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Abstract

We analyze families of Markov chains that arise from decomposing ten-
sor products of irreducible representations. This illuminates the Burnside-
Brauer theorem for building irreducible representations, the McKay corre-
spondence, and Pitman’s 2M − X theorem. The chains are explicitly di-
agonalizable, and we use the eigenvalues/eigenvectors to give sharp rates of
convergence for the associated random walks. For modular representations,
the chains are not reversible, and the analytical details are surprisingly intri-
cate. In the quantum group case, the chains fail to be diagonalizable, but a
novel analysis using generalized eigenvectors proves successful.
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1 Introduction

Let G be a finite group and Irr(G) = {χ0, χ1, . . . , χ`} be the set of ordinary (com-
plex) irreducible characters of G. Fix a faithful (not necessarily irreducible) char-
acter α and generate a Markov chain on Irr(G) as follows. For χ ∈ Irr(G), let
αχ =

∑`
i=1 aiχi, where ai is the multiplicity of χi as a constituent of the ten-

sor product αχ. Pick an irreducible constituent χ′ from the right-hand side with
probability proportional to its multiplicity times its dimension. Thus, the chance
K(χ, χ′) of moving from χ to χ′ is

K(χ, χ′) =
〈αχ, χ′〉χ′(1)

α(1)χ(1)
, (1.1)

where 〈χ, ψ〉 = |G|−1
∑

g∈G χ(g)ψ(g) is the usual Hermitian inner product on
class functions χ, ψ of G.
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These tensor product Markov chains were introduced by Fulman in [37], and
have been studied by the hypergroup community, by Fulman for use with Stein’s
method [36], [37], and implicitly by algebraic geometry and group theory commu-
nities in connection with the McKay correspondence. A detailed literature review
is given in Section 2. One feature is that the construction allows a complete di-
agonalization. The following theorem is implicit in Steinberg [77] and explicit in
Fulman [37].

Theorem 1.1. ([37]) Let α be a faithful complex character of a finite group G.
Then the Markov chain K in (1.1) has as stationary distribution the Plancherel
measure

π(χ) =
χ(1)2

|G|
(χ ∈ Irr(G)).

The eigenvalues of K are α(c)/α(1) as c runs over a set C of conjugacy class
representatives of G. The corresponding right (left) eigenvectors have as their χth-
coordinates:

rc(χ) =
χ(c)

χ(1)
, `c(χ) =

χ(1)χ(c)

|CG(c)|
= |cG|π(χ)rc(χ),

where |cG| is the size of the conjugacy class of c, and CG(c) is the centralizer
subgroup of c in G. The chain is reversible if and only if α is real.

We study a natural extension to the modular case, where p divides |G| for p
a prime, and work over an algebraically closed field k of characteristic p. Let
%0, %1 . . . , %r be (representatives of equivalence classes of) the irreducible p-mo-
dular representations of G, with corresponding Brauer characters χ0, χ1, . . . , χr,
and let α be a faithful p-modular representation. The tensor product %i ⊗ α does
not have a direct sum decomposition into irreducible summands, but we can still
choose an irreducible composition factor with probability proportional to its mul-
tiplicity times its dimension. We find that a parallel result holds (see Proposition
3.1). It turns out that the stationary distribution is

π(χ) =
pχ(1)χ(1)

|G|
,

where pχ is the Brauer character of the projective indecomposable module asso-
ciated to the irreducible Brauer character χ. Moreover, the eigenvalues are the
Brauer character ratios α(c)/α(1), where now c runs through the conjugacy class
representatives of p-regular elements of G. The chain is usually not reversible; the
right eigenvectors come from the irreducible Brauer characters, and the left eigen-
vectors come from the associated projective characters. A tutorial on the necessary
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representation theory is included in Appendix II (Section 9); we also include a
tutorial on basic Markov chain theory in Appendix I (Section 8).

Here are four motivations for the present study:

(a) Construction of irreducibles. Given a group G it is not at all clear how to
construct its character table. Indeed, for many groups this is a provably intractible
problem. For example, for the symmetric group on n letters, deciding if an irre-
ducible character at a general conjugacy class is zero or not is NP complete (by
reduction to a knapsack problem in [66]). A classical theorem of Burnside-Brauer
[17, 16] (see [51, 19.10]) gives a frequently used route: Take a faithful charac-
ter α of G. Then all irreducible characters appear in the tensor powers αk, where
1 ≤ k ≤ υ (or 0 ≤ k ≤ υ − 1, alternatively) and υ can be taken as the num-
ber of distinct character values α(g). This is exploited in [78], which contains
the most frequently used algorithm for computing character tables and is a basic
tool of computational group theory. Theorem 1.1 above refines this description
by showing what proportion of times each irreducible occurs. Further, the analytic
estimates available can substantially decrease the maximum number of tensor pow-
ers needed. For example, if G = PGLn(q) with q fixed and n large, and α is the
permutation character of the group action on lines, then α takes at least the order
of nq−1/((q − 1)!)2 distinct values, whereas Fulman [37, Thm. 5.1] shows that
the Markov chain is close to stationary in n steps. In [6], Benkart and Moon use
tensor walks to determine information about the centralizer algebras and invariants
of tensor powers αk of faithful characters α of a finite group.

(b) Natural Markov chains. Sometimes the Markov chains resulting from tensor
products are of independent interest, and their explicit diagonalization (due to the
availability of group theory) reveals sharp rates of convergence to stationarity. A
striking example occurs in one of the first appearances of tensor product chains
in this context, the Eymard-Roynette walk on SU2(C) [32]. The tensor product
Markov chains make sense for compact groups (and well beyond). The ordinary
irreducible representations for SU2(C) are indexed by N ∪ {0} = {0, 1, 2, . . .},
where the corresponding dimensions of the irreducibles are 1, 2, 3, . . . . Tensoring
with the two-dimensional representation gives a Markov chain on N ∪ {0} with
transition kernel

K(i, i− 1) =
1

2

(
1− 1

i+ 1

)
(i ≥ 1), K(i, i+ 1) =

1

2

(
1 +

1

i+ 1

)
(i ≥ 0).

(1.2)
This birth/death chain arises in several contexts. Eymard-Roynette [32] use the
group analysis to show results such as the following: there exists a constant C such

3



that, as n→∞,

p

{
Xn√

Cn
≤ x

}
∼
√

2

π

∫ x

0
y2 e−y

2 /2dy , (1.3)

where Xn represents the state of the tensor product chain starting from 0 at time
n. The hypergroup community has substantially extended these results. See [42],
[14], [71] for pointers. Further details are in our Section 2.3.

In a different direction, the Markov chain (1.2) was discovered by Pitman [67]
in his work on the 2M−X theorem. A splendid account is in [58]. Briefly, consider
a simple symmetric random walk on Z starting at 1. The conditional distribution of
this walk, conditioned not to hit −1, is precisely (1.2). Rescaling space by 1/

√
n

and time by 1/n, the random walk converges to Brownian motion, and the Markov
chain (1.2) converges to a Bessel(3) process (radial part of 3-dimensional Brownian
motion). Pitman’s construction gives a probabilistic proof of results of Williams:
Brownian motion conditioned never to hit zero is distributed as a Bessel(3) pro-
cess. This work has spectacular extensions to higher dimensions in the work of
Biane-Bougerol-O’Connell ([12], [13]). See [44, final chapter] for earlier work on
tensor walks, and references [10], [11] for the relation to ‘quantum random walks’.
Connections to fusion coefficients can be found in [24], and extensions to random
walks on root systems appear in [57] for affine root systems and in [15] for more
general Kac-Moody root systems. The literature on related topics is extensive.

In Section 3.2, we show how finite versions of these walks arise from the mod-
ular representations of SL2(p). Section 7 shows how they arise from quantum
groups at roots of unity. The finite cases offer many extensions and suggest myriad
new research areas. These sections have their own introductions, which can be read
now for further motivation.

All of this illustrates our theme: Sometimes tensor walks are of independent
interest.

(c) New analytic insight. Use of representation theory to give sharp analysis of
random walks on groups has many successes. It led to the study of cut-off phe-
nomena [29]. The study of ‘nice walks’ and comparison theory [27] allows careful
study of ‘real walks’. The attendant analysis of character ratios has widespread
use for other group theory problems (see for example [9], [60]). The present walks
yield a collection of fresh examples. The detailed analysis of Sections 3–6 high-
lights new behavior; remarkable cancellation occurs, calling for detailed hold on
the eigenstructure. In the quantum group case covered in Section 7, the Markov
chains are not diagonalizable, but the Jordan blocks of the transition matrix have
bounded size, and an analysis using generalized eigenvectors is available. This is
the first natural example we have seen with these ingredients.
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(d) Interdisciplinary opportunities. Modular representation theory is an extremely
deep subject with applications within group theory, number theory, and topology.
We do not know applications outside those areas and are pleased to see its use in
probability. We hope the present project and its successors provide an opportunity
for probabilists and analysts to learn some representation theory (and conversely).

The outline of this paper follows: Section 2 gives a literature review. Section 3
presents a modular version of Theorem 1.1 and the first example SL2(p). Section
4 treats SL2(p2), Section 5 features SL2(2n), and Section 6 considers SL3(p). In
Section 7, we examine the case of quantum SL2 at a root of unity. Finally, two ap-
pendices (Sections 8 and 9) provide introductory information about Markov chains
and modular representations.
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2 Literature review and related results

This section reviews connections between tensor walks and (a) the McKay corre-
spondence, (b) hypergroup random walks, (c) chip firing, and (d) the distribution
of character ratios.

2.1 McKay correspondence

We begin with a well-known example.

Example 2.1. For n ≥ 2 let BDn denote the binary dihedral group

BDn = 〈a, x | a2n = 1, x2 = an, x−1ax = a−1〉
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of order 4n. This group has n+3 conjugacy classes, with representatives 1, x2, x, xa
and aj (1 ≤ j ≤ n− 1). It has 4 linear characters and n− 1 irreducible characters
of degree 2; the character table appears in Table 2.1. Consider the random walk

Table 2.1: Character table of BDn

1 x2 aj (1 ≤ j ≤ n− 1) x xa

λ1 1 1 1 1 1
λ2 1 1 1 −1 −1

λ3 (n even) 1 1 (−1)j 1 −1
λ4 (n even) 1 1 (−1)j −1 1
λ3 (n odd) 1 −1 (−1)j i −i
λ4 (n odd) 1 −1 (−1)j −i i

χr (1 ≤ r ≤ n− 1) 2 2 (−1)r 2 cos
(
πjr
n

)
0 0

(1.1) given by tensoring with the faithful character χ1. Routine computations give

λ1χ1 = λ2χ1 = χ1, λ3χ1 = λ4χ1 = χn−1,
χrχ1 = χr−1 + χr+1 (2 ≤ r ≤ n− 2),
χ2

1 = χ2 + λ1 + λ2,
χn−1χ1 = χn−2 + λ3 + λ4.

Thus, the Markov chain (1.1) can be seen as a simple random walk on the following
graph (weighted as in (1.1)), where nodes designated with a prime ′ correspond
to the characters λj , j = 1, 2, 3, 4, and the other nodes label the characters χr
(1 ≤ r ≤ n− 1).

(1′) (1) (2) · · · (n–2) (n–1) (4′)

(2′) (3′)

Figure 1: McKay graph for the binary dihedral group BDn

For example, when n = 4, the transition matrix is
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

λ1 λ2 χ1 χ2 χ3 λ3 λ4

λ1 0 0 1 0 0 0 0
λ2 0 0 1 0 0 0 0
χ1

1
4

1
4 0 1

2 0 0 0
χ2 0 0 1

2 0 1
2 0 0

χ3 0 0 0 1
2 0 1

4
1
4

λ3 0 0 0 0 1 0 0
λ4 0 0 0 0 1 0 0


The fact that the above graph is the affine Dynkin diagram of type Dn+2 is a

particular instance of the celebrated McKay correspondence. The correspondence
begins with a faithful character α of a finite group G. Let k be the number of irre-
ducible characters of G, and define a k × k matrix M (the McKay matrix) indexed
by the ordinary irreducible characters χi of G by setting

Mij = 〈αχi, χj〉 (the multiplicity of χj in αχi). (2.1)

The matrix M can be regarded as the adjacency matrix of a quiver having nodes
indexed by the irreducible characters of G and Mij arrows from node i to node j.
When there is an arrow between i and j in both directions, it is replaced by a single
edge (with no arrows). In particular, when M is symmetric, the result is a graph.
John McKay [64] found that the graphs associated to these matrices, when α is
the natural two-dimensional character of a finite subgroup of SU2(C), are exactly
the affine Dynkin diagrams of types A,D,E. The Wikipedia page for ‘McKay
correspondence’ will lead the reader to the widespread developments from this
observation; see in particular [77], [70], [4] and the references therein.

There is a simple connection with the tensor walk (1.1).

Lemma 2.2. Let α be a faithful character of a finite group G.

(a) The Markov chain K of (1.1) and the McKay quiver matrix M of (2.1) are
related by

K =
1

α(1)
D−1MD (2.2)

where D is a diagonal matrix having the irreducible character degrees χi(1)
as diagonal entries.

(b) If v is a right eigenvector of M corresponding to the eigenvalue λ, then D−1v
is a right eigenvector of K with corresponding eigenvalue 1

α(1)λ.
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(c) If w is a left eigenvector of M corresponding to the eigenvalue λ, then wD is
a left eigenvector of K with corresponding eigenvalue 1

α(1)λ.

Parts (b) and (c) show that the eigenvalues and eigenvectors of K and M are
simple functions of each other. In particular, Theorem 1.1 is implicit in Steinberg
[77]. Of course, our interests are different; we would like to bound the rate of
convergence of the Markov chain K to its stationary distribution π.

In the BDn example, the ‘naive’ walk using K has a parity problem. However,
if the ‘lazy’ walk is used instead, where at each step staying in place has probability
of 1

2 and moving according to χ1 has probability of 1
2 , then that problem is solved.

Letting K be the transition matrix for the lazy walk, we prove

Theorem 2.3. For the lazy version of the Markov chain K on Irr(BDn) starting
from the trivial character 1 = λ1 and multiplying by χ1 with probability 1

2 and
staying in place with probability 1

2 , there are positive universal constants B,B′

such that
Be−2π2`/n2 ≤‖ K` − π ‖

TV
≤ B′e−2π2`/n2

.

In this theorem, ||K` − π||
TV

= 1
2

∑
χ∈Irr(BDn) |K`(1, χ) − π(χ)| is the total

variation distance (see Appendix I, Section 8). The result shows that order n2

steps are necessary and sufficient to reach stationarity. The proof can be found in
Appendix I, Section 8.

2.2 Hypergroup walks

A hypergroup is a set X with an associative product χ ∗ ψ such that χ ∗ ψ is a
probability distribution on X (there are a few other axioms, see [14] for example).
Given α ∈ X, a Markov chain can be defined. From χ ∈ X, choose ψ from α ∗ χ.
As shown below, this notion includes our tensor chains.

Aside from groups, examples of hypergroups include the set of conjugacy
classes of a finite group G: if a conjugacy class C of G is identified with the cor-
responding sum

∑
c∈C c in the group algebra, then then product of two conjugacy

classes is a positive integer combination of conjugacy classes, and the coefficients
can be scaled to be a probability. In a similar way, double coset spaces form a hy-
pergroup. The irreducible representations of a finite group also form a hypergroup
under tensor product. Indeed, let X = Irr(G), and consider the normalized charac-
ters χ̄ = 1

χ(1)χ for χ ∈ X. If α is any character, and αχ =
∑

ψ∈X aψ ψ (with aψ
the multiplicity), then

α(1)χ(1)αχ =
∑
ψ∈X

aψ ψ =
∑
ψ∈X

aψψ(1)ψ
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so

αχ =
∑
ψ∈X

aψ ψ(1)

α(1)χ(1)
ψ =

∑
ψ∈X

K(χ, ψ)ψ,

yielding the Markov chain (1.1).
Of course, there is work to do in computing the decomposition of tensor prod-

ucts and in doing the analysis required for the asymptotics of high convolution
powers. The tensor walk on SU2(C) was pioneering work of Eymard-Roynette
[32] with follow-ups by Gallardo and Reis [42] and Gallardo [41], and by Voit [80]
who proved iterated log fluctuations for the Eymard-Roynette walk. Impressive
recent work on higher rank double coset walks is in the paper [71] by Rösler and
Voit. The treatise of Bloom and Hyer [14] contains much further development.
Usually, this community works with infinite hypergroups and natural questions re-
volve around recurrence/transience and asymptotic behavior. There has been some
work on walks derived from finite hypergroups (see Ross-Xu [72, 73], Vinh [79]).
The present paper shows there is still much to do.

2.3 Chip firing and the critical group of a graph

A marvelous development linking graph theory, classical Riemann surface theory,
and topics in number theory arises by considering certain chip-firing games on a
graph. Roughly, there is an integer number f(v) of chips at each vertex v of a finite,
connected simple graph (f(v) can be negative). ‘Firing vertex v’ means adding 1
to each neighbor of v and subtracting deg(v) from f(v). The chip-firing model is a
discrete dynamical system classically modeling the distribution of a discrete com-
modity on a graphical network. Chip-firing dynamics and the long-term behavior
of the model have been related to many different subjects such as economic mod-
els, energy minimization, neuron firing, travel flow, and so forth. Baker and Norine
[3] develop a parallel with the classical theory of compact Riemann surfaces, for-
mulating an appropriate analog of the Riemann-Roch and Abel-Jacobi Theorems
for graphs. An excellent textbook introduction to chip firing is the recent [22]. A
splendid resource for these developments is the forthcoming book of Levin-Peres
[59]. See M. Matchett Wood [82] for connections to number theory.

A central object in this development is the critical group of the graph. This is
a finite abelian group which can be identified as Z|V |/ker(L), with |V | the number
of vertices and ker(L) the kernel of the reduced graph Laplacian (delete a row and
matching column from the Laplacian matrix). Baker-Norine identify the critical
group as the Jacobian of the graph.

Finding ‘nice graphs’ where the critical group is explicity describable is a nat-
ural activity. In [5], Benkart, Klivans, and Reiner work with what they term the
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‘McKay-Cartan’ matrix C = α(1)I − M rather than the Laplacian, where M is
the McKay matrix determined by the irreducible characters Irr(G) of a finite group
G, and α is a distinguished character. They exactly identify the associated critical
group and show that the reduced matrix C̃ obtained by deleting the row and column
corresponding to the trivial character is always avalanche finite (chip firing stops).
In the special case that the graph is a (finite) Dynkin diagram, the reduced matrix
C̃ is the corresponding Cartan matrix, and the various chip-firing notions have nice
interpretations as Lie theory concepts. See also [40] for further information about
the critical group in this setting.

An extension of this work by Grinberg, Huang, and Reiner [43] is particularly
relevant to the present paper. They consider modular representations of a finite
group G, where the characteristic is p and p divides |G|, defining an analog of the
McKay matrix (and the McKay-Cartan matrix C) using composition factors, just as
we do in Section 3. They extend considerations to finite-dimensional Hopf algebras
such as restricted enveloping algebras and finite quantum groups. In a natural way,
our results in Section 7 on quantum groups at roots of unity answer some questions
they pose. Their primary interest is in the associated critical group. The dynamical
Markov problems we study go in an entirely different direction. They show that
the Brauer characters (both simple and projective) yield eigenvalues and left and
right eigenvectors (see Proposition 3.1). Our version of the theory is developed
from first principles in Section 3.

Pavel Etingof has suggested modular tensor categories or the Z+-modules of
[31, Chap. 3] as a natural further generalization, but we do not explore that direc-
tion here.

2.4 Distribution of character ratios

Fulman [37] developed the Markov chain (1.1) on Irr(G) for yet different purposes,
namely, probabilistic combinatorics. One way to understand a set of objects is to
pick one at random and study its properties. For G = Sn, the symmetric group on
n letters, Fulman studied ‘pick χ ∈ Irr(G) from the Plancherel measure’. Kerov
had shown that for a fixed conjugacy class representative c 6= 1 in Sn, χ(c)/χ(1)
has an approximate normal distribution – indeed, a multivariate normal distribution
when several fixed conjugacy classes are considered. A wonderful exposition of
this work is in Ivanov-Olshanski [50]. The authors proved normality by computing
moments. However, this does not lead to error estimates.

Fulman used ‘Stein’s method’ (see [20]), which calls for an exchangeable pair
(χ, χ′) marginally distributed as Plancherel measure. Equivalently, choose χ from
Plancherel measure and then χ′ from a Markov kernel K(χ, χ′) with Plancherel
measure a stationary distribution. This led to (1.1). The explicit diagonalization

10



was crucial in deriving the estimates needed for Stein’s method.
Along the way, ‘just for fun’, Fulman gave sharp bounds for two examples

of rates of convergence: tensoring the irreducible characters Irr(Sn) with the n-
dimensional permutation representation and tensoring the irreducible representa-
tions of SLn (p) with the permutation representation on lines. In each case he
found the cut-off phenomenon with explicit constants.

In retrospect, one may try to use any of the Markov chains in this paper along
with Stein’s method to prove central limit theorems for Brauer characters. A referee
points out that the approach in [37] uses Fourier analysis on groups which may need
to be developed. There is work to do, but a clear path is available.

Final remarks. The decomposition of tensor products is a well-known difficult
subject, even for ordinary characters of the symmetric group (the Kronecker prob-
lem). A very different set of problems about the asymptotics of decomposing tensor
products is considered in Benson and Symonds [8]. For the fascinating difficulties
of decomposing tensor products of tilting modules (even for SL3(k)), see Lusztig-
Williamson [61, 62].

3 Basic setup and first examples

In this section we prove some basic results for tensor product Markov chains in the
modular case, and work out sharp rates of convergence for the groups SL2(p) with
respect to tensoring with the natural two-dimensional module and also with the
Steinberg module. Several analogous chains where the same techniques apply are
laid out in Sections 4–6. Some basic background material on Markov chains can
be found in Appendix I (Section 8), and on modular representations in Appendix
II (Section 9).

3.1 Basic setup

Let G be a finite group, and let k be an algebraically closed field of characteristic p.
Denote by Gp′ the set of p-regular elements of G, and by C a set of representatives
of the p-regular conjugacy classes in G. Let IBr(G) be the set of irreducible Brauer
characters of G over k. We shall abuse notation by referring to the irreducible kG-
module with Brauer character χ, also by χ. For χ ∈ IBr(G), and a kG-module
with Brauer character %, let 〈χ, %〉 denote the multiplicity of χ as a composition
factor of %. Let pχ be the Brauer character of the projective indecomposable cover
of χ. Then if χ ∈ IBr(G) and % is the Brauer character of any finite-dimensional
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kG-module,

〈χ, %〉 =
1

|G|
∑
g∈Gp′

pχ(g)%(g) =
1

|G|
∑
g∈Gp′

pχ(g)%(g).

The orthogonality relations (see [81, pp. 201, 203] say for % ∈ IBr(G), g ∈ Gp′ ,
and c a p-regular element that

〈χ, %〉 =

{
0 if χ 6∼= %,

1 if χ ∼= %.
(3.1)

∑
χ∈IBr(G)

pχ(g)χ(c) =

{
0 if g 6∈ cG,
|CG(c)| if g ∈ cG,

(3.2)

where cG is the conjugacy class of c, and |CG(c)| is the size of the centralizer of c.
Fix a faithful kG-module with Brauer character α, and define a Markov chain

on IBr(G) by moving from χ to χ′ with probability proportional to the product of
χ′(1) with the multiplicity of χ′ in χ⊗ α, that is,

K(χ, χ′) =
〈χ′, χ⊗ α〉χ′(1)

α(1)χ(1)
. (3.3)

As usual, denote by K` the transition matrix of this Markov chain after ` steps.

Proposition 3.1. For the Markov chain in (3.3), the following hold.

(i) The stationary distribution is

π(χ) =
pχ(1)χ(1)

|G|
(χ ∈ IBr(G)) .

(ii) The eigenvalues are α(c)/α(1), where c ranges over a set C of representa-
tives of the p-regular conjugacy classes of G.

(iii) The right eigenfunctions are rc (c ∈ C), where for χ ∈ IBr(G),

rc(χ) =
χ(c)

χ(1)
.

(iv) The left eigenfunctions are `c (c ∈ C), where for χ ∈ IBr(G),

`c(χ) =
pχ(c)χ(1)

|CG(c)|
.
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Moreover, `1(χ) = π(χ), r1(χ) = 1, and for c, c′ ∈ C,∑
χ∈IBr(G)

`c(χ)rc′(χ) = δc,c′ .

(v) For ` ≥ 1,

K`(χ, χ′) =
∑
c∈C

(
α(c)

α(1)

)`
rc(χ) `c(χ

′).

In particular, for the trivial character 1 of G,

K`(1, χ′)
π(χ′)

− 1 =
∑
c 6=1

(
α(c)

α(1)

)`
pχ′(c)

pχ′(1)
|cG|.

Proof. (i) Define π as in the statement. Then summing over χ ∈ IBr(G) gives∑
χ

π(χ)K(χ, χ′) =
1

|G|
∑
χ

pχ(1)χ(1) 〈χ′, χ⊗ α〉χ′(1)

χ(1)α(1)

=
χ′(1)

|G|α(1)

∑
χ

pχ(1)〈χ′, χ⊗ α〉

=
χ′(1)

|G|α(1)
〈χ′,

(∑
χpχ(1)χ

)
⊗ α〉

=
χ′(1)

|G|α(1)
〈χ′, kG⊗ α〉 as pχ(1) = 〈χ, kG〉

=
χ′(1)

|G|α(1)
α(1)〈χ′, kG〉 as kG⊗ α ∼= (kG)⊕α(1)

=
χ′(1)pχ′(1)

|G|
= π(χ′).

This proves (i).
(ii) and (iii) Define rc as in (iii). Summing over χ′ ∈ IBr(G) and using the
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orthogonality relations (3.1), (3.2), we have∑
χ′

K(χ, χ′)rc(χ
′) =

1

χ(1)α(1)

∑
χ′

χ′(c)〈χ′, χ⊗ α〉

=
1

χ(1)α(1)

∑
χ′

χ′(c)
1

|G|
∑
g∈Gp′

pχ′(g)χ(g)α(g)

=
1

χ(1)α(1)|G|
∑
g

χ(g)α(g)
∑
χ′

pχ′(g)χ′(c−1)

=
1

χ(1)α(1)|G|
|CG(c)|

∑
g−1∈cG

χ(g)α(g) by (3.2)

=
1

χ(1)α(1)
χ(c)α(c)

=
α(c)

α(1)
rc(χ).

This proves (ii) and (iii).
(iv) Define `c as in (iv), and sum over χ ∈ IBr(G):∑

χ

`c(χ)K(χ, χ′) =
χ′(1)

α(1)|CG(c)|
∑
χ

pχ(c)〈χ′, χ⊗ α〉

=
χ′(1)

α(1)|CG(c)|
∑
χ

pχ(c)
1

|G|
∑
g∈Gp′

pχ′(g)χ(g)α(g)

=
χ′(1)

α(1)|CG(c)||G|
∑
g

pχ′(g)α(g)
∑
χ

pχ(c)χ(g−1)

=
χ′(1)

α(1)|G|
∑

g−1∈cG
pχ′(g)α(g) by (3.2)

=
α(c)

α(1)|G|
pχ′(c)χ

′(1)|cG| = α(c)

α(1)

pχ′(c)χ
′(1)

|CG(c)|

=
α(c)

α(1)
`c(χ

′).

The relations `1(χ) = π(χ) and r1(χ) = 1 follow from the definitions, and the fact
that

∑
χ∈IBr(G) `c(χ)rc′(χ) = δc,c′ for c, c′ ∈ C is a direct consequence of (3.2).

This proves (iv).

(v) For any function f : IBr(G) → C, we have f(χ′) =
∑

c∈C ac`c(χ
′) with

ac =
∑

χ′ f(χ′)rc(χ′) by (iv). For fixed χ, apply this to K`(χ, χ′) as a function of
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χ′, to see that K`(χ, χ′) =
∑

c ac`c(χ
′), where

ac =
∑
χ′

K`(χ, χ′)rc(χ′) =

(
α(c)

α(1)

)`
rc(χ).

The first assertion in (v) follows, and the second follows by setting χ = 1 and
using (i)–(iii).

Remark. The second formula in part (v) will be the workhorse in our examples, in
the following form:

‖ K`(1, ·)− π ‖
TV

=
1

2

∑
χ′

|K`(1, χ′)− π(χ′)|

=
1

2

∑
χ′

∣∣∣∣K`(1, χ′)π(χ′)
− 1

∣∣∣∣π(χ′)

≤ 1

2
maxχ′

∣∣∣∣K`(1, χ′)π(χ′)
− 1

∣∣∣∣ .
(3.4)

3.2 SL2(p)

Let p be an odd prime, and let G = SL2(p) of order p(p2 − 1). The p-modular
representation theory of G is expounded in [1]: writing k for the algebraic closure
of Fp, we have that the irreducible kG-modules are labelled V(a) (0 ≤ a ≤ p− 1),
where V(0) is the trivial module, V(1) is the natural two-dimensional module, and
V(a) = Sa(V(1)), the ath symmetric power, of dimension a+ 1. Denote by χa the
Brauer character of V(a), and by pa := pχa the Brauer character of the projective
indecomposable cover of V(a). The p-regular classes of G have representatives
1, −1, xr (1 ≤ r ≤ p−3

2 ) and ys (1 ≤ s ≤ p−1
2 ), where 1 is the 2 × 2 identity

matrix, x and y are fixed elements of G of orders p− 1 and p+ 1, respectively; the
corresponding centralizers in G have orders |G|, |G|, p − 1 and p + 1. The values
of the characters χa and pa are given in Tables 3.1 and 3.2. In particular, we have
pa(1) = p for a = 0 or p − 1, and pa(1) = 2p for other values of a. Hence by
Proposition 3.1(i), for any faithful kG-module α, the stationary distribution for the
Markov chain given by (3.3) is

π(χa) =


1

p2−1
if a = 0,

2(a+1)
p2−1

if 1 ≤ a ≤ p− 2,
p

p2−1
if a = p− 1.

(3.5)
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Table 3.1: Brauer character table of SL2(p)

1 −1 xr (1 ≤ r ≤ p−3
2 ) ys (1 ≤ s ≤ p−1

2 )

χ0 1 1 1 1

χ1 2 −2 2 cos
(

2πr
p−1

)
2
(

cos 2πs
p+1

)
χ` (` even)
` 6= 0, p− 1

`+ 1 `+ 1 1 + 2
∑ `

2
j=1 cos

(
4jπr
p−1

)
1 + 2

∑ `
2
j=1 cos

(
4jπs
p+1

)
χk (k odd)
k 6= 1

k + 1 −(k + 1) 2
∑ k−1

2
j=0 cos

(
(4j+2)πr
p−1

)
2
∑ k−1

2
j=0 cos

(
(4j+2)πs
p+1

)
χp−1 p p 1 −1

Table 3.2: Characters of projective indecomposables for SL2(p)

1 −1 xr (1 ≤ r ≤ p−3
2 ) ys (1 ≤ s ≤ p−1

2 )

p0 p p 1 1− 2 cos
(

4πs
p+1

)
p1 2p −2p 2 cos

(
2πr
p−1

)
−2 cos

(
6π
p+1

)
p2 2p 2p 2 cos

(
4πr
p−1

)
−2 cos

(
8πs
p+1

)
pk (3 ≤ k ≤ p− 2) 2p (−1)k 2p 2 cos

(
2kπr
p−1

)
−2 cos

(
(2k+4)πs
p+1

)
pp−1 p p 1 −1

We shall consider two walks: tensoring with the two-dimensional module V(1),
and tensoring with the Steinberg module V(p − 1). In both cases the walk has
a parity problem: starting from 0, the walk is at an even position after an even
number of steps, and hence does not converge to stationarity. This can be fixed by
considering instead the ‘lazy’ version 1

2K + 1
2 I: probabilistically, this means that

at each step, with probability 1
2 we remain in the same place, and with probability

1
2 we transition according to the matrix K.

3.2.1 Tensoring with V(1)

As we shall justify below, the rule for decomposing tensor products is as follows,
writing just a for the module V(a) as a shorthand:

a⊗ 1 =


1 if a = 0,

(a+ 1)/(a− 1) if 1 ≤ a ≤ p− 2,

(p− 2)2/1 if a = p− 1.

(3.6)
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Remark 3.2. The notation here and elsewhere in the paper records the composition
factors of the tensor product, and their multiplicities; so the a = p−1 line indicates
that the tensor product (p−1)⊗1 has composition factors V(p−2) with multiplicity
2, and V(1) with multiplicity 1 (the order in which the factors are listed is not
significant).

We now justify (3.6). Consider the algebraic group SL2(k), and let T be the
subgroup consisting of diagonal matrices tλ = diag(λ, λ−1) for λ ∈ k∗. For 1 ≤
a ≤ p−1, the element tλ acts on V(a) with eigenvalues λa, λa−2, . . . , λ−(a−2), λ−a,
and we call the exponents

a, a− 2, . . . ,−(a− 2),−a

the weights of V(a). The weights of the tensor product V(a)⊗ V(1) are then

a+ 1, (a− 1)2, . . . ,−(a− 1)2,−(a+ 1),

where the superscripts indicate multiplicities (since the eigenvalues of tλ on the
tensor product are the products of the eigenvalues on the factors V(a) and V(1)).
For a < p− 1 these weights can only match up with the weights of a module with
composition factors V(a + 1),V(a − 1). However, for a = p − 1 the weights
±(a + 1) = ±p are the weights of V(1)(p), the Frobenius twist of V(1) by the
pth-power field automorphism. On restriction to G = SL2(p), this module is just
V(1), and hence the composition factors of V(p− 1)⊗V(1) are as indicated in the
third line of (3.6).

From (3.6), the Markov chain corresponding to tensoring with V(1) has transi-
tion matrix K, where

K(a, a+ 1) =
1

2

(
1 +

1

a+ 1

)
, K(a, a− 1) =

1

2

(
1− 1

a+ 1

)
(0 ≤ a ≤ p− 2),

K(p− 1, p− 2) = 1− 1

p
, K(p− 1, 1) =

1

p
,

(3.7)

and all other entries are 0.

Remark. Note that, except for transitions out of p−1, this Markov chain is exactly
the truncation of the chain on {0, 1, 2, 3, . . .} derived from tensoring with the two-
dimensional irreducible module for SU2(C) (see (1.2)). It thus inherits the nice
connections to Bessel processes and Pitman’s 2M −X theorem described in (b) of
Section 1 above. As shown in Section 7, the obvious analogue on {0, 1, . . . , n−1}
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in the quantum group case has a somewhat different spectrum that creates new phe-
nomena. The ‘big jump’ from p− 1 to 1 is strongly reminiscent of the ‘chutes and
ladders’ chain studied in ([26], [28]) and the Nash inequality techniques developed
there provide another route to analyzing rates of convergence. The next theorem
shows that order p2 steps are necessary and sufficient for convergence.

Theorem 3.3. Let K be the Markov chain on {0, 1, . . . , p − 1} given by (3.7)
starting at 0, and let K = 1

2K + 1
2 I be the corresponding lazy walk. Then with π

as in (3.5), there are universal positive constants A,A′ such that

(i) ‖ K` − π ‖
TV
≥ Ae−π2`/p2 for all ` ≥ 1, and

(ii) ‖ K` − π ‖
TV
≤ A′e−π2`/p2 for all ` ≥ p2.

Proof. By Proposition 3.1, the eigenvalues of K are 0 and 1 together with

1
2 + 1

2 cos
(

2kπ
p−1

)
(1 ≤ k ≤ p−3

2 ),

1
2 + 1

2 cos
(

2jπ
p+1

)
(1 ≤ j ≤ p−1

2 ).

To establish the lower bound in part (i), we use that fact that ||K` − π||
TV

=
1
2sup||f ||∞≤1|K`(f) − π(f)| (see (8.1) in Appendix I). Choose f = rx, the right
eigenfunction corresponding to the class representative x ∈ G of order p−1. Then
rx(χ) = χ(x)

χ(1) for χ ∈ IBr(G). Clearly ||rx||∞ = 1, and from the orthogonality
relation (3.2),

π(rx) =
∑
χ

π(χ)rx(χ) =
1

|G|
∑
χ

pχ(1)χ(x) = 0.

From Table 3.1, the eigenvalue corresponding to rx is 1
2 + 1

2 cos
(

2π
p−1

)
, and so

K`(rx) =
(

1
2 + 1

2 cos
(

2π
p−1

))`
rx(0) =

(
1
2 + 1

2 cos
(

2π
p−1

))`
.

It follows that

‖ K` − π ‖
TV
≥ 1

2

(
1
2 + 1

2 cos 2π
p−1

)`
= 1

2

(
1− π2

p2
+O

(
1
p4

))`
.

This yields the lower bound (i), with A = 1
2 + o(1).

Now we prove the upper bound (ii). Here we use the bound

‖ K` − π ‖
TV
≤ 1

2
maxχ

∣∣∣∣K`(1, χ)

π(χ)
− 1

∣∣∣∣
18



given by (3.4). Using the shorthand K`(0, a) = K`(χ0, χa), where χ0 = 1, and
Proposition 3.1(v), we show in the SL2(p) case that

K`(0, a)

π(a)
−1 =



(p+ 1)
∑ p−3

2
r=1

(
1
2 + 1

2 cos
(

2πr
p−1

))`
cos
(

2aπr
p−1

)
−(p− 1)

∑ p−1
2

s=1

(
1
2 + 1

2 cos
(

2πs
p+1

))`
cos
(

(2a+4)πs
p+1

)
(1 ≤ a ≤ p− 2),

(p+ 1)
∑ p−3

2
r=1

(
1
2 + 1

2 cos
(

2πr
p−1

))`
−(p− 1)

∑ p−1
2

s=1

(
1
2 + 1

2 cos
(

2πs
p+1

))`
(a = p− 1),

(p+ 1)
∑ p−3

2
r=1

(
1
2 + 1

2 cos
(

2πr
p−1

))`
+(p− 1)

∑ p−1
2

s=1

(
1
2 + 1

2 cos
(

2πs
p+1

))` (
1− 2 cos

(
4πs
p+1

))
(a = 0).

(3.8)
To derive an upper bound, on the right-hand side we pair terms in the two sums

for 1 ≤ r = s ≤ p
1
2 . Terms with r, s ≥ p

1
2 are shown to be exponentially small.

The argument is most easily seen when a = 0. In this case, the terms in the sums
in the formula (3.8) are approximated as follows. First assume r, s ≤ p

1
2 . Then we

claim that

(a)
(

1
2 + 1

2 cos
(

2πr
p−1

))`
= e
−π

2r2`
p2

+O
(
r2`
p3

)
= e
−π

2r2`
p2

(
1 +O(1

p)
)

;

(b)
(

1
2 + 1

2 cos
(

2πs
p+1

))`
= e
−π

2s2`
p2

+O
(
s2`
p3

)
= e
−π

2s2`
p2

(
1 +O

(
1
p

))
;

(c) 1− 2 cos
(

4πs
p+1

)
= −1 + 4π2s2

p2
+O

(
s2

p3

)
.

The justification of the claim is as follows. For (a), observe that

1
2 + 1

2 cos
(

2πr
p−1

)
= 1

2 + 1
2

(
1− 1

2

(
2πr
p−1

)2
+O

(
r4

p4

))
= 1− π2r2

(p−1)2
+O

(
r4

p4

)
= 1− π2r2

p2

(
1 + 2

p +O
(

1
p2

)
+O

(
r4

p4

))
= 1− π2r2

p2
+O

(
r2

p3

)
+O

(
r4

p4

)
= 1− π2r2

p2
+O

(
r2

p3

)
(as r2 ≤ p).

Hence, (
1
2 + 1

2 cos
(

2πr
p−1

))`
= e

` log
(

1−π
2r2

p2
+O

(
r2

p3

))
= e
−π

2r2`
p2

+O
(
r2`
p3

)
,

giving (a).

19



Part (b) follows in a similar way. Finally, for (c),

1− 2 cos
(

4πs
p+1

)
= 1− 2

(
1− 2π2s2

(p+1)2
+O

(
r4

p4

))
= −1 + 4π2s2

(p+1)2
+O

(
r4

p4

)
= −1 + 4π2s2

p2

(
1 +O

(
1
p

))
+O

(
r4

p4

)
= −1 + 4π2s2

p2
+O

(
s2

p3

)
.

This completes the proof of claims (a)-(c). Note that all the error terms hold uni-
formly in `, p, r, s for r, s ≤ p

1
2 .

Combining terms, we see that the summands with r = s < p
1
2 in (3.8) (with

a = 0) contribute

(p+ 1)e
−π

2r2`
p2

(
1 +O

(
1
p

))
+ (p− 1)e

−π
2r2`
p2

(
1 +O

(
1
p

))(
−1 +O

(
r2

p2

))
= e
−π

2r2`
p2 (2 +O(1)).

The sum over 1 ≤ r <∞ of this expression is bounded above by a constant times

e
−π

2`
p2 , provided ` ≥ p2.
For p−1

2 ≥ b = r, s ≥ p
1
2 we have

∣∣1
2 + 1

2 cos
(

2πb
p±1

)∣∣ ≤ 1− 1
p , so the sums in

the right-hand side of (3.8) are bounded above by p2e−
`
p , which is negligible for

` ≥ p2.
This completes the argument for a = 0 and shows∣∣∣K`(0,0)

π(0) − 1
∣∣∣ ≤ Ae−π2`p2 .

At the other end, for the Steinberg module V(p−1), a similar but easier analysis
of the spectral formula (3.8) with a = p− 1 gives the same conclusion.

Consider finally 0 < a < p− 1 in (3.8). To get the cancellation for r2, s2 ≤ p,
use a Taylor series expansion to write

cos
(

(2a+4)πs
p+1

)
= cos

(
2aπs
p+1

)
− 4πs
p+1 sin

(
2aπs
p+1

)
+O

(
s2

p2

)
.

Then
(p+ 1) cos

(
2aπr
p−1

)
− (p− 1) cos

(
(2a+4)πr
p+1

)
= O(r)

and we obtain ∑
1≤r≤√p

e
−π

2r`
p2 r ≤ Ae−

π2`
p2

as before. We omit further details.
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3.2.2 Tensoring with the Steinberg module V(p− 1)

The Steinberg module V(p − 1) of dimension p is the irreducible for SL2(p) of
largest dimension, and intuition suggests that the walk induced by tensoring with
this should approach the stationary distribution (3.5) much more rapidly than the
V(1) walk analyzed in the previous subsection. The argument below shows that
for a natural implementation, order of log p steps are necessary and sufficient. One
problem to be addressed is that the Steinberg representation is not faithful, as −1
is in the kernel. There are two simple ways to fix this:

Sum Chain: Let Ks be the Markov chain starting from V(0) and tensoring with
V(1)⊕ V(p− 1).

Mixed Chain: Let Km be the Markov chain starting from V(0) and defined by
‘at each step, with probability 1

2 tensor with V(p−1) and with probability 1
2 tensor

with V(1).’

Remark Because the two chains involved in Ks and Km are simultaneously di-
agonalizable (all tensor chains have the same eigenvectors by Proposition 3.1), the
eigenvalues of Ks,Km are as in Table 3.3.

Table 3.3: Eigenvalues of Ks and Km

class 1 −1 xr (1 ≤ r ≤ p−3
2 ) ys (1 ≤ s ≤ p−1

2 )

Ks 1 1
p+2 (p− 2) 1

p+2

(
1 + 2 cos

(
2πr
p−1

))
1
p+2

(
2 cos

(
2πs
p+1

)
− 1
)

Km 1 0 1
2

(
1
p + cos

(
2πr
p−1

))
1
2

(
cos
(

2πs
p+1

)
− 1

p

)

Sum Chain: The following considerations show that the sum walk Ks is ‘slow’:
it takes order p steps to converge. From Table 3.3, the right eigenfunction for the
second eigenvalue 1− 4

p+2 is r−1, where r−1(χ) = χ(−1)
χ(1) . Let X` be the position

of the walk after ` steps, and let Es denote expectation, starting from the trivial

representation. Then Es(r−1(X`)) =
(

1− 4
p+2

)`
. In stationarity, Es(r−1(X)) =

0. Then ‖ K`s − π ‖≥ 1
2

(
1− 4

p+2

)`
shows that ` must be of size greater than p

to get to stationarity, using the same lower bounding technique as in the proof of
Theorem 3.3. In fact, order p steps are sufficient, in the `∞ distance (see 8.2), but
we will not prove this here. We will not analyze the sum chain any further.
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Mixed Chain: We now analyze Km. Arguing with weights as for tensoring with
V(1) in (3.6), we see that tensor products with V(p− 1) decompose as follows:

Table 3.4: Decomposition of V(a)⊗ V(p− 1) for SL2(p)

a a⊗ (p− 1)

0 p− 1
1 (p− 2)2/1
2 (p− 1)/(p− 3)2/2/0

a ≥ 3 odd (p− 2)2/(p− 4)2/ · · · /(p− a− 1)2/a/(a− 2)2/ · · · /12
a ≥ 4 even (p− 1)/(p− 3)2/ · · · /(p− a− 1)2/a/(a− 2)2/ · · · /22/0

Note that when a ≥ p−1
2 , some of the terms a, a−2, . . . can equal terms p−1, p−

2, . . ., giving rise to some higher multiplicities – for example,

(p− 2)⊗ (p− 1) = (p− 2)3/(p− 4)4/ · · · /14,
(p− 1)⊗ (p− 1) = (p− 1)2/(p− 3)4/ · · · /24/03.

These decompositions explain the ‘tensor with V(p − 1)’ walk: starting at V(0),
the walk moves to V(p− 1) at the first step. It then moves to an even position with
essentially the correct stationary distribution (except for V(0)). Thus, the tensor
with V(p− 1) walk is close to stationary after 2 steps, conditioned on being even.
Mixing in V(1) allows moving from even to odd. The following theorem makes
this precise, showing that order log p steps are necessary and sufficient, with respect
to the `∞ norm.

Theorem 3.4. For the mixed walk Km defined above, starting at V(0), we have for
all p ≥ 23 and ` ≥ 1 that

(i) ‖ K` − π ‖∞≥ e−(2 log 2)(`+1)+(4/3) log p, and

(ii) ‖ K` − π ‖∞≤ e−`/4+2 log p.

In fact, the mixed walks Km have cutoff at time log2 p
2, when we let p tend to∞.

Proof. Using Proposition 3.1(v) together with Table 3.2, we see that the values of
K`m(0,a)
π(a) − 1 are as displayed below.
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Table 3.5: Values of K`m(0,a)
π(a) − 1 for SL2(p)

a K`m(0,a)
π(a) − 1

0 (p+ 1)
∑ p−3

2
r=1

(
1
2

(
cos
(

2πr
p−1

)
+ 1

p

))`
+(p− 1)

∑ p−1
2

s=1

(
1
2

(
cos
(

2πs
p+1

)
− 1

p

))`
1 ≤ a ≤ p− 2 (p+ 1)

∑ p−3
2

r=1

(
1
2

(
cos
(

2πr
p−1

)
+ 1

p

))`
cos
(

4aπ
p−1

)
−(p− 1)

∑ p−1
2

s=1

(
1
2

(
cos
(

2πs
p+1

)
− 1

p

))`
cos
(

(2a+4)πs
p+1

)
p− 1 (p+ 1)

∑ p−3
2

r=1

(
1
2

(
cos
(

2πr
p−1

)
+ 1

p

))`
−(p− 1)

∑ p−1
2

s=1

(
1
2

(
cos
(

2πs
p+1

)
− 1

p

))`

For the upper bound, observe that if p ≥ 23, then

∣∣∣∣K`m(0, a)

π(a)
− 1

∣∣∣∣ ≤ p+ 1

2`

p−3
2∑

r=1

(
1 +

1

p

)`
+
p− 1

2`

p−1
2∑

s=1

(
1 +

1

p

)`
<
p2

2`

(
1 +

1

p

)`
< e−`(log 2−1/p)+2 log p < e−`/4+2 log p

This implies the upper bound (ii) in the conclusion. Moreover, if we let p → ∞
and take ` ≈ (1 + ε) log2(p2) with 0 < ε < 1 fixed, then `/p is bounded from
above, and so ∣∣∣∣K`m(0, a)

π(a)
− 1

∣∣∣∣ < p2

2`

(
1 +

1

p

)`
<

e`/p

p2ε
(3.9)

tends to zero.
For the lower bound (i), we use the monotonicity property (8.3) and choose

`0 ∈ {`, `+ 1} to be even. Observe that if 1 ≤ r ≤ (p− 1)/6, then cos
(

2πr
p−1

)
≥

1/2. As b(p− 1)/6c ≥ (p− 5)/6, it follows that∣∣∣∣K`0m(0, 0)

π(0)
− 1

∣∣∣∣ ≥ (p+ 1)(p− 5)

6
2−2`0 > e−(2 log 2)`0+(4/3) log p

when p ≥ 23. Now the lower bound follows by (8.2).
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To establish the cutoff, we again let p→∞ and consider even integers

` ≈ (1− ε) log2 p
2

with 0 < ε < 1 fixed. Note that when 0 ≤ x ≤
√

log 2, then

cos(x) ≥ 1− x2/2 ≥ e−x
2
.

Hence, there are absolute constantsC1, C2 > 0 such that when 1 ≤ r ≤ dC1(p/
√

log p)e
we have

cos

(
2πr

p− 1

)
+ 1/p ≥ e−4π2r2/(p−1)2 ≥ e−C2/(log p),

and so (
cos

(
2πr

p− 1

)
+ 1/p

)`
≥ e−C2`/(log p) ≥ e−2C2 .

It follows that ∣∣∣∣K`m(0, 0)

π(0)
− 1

∣∣∣∣ > C1e
−2C2p2

2`
√

log p
≈ C1e

−2C2p2ε

√
log p

tends to∞. Together with (3.9), this proves the cutoff at log2(p2).

Remark. The above result uses `∞ distance. We conjecture that any increasing
number of steps is sufficient to send the total variation distance to zero. In principle,
this can be attacked directly from the spectral representation of K`m(0, a), but the
details seem difficult.

4 SL2(q), q = p2

4.1 Introduction

The nice connections between the tensor walk on SL2(p) and probability suggest
that closely related walks may give rise to interesting Markov chains. In this sec-
tion, we work with SL2(q) over a field of q = p2 elements. Throughout, k is an
algebraically closed field of characteristic p > 0, p odd. We present some back-
ground representation theory in Section 4.2. In Section 4.3, we will be tensoring
with the usual (natural) two-dimensional representation V. In Section 4.4, the 4-
dimensional module V ⊗ V(p) will be considered.

We now describe the irreducible modules for G = SL2(p2) over k. As in Sec-
tion 3.2, let V(0) denote the trivial module, V(1) the natural 2-dimensional module,
and for 1 ≤ a ≤ p − 1, let V(a) = Sa(V(1)), the ath symmetric power of V(1)
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(of dimension a + 1). Denote by V(a)(p) the Frobenius twist of V(a) by the field
automorphism of G raising matrix entries to the pth power. Then by the Steinberg
tensor product theorem (see for example [63, §16.2]), the irreducible kG-modules
are the p2 modules V(a)⊗ V(b)(p), where 0 ≤ a, b ≤ p− 1 (note that the weights
of the diagonal subgroup T on these modules are given in (4.2) below). Denote
this module by the pair (a, b). In particular, the trivial representation corresponds
to (0, 0) and the Steinberg representation is indexed by (p− 1, p− 1). The natural
two-dimensional representation corresponds to (1, 0). For p = 5, the tensor walk
using (1, 0) is pictured in Table 4.1. The exact probabilities depend on (a, b) and
are given in (4.4) below. Thus, from a position (0, b) on the left-hand wall of the
display, the walk must move one to the right. At an interior (a, b), the walk moves
one horizontally to (a− 1, b) or (a+ 1, b). At a point (p− 1, b) on the right-hand
wall, the walk can move left one horizontally (indeed, it does so with probability
1 − 1

p ) or it makes a big jump to (0, b − 1) or to (0, b + 1) if b 6= p − 1 and a big
jump to (0, p − 2) or to (1, 0) when b = p − 1. The walk has a drift to the right,
and a drift upward.

Throughout this article, double-headed arrows in displays indicate that the
module pointed to occurs twice in the tensor product decomposition.

(0,4) (1,4) (2,4) (3,4) (4,4)

(0,3) (1,3) (2,3) (3,3) (4,3)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,0) (1,0) (2,0) (3,0) (4,0)

Figure 2: Tensor walk on irreducibles of SL2(p2), p = 5

Heuristically, the walk moves back and forth at a fixed horizontal level just like
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the SL2(p)-walk of Section 3.2.1. As in that section, it takes order p2 steps to go
across. Once it hits the right-hand wall, it usually bounces back, but with small
probability (order 1

p ), it jumps up or down by one to (0, b± 1) (to (0, p− 2), (1, 0)

when b = p − 1). There need to be order p2 of these horizontal shifts for the
horizontal coordinate to equilibriate. All of this suggests that the walk will take
order p4 steps to totally equilibriate. As shown below, analysis yields that p4 steps
are necessary and sufficient; again the cancellation required is surprisingly delicate.

4.2 Background on modular representations of SL2(p
2).

Throughout this discussion, p is an odd prime and G = SL2(p2). The irreducible
kG-modules are as described above, and the projective indecomposables are given
in [76]. The irreducible Brauer characters χ(a,b) = χa χb(p) ∈ IBr

(
SL2(p2)

)
are

indexed by pairs (a, b), 0 ≤ a, b ≤ p− 1, where ‘a’ stands for the usual symmetric
power representation of SL2(p2) of dimension a+1, and ‘b(p)’ stands for the Frobe-
nius twist of the bth symmetric power representation of dimension b+ 1 where the
representing matrices on the bth symmetric power have their entries raised to the
pth power. Thus χ(a,b) has degree (a+ 1)(b+ 1). The p-regular conjugacy classes
of G = SL2(p2), and the values of the Brauer character χ(1,0) of the natural module
are displayed in Table 4.1, where x and y are fixed elements of orders p2 − 1 and
p2 + 1, respectively.

Table 4.1: Values of the Brauer character χ(1,0) for SL2(p2)

class rep. c 1 −1 xr (1 ≤ r < p2−1
2 ) ys (1 ≤ s < p2+1

2 )

|CG(c)| |G| |G| p2 − 1 p2 + 1

χ(1,0)(c) 2 −2 2 cos
(

2πr
p2−1

)
2 cos

(
2πs
p2+1

)
We will also need the character pa,b of the projective indecomposable module

P(a, b) indexed by (a, b), that is the projective cover of χa,b. Information about the
characters is given in Table 4.2, with the size of the conjugacy class given in the
second line.

The order of G = SL2(p2) is p2(p4− 1), and by Proposition 3.1(i), the station-
ary distribution π is roughly a product measure linearly increasing in each variable.

26



Table 4.2: Characters of projective indecomposables for SL2(p2)

1 −1 xr (1 ≤ r < p2−1
2 ) ys (1 ≤ s < p2+1

2 )

p(0,0) 3p2 3p2 4cos
(

2πr
p+1

)
− 1

1−
(

4cos
(

2(p−1)πs
p2+1

)
×

cos
(

2(p+1)πs
p2+1

))
pa,b

(a,b<p−1)
4p2 (−1)a+b 4p2

4cos
(

2(p−1−a)πr
p2−1

)
×

cos
(

2(p(b+1)−1)πr
p2−1

) −4cos
(

2(p−1−a)πs
p2+1

)
×

cos
(

2(p(b+1)+1)πs
p2+1

)
pp−1,b
(b<p−1)

2p2 (−1)b 2p2 2cos
(

2(p(b+1)−1)πr
p2−1

)
−2cos

(
2(p(b+1)+1)πs

p2+1

)
pa,p−1
(a<p−1)

2p2 (−1)a 2p2 2cos
(

2(p−1−a)πr
p2−1

)
−2cos

(
2(p−1−a)πs

p2+1

)
pp−1,p−1 p2 p2 1 −1

Explicitly, the values of the stationary distribution π are:

(a, b) π(a, b)

(0, 0) 3
p4−1

a, b < p− 1 4(a+1)(b+1)
p4−1

(p− 1, b), b < p− 1 2p(b+1)
p4−1

(a, p− 1), a < p− 1 2p(a+1)
p4−1

(p− 1, p− 1) p2

p4−1

(4.1)

4.3 Tensoring with (1, 0)

In this section we consider the Markov chain given by tensoring with the natural
module (1, 0). The transition probabilities are determined as usual: from (a, b)
tensor with (1, 0), and pick a composition factor with probability proportional to
its multiplicity times its dimension.

The composition factors of the tensor product (a, b)⊗ (1, 0) can be determined
using weights, as in Section 3.2.1. Note first that the weights of the diagonal sub-
group T on (a, b) are

(a− 2i) + p(b− 2j) (0 ≤ i ≤ a, 0 ≤ j ≤ b). (4.2)

The tensor product (a, b)⊗ (1, 0) takes the form

V(a)⊗ V(b)(p) ⊗ V(1). (4.3)

27



For a < p − 1, we see as in Section 3.2.1 that V(a) ⊗ V(1) has composition
factors V(a + 1) and V(a − 1), so the tensor product is (a − 1, b)/(a + 1, b)
(with only the second term if a = 0). For a = p − 1, a weight calculation gives
V(p − 1) ⊗ V(1) = V(p − 2)2/V(1)(p), so if b < p − 1 the tensor product (4.3)
has composition factors (p − 2, b)2/(0, b − 1)/(0, b + 1). If b = p − 1, then
V(1)(p) ⊗ V(b)(p) has composition factors V(p − 2)(p) (twice) and V(1)(p2), and
for G = SL2(p2), the latter is just the trivial module V(0). We conclude that in all
cases the composition factors of (a, b)⊗ (1, 0) are

(a, b)⊗ (1, 0) =


(1, b) a = 0,

(a− 1, b)/(a+ 1, b) 1 ≤ a < p− 1,

(p− 2, b)2/(0, b− 1)/(0, b+ 1) a = p− 1, b < p− 1,

(p− 2, p− 1)2/(0, p− 2)2/(1, 0) a = b = p− 1.

(4.4)

Translating into probabilities, for 0 ≤ a, b < p− 1, the walk from (a, b) moves to
(a− 1, b) or (a+ 1, b) with probability

(a− 1, b) (a+ 1, b)

K
(
(a, b), ·) a

2(a+1)
a+2

2(a+1)

(4.5)

For these values of a and b, the chain thus moves exactly like the SL2(p)-walk.
For (p − 1, b) with b < p − 1 on the right-hand wall, the walk moves back left
to (p − 2, b) with probability 1 − 1

p , to (0, b − 1) with probability b
2p(b+1) , or to

(0, b+1) with probability b+2
2p(b+1) . The Steinberg module (p−1, p−1) is the unique

irreducible module for SL2(p2) that is also projective. Tensoring with (1, 0) sends
(p−1, p−1) to (p−2, p−1) with probability 1− 1

p , to (0, p−2) with probability
p−1
p2

, or to (1, 0) with probability 1
p2

.
The main result of this section shows that order p4 steps are necessary and

sufficient for convergence. As before, the walk has a parity problem: starting at
(0, 0), after an even number of steps the walk is always at (a, b) with a + b even.
As usual we sidestep this by considering the lazy version.

Theorem 4.1. Let G = SL2(p2), and let K be the Markov chain on IBr(G) given by
tensoring with (1, 0) with probability 1

2 , and with (0, 0) with probability 1
2 (start-

ing at (0, 0)). Then the stationary distribution π is given by (4.1), and there are
universal positive constants A,A′ such that

(i) ‖ K` − π ‖
TV
≥ Ae−

π2`
p4 for all ` ≥ 1, and

(i) ‖ K` − π ‖
TV
≤ A′e−

π2`
p4 for all ` ≥ p4.
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Proof. For the lower bound, we use the fact that fr(a, b) :=
χ(a,b)(x

r)

χ(a,b)(1) is a right

eigenfunction with eigenvalues 1
2 + 1

2 cos
(

2πr
p2−1

)
. Clearly |fr(a, b)| ≤ 1 for all

a, b, r. Using the fact that
∑

a,b fr(a, b)π(a, b) = 0 for r 6= 0, we have (see (8.1)
in Appendix I)

‖ K` − π ‖
TV

= 1
2supf |K`(f)− π(f)|

≥ 1
2 |K

`(fr)|

= 1
2

(
1
2 + 1

2 cos
(

2πr
p2−1

))`
.

Taking r = 1, we have(
1
2 + 1

2 cos
(

2π
p2−1

))`
=
(

1− π2

(p2−1)2
+O

(
1
p8

))`
= e
− π2`

(p2−1)2

(
1 +O

(
`
p8

))
.

This proves the lower bound.
For the upper bound, we use Proposition 3.1(v) to see that for all (a, b),

K`((0,0),(a,b))
π(a,b) − 1 = p2(p2 + 1)

∑ p2−1
2

r=1

(
1
2 + 1

2 cos
(

2πr
p2−1

))` p(a,b)(x
r)

p(a,b)(1)

+p2(p2 − 1)
∑ p2+1

2
s=1

(
1
2 + 1

2 cos 2πs
p2+1

)` p(a,b)(y
s)

p(a,b)(1) .

(4.6)
The terms in the two sums are now paired with r = s for 1 ≤ r, s ≤ p as in the
proof of Theorem 3.3. The cancellation is easiest to see at (a, b) = (0, 0). Then

p(0,0)(1) = 3p2, p(0,0)(x
r) = 4 cos2

(
2πr
p+1

)
− 1,

p(0,0)(y
s) = 1− 4 cos

(
2(p−1)πs
p2+1

)
cos
(

2(p+1)πs
p2+1

)
.

We now use the estimates

4 cos2
(

2πr
p+1

)
− 1 = 3− 16π2r2

p2
+O

(
r2

p3

)
,

1− 4 cos
(

2(p−1)πs
p2+1

)
cos
(

2(p+1)πs
p2+1

)
= −3 + 16π2s2

p2
+O

(
s2

p3

)
.

It follows that the r = s terms of the right-hand side of (4.6) pair to give

p2(p2 + 1)
(

1
2 + 1

2 cos
(

2πs
p2−1

))` (
3− 16π2s2

p2
+O

(
s2

p3

))
1
p2

+p2(p2 − 1)
(

1
2 + 1

2 cos 2πs
p2+1

)` (
−3 + 16π2s2

p2
+O

(
s2

p3

))
) 1
p2

= e
−π

2s2`
p2 ·O

(
s2

p

)
.
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The sum of this over 1 ≤ s ≤ p is dominated by the lead term e
−π

2`
p2 up to

multiplication by a universal constant. As in the proof of Theorem 3.3, the terms
for other r, s are negligible (even without pairing). This completes the upper bound
argument for (a, b) = (0, 0). Other (a, b) terms are similar (see the argument for
SL2(p)), and we omit the details. 2

Remark. For large p, the above SL2(p2) walk is essentially a one-dimensional
walk which shows Bessel(3) fluctuations. A genuinely two-dimensional process
can be constructed by tensoring with the 4-dimensional module (1, 1) = V(1) ⊗
V(1)(p). We analyze this next.

4.4 Tensoring with (1, 1)

The values of the Brauer character χ(1,1) are:

1 −1 xr (1 ≤ r < p2−1
2 ) ys (1 ≤ s < p2+1

2 )

4 4 2 cos
(

2πr
p−1

)
+ 2 cos

(
2πr
p+1

)
2 cos

(
2(p+1)πs
p2+1

)
+ 2 cos

(
2(p−1)πs
p2+1

)
and the rules for tensoring with (1, 1) are given in Table 4.3 – these are justified in
similar fashion to (4.4).

Thus, apart from behavior at the boundaries, the walk moves from (a, b) one
step diagonally, with a drift upward and to the right: for a, b < p− 1 the transition
probabilities are

(a− 1, b− 1) (a− 1, b+ 1) (a+ 1, b− 1) (a+ 1, b+ 1)

K((a, b), ·) ab
4(a+1)(b+1)

a(b+2)
4(a+1)(b+1)

(a+2)b
4(a+1)(b+1)

(a+2)(b+2)
4(a+1)(b+1)

(4.7)

At the boundaries, the probabilities change: for example, K((0, 0), (1, 1)) = 1 and
for the Steinberg module St = (p− 1, p− 1),

(p− 2, p− 2) (p− 3, 0) (p− 1, 0) (0, p− 3) (0, p− 1) (1, 1)

K(St, ·) 4(p−1)2
4p2

p−2
4p2

p
4p2

p−2
4p2

p
4p2

4
4p2

Heuristically, this is a local walk with a slight drift, and intuition suggests that it
should behave roughly like the simple random walk on a p×p grid (with a uniform
stationary distribution) – namely, order p2 steps should be necessary and sufficient.
The next result makes this intuition precise. We need to make one adjustment, as
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Table 4.3: Tensoring with (1, 1)

(a, b)⊗ (1, 1)

a, b < p− 1 (a− 1, b− 1)/(a− 1, b+ 1)/(a+ 1, b− 1)/(a+ 1, b+ 1)

a = p− 1,
b < p− 2 (p− 2, b− 1)2/(p− 2, b+ 1)2/(0, b)2/(0, b− 2)/(0, b+ 2)

a = p− 1,
b = p− 2 (p− 2, p− 3)2/(p− 2, p− 1)2/(0, p− 2)2/(1, 0)

a = b = p− 1 (p− 2, p− 2)4/(p− 3, 0)2/(p− 1, 0)2/
(0, p− 3)2/(0, p− 1)2/(1, 1)

the representation (1, 1) is not faithful. We patch this here with the ‘mixed chain’
construction of Section 3.2.2. Namely, let K be defined by ‘at each step, with
probability 1

2 tensor with (1, 1) and with probability 1
2 tensor with (1, 0)’.

Theorem 4.2. Let K be the Markov chain on IBr(SL2(p2)) defined above, starting
at (0, 0) and tensoring with (1, 1). Then there are universal positive constants
A,A′ such that for all ` ≥ 1,

Ae
−π

2`
p2 ≤‖ K` − π ‖

TV
≤ A′e−

π2`
p2 .

Proof. The lower bound follows as in the proof of Theorem 4.1 using the same
right eigenfunction as a test function. For the upper bound, use formula (4.6),
replacing the eigenvalues there by

βxr = 1
2 + 1

4

(
cos
(

2πr
p−1

)
+ cos

(
2πr
p+1

))
= 1− π2r2

p2
+O

(
r2

p3

)
βys = 1

2 + 1
4

(
cos
(

2πs(p+1)
p2+1

)
+ cos

(
2πs(p−1)
p2+1

))
= 1− π2s2

p2
+O

(
s2

p3

)
.

Now the same approximations to p(a,b)(x
r), p(a,b)(y

s) work in the same way to
give the stated result. We omit further details.

Remark 4.3. For the walk just treated (tensoring with (1, 1) for SL2(p2)), the
generic behavior away from the boundary is given in (4.7) above. Note that this
exactly factors into the product of two one-dimensional steps of the walk on SL2(p)
studied in Section 3.2.1: K ((a, b), (a′, b′)) = K(a, a′)K(b, b′). In the large p limit,
this becomes the walk on (N ∪ {0})× (N ∪ {0}) arising from SU2(C)× SU2(C)
by tensoring with the 4-dimensional module C2 ⊗ C2. Rescaling space by 1√

n
and

time by 1
n , we have that the Markov chain on SL2(p2) converges to the product of

two Bessel processes, as discussed in the Introduction.
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5 SL2(2
n)

5.1 Introduction

Let G = SL2(2n), q = 2n, and k be an algebraically closed field of character-
istic 2. The irreducible kG-modules are described as follows: let V1 denote the
natural 2-dimensional module, and for 1 ≤ i ≤ n − 1, let Vi be the Frobenius
twist of V1 by the field automorphism α 7→ α2i−1

. Set N = {1, . . . , n}, and for
I = {i1 < i2 < . . . < ik} ⊆ N define VI = Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vik . By Stein-
berg’s tensor product theorem ([63, §16.2]), the 2n modules VI form a complete
set of inequivalent irreducible kG-modules. Their Brauer characters and projective
indecomposable covers will be described in Section 5.2.

Consider now the Markov chain arising from tensoring with the module V1.
Denoting VI by the corresponding binary n-tuple x = xI (with 1’s in the positions
in I and 0’s elsewhere), the walk moves as follows:

(5.1)(1) from x = (0, ∗) go to (1, ∗);

(2) if x begins with i 1’s, say x = (1i, 0, ∗), where 1 ≤ i ≤ n− 1, flip fair coins
until the first head occurs at time k: then

if 1 ≤ k ≤ i, change the first k 1’s to 0’s
if k > i, change the first i 1’s to 0’s, and put 1 in position i+ 1;

(3) if x = (1, . . . , 1), proceed as in (2), but if k > n, change all 1’s to 0’s and
put a 1 in position 1.

Pictured in Figure 5.1 is the walk for tensoring with V1 for SL2(23).We remind
the reader that a double-headed arrow means that the module pointed to occurs with
multiplicity 2.

We shall justify this description and analyze this walk in Section 5.3. The
walk generated by tensoring with Vj has the same dynamics, but starting at the jth

coordinate of x and proceeding cyclically. We shall see that all of these walks have
the same stationary distribution, namely,

π(x) =

{
q

q2−1
if x 6= 0

1
q+1 if x = 0.

(5.2)

Note that, perhaps surprisingly, this is essentially the uniform distribution for q
large.

Section 5.2 contains the necessary representation theory for G, and in Sections
5.3 and 5.4 we shall analyze the random walks generated by tensoring with V1 and
with a randomly chosen Vj .
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(0,0,0)

(0,1,0)

(1,0,1)(0,0,1)

(1,1,0)

(0,1,1) (1,1,1)

(1,0,0)

Figure 3: Tensor walk on irreducibles of SL2(23)

5.2 Representation theory for SL2(2
n)

Fix elements x, y ∈ G = SL2(q) (q = 2n) of orders q − 1 and q + 1, respectively.
The 2-regular classes of G have representatives 1 (the 2 × 2 identity matrix), xr

(1 ≤ r ≤ q
2 − 1) and ys (1 ≤ s ≤ q

2 + 1). Define Vi and VI (I ⊆ N = {1, . . . , n})
as above, and let χi, χI be the corresponding Brauer characters. Their values are
given in Table 5.1,

Table 5.1: Brauer characters of SL2(q), q = 2n

1 xr (1 ≤ r ≤ q
2 − 1) ys (1 ≤ s ≤ q

2)

|CG(c)| q(q2 − 1) q − 1 q + 1

χi 2 2 cos
(

2iπr
q−1

)
2 cos

(
2iπs
q+1

)
χI 2k 2k

∏k
a=1 cos

(
2iaπr
q−1

)
2k
∏k
b=1 cos

(
2ibπs
q+1

)
I = {i1, . . . , ik}

χN 2n 1 −1

The projective indecomposable modules are described as follows (see [2]). Let
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I = {i1, . . . , ik} ⊂ N , with I 6= ∅, N , and let Ī be the complement of I . Then
the projective indecomposable cover PĪ of the irreducible module VĪ has character
pĪ = χI ⊗ χN . The other projective indecomposables PN and P∅ are the covers
of the Steinberg module VN and the trivial module V∅, and their characters are

pN = χN , p0 = χ2
N − χN .

The values of the Brauer characters of all the projectives are displayed in Table 5.2.

Table 5.2: Projective indecomposable characters of SL2(q), q = 2n

1 xr (1 ≤ r ≤ q
2 − 1) ys (1 ≤ s ≤ q

2)

pĪ , I ⊂ N 2kq 2k
∏k
a=1 cos 2iaπr

q−1 −2k
∏k
b=1 cos 2ibπs

q+1

I = {i1, . . . , ik}
pN 2n 1 −1

p0 q2 − q 0 2

From Tables 5.1 and 5.2, we see that the stationary distribution is as claimed in
(5.2):

π(I) =
pI(1)χI(1)

|G|
=

2n−|I|+n+|I|

q(q2 − 1)
=

q

q2 − 1
for I 6= ∅,

π(∅) =
q2 − q
q(q2 − 1)

=
1

q + 1
.

Next we give the rules for decomposing the tensor product of an irreducible
module VI with V1. These are proved using simple weight arguments, as in Sec-
tions 3.2.1 and 4.3. Suppose I 6= ∅, N , and let i be maximal such that {1, 2, . . . , i} ⊆
I (so 0 ≤ i ≤ n − 1). Let x = xI be the corresponding binary n-tuple, so that
x = (1i, 0, ∗) (starting with i 1’s). Then

VI ⊗ V1 = (0, 1i−1, 0, ∗)2/(021i−2, 0, ∗)2/ · · · /(0i, 0, ∗)2/(0i, 1, ∗).

And for I = ∅, N , the rules are V∅ ⊗ V1 = V1 and

VN ⊗ V1 = (0, 1n−1)2/(021n−2)2/ · · · /(0n)2/(1, 0n−1).

These rules justify the description of the Markov chain arising from tensoring with
V1 given in (5.1).
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5.3 Tensoring with V1: the Markov chain

In this section, we show that for the Markov chain arising from tensoring with V1

order q2 steps are necessary and sufficient to reach stationarity. As explained above,
the chain can be viewed as evolving on the n-dimensional hypercube. Starting at
x = 0, it evolves according to the coin-tossing dynamics described in Section 5.1.
Beginning at x = 0, the chain slowly moves 1’s to the right. The following theorem
resembles the corresponding result for SL2(p) (Theorem 3.3), but the dynamics are
very different.

Theorem 5.1. Let K be the Markov chain on IBr(SL2(q)) (q = 2n) by tensoring
with the natural module V1, starting at the trivial module. Then

(a) for any ` ≥ 1,

‖ K` − π ‖
TV
≥ 1

2

(
cos

(
2π

q − 1

))`
=

1

2

(
1− 2π2

q2
+O

(
1

q4

))`
(b) there is a universal constant A such that for any ` ≥ q2,

‖ K` − π ‖
TV
≤ Ae−

π2`
q2 .

Proof. From Proposition 3.1, the eigenvalues of K are indexed by the 2-regular
class representatives, 1, xr, ys of Section 5.2. They are

β1 = 1, βxr = cos

(
2πr

q − 1

)
(1 ≤ r ≤ q

2
−1), βys = cos

(
2πs

q + 1

)
(1 ≤ s ≤ q

2
).

To determine a lower bound, use as a test function the right eigenfunction corre-
sponding to β1, which is defined on x = (x(1), x(2), . . . , x(n)) by

f(x) =
n∏
j=1

cos

(
x(j)2jx(j)π

q − 1

)
.

(Here as in Section 5.1, we are identifying a subset I of N with its corresponding
binary n-tuple x = (x(1), x(2), . . . , x(n)) having 1’s in the positions of I and
0’s everywhere else. Characters will carry n-tuple labels also, and we will write
K(x, y) rather than the cumbersome K(χx, χy).)

Clearly, ||f ||∞ ≤ 1. Further, the orthogonality relations (3.1), (3.2) for Brauer
characters imply

π(f) =
∑
x

f(x)π(x) =
∑
x

px(1)χx(1)

|G|
χx(x)

χx(1)
= 0,
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where px is the character of the projective indecomposable module indexed by x.
Then (8.1) in Appendix I implies

||K` − π|| = | ≥ 1

2
|K`(f)− π(f)| = 1

2

(
cos

(
2π

q − 1

))`
.

This proves (a).
To prove the upper bound in (b), use Proposition 3.1 (v):

K`(0, y)

π(y)
− 1 =

∑
c 6=1

β`c
py(c)

py(1)
|cG|, (5.3)

where the sum is over p-regular class representatives c 6= 1, and |cG| is the size
of the class of c. We bound the right-hand side of this for each y. There are three
different basic cases: (i) y = 0 (all 0’s tuple corresponding to ∅), (ii) y = 1 (all 1’s
tuple corresponding to N ), and (iii) y 6= 0, 1:

(i)
K`(0, 0)

π(0)
− 1 = 2

q/2∑
s=1

cos`
(

2πs

q + 1

)
,

(ii)
K`(0, 1)

π(1)
− 1 = (q + 1)

q−1∑
r=1

cos`
(

2πr

q − 1

)
− (q − 1)

q/2∑
s=1

cos`
(

2πs

q + 1

)
,

(iii)
K`(0, y)

π(y)
− 1 = (q + 1)

q−1∑
r=1

cos`
(

2πr

q − 1

) k∏
a=1

cos

(
2iaπr

q − 1

)

− (q − 1)

q/2∑
s=1

cos`
(

2πs

q + 1

) k∏
b=1

cos

(
2ibπr

q + 1

)
,

where y has ones in positions i1, i2, . . . , ik. These formulas follow from (5.3) by
using the sizes of the 2-regular classes from Table 5.1 and the expressions for the
projective characters in Table 5.2. For example, when y = 0, then from Table 5.2,
p0(xr) = 0 and p0(ys) = 2, while p0(1) = q2 − q, and the order of the class of ys

is |cG| = q(q − 1). The other cases are similar.
The sum (i) (when y = 0) is exactly the sum bounded for a simple random

walk on Z/(q + 1)Z; the work in [25, Chap. 3] shows it is exponentially small
when ` >> (q + 1)2. The sum (ii) (corresponding to y = 1) is just what was
bounded in proving Theorem 3.3. Those bounds do not use the primality of p, and
again ` >> q2 suffices. For the sum in (iii) (general y 6= 0 or 1), note that the
products of the terms (for r and s) are essentially the same and are at most 1 in
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absolute value. It follows that the same pair-matching cancellation argument used
for y = 1 works to give the same bound. Combining these arguments, the result is
proved.

5.4 Tensoring with a uniformly chosen Vj .

As motivation recall that the classical Ehrenfest urn can be realized as a simple
random walk on the hypercube of binary n-tuples. From an n-tuple x pick a coor-
dinate at random, and change it to its opposite. Results of [30] show that this walk
takes 1

4n log n + Cn to converge, and there is a cut off as C varies. We conjec-
ture similar behavior for the walk derived from tensoring with a uniformly chosen
simple Vj , 1 ≤ j ≤ n. As in (5.3),

K`(0, y)

π(y)
− 1 =

∑
c 6=1

β`c
py(c)

py(1)
|cG| (5.4)

and the eigenvalues βc are

β1 = 1, βxr =
1

n

n−1∑
i=0

cos

(
2π2ir

q − 1

)
1 ≤ r ≤ q

2
− 1,

βys =
1

n

n−1∑
i=0

cos

(
2π2is

q + 1

)
1 ≤ s ≤ q

2
.

Consider the eigenvalues closest to 1, which are βxr with r = 1 and βys with
s = 1. It is easy to see that as n goes to∞,

βx = 1− γ
n (1 + o(1)) with γ =

∑∞
i=1

(
1− cos

(
2π
2i

))
.

Note further that the eigenvalues βxr have multiplicities: expressing r as a binary
number with n digits, any cyclic permutation of these digits gives a value r′ for
which βxr = βxr′ . Hence, the multiplicity of βxr is the number of different val-
ues r′ obtained in this way, and the number of distinct such eigenvalues is equal
to the number of orbits of the cyclic group Zn acting on Zn2 by permuting coordi-
nates cyclically. The number of orbits can be counted by classical Polya Theory:
there are

∑
d|n φ(d)2n/d of them, where φ is the Euler phi function. Similarly, the

eigenvalues β(ys) have multiplicities. For example, β(y) has multiplicity n.
Turning back to our walk, take y = 0 in (5.4). Then, because p0(xr) = 0,

K`(0, 0)

π(0)
− 1 = 2

q/2∑
s=1

β(ys)`,
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and the eigenvalue closest to 1 occurs when s = 1 and β(y) has multiplicity n.
The dominant term in this sum is thus 2n

(
1 − γ(1 + o(1))/n

)`. This takes ` =

n log n+ Cn to get to e−C. We have not carried out further details but remark that
very similar sums are considered by Hough [45] where he finds a cutoff for the
walk on the cyclic group Zp by adding ±2i, for 0 ≤ i ≤ m = blog2 pc, chosen
uniformly with probability 1

2m .

6 SL3(p)

6.1 Introduction

This section treats a random walk on the irreducible modules for the group SL3(p)
over an algebraically closed field k of characteristic p. The walk is generated by re-
peatedly tensoring with the 3-dimensional natural module. The irreducible Brauer
characters and projective indecomposables are given by Humphreys in [48]; the
theory is quite a bit more complicated than that of SL2(p).

The irreducible modules are indexed by pairs (a, b) with 0 ≤ a, b ≤ p − 1.
For example, (0, 0) is the trivial module, (1, 0) is a natural 3-dimensional module,
and (p − 1, p − 1) is the Steinberg module of dimension p3. The Markov chain
is given by tensoring with (1, 0). Here is a rough description of the walk; details
will follow. Away from the boundary, for 1 < a, b < p − 1, the walk is local, and
(a, b) transitions only to (a − 1, b + 1), (a + 1, b) or (a, b − 1). The transition
probabilities K((a, b), (a′, b′)) show a drift towards the diagonal a = b, and on the
diagonal, a drift diagonally upward. Furthermore, there is a kind of discontinuity
at the line a+ b = p− 1: for a+ b ≤ p− 2, the transition probabilities (away from
the boundary) are:

(c, d) K((a, b), (c, d))

(a− 1, b+ 1) 1
3

(
1− 1

a+1

)(
1 + 1

b+1

)
(a+ 1, b) 1

3

(
1 + 1

a+1

)(
1 + 1

a+b+2

)
(a, b− 1) 1

3

(
1− 1

b+1

)(
1− 1

a+b+2

) (6.1)

whereas for a+ b ≥ p they are as follows, writing f(x, y) = 1
2xy(x+ y):

(c, d) K((a, b), (c, d))

(a− 1, b+ 1) 1
3

(
f(a,b+2)−f(p−a,p−b−2)

f(a+1,b+1)−f(p−a−1,p−b−1)

)
(a+ 1, b) 1

3

(
f(a+2,b+1)−f(p−a−2,p−b−1)
f(a+1,b+1)−f(p−a−1,p−b−1)

)
(a, b− 1) 1

3

(
f(a+1,b)−f(p−a−1,p−b)

f(a+1,b+1)−f(p−a−1,p−b−1)

) (6.2)
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The stationary distribution π can be found in Table 6.5. As a local walk with
a stationary distribution of polynomial growth, results of Diaconis-Saloffe-Coste
[28] show that (diameter)2 steps are necessary and sufficient for convergence to
stationarity. The analytic expressions below confirm this (up to logarithmic terms).

Section 6.2 describes the p-regular classes and the irreducible and projective
indecomposable Brauer characters, following Humphreys [48], and also the de-
composition of tensor products (a, b) ⊗ (1, 0). These results are translated into
Markov chain language in Section 6.3, where a complete description of the tran-
sition kernel and stationary distribution appears, and the convergence analysis is
carried out.

6.2 p-modular representations of SL3(p)

For ease of presentation, we shall assume throughout that p is a prime congruent
to 2 modulo 3 (so that SL3(p) = PSL3(p)). For p ≡ 1 mod 3, the theory is very
similar, with minor notational adjustments. The material here largely follows from
the information given in [48, Section 1].

(a) p-regular classes

Let G = SL3(p), of order p3(p3 − 1)(p2 − 1), and assume x, y ∈ G are fixed
elements of orders p2 + p + 1, p2 − 1, respectively. Let 1 be the 3 × 3 identity
matrix. Assume J and K are sets of representatives of the nontrivial orbits of the
pth-power map on the cyclic groups 〈x〉 and 〈y〉, respectively. Also, for ζ, η ∈ F∗p,
let zζ,η be the diagonal matrix diag(ζ, η, ζ−1η−1) ∈ G. Then the representatives
and centralizer orders of the p-regular classes of G are as follows:

representatives no. of classes centralizer order
1 1 |G|

xr ∈ J p2+p
3 p2 + p+ 1

ys ∈ K p2−p
2 p2 − 1

zζ,ζ (ζ ∈ F∗p, ζ 6= 1) p− 2 p(p2 − 1)(p− 1)

zζ,η (ζ, η, ζ−1η−1 distinct) (p−2)(p−3)
6 (p− 1)2

(b) Irreducible modules and dimensions

As mentioned above, the irreducible kG-modules are indexed by pairs (a, b) for
0 ≤ a, b ≤ p − 1. Denote by V(a, b) or just (a, b) the corresponding irreducible
module. The dimension of V(a, b) is given in Table 6.1, expressed in terms of the
function f(x, y) = 1

2xy(x+ y).
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Table 6.1: Dimensions of irreducible SL3(p)-modules with f(x, y) = 1
2xy(x+ y)

(a, b) dim(V(a, b))

(a, 0), (0, a) f(a+ 1, 1)

(p− 1, a), (a, p− 1) f(a+ 1, p)

(a, b), a+ b ≤ p− 2 f(a+ 1, b+ 1)

(a, b), a+ b ≥ p− 1, f(a+ 1, b+ 1)− f(p− a− 1, p− b− 1)
1 ≤ a, b ≤ p− 2

The Steinberg module St = (p− 1, p− 1) has Brauer character

1 xr ys zζ,ζ zζ,η
St p3 1 −1 p 1

(6.3)

(c) Projective indecomposables

Denote by p(a,b) the Brauer character of the projective indecomposable cover of
the irreducible (a, b). To describe these, we need to introduce some notation. For
any r, j, `,m define

tr = qr1 + qpr1 + qp
2r

1 where q1 = e2πi/(p2+p+1),

uj = qj2 + qpj2 where q2 = e2πi/(p2−1), (6.4)

u′j = qj2 + qpj2 + q
−j(p+1)
2 where q2 = e2πi/(p2−1),

v`,m = q`3 + qm3 + q−`−m3 where q3 = e2πi/(p−1).

Now for 0 ≤ a, b ≤ p − 1, define the function s(a, b) on the p-regular classes of
G as in Table 6.2. Then the projective indecomposable characters p(a,b) are as in
Table 6.3.

Table 6.3 displays the projective characters. There, St stands for the character
of the (irreducible and projective) Steinberg module (p− 1, p− 1) (see (6.3)) and
s(a, b) is the function in Table 6.2.

(d) 3-dimensional Brauer character

The Brauer character of the irreducible 3-dimensional representation α = χ(1,0) is:

1 xr ys zζk,ζk zζ`,ζm

α 3 tr u′s vk,k v`,m
(6.5)

where ζ is a fixed element of F∗p, ζ 6= 1.

40



Table 6.2: The function s(a, b)

1 xr ys zζk,ζk zζ`,ζm (` 6= m)

(0,0) 1 1 1 1 1
s(a, 0) 3 tar u′as vak,ak va`,am
a 6= 0
s(0, b) 3 t−br u′−bs v−bk,−bk v−b`,−bm
b 6= 0
s(a, b) 6 tr(a−bp) us(a+b+bp) 2vk(a+2b),k(a−b) v`(a+b)+mb,−`b+ma
ab 6= 0 +tr(ap−b) +us(a−bp) +v`b+m(a+b),−`a−mb

+us(−a(1+p)−b)

(e) Tensor products with (1, 0)

The basic rule for tensoring an irreducible SL3(p)-module (a, b) with (1, 0) is

(a, b)⊗ (1, 0) = (a− 1, b+ 1)/(a+ 1, b)/(a, b− 1),

but there are many tweaks to this rule at the boundaries (i.e. when a or b is 0, 1 or
p− 1), and also when a+ b = p− 2. The complete information is given in Table
6.4.

We shall need the following estimates.

Lemma 6.1. Let n ≥ 7 be an integer, and let L := {2πj/n | j ∈ Z}.

(i) If 0 ≤ x ≤ π/3 then sin(x) ≥ x/2 and cos(x) ≤ 1− x2/4.

(ii) Suppose x ∈ Lr 2πZ. Then cos(x) ≤ 1− π2/n2. Furthermore,

|2 + cos(x)| ≤ 3− π2/n2, |1 + 2 cos(x)| ≤ 3− 2π2/n2.

(iii) Suppose that x, y, z ∈ L with x+ y + z ∈ 2πZ but at least one of x, y, z is
not in 2πZ. Then | cos(x) + cos(y) + cos(z)| ≤ 3− 2π2/n2.

Proof. (i) Note that if f(x) := sin(x) − x/2 then f ′(x) = cos(x) − 1/2 ≥ 0 on
[0, π/3], whence f(x) ≥ f(0) = 0 on the same interval.

Next, for g(x) := (1−x2/4)− cos(x) we have g′(x) = f(x), whence g(x) ≥
g(0) = 0 for 0 ≤ x ≤ π/3.

(ii) Replacing x by 2πk± x for a suitable k ∈ Z, we may assume that 2π/n ≤
x ≤ π. If moreover x ≥ π/3, then cos(x) ≤ 1/2 < 1 − π2/n2 as n ≥ 5. On

41



Table 6.3: Projective indecomposable Brauer characters p(a,b) for SL3(p)

(a, b) p(a,b) dimension
(p− 1, p− 1) St p3

(p− 1, 0) (s(p− 1, 0)− s(0, 0)) St 2p3

(p− 2, 0) (s(p− 1, 1)− s(0, 1))St 3p3

(0, 0)
(
s(p− 1, p− 1) + s(1, 1) + s(0, 0) 7p3

−s(p− 1, 0)− s(0, p− 1)
)
St

(a, 0)
(
s(p− 1, p− a− 1) + s(a+ 1, 1) 9p3

0 < a < p− 2 −s(0, p− a− 1)
)
St

(a, b), ab 6= 0 s(p− b− 1, p− a− 1) St 6p3

a+ b ≥ p− 2

(a, b), ab 6= 0
(
s(p− b− 1, p− a− 1) 12p3

a+ b < p− 2 +s(a+ 1, b+ 1)
)
St

the other hand, if 2π/n ≤ x ≤ π/3, then by (i) we have cos(x) ≤ 1 − x2/4 ≤
1− π2/n2, proving the first claim. Now

1 ≤ 2 + cos(x) ≤ 3− π2/n2, − 1 ≤ 1 + 2 cos(x) ≤ 3− 2π2/n2

establishing the second claim.
(iii) Subtracting multiples of 2π from x, y, z we may assume that 0 ≤ x, y, z <

2π and x + y + x ∈ {2π, 4π}. If moreover some of them equal to 0, say x = 0,
then 0 < y < 2π and

| cos(x) + cos(y) + cos(z)| = |1 + 2 cos(y)| ≤ 3− 2π2/n2

by (ii). So we may assume 0 < x ≤ y ≤ z < 2π. This implies by (ii) that

cos(x) + cos(y) + cos(z) ≤ 3− 3π2/n2.

If moreover x ≤ 2π/3, then cos(x) ≥ −1/2 and so

cos(x) + cos(y) + cos(z) ≥ −5/2 > −(3− 2π2/n2) (6.6)

as n ≥ 7, and we are done. Consider the remaining case x > 2π/3; in particular,
x + y + z = 4π. It follows that 4π/3 ≤ γ < 2π, cos(z) ≥ −1/2, whence (6.6)
holds and we are done again.

42



Table 6.4: Tensor products with (1, 0)

(a, b) (a, b)⊗ (1, 0)

ab 6= 0, a+ b ≤ p− 3 (a− 1, b+ 1)/(a+ 1, b)/(a, b− 1)
or a+ b ≥ p− 1, 2 ≤ a, b ≤ p− 2

ab 6= 0, a+ b = p− 2 (a− 1, b+ 1)/(a+ 1, b)/(a, b− 1)2

(a, 0), a ≤ p− 2 (a− 1, 1)/(a+ 1, 0)
(p− 1, 0) (p− 2, 1)2/(p− 3, 0)/(1, 0)

(0, b), b ≤ p− 3 (1, b)/(0, b− 1)
(0, p− 2) (1, p− 2)/(0, p− 3)2

(0, p− 1) (1, p− 1)/(0, p− 2)

(1, p− 1) (1, p− 2)2/(2, p− 1)/(0, p− 3)/(0, 1)
(1, p− 2) (2, p− 2)/(0, p− 1)
(p− 1, 1) (p− 2, 2)2/(p− 1, 0)/(p− 4, 0)/(1, 1)/(0, 0)
(p− 2, 1) (p− 3, 2)/(p− 1, 1)

(p− 1, b), 2 ≤ b ≤ p− 3 (p− 2, b+ 1)2/(p− 1, b− 1)/(p− 3− b, 0)/
(1, b)/(0, b− 1)

(a, p− 1), 2 ≤ a ≤ p− 2 (a, p− 2)2/(a+ 1, p− 1)/(a− 1, 1)/
(a− 2, 0)/(0, p− a− 2)

(p− 1, p− 2) (p− 2, p− 1)2/(0, p− 3)2/(p− 1, p− 3)/(1, p− 2)
(p− 1, p− 1) (p− 1, p− 2)3/(p− 2, 1)2/(1, p− 1)/

(p− 3, 0)4/(0, p− 2)

6.3 The Markov chain

Consider now the Markov chain on IBr(SL3(p)) given by tensoring with (1, 0).
The transition matrix has entries

K((a, b), (a′, b′)) =
〈(a′, b′), (a, b)⊗ (1, 0)〉 dim(a′, b′)

3 dim(a, b)
,

and from the information in Tables 6.1 and 6.4, we see that away from the bound-
aries (i.e for a, b 6= 0, 1, p − 1), the transition probabilities are as in (6.1), (6.2).
The probabilities at the boundaries of course also follow but are less clean to write
down.

The stationary distribution π is given by Proposition 3.1(i), hence follows from
Tables 6.1 and 6.3. We have written this down in Table 6.5. Notice that on the
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diagonal

π(a, a)·(p3−1)(p2−1) =


7 if a = 0,

12(a+ 1)3 if 1 ≤ a ≤ p−3
2 ,

6
(
(a+ 1)3 − (p− a− 1)3

)
if p−1

2 ≤ a < p− 1,

p3 if a = p− 1.

In particular, π(a, a) increases cubically on [0, p−3
2 ] and on [p−1

2 , p− 1], and drops
quadratically from (p− 3)/2 to (p− 1)/2.

Table 6.5: Stationary distribution for SL3(p) with f(x, y) = 1
2xy(x+ y)

(a, b) π(a, b) · (p3 − 1)(p2 − 1)

(0,0) 7
(p− 1, 0), (0, p− 1) 2f(p, 1)
(p− 2, 0), (0, p− 2) 3f(p− 1, 1)

(a, 0), (0, a) (0 < a < p− 2) 9f(a+ 1, 1)
ab 6= 0, a+ b < p− 2 12f(a+ 1, b+ 1)
ab 6= 0, a+ b = p− 2 6f(a+ 1, b+ 1)

a, b 6= 0 or p− 1 and a+ b ≥ p− 1 6 (f(a+ 1, b+ 1)− f(p− a− 1, p− b− 1))
(a, p− 1), (p− 1, a) (a 6= 0, p− 1) 6f(a+ 1, p)

(p− 1, p− 1) p3

From Proposition 3.1(ii) and (6.5), we see in the notation of (6.4) that the eigen-
values are

β1 = 1,
βxr = 1

3 tr,
βys = 1

3u
′
s,

βz
ζk,ζk

= 1
3vk,k,

βz
ζ`,ζm

= 1
3v`,m.

(6.7)

Now Proposition 3.1(v) gives

K`((0, 0), (a, b))

π(a, b)
− 1 =

∑
c6=1

β`c
p(a,b)(c)

p(a,b)(1)
|cG|, (6.8)

where the sum is over representatives c of the nontrivial p-regular classes.
We shall show below (for p ≥ 11) that

βc ≤ 1− 3

p2
(6.9)
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for all representatives c 6= 1. Given this, (6.8) implies

‖ K`((0, 0), ·)− π(·) ‖
TV
≤ p8

(
1− 3

p2

)`
.

This is small for ` of order p2 log p. More delicate analysis allows the removal of
the log p term, but we will not pursue this further.

It remains to establish the bound (6.9). First, if c = zζk,ζk with 1 ≤ k ≤ p− 2,
then we can apply Lemma 6.1(ii) to βc = 1

3vk,k. In all other cases, βc = (cos(x) +
cos(y) + cos(z))/3 with x, y, z ∈ (2π/n)Z, x+ y + z ∈ 2πZ, and at least one of
x, y, z not in 2πZ, where n ∈ {p− 1, p2 − 1, p2 + p+ 1}. Now the bound follows
by applying Lemma 6.1(iii).

Summary. In this section we have analyzed the Markov chain on IBr(SL3(p))
given by tensoring with the natural 3-dimensional module (1, 0). We have com-
puted the transition probabilities (6.1), (6.2), the stationary distribution (Table 6.5),
and shown that order p2 log p steps suffice for stationarity.

7 Quantum groups at roots of unity

7.1 Introduction

The tensor walks considered above can be studied in any context where ‘tensoring’
makes sense: tensor categories, Hopf algebras, or the Z+ modules of [31]. Ques-
tions abound: Will the explicit spectral theory of Theorems 2.3 3.3, 4.1, 4.2, and
5.1 still hold? Can the rules for tensor products be found? Are there examples
that anyone (other than the authors) will care about? This section makes a start
on these problems by studying the tensor walk on the (restricted) quantum group
uξ(sl2) at a root of unity ξ (described below). It turns out that there is a reason-
able spectral theory, though not as nice as the previous ones. The walks are not
diagonalizable and generalized spectral theory (Jordan blocks) must be used. This
answers a question of Grinberg, Huang, and Reiner [43, Question 3.12]. Some ten-
sor product decompositions are available using years of work by the representation
theory community, and the walks that emerge are of independent interest. Let us
begin with this last point.

Consider the Markov chain on the irreducible modules of SL2(p) studied in
Section 3.2. This chain arises in Pitman’s study of Gamblers’ Ruin and leads to his
2M−X theorem and a host of generalizations of current interest in both probability
and Lie theory. The nice spectral theory of Section 3 depends on p being a prime.
On the other hand, the chain makes perfect sense with p replaced by n. A special
case of the Markov chains studied in this section handles these examples.
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Example 7.1. Fix n odd, n ≥ 3 and define a Markov chain on {0, 1, . . . , n − 1}
by K(0, 1) = 1 and

K(a, a− 1) =
1

2

(
1− 1

a+ 1

)
1 ≤ a ≤ n− 2,

K(a, a+ 1) =
1

2

(
1 +

1

a+ 1

)
0 ≤ a ≤ n− 2,

K(n− 1, n− 2) = 1− 1

n
, K(n− 1, 0) =

1

n
.

(7.1)

Thus, when n = 9, the transition matrix is

K =



0 1 2 3 4 5 6 7 8

0 0 1 0 0 0 0 0 0 0
1 1

4 0 3
4 0 0 0 0 0 0

2 0 2
6 0 4

6 0 0 0 0 0
3 0 0 3

8 0 5
8 0 0 0 0

4 0 0 0 4
10 0 6

10 0 0 0
5 0 0 0 0 5

12 0 7
12 0 0

6 0 0 0 0 0 6
14 0 8

14 0
7 0 0 0 0 0 0 7

16 0 9
16

8 2
18 0 0 0 0 0 0 16

18 0


The entries have been left as un-reduced fractions to make the pattern readily ap-
parent. The first and last rows are different, but for the other rows, the sub-diagonal
entries have numerators 1, 2, . . . , n− 2 and denominators 4, 6, . . . , 2(n− 1). This
is a non-reversible chain. The theory developed below shows that

• the stationary distribution is

π(j) = 2(j+1)
n2 , 0 ≤ j ≤ n− 2, π(n− 1) = 1

n ; (7.2)

• the eigenvalues for the transition matrix K are 1 and

λj = cos
(

2πj
n

)
, 1 ≤ j ≤ (n− 1)/2; (7.3)

• a right eigenvector corresponding to the eigenvalue λj is

Rj =
[
sin
(

2πj
n

)
, 1

2 sin
(

4πj
n

)
, . . . , 1

n−1 sin
(

2(n−1)πj
n

)
, 0
]T
, (7.4)

where T denotes the transpose;
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• a left eigenvector corresponding to the eigenvalue λj is

Lj =
[
cos
(

2πj
n

)
, 2 cos

(
4πj
n

)
, . . . , (n− 1) cos

(
2(n−1)πj

n

)
, n2

]
; (7.5)

Note that the above accounts for only half of the spectrum. Each of the eigen-
values λj , 1 ≤ j ≤ 1

2(n − 1), is associated with a 2 × 2 Jordan block of the form(
λj 1
0 λj

)
, giving rise to a set of generalized eigenvectors R′j , L′j with

K`R′j = λ`j R′j + `λ`−1
j Rj L′jK

` = λ`jL′j + `λ`−1
j Lj (7.6)

for all ` ≥ 1. The vectors R′j and L′j can be determined explicitly from the expres-
sions for the generalized eigenvectors X′j and Y′j for M given in Proposition 7.7.
Using these ingredients a reasonably sharp analysis of mixing times follows.

Our aim will be to show for the quantum group uξ(sl2) at a primitive nth root
of unity ξ for n odd that the following result holds.

Theorem 7.2. For n odd, n ≥ 3, tensoring with the two-dimensional irreducible
representation of uξ(sl2) yields the Markov chain K of (7.1) with the stationary
distribution π in (7.2). Moreover, there exist explicit continuous functions f1, f2

from [0,∞) to [0,∞) with f1(`/n2) ≤ ||K` − π||
TV

for all `, and ||K` − π||
TV
≤

f2(`/n2) for all ` ≥ n2. Here f1(x) is monotone increasing and strictly positive
at x = 0, and f2(x) is positive, strictly decreasing, and tends to 0 as x tends to
infinity.

Section 7.2 introduces uξ(sl2) and gives a description of its irreducible, Weyl,
and Verma modules. Section 7.3 describes tensor products with the natural 2-
dimensional irreducible uξ(sl2)-module V1, and Section 7.4 focuses on projective
indecomposable modules and the result of tensoring V1 with the Steinberg mod-
ule. Analytic facts about the generalized eigenvectors of the related Markov chains,
along with a derivation of (7.1)-(7.5), are in Section 7.5. Theorem 7.2 is proved in
Section 7.6. Some further developments (e.g. results on tensoring with the Stein-
berg module) form the content of Section 7.7. We will use [18] as our main refer-
ence in this section, but other incarnations of quantum SL2 exist (see, for example,
Sec VI.5 of [54] and the many references in Sec. VI.7 of that volume or Sections
6.4 and 11.1 of the book [19] by Chari and Pressley, which contains a wealth of
material on quantum groups and a host of related topics.) The graduate text [52] by
Jantzen is a wonderful introduction to basic material on quantum groups, but does
not treat the roots of unity case.
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7.2 Quantum sl2 and its Weyl and Verma modules

Let ξ = e2πi/n ∈ C, where n is odd and n ≥ 3. The quantum group uξ(sl2) is an
n3-dimensional Hopf algebra over C with generators e, f, k satisfying the relations

en = 0, fn = 0, kn = 1

kek−1 = ξ2e, kfk−1 = ξ−2f, [e, f ] = ef − fe =
k − k−1

ξ − ξ−1
.

The coproduct ∆, counit ε, and antipode S of uξ(sl2) are defined by their action
on the generators:

∆(e) = e⊗ k + 1⊗ e, ∆(f) = f ⊗ 1 + k−1 ⊗ f, ∆(k) = k ⊗ k,
ε(e) = 0 = ε(f), ε(k) = 1, S(e) = −ek−1, S(f) = −fk, S(k) = k−1.

The coproduct is particularly relevant here, as it affords the action of uξ(sl2) on
tensor products.

Chari and Premet have determined the indecomposable modules for uξ(sl2) in
[18], where this algebra is denoted U redε . We adopt results from their paper using
somewhat different notation and add material needed here on tensor products.

For r a nonnegative integer, the Weyl module Vr has a basis {v0, v1, . . . , vr}
and uξ(sl2)-action is given by

kvj = ξr−2jvj , evj = [r − j + 1]vj−1, fvj = [j + 1]vj+1, (7.7)

where vs = 0 if s 6∈ {0, 1, . . . , r} and [m] = ξm−ξ−m
ξ−ξ−1 . In what follows, [0]! = 1

and [m]! = [m][m − 1] · · · [2][1] for m ≥ 1. The modules Vr for 0 ≤ r ≤ n − 1
are irreducible and constitute a complete set of irreducible uξ(sl2)-modules up to
isomorphism.

For 0 ≤ r ≤ n− 1, the Verma module Mr is the quotient of uξ(sl2) by the left
ideal generated by e and k − ξr. It has dimension n and is indecomposable. Any
module generated by a vector v0 with ev0 = 0 and kv0 = ξrv0 is isomorphic to a
quotient of Mr. When 0 ≤ r < n− 1, Vr is the unique irreducible quotient of Mr,
and there is a non-split exact sequence

(0)→ Vn−r−2 → Mr → Vr → (0). (7.8)

When r = n− 1, Mn−1
∼= Vn−1, the Steinberg module, which has dimension n.

We consider the two-dimensional uξ(sl2)-module V1, and to distinguish it from
the others, we use u0, u1 for its basis. Then relative to that basis, the generators
e, f, k are represented by the following matrices

e→
(

0 1
0 0

)
, f →

(
0 0
1 0

)
, k →

(
ξ 0
0 ξ−1

)
.
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7.3 Tensoring with V1

The following result describes the result of tensoring an irreducible uξ(sl2)-module
Vr for r 6= n− 1 with V1. In the next section, we describe the projective indecom-
posable uξ(sl2)-modules and treat the case r = n− 1.

Proposition 7.3. Assume V1 = spanC{u0, u1} and Vr = spanC{v0, v1, . . . , vr}
for 0 ≤ r < n− 1.

(i) The uξ(sl2)-submodule of V1 ⊗ Vr generated by u0 ⊗ v0 is isomorphic to
Vr+1.

(ii) V0 ⊗ V1
∼= V1, and V1 ⊗ Vr ∼= Vr+1 ⊗ Vr−1 when 1 ≤ r < n− 1.

Proof. (i) Let w0 = u0 ⊗ v0, and for j ≥ 1 set

wj := ξ−ju0 ⊗ vj + u1 ⊗ vj−1

Note that wj = 0 when j > r+ 1. Then it can be argued by induction on j that the
following hold:

ew0 = 0, ewj = [r + 1− j + 1]wj−1 = [r + 2− j]wj−1 (j ≥ 1)

kwj = ξr+1−2jwj (7.9)

fwj = [j + 1]wj+1 (in particular, wj =
f j(u0 ⊗ v0)

[j]!
for 0 ≤ j < n− 1).

Thus, W := spanC{w0, w1, . . . , wr+1} is a submodule of V1 ⊗ Vr isomorphic to
Vr+1.

(ii) When r < n− 1, W ∼= Vr+1 is irreducible. In this case, set

y0 := ξru0 ⊗ v1 − [r]u1 ⊗ v0,

and let Y be the uξ(sl2)-submodule of V1⊗Vr generated by y0. It is easy to check
that ky0 = ξr−1y0 and ey0 = 0. As Y is a homomorphic image of the Verma
module Mr−1, Y is isomorphic to either Vr−1 or Mr−1. In either event, the only
possible candidates for vectors in Y sent to 0 by e have eigenvalue ξr−1 or ξn−r−1

relative to k. Neither of those values can equal ξr+1, since ξ is an odd root of 1 and
r 6= n − 1. Thus, Y cannot contain w0, and since W is irreducible, W ∩ Y = (0).
Then dim(W) + dim(Y) = r + 2 + dim(Y) ≤ 2(r + 1), forces Y ∼= Vr−1 and
V1 ⊗ Vr ∼= Vr+1 ⊕ Vr−1.
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7.4 Projective indecomposable modules for uξ(sl2) and V1 ⊗ Vn−1.

Chari and Premet [18] have described the indecomposable projective covers Pr
of the irreducible uξ(sl2)-modules Vr. The Steinberg module Vn−1 being both
irreducible and projective is its own cover, Pn−1 = Vn−1. For 0 ≤ r < n− 1, the
following results are shown to hold for Pr in [18, Prop., Sec. 3.8]:

(i) [Pr : Mj ] =

{
1 if j = r or n− 2− r
0 otherwise

.

(ii) dim(Pr) = 2n.

(iii) The socle of Pr (the sum of all its irreducible submodules) is isomorphic to Vr.

(iv) There is a non-split short exact sequence

(0)→ Mn−r−2 → Pr → Mr → (0). (7.10)

Using these facts we prove

Proposition 7.4. For uξ(sl2) with ξ a primitive nth root of unity, n odd, n ≥ 3,
V1 ⊗ Vn−1 is isomorphic to Pn−2. Thus,

[V1 ⊗ Vn−1 : Vn−2] = 2 = [V1 ⊗ Vn−1 : V0].

Proof. We know from the above calculations that V1⊗Vn−1 contains a submodule
W which is isomorphic to Vn and has a basis w0, w1, . . . , wn with w0 = u0 ⊗ v0

and
wj := ξ−ju0 ⊗ vj + u1 ⊗ vj−1 for 1 ≤ j ≤ n.

It is a consequence of (7.9) that

ew1 = [n− 1 + 2− 1]w0 = 0, fw0 = w1,

fwn−1 = [n]wn = 0, ewn = [n− 1 + 2− n]wn−1 = wn−1.

It is helpful to visualize the submodule W as follows, where the images under e

and f are up to scalar multiples:

. . .

0
e

w0w0w0

e
w1w1w1

f

0
e

f
w2

f e e
wn−1wn−1wn−1

e

wnwnwn
f
wn−2wn−2wn−2

e f

0

0

f

f

Figure 4: The submodule W of V1 ⊗ Vn−1
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Now since ew1 = 0 and kw1 = ξn−2w1, there is a uξ(sl2)-module homomor-
phism Vn−2 → W′ := spanC{w1, . . . , wn−1} mapping the basis ṽ0, ṽ1, . . . , ṽn−2

of Vn−2 according to the rule ṽ0 7→ w1, ṽj = fj ṽ0
[j]! 7→

fjw1

[j]! ∈W′. As Vn−2 is irre-
ducible, this is an isomorphism. From the above considerations, we see that W/W′

is isomorphic to a direct sum of two copies of the one-dimensional uξ(sl2)-module
V0. (In fact, spanC{w1, . . . , wn−1, wn} ∼= M0.)

Because Vn−1 is projective, the tensor product V1 ⊗ Vn−1 decomposes into a
direct sum of projective indecomposable summands Pr. But V1⊗Vn−1 contains a
copy of the irreducible module Vn−2, so one of those summands must be Pn−2 (the
unique projective indecomposable module with an irreducible submodule Vn−2).
Since dim(Pn−2) = 2n = dim(V1 ⊗ Vn−1), it must be that V1 ⊗ Vn−1

∼= Pn−2.
The assertion [V1 ⊗ Vn−1 : Vn−2] = 2 = [V1 ⊗ Vn−1 : V0] follows directly from
the short exact sequence (0) → M0 → Pn−2 → Mn−2 → (0) (as in (7.10) with
r = n− 2) and the fact that [Mj : V0] = 1 = [Mj : Vn−2] for j = 0, n− 2.

In Figure 5, we display the tensor chain graph resulting from Propositions 7.3
and 7.4.

0

1n− 1

Figure 5: Tensor walk on irreducibles of uξ(sl2)

Remarks 7.5. (i) Proposition 7.4 shows that V1 ⊗ Vn−1
∼= Pn−2. Had we been

interested only in proving that [V1 ⊗ Vn−1 : V0] = 2 = [V1 ⊗ Vn−1 : Vn−2],
we could have avoided using projective covers by arguing that the vector x0 =
u0 ⊗ v1 6∈W is such that kx0 = ξn−2x0 and ex0 = −w0. Thus, (V1 ⊗ Vn−1) /W
is a homomorphic image of Mn−2, but since (V1 ⊗ Vn−1) /W has dimension n−1,
(V1 ⊗ Vn−1) /W ∼= Vn−2. From that fact and the structure of W, we can deduce
that [V1 ⊗ Vn−1 : V0] = 2 = [V1 ⊗ Vn−1 : Vn−2]. The projective covers will
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reappear in Section 7.7 when we consider tensoring with the Steinberg module
Vn−1.

(ii) The probabilistic description of the Markov chain in (7.1) will follow from
these two propositions. It is interesting to note that even when n = p a prime, the
tensor chain for uξ(sl2) is slightly different and the spectral analysis more compli-
cated (as will be apparent in the next section) from that of SL2(p). In the group case
(see Table 3.2.2), when tensoring the natural two-dimensional module V(1) with
the Steinberg module V(p − 1), the module V(1) occurs with multiplicity 1 and
V(p− 2) with multiplicity 2. But in the quantum case, V1⊗Vp−1 has composition
factors V0,Vp−2, each with multiplicity 2 by Proposition 7.4.

(iii) The quantum considerations above most closely resemble tensor chains for
the Lie algebra sl2 over an algebraically closed field k of characteristic p ≥ 3. The
restricted irreducible sl2-representations are V0,V1, . . . ,Vp−1 where dim(Vj) =
j+1. The tensor products of them with V1 exactly follow the results in Proposition
7.3 and 7.4 with n = p. (For further details, consult ([68], [7], [74], and [69]).

7.5 Generalized spectral analysis

Consider the matrix K in (7.1). As a stochastic matrix, K has [1, 1, . . . , 1]T as a
right eigenvector with eigenvalue 1. It is easy to verify by induction on n that
π := [π(0), π(1), . . . , π(n−1)], where π(j) is as in (7.2) is a left eigenvector with
eigenvalue 1. In this section, we determine the other eigenvectors of K. A small
example will serve as motivation for the calculations to follow.

Example 7.6. For n = 3,

• the transition matrix is

K =

0 1 0
1
4 0 3

4
1
3

2
3 0

 ,

and the stationary distribution is π(j) = 2(j+1)
n2 (j = 0, 1), π(2) = 1

3 so
that

π =
[

2
9 ,

4
9 ,

1
3

]
;

• the eigenvalues are λj = cos(2πj
3 ), 0 ≤ j ≤ 1, with λ1 occurring in a block

of size 2, so
(λ0, λ1) = (1,−1

2);

• the right eigenvectors R0, R1 in (7.4) are

R0 = [1, 1, 1]T, R1 =
[
sin(2π

3 ), 1
2 sin(4π

3 ), 0
]T

=
[√

3
2 ,−

√
3

4 , 0
]T

;
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• the generalized right eigenvector R′1 for the eigenvalue −1/2 is

R′1 =
[
0,
√

3
2 ,−

2√
3

]T
;

• the left eigenvectors L0, L1 in (7.5) are

L0 = π, L1 =
[
cos(2π

3 ), 2 cos(4π
3 ), 3

2

]
=
[
−1

2 ,−1, 3
2

]
;

• the generalized left eigenvector L′1 for the eigenvalue −1/2 is

L′1 = [−2, 2, 0].

Note that L1R1 = 0, L1R′1 = L′1R1

(
= −3

√
3

2

)
in accordance with Lemma 7.9

below.

Now in the general case, we know that K has [1, 1, . . . , 1]T as a right eigen-
vector and π = [π(0), π(1), . . . , π(n − 1)] as a left eigenvector corresponding
to the eigenvalue 1. Next, we determine the other eigenvalues and eigenvectors
of K. To accomplish this, conjugate the matrix K with the diagonal matrix D
having 1, 2, . . . , n down the diagonal (the dimensions of the irreducible uξ(sl2)-
representations), and multiply by 2 (the dimension of V1) to get

2DKD−1 = M =



0 1 0 0 . . . 0 0 0
1 0 1 0 . . . 0 0 0
0 1 0 1 . . . 0 0 0
...

...
. . . . . . . . .

...
...

...
0 0 . . . 1 0 1 0 0
0 0 . . . 0 1 0 1 0
0 0 . . . 0 0 1 0 1
2 0 . . . 0 0 0 2 0


, (7.11)

a matrix that, except for the bottom row, has ones on its sub and super diagonals
and zeros elsewhere. The bottom row has a 2 as its (n, 1) and (n, n − 1) entries
and zeros everywhere else. In fact, M is precisely the McKay matrix of the Markov
chain determined by tensoring with V1 in the uξ(sl2) case as in Propositions 7.3
and 7.4. A cofactor (Laplace) expansion shows that this last matrix has the same
characteristic polynomial as the circulant matrix with first row [0,1,0, . . . , 0, 1],

53



that is 

0 1 0 0 . . . 0 0 1
1 0 1 0 . . . 0 0 0
0 1 0 1 . . . 0 0 0
...

...
. . . . . . . . .

...
...

...
0 0 . . . 1 0 1 0 0
0 0 . . . 0 1 0 1 0
0 0 . . . 0 0 1 0 1
1 0 . . . 0 0 0 1 0


. (7.12)

As is well known [23], this circulant matrix has eigenvalues 2 cos(2πj
n ), 0 ≤ j ≤

n− 1. Dividing by 2 gives (7.3).
Determining the eigenvectors in (7.4)- (7.5) are straightforward exercises, but

here are a few details. Rather than working with K, we first identify (generalized)
eigenvectors for M (see Corollary 7.8). Since M = 2DKD−1, a right eigenvec-
tor v (resp. left eigenvector w) of M with eigenvalue λ yields a right eigenvector
D−1v (resp. left eigenvector wD) for K with eigenvalue 1

2λ, just as in Lemma
2.2. Similarly, if v′, w′ are generalized eigenvectors for M with Mv′ = λv′+ v and
w′M = λw′+w, then KD−1v′ = 1

2λD
−1v′+ 1

2D
−1v andw′DK = 1

2λw
′D+ 1

2wD.

Proposition 7.7. For the matrix M defined in (7.11), corresponding to its eigen-
value 2 cos(2πj

n ) = ξj + ξ−j , j = 1, 2, . . . ,m = 1
2(n− 1), we have the following:

(a) Let Xj = [Xj(0),Xj(1), . . . ,Xj(n− 1)]T, where Xj(a) = ξ(a+1)j − ξ−(a+1)j

for 0 ≤ a ≤ n− 1. Then

Xj = [ξj − ξ−j , ξ2j − ξ−2j , . . . , ξ(n−1)j − ξ−(n−1)j , 0]T, (7.13)

and Xj is a right eigenvector for M.

(b) Let Yj = [Yj(0),Yj(1), . . . ,Yj(n− 1)]T, where Yj(a) = ξ(a+1)j + ξ−(a+1)j

for 0 ≤ a ≤ n− 2 and Yj(n− 1) = 1. Then

Yj = [ξj + ξ−j , ξ2j + ξ−2j , . . . , ξ(n−1)j + ξ−(n−1)j , 1], (7.14)

and Yj is a left eigenvector for M.

(c) Set ηa = ξja − ξ−ja for 0 ≤ a ≤ n − 1, so that η0 = 0, and ηn−a = −ηa
for a = 1, . . . ,m. The vector X′j = [X′j(0),X′j(1), . . . ,X′j(n− 1)]T with

X′j(a) = aηa + (a− 2)ηa−2 + · · ·+
(
a− 2ba2c

)
ηa−2ba

2
c. (7.15)

for 0 ≤ a ≤ n− 1 satisfies

MX′j = 2 cos(2πj
n )X′j + Xj = (ξj + ξ−j)X′j + Xj . (7.16)
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(d) Let γ0 = 1, and for 1 ≤ a ≤ n − 1, set γa = ξja + ξ−ja. Let δ0 = 1, and
for 1 ≤ b ≤ m, set

δb = γb−1 + γb−3 + · · ·+ γb−1−2b b−1
2
c. (7.17)

If Y′j = [Y′j(0),Y′j(1), . . . ,Y′j(n− 1)], where

Y′j(a) =

{
(a+ 1− n)δa+1 if 0 ≤ a ≤ m− 1,

(n− 1− a)δn−1−a if m ≤ a ≤ n− 1,

then

Y′j = [(1− n)δ1, (2− n)δ2, . . . , (m− n)δm | mδm, (m− 1)δm−1, . . . , δ1, 0]
(7.18)

and Y′jM = 2 cos(2πj
n )Y′j + Yj .

Proof. (a) Recall that the eigenvalues of M are 2 cos(2πj
n ) = ξj +ξ−j , so there are

only 1
2(n + 1) distinct eigenvalues (including the eigenvalue 1). For showing that

Xj is a right eigenvector of M for j = 1, . . . ,m = 1
2(n−1), note that ξ2j−ξ−2j =

(ξj + ξ−j)(ξj − ξ−j). This confirms that multiplying row 0 of M by the vector Xj
in (7.13) correctly gives (ξj + ξ−j)Xj(0). For rows a = 1, 2, . . . , n− 2, use

ξ(a−1)j − ξ−(a−1)j + ξ(a+1)j − ξ−(a+1)j = (ξj + ξ−j)(ξaj − ξ−aj).

Lastly, for row n− 1 we have

2ξj−2ξ−j+2ξ(n−1)j−2ξ−(n−1)j = 2ξj−2ξ−j+2ξ−j−2ξj = 0 = (ξj+ξ−j)·0.

(b) The argument for the left eigenvectors is completely analogous. Multiply the
vector Yj in (7.14) on the right by column 0 of M. The result is ξ2j + ξ−2j + 2 =
(ξj +ξ−j)(ξj +ξ−j), which is (ξj +ξ−j)Yj(0). For a = 1, 2, . . . , n−2, entry a of
(ξj+ξ−j)Yj is ξaj+ξ−aj+ξ(a+2)j+ξ−(a+2)j = (ξj+ξ−j)(ξ(a+1)j+ξ−(a+1)j) =
(ξj + ξ−j)Yj(a). Finally, entry n − 1 of (ξj + ξ−j)Yj is ξ(n−1)j + ξ−(n−1)j =
(ξj + ξ−j) · 1 = (ξj + ξ−j)Yj(n− 1).

(c) The vector X′j = [X′j(0),X′j(1), . . . ,X′j(n − 1)]T in this part has components
given in terms of the values ηa = ξja − ξ−ja for 0 ≤ a ≤ n − 1 in (7.15). For
example, when n = 7 and 1 ≤ j ≤ 3,

X′j = [0, η1, 2η2, 3η3 + η1, 4η4 + 2η2, 5η5 + 3η3 + η1, 6η6 + 4η4 + 2η2]T .

To verify that MX′j = 2 cos(2πj
n )X′j + Xj , use the fact that ηn−a = −ηa and

2 cos(2πj
n )ηa = (ξj + ξ−j)ηa = ηa−1 + ηa+1 for all 1 ≤ a ≤ n− 1. (7.19)
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In this notation, Xj = [η1, η2, . . . , ηn−1, 0]T and Xn−j = −Xj . Checking that (c)
holds just amounts to computing both sides and using (7.19). Thus, spanC{X′j ,Xj}
for j = 1, . . . ,m forms a two-dimensional generalized eigenspace corresponding
to a 2× 2 Jordan block with ξj + ξ−j = 2 cos(2πj

n ) on the diagonal.

(d) Set γa = ξja + ξ−ja for a = 1, 2, . . . , n− 1. Then γ1 = 2 cos(2πj
n ) and

γ2
1 = γ2 + 2, γ1γa = γa+1 + γa−1 for a ≥ 2. (7.20)

From (7.14), a left eigenvector of M corresponding to the eigenvalue 2 cos(2πj
n )

is Yj = [γ1, γ2, . . . , γm, γm, γm−1, . . . , γ1, 1]. We want to demonstrate that the
vector Y′j in (7.18) satisfies Y′j M = 2 cos(2πj

n )Y′j + Yj . An example to keep in
mind is the following one for n = 9 (a vertical line is included only to make the
pattern more evident):

Y′j = [−8,−7γ1,−6(γ2 + 1),−5(γ3 + γ1) | 4(γ3 + γ1), 3(γ2 + 1), 2γ1, 1, 0].

More generally, assume γ0 = 1, and for b = 1, 2, . . . ,m, let δb = γb−1 +γb−3 +
· · · + γb−1−2b b−1

2
c, as in (7.17). Thus, δ1 = γ0 = 1, δ2 = γ1, δ3 = γ2 + γ0 =

γ2 + 1, δ4 = γ3 + γ1, δ5 = γ4 + γ2 + 1, etc. Recall from (7.18) that

Y′j = [(1− n)δ1, (2− n)δ2, . . . , (m− n)δm | mδm, (m− 1)δm−1, . . . , δ1, 0]

Verifying that Y′j M = γ1Y′j + Yj uses (7.20) and the fact that

1 + γ1 + γ2 + · · ·+ γm = 0.

Assume now that D is the n×n diagonal matrix D = diag{1, 2, . . . , n} having
the dimensions of the simple uξ(sl2)-modules down its diagonal. We know that 1 is
an eigenvalue of the matrix K with right eigenvector [1, 1, . . . , 1]T and correspond-
ing left eigenvector the stationary distribution vector π = [π(0), . . . , π(n − 1)].
As a consequence of Proposition 7.7 and the relation K = 1

2D
−1MD, we have the

following result.

Corollary 7.8. Suppose θj = 2πj
n for j = 1, . . . ,m = 1

2(n−1) and i =
√
−1. Set

Rj = 1
2iD
−1Xj , Lj = 1

2 YjD R′j = 1
2iD
−1X′j , L′j = 1

2 Y′jD,

where Xj , Yj , X′j , and Y′j , are as in Proposition 7.7. Then corresponding to the
eigenvalue cos(2πj

n ),

(a) Rj = [sin(θj),
1
2 sin(2θj), . . . ,

1
n−1 sin((n− 1)θj), 0]T is a right eigenvector

for K;
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(b) Lj = [cos(θj), 2 cos(2θj), . . . , (n−1) cos((n−1)θj),
n
2 ] is a left eigenvector

for K;

(c) if R′j = [R′j(0), R′j(1), . . . , R′j(n − 1)]T, where R′j(a) = 1
2(a+1)i X′j(a) =

− i
2(a+1) X′j(a) and X′j(a) is the ath coordinate of X′j given in (7.15), then

KR′j = cos(2πj
n )R′j + Rj

(d) if L′j = [L′j(0), L′j(1), . . . , L′j(n − 1)]T, where L′j(a) = a+1
2 Y′j(a) and Y′j(a)

is the ath coordinate of Y′j given in (7.18), then L′jK = cos(2πj
n )L′j + Lj .

For the results in the next section, we will need to know various products such
as Lj R′j and L′j Rj . These two expressions are equal, as the following simple lemma
explains. Compare (8.5).

Lemma 7.9. Let A be an n× n matrix over some field K. Assume L (resp. R) is a
left (resp. right) eigenvector of A corresponding to an eigenvalue λ. Let L′ (resp.
R′) be a 1× n (resp. n× 1) matrix over K such that

L′A = λL′ + L and AR′ = λR′ + R

so that L′ and R′ are generalized eigenvectors corresponding to λ. Then

L R′ = L′ R.

Proof. This is apparent from computing L′AR′ two different ways:

L′ AR′ = (L′A)R′ = (λL′ + L)R′ = λL′R′ + L R′

= L′(AR′) = L′(λR′ + R) = λL′R′ + L′R.

To undertake a detailed analysis of convergence, the inner products dj =
Lj R′j = L′j Rj and d′j = L′j R′j , 1 ≤ j ≤ (n − 1)/2 are needed. We were
surprised to see that dj came out so neatly.

Lemma 7.10. For L′j and Rj as in Corollary 7.8,

dj =

n−1∑
k=0

L′j(k)Rj(k) =
n

32

(
4

sin(θj)
− n+ 1

sin3(θj)

)
, where θj =

2πj

n
.

Proof. Recall that L′j = 1
2 Y′jD and Rj = 1

2iD
−1Xj , where i =

√
−1, D is the

diagonal n× n matrix with 1, 2, . . . , n down its main diagonal, and Y′j and Xj are
as in Proposition 7.7. Therefore

dj = L′j Rj =

(
1

2
Y′jD

)(
1

2i
D−1Xj

)
=

1

4i
Y′j Xj ,

57



so it suffices to compute Y′j Xj =
∑n−1

k=0 Y′j(k)Xj(k).

With m = 1
2(n− 1) and ξ = e

2πi
n , we have from (7.18) and Corollary 7.8 that

Y′j = [(1− n)δ1, (2− n)δ2, . . . , (m− n)δm | mδm, (m− 1)δm−1, . . . , δ1, 0]

with δb = γb−1 + γb−3 + · · ·+ γb−1−2b b−1
2
c and γa = ξja + ξ−ja = 2 cos(2πja

n );

Xj = [η1, η2, . . . , ηm,−ηm, . . . ,−η1, 0]T,

with ηb = ξbj − ξ−bj = e
2πi jb
n − e−

2πi jb
n = −ηn−b.

Then η0 = ηn = 0, γaηb = ηa+b + ηb−a for 1 ≤ b ≤ m, and

Y′j Xj = −n
m∑
b=1

δbηb = −n
m∑
b=1

(
γb−1 + γb−3 + · · ·+ +γb−1−2b b−1

2
c

)
ηb

= −n (mη1 + (m− 1)η3 + · · ·+ 2η2m−3 + η2m−1)

= −2ni
(
m sin(θj) + (m− 1) sin(3θj) + · · ·

+ 2 sin((2m− 3)θj) + sin((2m− 1)θj)
)
.

The argument continues by summing the (almost) geometric series using
m∑
a=1

(m+ 1− a)ξ2a−1 =
ξ

(ξ2 − 1)2

((
ξ2(m+1) − 1

)
− (m+ 1)

(
ξ2 − 1

))
.

As a result,

Y′j Xj = −n

{
ξ

(ξ2 − 1)2

(
(ξ − 1)− (m+ 1)(ξ2 − 1)

)
− ξ−1

(ξ−2 − 1)2

(
(ξ−1 − 1)− (m+ 1)(ξ−2 − 1)

)}

=
−n

(ξ2 − 1)2 (ξ−2 − 1)

{
ξ(ξ−2 − 1)

(
(ξ − 1)− (m+ 1)(ξ2 − 1)

)
− ξ−1(ξ2 − 1)

(
(ξ−1 − 1)− (m+ 1)(ξ−2 − 1)

)}

=
−n

4
(
1− cos(2θj)

)2{2i

(
sin(3θj)− 3 sin(θj)

)
+ 4i(m+ 1) sin(θj)

}
=

−ni
2
(
1− cos(2θj)

)2{ sin(3θj) + (2m− 1) sin(θj)

}
.
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Now use cos(2θj) = 1− 2 sin2(θj) and sin(3θj) = 3 sin(θj)− 4 sin3(θj), to get

Y′j Xj =
ni

8

{
4

sin(θj)
− n+ 1

sin3(θj)

}
and dj = L′j Rj =

n

32

{
4

sin(θj)
− n+ 1

sin3(θj)

}

.

Remark 7.11. We have not been as successful at understanding d′j . This is less
crucial, as d′j appears in the numerator of various terms, so upper bounds suffice.
We content ourselves with the following.

Proposition 7.12. For L′j and R′j defined in Corollary 7.8, the inner product d′j =

L′jR′j satisfies |d′j | ≤ An5 for a universal positive constant A independent of j.

Proof. Since d′j = 1
4iY
′
jX′j , we can work instead with the vectors

Y′j = [(1− n)δ1, (2− n)δ2, . . . , (m− n)δm,mδm, (m− 1)δm−1, . . . , δ1, 0]

X′j = [0, η1, 2η2, 3η3 + η1, 4η4 + 2η2, . . . , (n− 1)ηn−1 + (n− 3)ηn−3 + . . .+ 2η2].

Since |δa| ≤ 2a and |ηb| ≤ 1, the inner product d′j is bounded above by

4

(
m∑
a=1

(n− a)a · a2 +

m∑
b=1

b2(n− b)2

)
≤ A′n5.

.

7.6 Proof of Theorem 7.2

We need to prove that

f1(`/n2) ≤‖ K` − π ‖
TV
≤ f2(`/n2). (7.21)

For the lower bound, a first step analysis for the Markov chain K(i, j), started at 0,
shows that it has high probability of not hitting (n − 1)/2 after ` = Cn2 steps for
C small. On the other hand,

π

({
n− 1

2
, . . . , n− 1

})
∼ 1

4
.

This shows
‖ K` − π ‖

TV
≥ f1(`/n2)
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for f1(x) strictly positive as x tends to 0. See [53] for background on first step
analysis.

Note: Curiously, the ‘usual lower bound argument’ applied in all of our pre-
vious theorems breaks down in the SL2 quantum case. Here the largest eigenvalue
6= 1 for K is cos(2π

n ) and 1
2 R1(x) = f(x) is an eigenfunction with ||f ||∞ ≤ 1.

Thus,

|K`0(f)− π(f)| ≥ cos

(
2π

n

)
f(0).

Alas, f(0) = sin(2π
n ) ∼ 2π

n , so this bound is useless.
From Appendix I (Section 8), for any y we have from equation (8.7),

K`(x, y)

π(y)
− 1 =

1

π(y)

(
a1L1(y) + a′1L′1(y) + · · ·+ amLm(y) + a′mL′m(y)

)
,

(7.22)
with π(y), Lj , L′j given in (7.2), Corollary 7.8 (b),(d), respectively, and with a′j , aj
given in (8.10) by the expressions

a′j =
λ`jRj(0)

dj
=
λ`j sin(θj)

dj
,

aj =
λ`jRj(0)

dj

(
`

λj
−
d′j
dj

)
=
λ`j sin(θj)

dj

(
`

λj
−
d′j
dj

)
,

where θj = 2πj
n and λj = cos(θj).

Now from Lemma 7.10,

2i sin(θj)

dj
=

16 sin4(θj)

n2

(
1 +O

(
1

n

))
,

with the error uniform in j. Therefore,

a′j = cos`(θj)
16 sin4(θj)

n2

(
1 +O

(
1

n

))
aj = cos`(θj)

16 sin4(θj)

n2

(
`

cos(θj)
+O

(
n3 sin3(θj)

))(
1 +O

(
1

n

))
Consider first the case that y = 0. Then Lj(0) = cos(θj), L′j(0) = n − 1, and
π(0) = 2

n2 . The terms 1
π(0)a

′
jL′j(0) can be bounded using the inequalities

cos(z) ≤ e
−z2
2 (0 ≤ z ≤ π

2
), | sin(z)| ≤ |z|,

n2

2
n

bm/2c∑
j=1

e−θ
2
j
`
2

n2
16 θ4

j = 8
(2π)4

n6
n3

bm/2c∑
j=1

j4e−θ
2
j
`
2 .
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Writing C = `n2 and f(C) =
∑∞

j=1 j
4e−C(2πj)2 , observe that f(C) tends to 0 as C

increases, and the sum of the paired terms up to bm/2c is at most 8(2π)4f(C)
n3 . The

terms from bm/2c+ 1 to m are dealt with below.
The unprimed terms can be similarly bounded by

n2

2

b(m−1)/2c∑
j=1

e−θ
2
j
`
2

(
16 (2πj)4

n6

)(
`+O(j3)

)
.

Again when ` = Cn2, this is at most a constant times f1(C)
n2 , with

f1(C) =
∞∑
j=1

j7e−C(2πj)2/2).

For the sum from bm/2c to m use cos(π + z) = − cos(z) and | sin(π + z)| =
| sin(z)| to write cos

(
2π(m−j)

n

)
= − cos(2π

n (j − 1
2)), and sin

(
2π(m−j)

n

)
=

sin(2π
n (j− 1

2)). With trivial modification, the same bounds now hold for the upper

tail sum. Combining bounds gives K`(0,0)
π(0) −1 ≤ f(C) when ` = Cn2 for an explicit

f(C) going to 0 from above as C increases to infinity.
Consider next the case that y = n − 1. Then π(n − 1) = 1

n , L′j(n − 1) = 0
(Hooray!) Lj(n−1) = 1 for j = 1, . . . ,m. Essentially the same arguments show
that order n2 steps suffice. The argument for intermediate y is similar and further
details are omitted.

7.7 Tensoring with Vn−1

This section examines the tensor walk obtained by tensoring irreducible modules
for uξ(sl2) with the Steinberg module Vn−1. The short exact sequences (7.8) and
(7.10) imply that the projective indecomposable module Pr, 0 ≤ r ≤ n − 2, has
the following structure Pr/Mn−2−r ∼= Mr, where Mj/Vn−2−j ∼= Vj for j =
r, n − 2 − r. Thus, [Pr : Vj ] = 0 unless j = r or j = p − 2 − r, in which case
[Pr : Vj ] = 2.

In [7], tensor products of irreducible modules and their projective covers are
considered for the Lie algebra sl2 over a field of characteristic p ≥ 3. Identical
arguments can be applied in the quantum case; we omit the details. The rules for
tensoring with the Steinberg module Vn−1 for uξ(sl2) are displayed below, and the
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ones for sl2 can be read from these by specializing n to p.

V0 ⊗ Vn−1
∼= Vn−1

Vr ⊗ Vn−1
∼= Pn−1−r ⊕ Pn+1−r ⊕ · · · ⊕

{
Pn−3 ⊕ Vn−1 if r is even,
Pn−2 if r is odd.

(7.23)

The expression for Vr ⊗ Vn−1 holds when 1 ≤ r ≤ n − 1, and the subscripts on
the terms in that line go up by 2. The right-hand side of (7.23) when r = 1 says
that V1 ⊗ Vn−1

∼= Pn−2 (compare Proposition 7.4).
The McKay matrix M for the tensor chain is displayed below for n = 3, 5, 7.

0 0 1
2 2 0
2 2 1




0 0 0 0 1
2 0 0 2 0
0 2 2 0 1
2 2 2 2 0
2 2 2 2 1





0 0 0 0 0 0 1
2 0 0 0 0 2 0
0 2 0 0 2 0 1
2 0 2 2 0 2 0
0 2 2 2 2 0 1
2 2 2 2 2 2 0
2 2 2 2 2 2 1


The following results hold for all odd n ≥ 3:

• The vector r0 := [1, 2, 3, . . . , n − 1, n]T of dimensions of the irreducible
modules is a right eigenvector corresponding to the eigenvalue n.

• The vector `0 := [2, 2, 2, . . . , 2, 1] of dimensions of the projective covers
(times 1

n ) is a left eigenvector corresponding to the eigenvalue n.

• The n−1
2 vectors displayed in (7.24) are right eigenvectors of M correspond-

ing to the eigenvalue 0:

r1 = [1, 0, 0, . . . 0, 0,−1, 0]T

r2 = [0, 1, 0, . . . 0,−1, 0, 0]T

...
...

rj+1 = [0, . . . , 0, 1︸︷︷︸
j

, 0 . . . , 0, −1︸︷︷︸
n−2−j

, 0, . . . , 0]T,

...
...

rn−1
2

= [0, 0, . . . , 1,−1︸ ︷︷ ︸
n−3
2
,n−1

2
slots

0, . . . 0]T.

(7.24)
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(Recall that the rows and columns of M are numbered 0, 1, . . . , n− 1 corre-
sponding to the labels of the irreducible modules.) That the vectors in (7.24)
are right eigenvectors for the eigenvalue 0 can be seen from a direct com-
putation, and it also follows from the structure of the projective covers and
(7.23). Indeed, if Pj is a summand of Vi ⊗ Vn−1 for j = 0, 1, . . . , n−3

2 ,
then since [Pj : Vj ] = 2 = [Pj : Vn−2−j ], there is a 2 as the (i, j) and
(i, n− 2− j) entries of row i. Therefore, Mrj+1 = 0.

• When n = 3 and r1
′ = [−1,−1, 4]T, then Mr′1 = 4r1. Therefore, r1, 1

4 r
′
1 give

a 2× 2 Jordan block J =

(
0 1
0 0

)
corresponding to the eigenvalue 0, and M

is conjugate to the matrix 3 0 0
0 0 1
0 0 0

 .

• When n > 3, define

r′1 = [0, 0, 0, . . . , 0,−1, 0, 2]T

r′2 = [0, 0, . . . 0,−1, 0, 1, 0]T

...
...

r′j+1 = [0, . . . , 0, −1︸︷︷︸
n−j−2

, 0, 1︸︷︷︸
n−j

, 0, . . . 0]T for j = 2, . . . , n−3
2

...
...

r′n−1
2

= [0, 0, . . . , −1︸︷︷︸
n−3
2

, 0, 1︸︷︷︸
n+1
2

, 0, . . . 0]T.

(7.25)

The vectors rj , 1
2 r
′
j correspond to the 2× 2 Jordan block J above. Using the

basis r0, r1, 1
2 r
′
1, . . . , rn−1

2
, 1

2 r
′
n−1
2

, we see that M is conjugate to the matrix


n 0 . . . 0
0 J 0 . . . 0
0 0 J 0 0

0 0
. . . 0

0 0 . . . J

 .

• The characteristic polynomial of M is xn − nxn−1 = xn−1(x− n).
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• The vectors `j for j = 1, 2, . . . , n−1
2 displayed in (7.26) are left eigenvectors

for M corresponding to the eigenvalue 0, where

`1 = [1, 0, 0, . . . , 0, 0, 1,−1]

`2 = [0, 1, 0, . . . , 0, 1, 0,−1]

...
...

`j = [0, . . . , 0, 1︸︷︷︸
j−1

, 0 . . . , 0, 1︸︷︷︸
n−1−j

, 0, . . . , 0,−1],

...
...

`n−1
2

= [0, 0, . . . , 1, 1︸︷︷︸
n−3
2
,n−1

2

, 0, . . . ,−1].

(7.26)

• Let

`′1 = [−2, 1, 0, . . . , 0, 0]

`′2 = [−3, 0, 1, 0, . . . , 0, 0, 0]

`′3 = [−2,−1, 0, 1, 0, . . . , 0, 0, 0]

...
...

`′j = [−2, 0, . . . , 0, −1︸︷︷︸
j−2

, 0, 1︸︷︷︸
j

, 0, . . . 0] for j = 3, . . . , n−3
2

...
...

`′n−1
2

= [0, 0, . . . , −1︸︷︷︸
n−5
2

, 0 1︸︷︷︸
n−1
2

, 0, . . . ,−1].

(7.27)

(The underbrace in these definitions indicates the slot position.) Then(
1
2`
′
j

)
M = `j for j = 1, 2, . . . , n−1

2 .

We have not carried out the convergence analysis for the Markov chain coming
from tensoring with the Steinberg module for uξ(sl2) but guess that a bounded
number of steps will be necessary and sufficient for total variation convergence.

8 Appendix I. Background on Markov chains

Markov chains are a classical topic of elementary probability theory and are treated
in many introductory accounts. We recommend [33], [55], [53], [59] for introduc-
tions.
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Let X be a finite set. A matrix with K(x, y) ≥ 0 for all x, y ∈ X, and∑
y∈X K(x, y) = 1 for all x ∈ X gives a Markov chain on X: From x, the

probability of moving to y in one step is K(x, y). Then inductively, K`(x, y) =∑
z K(x, z)K`−1(z, y) is the probability of moving from x to y in ` steps. Say K has

stationary distribution π if π(y) ≥ 0,
∑

y∈X π(y) = 1, and
∑

x∈X π(x)K(x, y) =
π(y) for all y ∈ X. Thus, π is a left eigenvector with eigenvalue 1 and having
coordinates π(y), y ∈ X. Under mild conditions, the Perron-Frobenius Theorem
says that Markov chains are ergodic, that is to say they have unique stationary
distributions and K`(x, y)

`→∞−→ π(y) for all starting states x.
The rate of convergence is measured in various metrics. Suppose K`x = K`(x, ·).

Then

||K`x − π||TV = maxY ⊆ X |K
`(x,Y)− π(x)| = 1

2

∑
y∈X
|K`(x, y)− π(y)|

=
1

2
sup||f ||∞≤1|K`(f)(x)− π(f)| with ||f ||∞ = maxyf(y),

(8.1)

where K`(f)(x) =
∑
y∈X

K`(x, y)f(y), π(f) =
∑
y∈X

π(y)f(y) for a test function f , and

||K`x − π||∞ = maxy∈X

∣∣∣∣K`(x, y)

π(y)
− 1

∣∣∣∣ . (8.2)

Clearly, ||K`x−π||TV = 1
2

∑
y∈X

∣∣∣K`(x,y)
π(y) − 1

∣∣∣ π(y) ≤ 1
2 ||K

`
x−π||∞. Throughout,

this is the route taken to determine upper bounds, while (8.1) gives ||K`x − π||TV ≥
1
2 |K

`(f)(x)− π(f)| for any test function f with ||f ||∞ ≤ 1 (usually f is taken as
the eigenfunction for the second largest eigenvalue).

The `∞ distance satisfies a useful monotonicity property, namely,

‖ K` − π ‖∞ is monotone non-increasing. (8.3)

Indeed, fix x ∈ X and consider the Markov chain K(x, y) with stationary distribu-
tion π(y), so K`(x, y) =

∑
z∈X K`−1(x, z)K(z, y). As π(y) =

∑
z∈X π(z)K(z, y),

we have by (8.2) for any y ∈ X that
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|K`(x, y)− π(y)| =
∣∣∣∣∑
z∈X

(
K`−1(x, z)− π(z)

)
K(z, y)

∣∣∣∣
≤
∑
z∈X

∣∣∣K`−1(x, z)− π(z)
∣∣∣K(z, y)

≤ ‖ K`−1 − π ‖∞ ·
∑
z∈X

π(z)K(z, y)

= ‖ K`−1 − π ‖∞ ·π(y).

Now (8.3) follows by taking the supremum over y ∈ X and applying (8.2) again.
Suppose now that K is the Markov chain on the irreducible characters Irr(G)

of a finite group G using the character α. The matrix K has eigenvalues βc =
α(c)/α(1), where c is a representative for a conjugacy class of G, and there is
an orthonormal basis of (right) eigenfunctions fc ∈ L2(π) (see [34, Prop. 2.3])
defined by

fc(χ) =
|cG|

1
2 χ(c)

χ(1)
,

where |cG| is the size of the class of c. Using these ingredients, we have as in [39,
Lemma 2.2],

K`(χ, %) =
∑
c

β`c fc(χ) fc(%)π(%)

=
∑
c

(
α(c)

α(1)

)`
|cG| χ(c)

χ(1)

%(c)

%(1)

%(1)2

|G|

=
%(1)

α(1)`χ(1)|G|
∑
c

α(c)`|cG|χ(c)%(c)

(8.4)

In particular, K`(1, %) = %(1)
α(1)`|G|

∑
c α(c)` |cG| %(c), for the trivial character 1 of

G.
An alternate general formula can be found, for example, in [37, Lemma 3.2]:

K`(1, %) =
%(1)

α(1)`
〈α`, %〉,

where 〈α`, %〉 is the multiplicity of % in α`.

The binary dihedral case - proof of Theorem 2.3

To illustrate these formulas, here is a proof of Theorem 2.3. Recall that K is the
Markov chain on the binary dihedral graph in Figure 2.1 starting at 0 and ten-
soring with χ1, and K = 1

2K + 1
2 I is the corresponding lazy walk. For the
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lower bound, we use (8.1) to see that ||K` − π||
TV
≥ 1

2 |K
`(f)(1) − π(f)| with

f(χ) = χ(c)/χ(1) for some conjugacy class representative c 6= 1 in BDn. Clearly,
||f ||∞ ≤ 1, and from Theorem 1.1 or (8.4) above, we have f is the right eigen-
function for the lazy Markov chain K with eigenvalue 1

2 + 1
2 cos

(
2π
n

)
. Since

f is orthogonal to the constant functions, π(f) = 0, so the lower bound be-
comes ||K` − π||

TV
≥
(

1
2 + 1

2 cos
(

2π
n

))`. Since cos
(

2π
n

)
≥ 1 − 2π2

n2 + o
(

1
n4

)
,

||K`−π||
TV
≥
(

1− 2π2

n2 + o
(

1
n4

))`
and the result, ||K`−π||

TV
≥ Be−2π2`/n2

for
some positive constant B holds all ` ≥ 1.

For the upper bound, (8.4) and the character values from Table 2.1 give explicit
formulas for the transition probabilities. For example, for 1 ≤ r ≤ n− 1,

K`(1, χr)
π(χr)

− 1 = 4
r−1∑
j=1

(
1

2
+

1

2
cos

(
2πj

n

))`
cos

(
2πj

n

)
.

Now standard bounds for the simple random walk show that the right side is at
most B′e−2π2`/n2

for some positive constant B′, for details see [25, Chap. 3]. The
same argument works for the one-dimensional characters λ1′ , λ2′ , λ3′ , λ4′ , yielding
‖ K` − π ‖∞≤ B′e−2π2`/n2

and proving the upper bound in Theorem 2.3.

Generalized spectral analysis using Jordan blocks

The present paper uses the Jordan block decomposition of the matrix K in the
quantum SL2 case to give a generalized spectral analysis. We have not seen this
classical tool of matrix theory used in quite the same way and pause here to include
some details.

For K as above, the Jordan decomposition provides an invertible matrix A such
that A−1KA = J, with J a block diagonal matrix with blocks

B = B(λ) =



λ 1 0 . . . 0 0
0 λ 1 .. 0 0
...

. . . . . . . . .
...

...

0 . . .
. . . 1 0

0 0 . . . λ 1
0 0 . . . 0 0 λ


of various sizes. If B is h× h, then
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B` =



λ` `λ`−1
(
`
2

)
λ`−2 . . . . . .

(
`

h−1
)
λ`−h+1

0 λ` `λ`−1 . . .
(
`

h−2
)
λ`−h+2

...
. . . . . . . . .

...
...

0 . . .
. . . 0

0 0 . . . λ` `λ`−1

0 0 . . . 0 0 λ`


Since KA = AJ, we may think of A as a matrix of generalized right eigen-

vectors for K. Each block of J contributes one actual eigenvector. Since A−1K =
JA−1, then A−1 may be regarded as a matrix of generalized left eigenvectors. De-
note the rows of A−1 by b0, b1, . . . , b|X|−1 and the columns of A by c0, c1, . . . , c|X|−1.
Then from A−1A = I, it follows that

∑
x∈X bi(x)cj(x) = δi,j . Throughout, we

take b0(x) = π(x) and c0(x) = 1 for all x ∈ X. For an ergodic Markov chain,
(the only kind considered in this paper), the Jordan block corresponding to the
eigenvalue 1 is a 1× 1 matrix with entry |X|.

In the next result, we consider a special type of Jordan decomposition, where
one block has size one, and the rest have size two. Of course, the motivation for
this special decomposition comes from the quantum case in Section 7.

Proposition 8.1. Suppose A−1KA = J, where

J =



1 0 0 . . . 0
0 B(λ1) 0 . . . 0
0 0 B(λ2) 0 0
...

...
...

0 0
. . . . . . 0

0 0 . . . 0 B(λm)


,

and for each j = 1, . . . ,m,

B(λj) =

(
λj 1
0 λj

)
.

Let R̃0 be column 0 of A, and for j = 1, . . . ,m, let R̃j ,R̃
′
j be columns 2j − 1 and

2j respectively of A. Let L̃0 be row 0 of A−1, and for i = 1, . . . ,m, let L̃i,L̃
′
i be

rows 2i and 2i − 1 respectively of A−1. Then the following relations hold for all
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1 ≤ i, j ≤ m:

KR̃0 = R̃0, KR̃j = λj R̃j , KR̃
′
j = λj R̃

′
j + R̃j ,

L̃0K = L̃0, L̃jK = λj L̃j , L̃
′
jK = λj L̃

′
j + L̃j ,

L̃0R̃0 = 1, L̃0R̃j = 0 = L̃0R̃
′
j , L̃iR̃0 = 0 = L̃

′
iR̃0,

L̃iR̃j = 0 = L̃
′
iR̃
′
j ,

L̃iR̃
′
j = L̃

′
iR̃j = δi,j .

(8.5)

Proof. For j ≥ 1, the right-hand side of the expression KA = AJ has column
2j − 1 of A multiplied by λj . Column 2j is multiplied by λj and column 2j − 1
is added to it because of the diagonal block B(λj) of J. Thus, the columns of A
are (generalized) right eigenvectors R̃0, R̃1, R̃

′
1, . . . , R̃m, R̃

′
m for K as described in

the first line of (8.5). Similarly, on the right-hand side of the expression A−1 K =
JA−1, row 2i of A−1 is multiplied by λi, and row 2i − 1 is λi times row 2i −
1 plus row 2i for all i ≥ 1. Therefore, the rows of A−1 are (generalized) left
eigenvectors L̃0, L̃

′
1, . . . , L̃1, L̃

′
m, L̃m of K (in that order) to give the second line.

The other relations in (8.5) follow from A−1A = I.

Summary of application of these results to the quantum case

In Section 7, we explicitly constructed left and right (generalized) eigenvectors
L0 = π (the stationary distribution), L1, L′1, . . . , Lm, L′m, R0, R1, R′1, . . . , Rm, R′m for
the tensor chain resulting from tensoring with the two-dimensional natural module
V1 for uξ(sl2), ξ a primitive nth root of unity, n ≥ 3 odd. Since the eigenvalues are
distinct, the eigenvectors L0, L1, . . . , Lm, R0, R1, . . . , Rm, must be nonzero scalar
multiples of the ones coming from Proposition 8.1. Suppose for 1 ≤ i ≤ m,
Ri = γiR̃i, and R′i = δiR̃

′
i + εiR̃i, where γi and δi are nonzero. Then the relation

KR′i = λiR
′
i + Ri, which holds by construction of these vectors in Section 7, can

be used to show δi = γi, so R′i = γiR̃
′
i + εiR̃i. Similar results apply for the left

eigenvectors. It follows from the relations in (8.5) that there exist nonzero scalars
di and d′i for 1 ≤ i ≤ m such that

LiR
′
i = L′iRi = di and L′iR

′
i = d′i. (8.6)

Now fix a starting state x and consider K`(x, y) as a function of y. Since
{Li, L′i | 1 ≤ i ≤ m} ∪ {π} is a basis of Rn, there are scalars a0, ai, a

′
i, 1 ≤ i ≤ m

such that

K`(x, y) = a0π(y) + a1L1(y) + a′1L′1(y) + · · ·+ amLm(y) + a′mL′m(y). (8.7)
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Multiply both sides of (8.7) by R0 and sum over y to show that a0 = 1. Now
multiplying both sides of (8.7) by Rj(y) and summing gives

∑
y

K`(x, y)Rj(y) = λ`jRj(x) = a′jdj , that is, a′j =
λ`jRj(x)

dj
. (8.8)

Similarly, multiplying both sides of (8.7) by R′j(x) and summing shows that

λ`jR′j(x) + `λ`−1
j Rj(x) = a′jd

′
j + ajdj .

Consequently,

aj =
λ`i
dj

(
R′j(x) +

`Rj(x)

λj
− Rj(x)

d′j
dj

)
. (8.9)

In the setting of Section 7, with the Markov chain arising from tensoring with
V1 for uξ(sl2), we have x = 0, and from Corollary 7.8, R′j(0) = 0, Rj(0) =

2i sin
(

2πj
n

)
, and λj = cos

(
2πj
n

)
. Thus, (8.7) holds with a0 = 1,

a′j =
λ`jRj(0)

dj
and aj =

λ`jRj(0)

dj

(
`

λj
−
d′j
dj

)
. (8.10)

Expressions and bounds for dj , d′j are determined in Lemma 7.10 and Proposition
7.12 in Section 7.3.

9 Appendix II. Background on modular representation
theory

Introductions to the ordinary (complex) representation theory of finite groups can
be found in ([49], [51], [75]). A modular representation of a finite group G is a
representation (group homomorphism) % : G→ GLn(k), where k is a field of prime
characteristic p dividing |G|. For simplicity, we shall assume that k is algebraically
closed. Some treatments of modular representation theory can be found in ([1],
[65], [81]), and we summarize here some basic results and examples. The modular
theory is very different from the ordinary theory: for example, if G is the cyclic
group Zp = 〈x〉 of order p, the two-dimensional representation % : G → GL2(k)
sending

x→
(

1 1
0 1

)
has a one-dimensional invariant subspace (a G-submodule) that has no invariant
complement, but over C it decomposes into the direct sum of two one-dimensional
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submodules. A representation is irreducible if it has no nontrivial submodules, and
is indecomposable if it has no nontrivial direct sum decomposition into invariant
subspaces. A second difference with the theory over C: for most groups (even
for Z2 × Z2 × Z2) the indecomposable modular representations are unknown and
seemingly unclassifiable.

A representation % : G → GLn(k) is projective if the associated module for
the group algebra kG is projective (i.e. a direct summand of a free kG-module km

for some m). There is a bijective correspondence between the projective indecom-
posable and the irreducible kG-modules: in this, the projective indecomposable
module P corresponds to the irreducible module VP = P/rad(P) (see [1, p.31]),
where rad(P) denotes the radical of P (the intersection of all the maximal submod-
ules); we call P the projective cover of VP. For the group G = SL2(p), with k of
characteristic p, the irreducible kG-modules and their projective covers were dis-
cussed in Section 3.2; likewise for SL2(p2), SL2(2n) and SL3(p) in Sections 4.2,
5.2 and 6.2, respectively. A conjugacy class C of G is said to be p-regular if its ele-
ments are of order coprime to p. There is a (non-explicit) bijective correspondence
between the p-regular classes of G and the irreducible kG-modules (see [1, Thm.
2, p.14]). Each kG-module V has a Brauer character, a complex function defined
on the p-regular classes as follows. Let R denote the ring of algebraic integers in
C, and let M be a maximal ideal of R containing pR. Then k = R/M is an alge-
braically closed field of characteristic p. Let ∗ : R→ k be the canonical map, and
let

U = {ξ ∈ C | ξm = 1 for some m coprime to p},

the set of p′-roots of unity in C. It turns out (see [65, p.17]) that the restriction of
∗ to U defines an isomorphism U → k∗ of multiplicative groups. Now if g ∈ G is
a p-regular element, the eigenvalues of g on V lie in k∗, and hence are of the form
ξ∗1 , . . . , ξ

∗
n for uniquely determined elements ξi ∈ U. Define the Brauer character

χ of V by
χ(g) = ξ1 + · · ·+ ξn.

The Brauer characters of the irreducible kG-modules and their projective cov-
ers satisfy two orthogonality relations (see (3.1) and (3.2)), which are used in the
proof of Proposition 3.1.

The above facts cover all the general theory of modular representations that
we need. As for examples, many have been given in the text – the p-modular
irreducible modules and their projective covers are described for the groups SL2(p),
SL2(p2), SL2(2n) and SL3(p) in Sections 3-6.
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les groupes de Lie. (French) Lecture Notes in Mathematics, Vol. 624.
Springer-Verlag, Berlin-New York, 1977.

[45] Hough, R.; Mixing and cut-off in cycle walks. Electron. J. Probab. 22
(2017), Paper No. 90.

[46] Humphreys, J.; Projective modules for SL(2, q). J. Algebra 25 (1973),
513–518.

[47] Humphreys, J.; Representations of SL(2, p), Amer. Math. Monthly 82
(1975), no. 1, 21–39.

[48] Humphreys, J.; Ordinary and modular characters of SL(3, p). J. Algebra
72 (1981), no. 1, 8–16.

[49] Isaacs, I. M.; Character theory of finite groups. Corrected reprint of the
1976 original [Academic Press, New York]. AMS Chelsea Publishing,
Providence, RI, 2006.

[50] Ivanov, V.; Olshanski, G.; Kerov’s central limit theorem for the Plancherel
measure on Young diagrams. Symmetric functions 2001: surveys of devel-
opments and perspectives, 93–151, NATO Sci. Ser. II Math. Phys. Chem.,
74, Kluwer Acad. Publ., Dordrecht, 2002.

[51] James, G.; Liebeck, M.; Representations and characters of groups, Cam-
bridge University Press, Cambridge, 2001.

[52] Jantzen, J. C.; Lectures on quantum groups. Graduate Studies in Mathe-
matics, 6. American Mathematical Society, Providence, RI, 1996.

[53] Karlin, S.; Taylor, H. M.; An introduction to stochastic modeling. Aca-
demic Press, Inc., Orlando, FL, 1984.

75



[54] Kassel, C.; Quantum groups, Graduate Texts in Mathematics, Vol. 155,
Springer-Verlag, New York-Heidelberg, 1995.

[55] Kemeny, J. G.; Snell, J. L.; Finite Markov chains. Reprinting of the
1960 original. Undergraduate Texts in Mathematics. Springer-Verlag, New
York-Heidelberg, 1976.

[56] Lecouvey, C.; Lesigne, E.; Peigné, M.; Conditioned random walks from
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