theorem
We need to prove that
fil/n®) S| KE =7 |y < falt/n?). (7.21)

For the lower bound, a first step analysis for the Markov chain K(4, j), started at 0,
shows that it has high probability of not hitting (n — 1)/2 after £ = cn? steps for
C small. On the other hand,

S(C—

H KE -7 HTVZ fl(g/nz)

This shows
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for fi(z) strictly positive as x tends to 0. See [53] for background on first step
analysis.

Note: Curiously, the ‘usual lower bound argument’ applied in all of our pre-
vious theorems breaks down in the SL, quantum case. Here the largest eigenvalue
# 1 for K is cos(2X) and Ry (z) = f(z) is an eigenfunction with ||f||oc < 1.
Thus,

K5 = ()1 = cos (27 £(0)
Alas, f(0) = sin(2X) ~ 22 50 this bound is useless.

From Appendix I (Sectlon [)), for any y we have from equation (8.7),

¢ X
K;(Z;)y) —1= ﬂ(ly) (a1L1(y) + i Ly (y) + - + amLmn(y) + al L1y (y)
a 22)

with 7(y), L;, L; given in (7:2), Corollary [7.8] (b),(d), respectively, and with a;
given in (8.10) by the expressions

)\?Rj(()) - )\g Sin(ﬁj)

[

T d dj

Q:A?RM LA _Xsin@y) (0 4

! d; Ajdj d; Ajoodi)’
where 6 and/\ = cos(#;).

Now from Lemma 7.10}

2isin(6;) _ 16sin;1(9j) (1 L0 <1>>
d; n n

with the error uniform in j. Therefore,

16 sin* (6; 1
a; = cosg(ﬁj)SI:;(J) (1 +0 (n))

0; = cos'(0)) 16 si;l;"(Hj) (Cosfej) +0(n sin3(9j))> <1 +0 <71L>>

Consider first the case that y = 0. Then L;(0) = cos(0;), L;(0) = n — 1, and

7m(0) = %. The terms ( )a L. (O) can be bounded using the inequalities
cos(z) <e2 (0<z< g), |sin(z)| < |2|,
n2 Lm/2] 035 ( )t lm/2] .y
4 _ n3 g
2" 1605 = Z jle %z,
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Writing € = n? and f(C) = 3.°°, j*e~C™)* observe that f(C) tends to 0 as C

j=1
increases, and the sum of the paired terms up to |m/2] is at most 8(272%. The
terms from |m/2] + 1 to m are dealt with below.
The unprimed terms can be similarly bounded by
9 Lm=1)/2] 4
n _p2¢ (16 (27)) 3
— — ) (¢ .
5 A e iz ( p; ( +O0(y ))
7j=1
Again when ¢ = Cn2, this is at most a constant times f%C)’ with
oo o
fi(c) = Zj e—C2m5)?/2)
j=1
For the sum from |m/2] to m use cos(m + z) = — cos(z) and |sin(7 + z)| =
|sin(z)| to write cos (W) = —cos(%(j — 3)), and sin (@) =

sin(2%(j — 4)). With trivial modification, the same bounds now hold for the upper
Kfr((%,)o J_1<f (C) when £ = cn? for an explicit
f(C) going to 0 from above as C increases to infinity.

Consider next the case thaty = n — 1. Thent(n — 1) = 1, L/ (n — 1) = 0

n’

tail sum. Combining bounds gives

(Hooray!) Lj(n—1)=1forj =1,...,m. Essentially the same arguments show
that order n? steps suffice. The argument for intermediate ¥ is similar and further
details are omitted. O

7.7 Tensoring with V,,_,

This section examines the tensor walk obtained by tensoring irreducible modules
for ug(sly) with the Steinberg module V,,_;. The short exact sequences and
imply that the projective indecomposable module P, 0 < r < n — 2, has
the following structure P, /M, _5_, = M,, where M;/V,_o_; = V, for j =
r,n —2 —r. Thus, [P, : V;] = Ounless j = r or j = p — 2 — r, in which case
[Pr : Vj] = 2.

In [[7], tensor products of irreducible modules and their projective covers are
considered for the Lie algebra sly over a field of characteristic p > 3. Identical
arguments can be applied in the quantum case; we omit the details. The rules for
tensoring with the Steinberg module V,,_ for ug(sly) are displayed below, and the
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ones for sl can be read from these by specializing n to p.
Vo®@Vp1=Vy

Pr—3®Vn_1 if r is even,
Pn—2 if 7 is odd.
(7.23)

Vr & Vn—l = Pn—l—r @ Pn+1—r G- {

The expression for V, ® V,,_1 holds when 1 < r < n — 1, and the subscripts on
the terms in that line go up by 2. The right-hand side of when r = 1 says
that Vi ® V,,_1 = P,,_s (compare Proposition .

The McKay matrix M for the tensor chain is displayed below for n = 3,5, 7.

000 0O0O01
0 00 01 200 0020
0 01 200 20 0200201
2 20 02 2 01 202 20 20
2 21 2 22 20 0 22 2 201
2 2 2 21 222 2 2 20
2 2 2 2 2 21
The following results hold for all odd n > 3:
e The vector ry := [1,2,3,...,n — 1,n]T of dimensions of the irreducible
modules is a right eigenvector corresponding to the eigenvalue n.
e The vector ¢y := [2,2,2,...,2,1] of dimensions of the projective covers

(times %) is a left eigenvector corresponding to the eigenvalue n.

e The 5 vectors displayed in are right eigenvectors of M correspond-
ing to the eigenvalue 0:
r =[1,0,0, ... 0,0,—1,0]"
ro =[0,1,0, ... 0,—1,0,0]"

~ ~~ (7.24)
J n—2—j
fna1=[0,0,..., 1,—1 0,...0"
2 N——
n—3 n—1



(Recall that the rows and columns of M are numbered 0, 1,...,n — 1 corre-
sponding to the labels of the irreducible modules.) That the vectors in ((7.24))
are right eigenvectors for the eigenvalue O can be seen from a direct com-
putation, and it also follows from the structure of the projective covers and
(7.23). Indeed, if P; is a summand of V; ® V,,_q for j = 0,1,..., ”7_3
then since [P; : V;] = 2 = [P; : V,,_o_;], there is a 2 as the (¢,j) and
(i,m — 2 — j) entries of row i. Therefore, Mr; 1 = 0.

e Whenn = 3andr;’ = [—1,—1,4]%, then Mr| = 4ry. Therefore, rq, %r’l give

a2 x 2 Jordan block J = < > corresponding to the eigenvalue 0, and M

0 1
00
is conjugate to the matrix

o O W
S O O
—

e When n > 3, define

ri =[0,0,0, ..., 0,—1,0,2]T
rh =[0,0,...0,—1,0,1,0]"

oy =1[0,0,..., —1,0, 1 ,0,...0]".
2 V
n<2|»1

n—3

2

The vectors r;, %r; correspond to the 2 x 2 Jordan block J above. Using the

basis rg, rq, %r’l, cey o1, %r’n,l, we see that M is conjugate to the matrix
2 =
n 0 0
0 J o0 0
0 0 J O 0
0 0 0
0 0 J
e The characteristic polynomial of M is 2™ — nz" "1 = 2"~ 1(z — n).
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e The vectors ¢; for j = 1,2,..., 25 displayed in are left eigenvectors
for M corresponding to the eigenvalue 0, where

(1 =1[1,0,0, ..., 0,0,1,—1]
ly=1[0,1,0, ..., 0,1,0,—1]
¢;=10,...,0,.1 ,0...,0, 1 ,0,...,0,—1],
i=l ~~ ~~ ] (7.26)
j—1 n—1—j
(o =1[0,0,..., 1,1 ,0,...,—1]
2 ~~
n=3 n—1
2 7 2
e Let
Ellz[_zlaoa ) 070]
¢y =1[-3,0,1,0, ..., 0,0,0]
¢y =[-2,-1,0,1,0,...,0,0,0]
05 =1-2,0,...,0, =1,0, 1 _,0,...0] forj=3,...,25% (7.27)
7j—2 J
' =10,0, ..., 1,01 ,0,...,—1].
’ n—>5 n=1
2 2

(The underbrace in these definitions indicates the slot position.) Then
(36)M=t;forj=1,2,..., %%

We have not carried out the convergence analysis for the Markov chain coming

from tensoring with the Steinberg module for u¢(sly) but guess that a bounded
number of steps will be necessary and sufficient for total variation convergence.

8 Appendix I. Background on Markov chains

Markov chains are a classical topic of elementary probability theory and are treated
in many introductory accounts. We recommend [33]], [55]], [53]], [S9] for introduc-
tions.

64



Let X be a finite set. A matrix with K(z,y) > 0 for all z,y € X, and
> yex K(z,y) = 1 for all z € X gives a Markov chain on X: From z, the
probability of moving to y in one step is K(z,y). Then inductively, K¢(z,y) =
>, K(z, 2)K1(2, y) is the probability of moving from z to y in £ steps. Say K has
stationary distribution T if w(y) > 0, 35 cxm(y) = Land 3 oy m(2)K(z,y) =
m(y) for all y € X. Thus, 7 is a left eigenvector with eigenvalue 1 and having
coordinates 7(y),y € X. Under mild conditions, the Perron-Frobenius Theorem

says that Markov chains are ergodic, that is to say they have unique stationary
{—00

distributions and K*(z,y) —= 7(y) for all starting states .
The rate of convergence is measured in various metrics. Suppose K = Kf(z, -).
Then

IKE — |y, = maxyy ¢ ¢ K, W) = w(0)| = 5 S IK ) — ()
yex
1 .

= §SUP||fHoog1|Ké(f)(fU) —m(f)] with |[f[lec = max, f(y),

(8.1)
where K¢(f)(x) :Z Kz, ) f(y), m(f) = Zﬂ(y)f(y) for a test function f, and

yeX yeX
K'(z,y) ‘
K. — 7||oo = max 2. (8.2)
Clearly, [[K — 7y = § 37 e[S 1‘ < Y|KE = /| oo Throughout,

this is the route taken to determine upper bounds, whlle B1) gives ||KE — 7|5, >
$IKE(f)(z) — m(f)| for any test function f with || f||oc < 1 (usually f is taken as
the eigenfunction for the second largest eigenvalue).

The /. distance satisfies a useful monotonicity property, namely,

| K¢ =7 ||oo is monotone non-increasing. (8.3)

Indeed, fix x € X and consider the Markov chain K(x, y) with stationary distribu-

tion 7(y). s0 K (1, ) = Y. K1, 2)K (2, 9). As (y) = X, m(2)K (2, ),
we have by (8.2) for any y € X that
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K (2,y) — w(y)| =

5 (K e2) = 7)) Kewn)|

z€X

<Z‘K€ Yz, 2) —7(z )‘K(z Y)
zeX

SRS =7 oo - Y w(2)K (2, y)

zeX
= || K™ =7 [l m(y).

Now ({8.3) follows by taking the supremum over y € X and applying (8.2) again.

Suppose now that K is the Markov chain on the irreducible characters Irr(G)
of a finite group G using the character . The matrix K has eigenvalues 3, =
a(c)/a(1), where c is a representative for a conjugacy class of G, and there is
an orthonormal basis of (right) eigenfunctions f. € L?(7) (see [34, Prop. 2.3])
defined by

1)z x(e)

where || is the size of the class of c. Using these ingredients, we have as in [39,
Lemma 2.2],

=B fex) felo) (o)

L
_ Z (oc(C)) (6 X(©) 2(©) 0(1)? 84
a(l x(1) o(1) 6| '
— G
| g Z )1c%Ix(e)elc)

In particular, K¢(1, o) = a(@ﬁ?q S a(c)f|c%] o(c), for the trivial character 1 of
G.

An alternate general formula can be found, for example, in [37, Lemma 3.2]:

K(1,0) = £ o)

where (o', o) is the multiplicity of g in a.

The binary dihedral case - proof of Theorem [2.3]

To illustrate these formulas, here is a proof of Theorem Recall that K is the
Markov chain on the binary dihedral graph in Figure starting at O and ten-
soring with x1, and K = %K + %I is the corresponding lazy walk. For the
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lower bound, we use (8-1) to see that ||[K‘ — 7||;, > 3|KE(f)(1) — 7(f)| with
f(x) = x(c)/x(1) for some conjugacy class representative ¢ # 1 in BD,,. Clearly,
|f]loc < 1, and from Theorem [L.1] or (8:4) above, we have f is the right eigen-

function for the lazy Markov chain K with eigenvalue % + %COS (2%) Since

f is orthogonal to the constant functions, 7(f) = 0, so the lower bound be-
comes ||[K — 7[|,, > (3 + 4 cos (27”))[ Since cos () > 1 — 27%22 +o (#),

K= 7|4y > Be~ 2t/ for

K 272 1 ¢
1K= 7|y > (1 - 4o (F)) and the result,
some positive constant B holds all £ > 1.
For the upper bound, and the character values from Table[2.1|give explicit
formulas for the transition probabilities. For example, for 1 <r <n — 1,

KC(L, x) /11 275\ \ " 27
777()(7“) —1= 42:: (2 + icos <n)> cos (n) .

Now standard bounds for the simple random walk show that the right side is at
most B'e~27¢/"* for some positive constant B’, for details see [23, Chap. 3]. The
same argument works for the one-dimensional characters \i/, Ao/, Az, Ay, yielding
| KE = 7 [|oo< B'e~274/"* and proving the upper bound in Theorem O

Generalized spectral analysis using Jordan blocks

The present paper uses the Jordan block decomposition of the matrix K in the
quantum Sl case to give a generalized spectral analysis. We have not seen this
classical tool of matrix theory used in quite the same way and pause here to include
some details.

For K as above, the Jordan decomposition provides an invertible matrix A such
that A='KA = J, with J a block diagonal matrix with blocks

A1 0 ... 00
0o X 1 0 0
B=B()) =
0 1 0
0 0 A1
0 0 0 0 X

of various sizes. If B is h x h, then
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XX (MR (A

_ VA _
0 Aot (,F ) Nh+2
B! =
0 0
0 0 2\ L
0 0 0 0 A\

Since KA = A J, we may think of A as a matrix of generalized right eigen-
vectors for K. Each block of J contributes one actual eigenvector. Since A~1K =
JA~!, then A—! may be regarded as a matrix of generalized left eigenvectors. De-
note the rows of A=! by bg, by, .. ., bjx|—1 and the columns of Aby ¢, c1, . . ., x| —1-
Then from A=A = 1, it follows that ) . bi(z)c;j(z) = &;;. Throughout, we
take bo(z) = w(x) and co(z) = 1 for all z € X. For an ergodic Markov chain,
(the only kind considered in this paper), the Jordan block corresponding to the
eigenvalue 1is a1 x 1 matrix with entry |X|.

In the next result, we consider a special type of Jordan decomposition, where
one block has size one, and the rest have size two. Of course, the motivation for
this special decomposition comes from the quantum case in Section

Proposition 8.1. Suppose A"'KA = J, where

1 0 0 0
0 B(\) 0 0
0 0 B(A2) O 0
J= : : ,
0 0 0
0 0 0 B(Am)
and foreachj =1,...,m,

BA) = (AO] )‘1J> '

Let Ry be column 0 of A, and for j = 1,...,m, let ﬁj,f?;- be columns 2j — 1 and
2j respectively of A. Let Ly be row 0 of A=Y, and for i = 1,...,m, let L;,L; be
rows 2i and 2i — 1 respectively of A1, Then the following relations hold for all
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1<i,j<m:

KRy = Ry, KRj = )\jRj, KRj = )‘jRj + Rj,
LoK = Ly, LjK:/\ij, LjK:)\ij + Lj,
LoRy =1, LoRj = 0 = LoRj, LiRy = 0 = L.Ry, (8.5)

LiRj = 0 = LR},

LiRj = Ll-Rj = (5,‘7]‘.

Proof. For 5 > 1, the right-hand side of the expression KA = AJ has column
2j — 1 of A multiplied by A;. Column 2j is multiplied by A; and column 2j — 1
is added to it because of the diagonal block B()\ ) of J. Thus the columns of A
are (generalized) right eigenvectors Rg, Ry, Rl, ... R, Rm for K as described in
the first line of (8.5)). Similarly, on the right-hand side of the expression A~! K =
JA~L, row 2i of A~! is multiplied by );, and row 2i — 1 is ); times row 2i —
1 plus row 2i for all i > 1. Therefore, the rows of A~! are (generalized) left
eigenvectors Lo, Ly, ...,L1,L,,, Ly, of K (in that order) to give the second line.
The other relations in (8.3) follow from A~*A = 1. O

Summary of application of these results to the quantum case

In Section [/, we explicitly constructed left and right (generalized) eigenvectors
Ly = 7 (the stationary distribution), Ly, L}, ..., Ly, L,,,Ro, R1, R}, ..., R, R, for
the tensor chain resulting from tensoring with the two-dimensional natural module
V1 for ug (sl2), € a primitive nth root of unity, n > 3 odd. Since the eigenvalues are
distinct, the eigenvectors Lo, L1, ..., Ly, Ro,R1, ..., Rmy, must be nonzero scalar
multiples of the ones coming from Proposition [8.1] Suppose for 1 < i < m,
R; = 7;R;, and R =9; ﬁl + &;R;, where ~y; and §; are nonzero. Then the relation
KR, = AR} + R;, which holds by constructlon of these vectors in Section (7] I can
be used to show d; = i, SO R = %R + ;R;. Similar results apply for the left
eigenvectors. It follows from the relations in (8.3) that there exist nonzero scalars
d; and dj for 1 < i < m such that

LiR,=LR; =d; and LR, =d,. (8.6)

Now fix a starting state = and consider K’(x,y) as a function of y. Since
{L;,L; | 1 <i<m}U{r}is abasis of R", there are scalars ag, a;,a;,1 <i <m
such that

K (z,y) = aom(y) + a1L1(y) + a1 Ly (y) + -+ + amLi(y) + al, Ll (y).  (8.7)
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Multiply both sides of by Rp and sum over y to show that ag = 1. Now
multiplying both sides of (8.7) by R;(y) and summing gives

, /\?Rj (1’)

Z K (2, y)Rj(y) = )\ﬁRj(x) = ajdj, thatis, a} = A (8.8)
" j

Similarly, multiplying both sides of by R}(z) and summing shows that

)\gR;-(x) + €/\§_1Rj(x) = ajd; + a;jd;.

Al (R; d;
().

In the setting of Section |/, with the Markov chain arising from tensoring with
Vi for ug(sly), we have z = 0, and from Corollary R;(0) = 0,R;(0) =
27 sin (27rj>, and \; = cos (27rj> . Thus, (8.7) holds with ag = 1,

Consequently,

n n

XER;(0 XER;(0 d’

6 ey W

Expressions and bounds for d;, d’: are determined in Lemma and Proposition

709
in Section[Z.3]

9 Appendix II. Background on modular representation
theory

Introductions to the ordinary (complex) representation theory of finite groups can
be found in ([49]], [51], [75]). A modular representation of a finite group G is a
representation (group homomorphism) ¢ : G — GL,,(K), where K is a field of prime
characteristic p dividing |G|. For simplicity, we shall assume that K is algebraically
closed. Some treatments of modular representation theory can be found in ([[1],
[65], [81]), and we summarize here some basic results and examples. The modular
theory is very different from the ordinary theory: for example, if G is the cyclic
group Z,, = (z) of order p, the two-dimensional representation o : G — GLa(K)

sending
T — L1
01

has a one-dimensional invariant subspace (a G-submodule) that has no invariant
complement, but over C it decomposes into the direct sum of two one-dimensional
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submodules. A representation is irreducible if it has no nontrivial submodules, and
is indecomposable if it has no nontrivial direct sum decomposition into invariant
subspaces. A second difference with the theory over C: for most groups (even
for Zo x Zy x Z5) the indecomposable modular representations are unknown and
seemingly unclassifiable.

A representation ¢ : G — GL,(K) is projective if the associated module for
the group algebra KG is projective (i.e. a direct summand of a free KG-module K™
for some m). There is a bijective correspondence between the projective indecom-
posable and the irreducible KG-modules: in this, the projective indecomposable
module P corresponds to the irreducible module Vp = P/rad(P) (see [1} p.31]),
where rad(P) denotes the radical of P (the intersection of all the maximal submod-
ules); we call P the projective cover of Vp. For the group G = SLa(p), with Kk of
characteristic p, the irreducible kG-modules and their projective covers were dis-
cussed in Section likewise for SLa(p?), SL2(2") and SL3(p) in Sections
[5.2]and [6.2] respectively. A conjugacy class C of G is said to be p-regular if its ele-
ments are of order coprime to p. There is a (non-explicit) bijective correspondence
between the p-regular classes of G and the irreducible kG-modules (see [1, Thm.
2, p.14]). Each kG-module V has a Brauer character, a complex function defined
on the p-regular classes as follows. Let R denote the ring of algebraic integers in
C, and let M be a maximal ideal of R containing pR. Then k = R/M is an alge-
braically closed field of characteristic p. Let * : R — K be the canonical map, and
let

U={£e€C|&™ =1 forsome m coprime to p},

the set of p’-roots of unity in C. It turns out (see [65, p.17]) that the restriction of
* to U defines an isomorphism U — K* of multiplicative groups. Now if g € G is
a p-regular element, the eigenvalues of g on V lie in k*, and hence are of the form
&7, ..., & for uniquely determined elements &; € U. Define the Brauer character
x of V by

x(9) =& + - +&n.

The Brauer characters of the irreducible KG-modules and their projective cov-
ers satisfy two orthogonality relations (see and (3.2)), which are used in the
proof of Proposition [3.1]

The above facts cover all the general theory of modular representations that
we need. As for examples, many have been given in the text — the p-modular
irreducible modules and their projective covers are described for the groups SLy(p),
SLa(p?), SLo(2™) and SL3(p) in Sections [31{6)
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