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Abstract: We prove a simple, explicit formula for the mass of any asymptotically locally
Euclidean { ALE) Ki#hler manifold, assuming only the sort of weak fall-off conditions
required for the mass to actually be well-defined. For ALE scalar-flat Kihler manifolds,
the mass turns out to be a topological invariant, depending only on the underlying
smooth manifold, the first Chern class of the complex structure, and the Kihler class of
the metric. When the metric is actually AE (asymptotically Euclidean), our formula not
only implies a positive mass theorem for Kihler metrics, but also yields a Penrose-type
inequality for the mass.

1. Introduction

A complete connected non-compact Riemannian manifold (M, g) of dimensionn = 3
is said to be asymptotically Euclidean (or AE) if there is a compact subset K < M such
that M — K consists of finitely many components, each of which is diffeomorphic to the
complement of a closed ball ¥ < R", in a manner such that g becomes the standard
Euclidean metric plus terms that fall off sufficiently rapidly at infinity. More generally, a
Riemannian n-manifold (M, g) is said to be asymptotically locally Euclidean (or ALE) if
the complement of a compact set K consists of finitely many components, each of which
is diffeomorphic to a quotient (R" —D")/ T";, where I'; < O(n) is a finite subgroup that
acts freely on the unit sphere, in such a way that g again becomes the Euclidean metric
plus error terms that fall off sufficiently rapidly at infinity. The components of M — K
are called the ends of M their fundamental groups are the aforementioned groups I';,
which may in principle be different for different ends of the manifold.
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The mass of an ALE Riemannian n-manifold is an invariant that assigns a real num-
ber to each end. This concept originated in general relativity, where an asymptotically
flat 3-manifold could be interpreted as representing a time-symmetric slice of some
4-dimensional space-time, in which case this invariant becomes the so-called ADM
mass [4], which reads off the apparent mass of an isolated gravitational source from the
asymptotics of its gravitational field. Our conventions are chosen so that, at a given end,
the mass of an ALE manifold is given by

m(M, g):= lim if [ . ]n!du
s B)i= E—‘Dﬂ-ﬂ-{n—l}:lr’“ﬂ 5o/ T Brek — Bkk.£ Es

where commas represent derivatives in the given asymptotic coordinates, summation
over repeated indices is implicit, S, is the Euclidean coordinate sphere of radius ¢, dag
is the (n — 1)-dimensional volume form induced on this sphere by the Euclidean metric,
and n is the outward-pointing Euclidean unit normal vector. While our choice here of
normalization factor is of course primarily a matter of convention, an explanation of
this choice is provided in the Appendix. Perhaps the most controversial feature of our
definition is that we have specified that the integral is to be taken over 5,/ I"; rather
than over ;. so that the mass, by our conventions, is 1/|I";| times the value one might
otherwise expect.

MNeedless to say, this peculiar definition of the mass seems to depend on the choice of
asymptotic coordinates. Indeed, without additional assumptions, the relevant limit might
not even exist, or might be coordinate dependent. However, Bartnik [7] and Chrusciel
[15] independently discovered that the mass is finite and independent of the choice of
asymptotic coordinates, provided we impose weak fall-off conditions of the following
type:

(i) the scalar curvature s of the C* metric g belongs to L!; and
(i) in some asymptotic chart at each end of M", the components of the metric satisfy

gk — b € Cl:' for some v = (n — 2),/2 and some o« € (0, 1).

Here the weighted Holder spaces Cf:' consist of C* functions such that

k
(Z |x|j|vjf{-t}|) + |x|"+“[v"f]c.u,.,mwmu” = ﬂ{|x|—f},

j=0

This definition can naturally be extended to tensor fields, and the resulting Ci:’ Spaces
then become Banach spaces when equipped with the obvious weighted analogs of the
usual Holder norms. While Bartnik actually does mention these weighted Holder spaces
in passing [7, Theorem 1.2{v)], the state of the literature at the time led him to instead
impose a slightly stronger condition in lieu of (ii), by instead requiring g — 4 to belong to
the weighted Sobolev spaces WE';‘ for some g > n and some t = (n — 2)/2. Bartniks
condition implies (ii), and condition (ii} in turn implies that, for some £ = 0, the metric
g satisfies the Chrusciel-type fall-off condition

gk =8k +0(x]'""775),  gje = O(lx|"77%)

in suitable coordinates; and this Chrusciel-type fall-off is actually all that is needed for
many of our key results. The central issue is really the range of fall-off rates r that are to be
allowed; as emphasized by both Bartnik and Chrusciel, allowing slower rates of fall-off
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than indicated above would make the mass coordinate-dependent, and so essentially ill-
defined. Our definition of an ALE manifold will therefore by default include conditions
(i) and (ii), except where we clearly specify that a weaker assumption suffices for a
given result. When n = 4, some of our proofs will also require analogous control of an
extra derivative of the metric, and so by default we will strengthen assumption (ii) in this
special dimension to instead require that g jz — 84 € Cif forsomer = (n—2)/2 =1,
although we will also sometimes explicitly weaken this assumption when it is not needed
for a given result.

The coordinate-based definition of the mass makes it seem both enigmatic and
chimerical. In this article, however, we will show that the mass has a completely trans-
parent meaning when the ALE space in question is a Kdhler manifold. Along the way,
we will incidentally learn that an ALE Kihler manifold only has one end; thus, in the
Kihler setting, a choice of end is not required in order to be able to discuss the mass in
the first place!

Rather than beginning with general ALE Kihler manifolds, let us first highlight the
setting that originally motivated our investigation: the so-called scalar-flat case, where
the scalar curvature is assumed to vanish identically. In this context, we will demonstrate
the following result:

Theorem A. The mass of an ALE scalar-flat Kihler manifold (M, g, J) is a topological
imvariant, determined entirely by the smooth manifold M, together with the first Chern
class ¢y = c1(M,J) € H*(M) of the complex structure and the Kahler class [w]
HX(M) of the metric.

In fact, our proof actually provides an explicit formula for the mass in terms of these
data. Revisiting familiar examples, this in particular gives a pure-thought explanation
of the second author’s observation [33] that there are ALE scalar-flat Kihler surfaces!
of negative mass. Rather more interestingly, thou%h* a quick glance at other known
examples immediately now gives a negative answer- to a question posed by Arezzo [3]
that naturally arose in connection with gluing constructions for cscK metrics:

Theorem B. There are infinitely many topological types of ALE scalar-flat Kéthler sur-
faces that have zero mass, buf are not Ricci-flat.

By contrast, Corollary 5.8 below, which was pointed out to us by Cristiano Spotti, gives
a systematic explanation of why the mass actually turns out to be negative for so many
other concrete examples.

We now come to the actual formula for the mass. Because M is a smooth manifold,
one can define the compactly supported de Rham cohomology HX(M), as well as the
usual de Rham cohomology. If M is a complex manifold, it is in particular oriented,
and Poincaré duality therefore gives us an isomorphism H2(M) = [H*™~2(M)]*. On
the other hand, there is a natural map H2(M) — H?*(M) induced by the inclusion of
compactly supported forms into all differential forms, and in the ALE setting, this map
is actually an isomorphism. We may therefore define

& : HX(M) — HX(M)

to be its inverse. Using this notation, we may now state our explicit formula for the mass:

! Throughout the article, we use the term complex surface to indicate a complex manifold of complex
dimension 2, and thus of real dimension 4.

2 We would like to thank Inana Suvaina for pointing out to us that this answer was already implicit in results
of Rollin-Singer [44, Sect. 6.7] regarding the toric case.
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Theorem C. Any ALE Kithler manifold (M, g, J) of complex dimension m has mass

piven by
(dicy), [w]™)  (m—1)
mM.8) =~ Gm— DT * I2m— D LSFJ”F*

where sp and dpy are respectively the scalar curvature and volume form of g, while

c) = ci(M, J) € HX(M) is the first Chern class of the complex structure, [w] € HX(M)
is the Kathler class of g, and { , } is the duality pairing between H2(M) and H*™—2(M).

Here we remind the reader that the Bartnik—Chrusciel fall-off condition (i) requires the
scalar curvature s to be integrable. It is remarkable that this feature® plays a direct role in
our setting, by ensuring that the second term on the right-hand side is well-defined. It is
worth noting that our discussion will not simply rely on the Bartnik—Chrusciel theorem
on the coordinate-invariance of the mass, but rather will actually provide an independent
verification of it in the Kihler setting.

The reader may find it illuminating to compare Theorem C with the more familiar
compact case. If (M™™, g, J) is a compact Kihler manifold of complex dimension m,
then its total scalar curvature is well known to be topologically determined [8, 11] by
the first Chern class of the complex structure and the Kihler class of the metric via the
Gauss-Bonnet-type formula

4 o
[us dp = m{cl, [ew] 1}'~

The gist of Theorem C is that the mass measures the degree to which this formula fails
in the ALE case:

Ax™(2m — 1) A m—1
Wm{fﬂfs g) = ];r sdp— m“ﬂfh [e]™ 7).
In other words, the mass may be understood as an anomaly in the formula for the total
scalar curvature, encapsulating an essential difference between the ALE and compact
cases.

Of course, the formula in Theorem C simplifies when g is scalar-flat; the integral on
the right drops out, and the mass is then expressed purely in terms of topological data.
Theorem A is thus an immediate corollary. Theorem B is then proved by applying this
formula to some ALE scalar-flat Ki#hler surfaces constructed by the second author in
[34].

As we've already noted, there are ALE manifolds of non-negative scalar curvature
which nonetheless have negative mass. However, one expects this to never happen for AE
(asymptotically Euclidean) manifolds. Indeed, this is actually a theorem [38,46,51] if
one is willing to further assume that the manifold is either low-dimensional or spin. Here
we can add something new to the discussion, by demonstrating that the conjecture also
always holds in the Kihler case, even if the manifold is high-dimensional and non-spin:

Theorem D. (Positive Mass Theorem for Kihler Manifolds). Any asvmptotically Euclid-
ean (AE) Kihler manifold with non-negative scalar curvature has non-negative mass:

5l = mM,g)=0.
Maoreover, m(M, g) = 0 in this context iff (M, g) is Euclidean space.

3 As explained to us by Gustav Holzegel, the intimate relationship between mass and scalar curvature
apparently first came to light in the work of Brll [10] on stationary axisymmmetric space-times.
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Our proof of this version of the positive mass theorem uses nothing but our mass
formula and some complex manifold theory. Indeed, the arpument actually tells us a great
deal more; it in fact shows that the mass can be bounded from below by the (2m — 2)-
volume of a subvariety. This is reminiscent of the Penrose inequality [9,28,43], which
gives a sharp lower bound for the mass of an AE 3-manifold in terms of the area of a
minimal surface. Our Kihler analog goes as follows:

Theorem E (Penrose Inequality for Kahler Manifolds). Let (M2™, g, J) be an AE Kah-
ler man{fafd with scalar curvature 5 = 0. Then (M, J) carries a canonical divisor D
that is expressed as a sum > n;D; of compact complex hypersurfaces with positive
integer coefficients, with the pmpeny that U D; # @ whenever (M, J) # C™. In
terms of this divisor, we then have

(m
WZ”JW“DJ}

and equality holds if and only if (M, g, J) is scalar-flat Kihler.

miM,g) =

Much of the intrinsic interest of our subject arises from the case of real dimension
4, where a plethora of known examples leads to a wealth of applications, including
Theorem B. However, the complex-surface case entails technical subtleties that sim-
ply disappear in higher dimensions. Our presentation therefore begins with proofs of
Theorems A and C in complex dimension m = 3. Using this high-dimensional case as
our guide, but now emphasizing the coordinate-invariant nature of the mass, we then
develop a second, more robust proof of the asymptotic form of our mass formula, in a
manner that also shows that this formula remains valid in complex dimension 2. We then
prove some global results regarding ALE Kihler surfaces, culminating in a proof of the
m = 2 case of Theorem C, along with various applications, including Theorem B. We
then conclude by showing that Theorems D and E are straightforward corollaries of our
other results.

2. The High-Dimensional Case

We begin by proving Theorems A and C when the complex dimension is m = 3. Our
high-dimensional proofs will prefigure many of the ideas needed for the complex-surface
{m = 2) case, but manage to avoid a number of difficult technical complications. Our
journey begins with the following step:

Lemma 2.1. Let M, be an end of an ALE Kihler manifold (M™ g, J), m =
let (x', ..., x™™) be a real asymptotic coordinate system on the universal cover
M. inwhich g satisfies the weak fall-off hypothesis

3, and
Moo of

gik =8+ O(Ix]'"™™7), gjee = O(lx|™™F)

for some & = (. Then there is a (non-compact) complex m-manifold 2" containing an
embedded complex hypersurface & = CPFp_, with normal bundle of degree +1, such
that Mo is biholomorphic to & — E.

Proof. We first identify the range B*™ — D>™ of our asymptotic coordinate system with
C™ — ™™ in a reasonably intelligent manner, by choosing a constant-coefficient almost-
complex structure Jy on B2™ such that J — Jp at infinity. We can do this by identifying



168 H.-J. Hein, C. LeBrun

all the tangent spaces of ™™ in the usual way, using the flat Euclidean connection v.
Since VJ = (0, where V is the Levi-Civita connection of g, and since V = v + T,
where ¥ is the coordinate Euclidean connection and I' = O(g~"—*), the value of J will
approach a well-defined limit J;; along some chosen radial ray, and we then extend this
limit as a constant-coefficient tensor field on our asymptotic coordinate domain. Along
the chosen ray, we then have J — Jy = O(g'~™*), and integrating along great circles
in spheres of constant radius then shows that J — J; has 0(g'~™*) fall-off everywhere.
The same argument similarly shows that the derivative of J falls off at the same rate as
the derivative of the metric g.

Now think of (C™, Jy) as an affine chart on CPy,, whose complex structure we will
also denote by Jp. Let £ < TPy be the hyperplane at infinity, and notice that our
asymptotic coordinates give us a diffeomorphism between M., and 2 — %, where
&  CFy is some neighborhood of this hyperplane. We may then define a “rough”
almost complex structure J on 2" by taking it to be the given J on 2 — I, and Jy
along X. This J is then at least C' on 2", Indeed, if (z', 22, ..., ™) are the standard
affine coordinates on C™, then, in the cone |z'| = max{|z/| | j = 1}, we may inspect the
behavior of J near infinity by observing that there is a unique (m, 00)-form with respect
to J given by

¢ = (dz' +gldT) A (@22 + gldTl) A --- A (d2™ + ghdT)),

and that the functions 50;' then have the same fall-off as J. Setting
1 2 b

{wlsu??!--'fwm}=(z_lsz_1+“'sz_l 5
one can then analogously determine the components of J from those of
¥ = —w™ g = (dwy + ¥ dib;) A (dwa + YAdiBj) A - A (dwm + Vadid;).

Reading off the coefficients .;pf and q&r;': by inspecting the type (m — 1, 1) parts of ¢ and +
with respect to the background complex structure Jp, one then sees that the coefficients

[1,{.{] behave like the {4 } times, at worst, O(Jw,|~"), while their first derivatives behave

like those of the {g; } times, at worst, O(|u| ). Since p~! = O(|w,|) in the region in
question, our fall-off conditions therefore guarantee that the almost-complex structure is
at least C'. In particular, the Nijenhuis tensor of J is continuous, and since it vanishes on
the dense set 2™ — X, it vanishes identically. The Hill-Taylor version [24] of Newlander—
Nirenberg therefore puarantees the existence of complex coordinates on (27, J). These
will at least have Holder regularity C'-® with respect to the original atlas, for any «
0. 1). o

In fact, our fall-off conditions are noticeably stronger than what is actually needed
for the proof of this lemma. In any case, whenever we can add such a hypersurface at
infinity, then, provided the complex dimension is m = 3, the following result will force
the complex structure J to become completely standard at infinity:

Lemma 2.2. Let (2, J) be a(possibly non-compact) complex m-manifold, m = 3, that
contains an embedded Iypersurface T < 2 which is biholomorphic to CPy_y and
has normal bundle of degree +1. Then & < 2 has an open neighborhood 4 which is
biholomorphic to an open neighborhood of a hyperplane TPy © CPy.
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Proof. Since the normal bundle of £ = CPy,_; is isomorphic to (1), and since
HYCEy_y, @(1)) = 0, a theorem of Kodaira [31] implies that there is a complete ana-
lytic family of compact complex submanifolds of dimension A°(CEBy_;, @(1)) = m
which represents all small deformations of £ < 2" through compact complex subman-
ifolds. Since CIB,,_; is rigid, and since A% (CPy_;) = 0, we may assume, by shrinking
the size of the family if necessary, that every submanifold in the family is biholomor-
phic to CPy_,, and has normal bundle (1). Let us use & to denote the complex
m-manifold which parameterizes these hypersurfaces; and forany y € &, let £, c &
be the corresponding complex hypersurface. Note that, by construction, ¥ = X, for
some base-point 0 € &

Now Kodaira's theorem also gives us a natural identification of the tangent space
"% with the holomorphic sections of the normal bundle of £, c % . Since
HY(CEy_,, @(1)) consists of linear functions on C™, the space of complex direc-
tions (T, °#) can thus be naturally identified with the space of hyperplanes CP,,_3 C
Iy = CPy_;: in other words, each I, is exactly the dual projective space P(A %)
of the projectivized tangent space P(T, "#).

This leads us to consider the space & of those embedded TPy, _2's in 27 that arise
as hyperplanes in the various Ey. Thus, by definition, each z € 2 corresponds to
a submanifold T, = CP,_, of 2. But since T, = P(Ay"#), any point of the
projectivized tangent bundle

pB(T"%) > @

also gives rise to some such submanifold I1;. Since any I1; = CP,_> has normal
bundle (1) & (1), the family 1, z € #, is therefore complete in the sense of
Kodaira, because every section of the normal bundle O(1) & (1) can be realized by
some variation in B(T -°#). In fact, this observation actually tells us a great deal more;
not only is 2 a complex manifold of complex dimension 2m — 2, but there is a natural
surjective holomorphic submersion ¢ : P(T'%%) — 2. We thus obtain a double

fibration
P(TO%)

q P

Zz &
which embeds P(T'-°#) into the product 2 x %, and thereby realizes it as

BT'"’%) ={(z,y) € Z x ¥ |1, C L,}.

In particular, for any z € 2, the curve y; % given by plq '(2)] exactly consists
of those ¥y = @ for which £, = II;. But this also shows that y; is an immersed
complex curve, with tangent space at y exactly consisting of sections of the normal
bundle O(1) of £y = CPy_; which vanish at the hyperplane I1; = CFy_>. Hence the
lift 7, — B(T'-'%) of y, defined by y, := T"%; coincides with ¢~'(z). In particular,
the holomorphic system of complex curves y., z € 2, has the property that there
is exactly one such curve tangent to each direction in #°. By [32, Proposition 1.2.1],
the curves j. are therefore the unparameterized peodesics of a unique holomorphic
projective connection on % moreover, by replacing % with a smaller neighborhood of
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o if necessary, we may arrange that this projective connection is globally represented
by some torsion-free holomorphic affine connection V, with respect to which & is
geodesically convex. This allows us to identify 2 with the space of unparameterized
complex geodesics of V.

Let % < 2 be the open set defined by

%= 5,

yeI

The fact that this is open follows from the fact that the normal bundle O(1) of every X,
is everywhere generated by its global sections. But now, by construction, every x € &
belongs to X, for some y € #. For each x € %, we can therefore define a non-empty
hypersurface 7 C & by

Hri={ye® |x e Ly

This is a non-singular hypersurface, because the normal bundle of each y € %} has
a global holomorphic section which is non-zero at x € Ey; the set of normal sections
vanishing at x thus has complex codimension 1, and exactly corresponds to T}.' O c
Tf'”@f . Moreover, since Xy = ]P’{!L}.‘D@f }, the tangent space T}."DJ?’,, forany x Ky, is
exactly the hyperplane in T,# annihilated by the 1-dimensional subspace x ¢ A%
It follows that there is a hypersurface .5} tangent to any given hyperplane in T'-2%

However, with respect to V, the hypersurfaces .5 are all totally geodesic! Indeed, if
yeFand £ e Tj.l'uﬁ"jr — 0, the section of the normal bundle of E, which represents
& must vanish at x, and must do so at some [1; = CPp_> containing x. The geodesic
y: through v in the direction & therefore precisely consists of those v € . ¢ @ for
which I1; ¢ X,.. But since x € I1_, we therefore have x € I, for every ¥’ € y,, and
it therefore follows that y; < 5. This shows that > is totally geodesic, as claimed.

However, a classical theorem of Schouten and Struik [47, p. 182] asserts that a pro-
jective connection in dimension m = 3 is projectively flat iff every hyperplane element
is tangent to a totally geodesic hypersurface; cf. [48, p. 290]. Thus V is projectively
flat, and ¢ % therefore has a neighborhood which can be identified with a ball in
C™, in such a manner that the unparameterized geodesics of V are just the intersections
of complex lines in C™ with the ball. Let us again shrink % by replacing it with this
ball about . The hypersurfaces % are now just the intersections of hyperplanes in C"
with the ball #; in other words, thinking of C™ as an affine chart on CP,,, they are just
the intersections of projective hyperplanes with a fixed ball about o. For the smaller %
that corresponds to this smaller %, we therefore get an injective holomorphic map to
the dual projective space CPF}, by sending x = % to the hyperplane which intersects
@ in 5. This provides the promised biholomorphism between % - £, = ¥ and a
neighborhood of a hyperplane in projective m-space. 0O

Remark. The above-cited result of Schouten and Struik is proved by showing that the
Weyl projective curvature of the projective connection vanishes, and then using the fact,
due to Weyl [50, p. 105], that, when m = 3, this curvature condition is equivalent to the
projective connection being projectively flat. The fact that this fails when m = 2 gives
the complex surface case an entirely different flavor, as we will see in Lemma 4.4 below.

There are certainly many other ways of proving the above result. One alternative
strategy would proceed by first using [18] to show the infinitesimal neighborhoods of
E ¢ & are all standard, and then invoking [16] or [25] to conclude that a neighborhood
of £ < 2 is therefore biholomorphic to a neighborhood of CPp_y C CPy,. O
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Perhaps the single most important consequence of Lemma 2.2 is that J must always be
standard at infinity when m = 3. For us, it is vital that the asymptotic coordinates which
put J in standard form can moreover be chosen to be consistent with the hypothesized
fall-off of the metric:

Lemma 2.3. Let (M™™ g, J) be an ALE Kahler manifold of complex dimension m = 3
which, in some real coordinate system on each end, merely satisfies condition (ii), as sef
out on page 184 above. Then there are asymptotic complex coordinates (z', ..., z™) on
the universal cover of M of any end, in which the complex structure J becomes the
standard one on C", and in which the metric has fall-off

|1_m_e} |—m' f

gik =4+ 0(z . Bike=0(z

for some £ = 0.

Proaf. Let {f ., ™) be some given asymptotic coordinate system in which g —
djk € C‘ fn{somar = m — 1 and some o € (0, ]},andlatusnnceagmnsﬂ
£ = mm{r —{m — 1), ). We now think of B2™_ with real coordinates (&', ..., #2)
and the constant-coefficient almost-complex structure Jy of the proof of Lemma 2.1,
as an affine chart on CF,. Lemma 2.2, in conjunction with the proof of Lemma 2.1,
then gives us a C' diffeomorphism ¥ between neighborhoods of CP,,_; < CFy, that,
by [40,42], restricts as a C>* diffeomorphism between the complement of a compact
set in B>, with coordinates i, and the complement of a compact set in C™, equipped
with standard complex coordinates (z', ..., z™); and let (x', ..., x™™) be the real and
imaginary parts of (z!,...,z™), so that z/ = x?/~! + ix*/. Now notice that, for some
large constant C, we in particular have

C7 x| < |%] = C|x|

outside a large ball, simply because W is uniformly Lipschitz near CFp_; < CF,.
Because W is by construction holomorphic with respect to the complex structure J, the
functions z* := W*z* are holomorphic with respect to the complex structure associated
with our K#hler metric, so their real and imaginary parts x/ := ¥*x/ are harmonic
functions with respect to the Kihler metric g. We now use a partition of unity to construct
a C'* Riemannian metric 2 on R?™ which coincides with g outside some large ball, and
use a smooth cut-off function to construct C>* functions f/ on B2™ which coincide
with the x/ := ¥*x/ outside this same ball. The Laplacians Az 7 of these functions
are then compactly supported C%* functions on R*™.
The fall-off of the first derivative of g in ¥-coordinates implies that

Azl = g*T], e C%_ @™

On the other hand, since —m — & { Em —2), the Laplacian A induces an isomor-
phism [30, Theorem 8.3.6] between C ,,_m EJ{]I?E-"“}l andCE:, ,{IEZ""} Thus, for each j,
there is a unique u/ € E‘;_m_e{]R-”} with Agu/ = Az%/. The functions #/ := ¥/ —u/
are then g-harmonic functions on B2™, and provide coordinates at infinity that are asymp-
totic to the /. But, since Az f/ Cg‘e for B < —2m, [30, Theorem 8.3.6] also asserts
that there is, for each j, a unique function v/ € €%, with Azv/ = Ag f7. The func-
tions y/ = f/ — v/ are then yet another set of g-harmonic functions which give us
coordinates at infinity, this time instead asymptotic to the x/.
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Now choose some n € (1,2) and some ¢ = 2m. Since the ¥/ and the y/ are
O(|x|) = O(|%|) at infinity, they therefore belong to the weighted space L7 used by

Bartnik [7]. On the other hand, our Cl:' fall-off condition on the metric guarantees that

Bik—djx € Wllfm in ¥ coordinates, so one of Bartnik's key results [7, Theorem 3.1]

now asserts that -
Hgm={f Ly | Azf =0}
has dimension 7 + 1 = 2m + 1, and hence that
span {1, 7',... 32"} = H, , = span {1, y', ..., y*™"}.
It follows that the y/ are affine-linear combinations of the #*; in other words,

I — g 5k
y =a' + A ¥

for an appropriate translationa € B>™ and an appropriate invertible linear transformation
A e GL(2Zm, ). Consequently,

x =al + AjZ* +w

outside a large ball, where
i—y ik e
w! =v! — At e G35, ..

In particular, 22 3—_; Aj C, " m_g» and inverting the Jacobian matrix then tells us that,
- {A—l} £ C‘l_’m _ .- We thus have

2= (415

as functions of ¥, & P J

=F - .
where UJf — iﬁ;’k- :—L— ecls In i coordinates, we therefore see that

l—m—g*
a9 .
87 3 ~ Ak € Ol
and that
d d d
PP [Efmm’} €Clne

Since C—!|x| = |X| = C|x/, this now immediately implies that
gk =(A"A) e+ O(x]'"™7), gjee = O(x|™ )

in x coordinates. However, since the Kihler metric g is Hermitian in the complex coordi-
nate system defined by the z/ = x>/~ !4ix?/, the matrix A’ A must represent a Hermitian
inner product on C™, and so can be written as B* B for some B € GL(m, C). Thus,
after a complex-linear change of coordinates z — B~'z, we will then have

gik =8+ 0(lz]'"™ ), gjre = 0(z™ "),

as desired. O
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Remark. The above proof dovetails with Bartnik’s weighted-Sobolev results in a way
that lets us avoid having to reinvent the wheel. However, we certainly could have avoided
passing to a complete manifold or citing Bartnik's count of harmonic functions of sub-
quadratic growth. Indeed, the results in [41, Chapter 6] allow one to argue directly that
any harmonic function on (M., g) of polynomial growth is asymptotic to a harmonic
polynomial on Euclidean space (R*™, §). &

While Lemma 2.3 is still phrased in terms of any end, we will soon see that there can
actually only be one end. Indeed, Lemma 2.2 opens up a thoroughfare to this and other
global results, via the following remarkable consequence:

Lemma 2.4. Let (M™ g, J) be an ALE Kahler manifold of complex dimension m =
3. Then we may compactify (M, J) as a complex orbifold (X, Jx) by adding a copy
of CPw_1/ T to each end. Moreover, the resulting complex orbifold admits Kiihler
metrics.

Progf. Lemma 2.1 already told us that we could smoothly cap off the universal cover of
each end by adding a TPy, and Lemma 2.2 then showed that each such capped-off
space is biholomorphic to a neighborhood & of CPy_; © CPy. Since the action of
each ['; extends continuously to 4, and since it is holomorphic on the complement of
CPy_1, the induced action is actually holomorphic; and since Hartogs™ theorem also
tells us that this action extends holomorphically to all of CF,,, I'; therefore acts on %
by projective linear transformations. This allows us to compactify (M, J) as a complex
orbifold (X, Jx) by adding a copy of the appropriate CPy,_;/ I'; to each end. Here, of
course, I'; is identified with a finite subgroup of U(m) < PU(m + 1), and so acts on
a neighborhood of CPy_1 < CPy in a manner that preserves not only the complex
structure, but also the standard Fubini-Study metric.

Using this last observation, we will now construct a K#hler metric § on (X, Jx). To
do this, we first use our asymptotic coordinates on the complement of a suitable K € M
to identify the universal cover of each end with the complement of a large closed ball
D*" < C™ of radius go in a I"j-invariant manner. Since C™ — D*" is 2-connected, we
can then write the Kihler form w of our given ALE Kihler metric g as

w=d(B+p)=03p+3p

for some d-closed (0, 1)-form £ on C™ — D*™. However, since m = 3,_3 result of
Andreotti-Grauert [2, p. 225] tells us that H}"' (C™ —D?™) = 0. Thus 8 = 3h for some
function f1, and we therefore have

w=iddf

where [ = 2%m h. By averaging over the action of I';, we then improve our choice of
the potential f so as to make it I" j-invariant on each end.

We now introduce the functionu = g = ¥ |z/|* on each end. If F(u) is any smooth
function, then along the z'-axis we have

m
A3F () = FY wdz' Adz' + F'(u) Za‘zf Adzd,
=2

s0 that Uim)-invariance implies that i 3aF is positive semi-definite iff u F'(u) is a non-
negative, non-decreasing function. Now choose some radius p) = pg, and let 1r{u) be
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a non-decreasing cut-off function which is = 0 near u = pJ and = | for v = p]. Let
F : [0, og) — [0, oc) be the smooth function defined by

(1) dt

Fay = [i] 1+t

' (2.1}

so that u F'(u) = ¥r{u)[1 — (1 + u)~'] is non-negative and non-decreasing. Since this
ensures that {33 F is positive semi-definite, it follows that, for any constant N = 0, M
admits a Kihler metric gy that equals g /N on the compact set K < M, and which has
Kihler form given by

W=%+EEEF=EEE(F+%)

on the ends. In particular, since i 33 F coincides with the Fubini-Study Kihler form
wrpg = idd log(1 + 1) when u = gf, we actually have

wn = wrs +INT183 f

when g = p,. Now choose some p; > g, and let ¢iu) = 0 be a second smooth cut-off
function which is = 0 for u < o} and = 1 for u > g3. We can then consider the
i1, 1)-form on M which is defined by

in = wn — INT'33[¢(u) f]

in the asymptotic regions, and given by any on the compact set K; the fact that f has
been taken to be I j-invariant guarantees that this coordinate expression is I j-invariant,
and so descends to a well-defined form on each end. However, we then have

N = wrs +iINT1A3[(1 — $) f]

in the asymptotic regions p = p;. Since the Hessian of (1 — ¢) f is uniformly bounded
with respect to the Fubini—Study metric on the compact union of the transition annuli
g1 = 0 = pa, it follows that @y will be positive-definite on these annuli for N 3 (.
On the other hand, since ay agrees with either wpg or wy everywhere else, it follows
that, provided we take N to be sufficiently large, @y will be a Kihler form on all of
M. But the Kihler metric § corresponding to @ := @y for some such suitably large N
then exactly coincides with the standard Fubini—Study metric of each CPy /T'; in the
asymptotic region ¢ > po of each end, and so naturally extends to all of (X, Jx) as
a Kihler metric. This shows that the complex orbifold X is indeed of Kihler type, as
claimed. o

Remark. Aswas pointed out to us by Ronan Conlon, the above result can be generalized
to asymptotically conical K#hler manifolds, even when the end is not rationally 2-
connected. For details, see [17, Theorem A(iv)]. O

This now implies a previously promised result:

Proposition 2.5, I[f m = 3, an ALE Kdhler m-manifold has only one end.
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Proof. Let(M*™, g, J)bean ALE Kihler manifold, where m = 3. Consider the orbifold
compactification (X, Jx) of (M, J) given by Lemma 2.4, and let § be an orbifold Kihler
metric on X, with Kihler form . We may then consider the intersection pairing

HY X Ry x HY' xR % R
([al. [ﬁ]}l—yfaﬁﬁncbm_z.
X

on H-Y(X) := H;;;{X}. However, because Hodge theory is valid in the orbifold setting,
there is a Lefschetz decomposition

HYYX.B)=Rlale PMYUX. B,

where the primitive harmonic (1, 1)-forms P'-! are pointwise orthogonal to the Kahler
form é. This implies a generalization of the Hodge index theorem: the intersection form
() is of Loreniz type. Indeed, the Hodge—Riemann bilinear relations [21] tell us that @
is positive-definite on R[], and negative-definite on P'-!(X, R).

Let us now define a closed non-negative (1, 1)-form «; on X supported in the closure
of the jth end of M by setting «; = iddF in the jth asymptotic region, where F is
the function defined by (2.1), and then extending «; across the hyperplane at infinity as
the Fubini-Study form wpg, while setting ; = 0 outside the closure of the jth end.
The semi-positivity of «; then guarantees that O([e;], [«;]) = O for each j. However,
Q(lej], [eex]) = 0if j # k, since the supports of a; and o are then disjoint. If M had
two or more ends, () would thus admit two orthogonal positive directions. But since the
generalized Hodge index theorem says that { is of Lorentz type, this is impossible. To
avoid this contradiction, we are thus forced to conclude that M can only have one end.

[m]

Remark. The classes [e;] € H'-!(X) in the above proof are proportional to the Poincaré
duals of the hypersurfaces £; = CPy_1/I'; arising as the hyperplanes at infinity of
the various ends. The fact that O([a;]. [we]) = 0 for j # k reflects the fact that
E;NEg = @, while the fact that @ ([e; ], [a;]) = Oreflects the fact that the homological
self-intersection of X; is represented by a positive multiple of the complex sub-orbifold
CPm_2/ T ;. This geometrical idea is the link between the above argument and our proof
of Proposition 4.2 in the complex surface case.

Various other means for proving Proposition 2.5 are also available. For example,
a proof directly based on the pseudo-convexity of the boundary can be found in [49].
Alternatively, uniqueness of the end can be deduced by applying [45, Theorem 6.3] to
the Remmert reduction [20] of (M, J).

With Lemma 2.3 and Proposition 2.5 in hand, Theorem C becomes comparatively
easy to prove in complex dimension m = 3. Here is the key step:

Proposition 2.6. Let (M™™, g, J) be an ALE Kdhler manifold, m = 3, satisfving both
conditions (1) and (ii), as sef forth on page 184. Then, in any asympiotic coordinate
system, ifs mass is piven by

Mg=lim-—— [ 60"
- &) e—'r"éuzgzm—l}nmfsw ne

for any I-form 8 with d8 = p on the end M__, where p is the Ricci form of g.
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Progf. Taking the Bartnik—Chrusciel coordinate invariance of the mass [7,15] as given,
we will begin by first checking that the assertion is true in a particular asymptotic
coordinate system and for a particular choice of 8.

Because g is Kihler, the asymptotic complex coordinates (z!, ..., z™) of Lemma 2.3
are all harmonic, and the same therefore applies to the real coordinates (x', ..., x")
obtained by taking their real and imaginary parts. Thus

]"'E = g”[’it = ﬁxf = {L
50 that
. 1
g (E;':',t - EE;‘E.:‘) =0

and

. 1
g™ (gjek — gjke) = —ng*g;-u =— (105 V/det g '.r

in this asymptotic coordinate system. On the other hand, our fall-off conditions guarantee
that

g (gjek — gine) = B* + 00" ™) (gjex — gine) = gir.i — giie + O(0'2™%),

and that the Hodge star operators associated with g and & differ by O(g'~™%). Thus

J

]

Jrr[‘g',-l,-,,-—‘g'.-,-”,-]|1*"r:i'a.1,3:—f r*dlog\.-"detg +D{g_2‘}

5o/

in these coordinates, and the mass is therefore given by

_1m
m(M, g) = — lim &f »d log \/det g.
5

g—oe 4(2m — 1)m™ 0l T
However, the Kihler condition allows us to rewrite the integrand as

™ N mm—l
|dz|2m im—1)!

«dlog./detg = [—:‘{E —d)log
and since
i - ™ = ™
d[i{ﬁ—é}logm} = —IE&'D‘EW =0
on our Kihler manifold, we therefore have

. ] m_l
m(M,g) = lim m/;q;r“m

for a particular 1-form

i _
f=—=(d —d)log ———
2{ }ngla'zll'"

with d9 = p on the end M.
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On the other hand, since by (M) = 0, the most general 1-form # on M., with
dfl = p is given by # = 6 + df for a function f. Choosing a different # would thus
change the integrand by an exact form, and so leave the integral on each 5, / I" completely
unchanged.

Finally, the limit is independent of the asymptotic coordinate system. Indeed, notice
that

d[ﬂ:\w’""] —pre™ = % — !’"—Elﬂsdp,.
Consequently, if # is a real hypersurface in the region E, exterior to 5,/ T such that
S/ T and .5 are the boundary components of a bounded region % C E,, then

fﬂnm"‘"—[ 8 A w™ ! :|f Sdu.|£f |s| dp = |s] dpe,
& So/T ¥ ¥ Eg

and the expression at the far right tends to zero as p — oo, since, by hypothesis, the
scalar curvature s belongsto L'. o

Remark. If the metric g is scalar-flat Kihler, the form 8 A »™ ! is actually closed, so
the integral becomes independent of the radius g, and the mass can be calculated without
the need for taking a limit.

When m = 2, the above argument still works if one simply assumes that there is
an asymptotic chart in which J is standard and g falls off as in Lemma 2.3. While this
assumption does in fact hold for many interesting examples, it unfortunately fails for the
general ALE Kihler surface. This complication will force us to develop a more flexible
approach in order to be able to definitively treat the complex-surface case. &

We now provide some key conceptual underpinning for our mass formula.
Lemma 2.7. Let (M, g) be any ALE manifold of real dimension n = 4. Then the natural
map HX(M) — H3z(M) from compactly supported cohomology to ordinary de Rham
cohomology is an isomorphism. Consequently, every element of H>(M) is represented
by a unique L> harmonic 2-form.
Proof. We can compactify M as a manifold-with-boundary M by adding a copy of
5§71/ T; to each end. The natural map in question therefore fits into an exact sequence

2
m—1

cor = HI (8" TiD) — HAM) — Hip(M) — Hip(Ui[S" /T3 — -+

corresponding to the exact cohomology sequence of the pair (M, 3M). On the other
hand, since de Rham cohomology injects upon passing to a finite cover, we have
Hip(8"'T:) © Hip(5" ') = 0 when 0 < k < n — L. It therefore follows that
H2(M) — H3p(M) is an isomorphism. Moreover, since g is asymptotically conical,
this in turn implies [13,23] that H*(M) can be identified with the space H%{M L8 of
L? harmonic 2-forms on (M, g). O

This entitles us to make the following definition:
Definition 2.8. If (M, g, J) is any ALE Kihler manifold, we will use

& : Hig(M) — HZ(M)
to denote the inverse of the natural map H>(M) — H3,(M).
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We are now ready to state and prove our mass formula.
Theorem 2.9. The mass of any ALE Kihler manifold (M, g, J) of complex dimension
m = 3 is piven by the formula

_ &) o) | m— D! f o d
@m—Dam 1 20m— Dam fyo

where () is the duality pairing between H>(M) and H*™~2(M).

Progf. Choose some 1-form & on M, such that 48 = p, where p is the Ricci form of
(M, g, J). Next, choose some asymptotic coordinate system on M, and temporarily let
r denote the corresponding coordinate radius on M. Finally, choose a smooth cut-off
function f : M — [0, 1] whichis=0on M — M, and = 1 for ¢ = a1, where s is some
fixed large real number. We then set + := p —d{ f#). Since M only has one end M, by
Proposition 2.5, this  is then a compactly supported closed 2-form on M. Since 1 is
moreover cohomologous to p, it therefore represents &i[o]) = 27 &ic;) in compactly
supported cohomology.

For any ¢ = =, we now let M, — M be the compact manifold-with-boundary
obtained by removing ¢ = p from M, so that aM, = 5,/T . Since

—I!
ﬂnm’“":%w’":tmz }Sifﬂgs
we have
(m—1)! . i
fsd;.-.:f premt = [ [ +d(fO)] Awm.
Mg Mg Mg
It follows that
2 (1), [w]™ 1) = f ¥ Ao = f ¥ A !
M M,
- 1!
:—f d{f&nm’“"}+{m }[ sdp
M, 2 M,
— 1!
=— ffil.-\m”_1+(m }f sdp
aM, 2 M,
— 1!
:—f ﬂhmm_l+{m }f sdp.
Sg/T 2 M,
In other words,

1 f o nom-l _ B le™h) (D) f“f
2@m— D™ Js ¢ T T @m—Dam T A@m—Dam Jy,

Taking the limit of both sides as p — oo therefore yields

e le) | (m—1) f
Gm =T aEm =T Jyyt

by Proposition 2.6. This proves the desired mass formula. o
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Specializing to the scalar-flat case, we now obtain the high-dimensional version of
Theorem A:
Theorem 2.10. If (M*™, g, 1) is any ALE scalar-flat Kahler m-manifold, m = 3, its
mass is given by
(d(cr), [w]" )

(2m — l)zm-1"~

In particular, the mass is a topological invariant in this context, entirely determined by
the smooth manifold M, the first Chern class of the complex structure and the Kdhler
class of the mefric.

We now conclude our discussion of the high-dimensional case by pointing out some
other useful consequences of Lemma 2.4.

Lemma 2.11. The orbifold (X, Jx) of Lemma 2.4 satisfies H'(X,0) =

Progf. By Lemma 2.2, the orbifold (X, J) contains an open set of the form % /",
where % C CFy, is a tubular neighborhood of a hyperplane CPp_,, and this tubular
neighborhood then contains a (perhaps smaller) neighborhood % of CF,, _; which is the
union of all the projective lines CP, ¢ %.If« € H°(X, Q') is a global holomorphic
|-form on the orbifold X, we can restrict it to % /" and then pull it back to obtain a
holomorphic 1-form & € H°(%, Q'). However, the cotangent bundle of CP,, restricted
to a projective line is isomorphic to O(—-2) & —1)&- - -&O{—1), so any holomorphic
I-form on % must vanish identically along any projective line CP, c % . It follows
that & vanishes identically on 9. Hence @ = 0 on a non-e a:ny open set, and hence
o = (on X by the uniqueness of analytic continuation. Thus H"(X, @'y = 0. However,
H%X, QY= H"“°(X) and H'(X, @) = H"'(X) are conjugate by Hodge symmetry,
since X admits K#hler metrics. This shows that H'(X, @) = 0, as claimed. o

In the asymptotically Euclidean case, this now allows us to prove a result that will
play a leading role in Sect. 6 below:

Proposition 2.12. When m = 3, any AE Kihler m-manifold (M™ , g, J) admits a
proper holomorphic degree-one map M — C™.

Progf. Since I' = {1} by assumption, the compactification (X, Jy) of (M, J) is a
manifold, and by Lemma 2.2 it contains an open set biholomorphic to some tubu-
lar neighborhood % of CPp_y < CPFy. In particular, X contains a complete, m-
complex-dimensional family of hypersurfaces arising as hyperplanes in % < CPy.
Since H'(X, @) = 0, holomorphic line bundles on X are classified by their Chern
classes, and it therefore follows that all of these hypersurfaces determine the same divi-
sor line bundle L. — X that is, they all belong the same m-dimensional linear system
|H°(X, @(L))|. Since no point belongs to all of these hypersurfaces, this linear system
has no base locus, and it therefore gives rise to a globally defined holomorphic map

d: X - PIHYX, O(L)*] = CEB,,.

Since the hyperplanes we initially considered lie ::nnrel}' within % and give ptujec:tm:
coordinates on some smaller tubular neighborhood % of CP,,_,, this map takes %
biholomorphically to its image, and no point of & (%) has any other pre-image in X.
Thus 4 has degree 1, and the hyperplane ¥ = CPp,_, used to compactify M is taken
biholomorphically to a hyperplane CFFy, ) < CPy. The restrictionof dtoM = X — X
therefore defines a proper, degree-one holomorphic map M — C™_ as desired. 0O
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Remark. While the last result roughly says that any AE Kihler manifold is a generalized
blow-up of C™, it should be emphasized that some rather complicated scenarios are in
principle allowed when m = 3. For example, one could blow up C™ at a point, then
choose a smooth sub-variety V in the resulting exceptional CF,,_,, then modify the
blow-up ©™ by replacing V with its projectivized normal bundle, and then repeat this
procedure. While Proposition 4.3 below will provide an analogous result when m = 2,
the low-dimensional picture is simpler, as the most general AE Kihler surface will turn
out to just be an iterated blow-up of C? at isolated points. &

More generally, the Kodaira—Baily embedding theorem [5] and Lemma 2.11 together
imply that the Kihler orbifold compactification X of M given by Lemma 2.4 is always
a complex projective variety; and Lemma 4.1 below leads to a similar result when
m = 2. After resolution of singularities, it is therefore easy to show that any ALE Kihler
manifold is biholomorphic to the complement of a rationally connected hypersurface in
arationally connected smooth projective variety.

3. Coordinate Invariance of the Mass

Proposition 2.6 shows that the mass of an ALE Kihler m-manifold of complex dimension
m = 3 can be calculated by integrating a coordinate-independent differential form over a
family of hypersurfaces that tends to infinity. This perhaps sounds like it should imply the
Kihler case of the coordinate-invariance of the mass, in the sense of the celebrated results
of Bartnik [7, Theorem 4.2] and Chrusciel [15, Theorem 2]. However, our proof actually
proceeded by checking our asymptotic mass formula in a special coordinate system, and
then noticing that this formula actually has an interpretation that is essentially coordinate-
free; to know that our expression also coincides with the standard expression for the mass
in other charts, we still had to rely on Bartnik—Chrusciel. In this section, we will remedy
this by proving a more robust version of Proposition 2.6 that directly relates our integral
to the standard mass expression in any asymptotic chart in which the metric satisfies
a weak fall-off hypothesis. One remarkable consequence of this argument will be that
Proposition 2.6 still holds when m = 2, even though Lemma 2.3 cannot be generalized
to this setting. The following technical result is the linchpin of our argument:

Proposition 3.1. Let g be a C* Kahler metric on (R™ — D*™)/T', m = 2, where
' c SO(2m) is some finite group that acts without fixed-points on §*™~'. In the given
coordinate system (x', ..., x™™) on R*™ — D™ assume that g satisfies the weak fall-off
hypothesis

gix=8ux+0@ "), Ere=0@ ")

where o = |x| and where t = m — | + & for some & = (. Then there is a confinuously
differentiable 1-form @ on (R™ — D™, T such that

, 2
p— ok i |0 dag — [ BAe™ =00
fs /T [Et;,t Bk, ;] E T s.r o

and such that d8 = p, where p is the Ricci form of g with respect to a given compatible
integrable almost-complex structure J.
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Proaf. Let J be a given almost-complex structure which is parallel with respect to g,
and recall that this implies that J is integrable. By the arpument used in the proof of
Lemma 2.1, we may then find a unique constant-coefficient almost-complex structure
Jy on B*™ such that

J=Jo+0@™), vI=0@ ",

where v denotes the Eoclidean connection associated with the coordinate system and
where p = |x|. By rotating our coordinates if necessary, we may then assume that Jy
is the usual complex-structure tensor of C™. Since I" preserves J and acts by linear
transformations, it automatically preserves Jy, too, so we actually have I' < U(m). We
will now systematically work in the complex coordinates (z', ..., z™) associated with
this picture of Jp.

Per standard conventions [8], we let J act on 1-forms ¢ by J¢ = —¢b o J, thereby
making it consistent with index-raising. With this understood, then, at least at large
radius,

Jdz* = —i(dz" + X}'dZ" + £ dz")

for a uniquely determined collection of coefficients 7 and %" with the same C!,
fall-off as J — Jy. Since we consequently also have

Jd7R = +i(dZ" + K dz" + LT d7),
applying J again therefore gives us
Tzt = — (dz" + 2.£Fdz") mod CL,,.
The fact that J* = —[ therefore implies that %, € C',_, and hence that
Jdz" = —i(dz" + #7'd7") mod C',,,

thus allowing us to sweep the %" into the error term in our calculations.
Now consider the collection of 1-forms defined by

ot = g (dz* +idd7*) = dz* + 3¢'dZ" mod CL, .
These are all (1, 0)-forms with respect to J, so the m-form
g=y'AoAl"
is consequently of type (m, ) with respect to J. If we now let
go=dz' A--- AdZ™
denote the standard coordinate (m, 0)-form with respect to Jy, then

m
¢ =@ — 3 Z{—]}“XF“dEEAdZIA-nAEEEA-nAifzm mod C',

__'r.
=l

Consequently,
eA@ =goAg modCly, (3.1)
even though we merely have ¢ — gp € C! .
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Because g is Kihler with respect to J, we of course have VJ = 0, where V denotes
the Levi-Civita connection of g. In our real asymptotic coordinate system (x', ..., x*™)
this statement takes the explicit form

vidf+ r;,;; - rjt_{_f =0

where ¥ denotes the flat Euclidean coordinate connection, and where [" are once again
the Christoffel symbols of g. By thinking of ]"j: ; 8s a matrix-valued 1-form [T";], we can

now usefully rewrite this as
vir=[1.mr,1]
or, equivalently, as
Vi —Jo) = Jo. [T;1] +[ (7 — J., IT1].

But since our fall-off conditions tells us that " = @ (") and that J — J; = Qg™ "),
we therefore have

Vil = Jo) = Jo, [T;1]+ 0> 32
Now set

a _
— B_- i
K=K PP @dz",
where the Einstein summation convention is understood, and notice that
J=Jy+iX¥ —icd  modC'y,.

Expressing the endomorphism [I";] as

d i . = d - A )
Tk _" v L 7 PaTHE VTR v
[T;] _rf“az# @ dz +F1vazn @dz +1“J,ﬂazﬁ & dz +F“’&zﬁ @dz
we can thus rewrite (3.2) as
i), =25+ 0™
and so deduce that
M =52+ 0> ).

In particular, after decomposing the index j into parts of type (1, 0) and (0, 1) with
respect to Jy, we consequently have

K =i+ 0 (33)
and
B ol —2r—1
Xﬂ _?‘rin"' Op ). (3.4)
Since the Levi—Civita connection V is torsion-free, equation (3.4) then implies that

K - A =0,

.
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Thus, with the Einstein summation convention understood,

K- dT AdT = 0(e~F ), (3.5)

in contrast to the O{p—"—") fall-off we might have narvely expected.
The same sort of decomposition also allows us to express the metric as

2 = guidz" @dz" + guodz" @dI° + ga,d7* @ dz" + gppd7® @ dT°
where symmetry and reality imply that
Buv = Bvp = Bv = Boa» Buv = Bop = Bav = Bvi-
Our fall-off hypothesis now becomes
Buw € Clrs Buv —dui € Clr’

with the understanding that § denotes the standard Euclidean metric, so that [8,;] is
one-half times the identity matrix. The Kiihler form is thus given by

= g{-"! '}
= i guu(d2" + #}'d7") @ dz” +i guo(d2” + #'d7") @ dT’
—i gpu(dZ* + HVd7*) @ d2” — i gpa(dZ” + X'dM) @ dZ’ mod C!y,
= igusdz” AT — L8 a HAdZH AdT + L8y, Hhdz" Adz’ mod Cy,

where we have used the fact that o is anti-symmetric, and hence equal to its own skew
part; here the square brackets, denoting skew-symmetrization, have simply been added
for clarity. Taking the (0, 2) component of « with respect to Jy thus gives us the inter-
esting complex 2-form

ﬁun‘2 =4 al[ﬁnx%"j‘diﬁ A Iffﬁ mod Clz:*

Our fall-off conditions now imply that

[d*(@"%)]e = —7V (")t = 87 (@™ e ; + 0277,
so that
[d* (@™ )] = 0>,
while (3.3) implies that
[d* @" )]k = =87 (@" oz + 07"
= %E“r"&ﬁlﬁp +0( "
= i8"8 T, + 0 )

= %E;‘[D {g[fi‘],p_ +g#[ﬁj] —_ g#[f.il]:] + O{Q_'Zr_l}
= —iﬁ“ig#ﬁ,j] + 0@ ).



Thus
d* (@) = —id* g5 yd7 + 0@,

and complex conjugation then gives us

d* (™) = i8" gap wdz" + 0™ "),
Setting

0 =i — i,
we therefore obtain a real co-exact 1-form
p=d"f=—+d=§}

that is explicitly given by

y = —20e (347g,;; ;dT) + O™ 1).

Next, we consider the 1-form
I=guldx*

obtained from the vector field I'/ 3—3- by index-lowering, where

x
I = g“]"if = Axt.
The vsual formula for the Christoffel symbol then tells us that
Jp = gal™ =8 + 0™ 1)
= §epgl* Mo+ 0"
= 258T%; + 0@
= 88y + 1o — Buis) + 0@
= E#igjj,p + 2‘3“13#[5,5] +0( " ).
On the other hand, the trace of equation (3.3) tells us that
K, =2T5 +0@™"h
= 2" M 8uis + B — Buo) + 0@
= 44 (8,5 5+ 8iop — Bund) + 0@ )
= E#igjj,p - H#igg[ij] +0( ).
This gives us an identity
Re (¥} dZ") = 31+2y

which will eventually prove to be invaluable.

H.-J. Hein, C. LeBrun

(3.6)
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Now, because g is K#hler, the Levi—Civita connection V of g induces a connection
on K := A™° by restriction, and we will simply denote this connection by V, too. Thus,
in the asymptotic region where @ # () has been defined,
for some complex-valued connection 1-form #. Setting

a:=0"", p:=2"0

we will now use (3.5) and the fact [8,29] that the Chern and Levi—Civita connections on
K = A™? coincide to compute & and § modulo harmless error terms. Now since V is
actually the Chern connection, V%! = 3 := 3;, and hence

ang=V""p=10p=dp=d(pg— )

m
=—d |:% Z (—* ot dz” adz' A - AdZE A - A dz’":| + 0~
=l

(—Drd X} AdZ adz' - AAZE A - AdT™ + 0(p~ 1)
1

1
)

M= ]E'ME

(— 1)t dZ" AdZ" AdZ' A - CAdZE A AdT™

—

.JE”{‘FJE“ adzb A AdT™ + O~
1

|
(= B T
=
M= |

T

m
= (— Z Xﬁf‘pdfﬁ) Apo+ 0@ Y
.=l

pal=

] =

.=l

where we have used (3.5) to sweep ¥ dZ" A dZ® into the error term. Since the ¢ ¥ are
a basis for A!, this shows that

a=—3 X "+ 0@ T

= —3X0,d7" + 077,
where the Einstein summation convention is of course understood.
On the other hand, the Chern connection is also compatible with the Hermitian inner

product { , ) induced on the canonical line bundle K by g. Thus, if h := |l¢|* = (@, ¢).
we have
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ah = V', p)
= (V19%, @) + (. V™)
={fee.p +ip.c@p)
= (g, @} + {p. gl
and hence
B=—a+dlogh.
On the other hand,

m2  PAP
h=|lg)* =" m —=

and equation (3.1) therefore tells us that

_ AP
dlogh = dlog —
@ AP
— + 4 =
w0 Ao o8 @ S ¢
= —dlog. Jdetg + O(p~ 1),
since gy A g is just a constant times the coordinate volume element |dz|*™, while ™ is

just a constant times the metric volume element of g. Thus, relative to the trivialization
given by g, the connection form & of the Chern connection on K is given by

= —d log

d=a+f=ac—a—dlog/detg+ 00 Y
where 3 := d;, and where
a=—3X;,d7 + 0@ ).

However, the curvature of the Chern connection on K is given by ip, where o once
again denotes the Ricci form of (g, J). Thus

dit =ip,
and the real 1-form & defined by
8 =3md =—-L@-9)

therefore satisfies 46 = p. In conjunction with (3.6), the above calculation thus shows
that

8 =i(@—a)+4(@—d)log/detg + 0~ ")
= —J(@+a&)+5(d — d)log,/detg + O™ ")
= J e (¥}, d7") — 3T dlog Jdetg + O™ ")
=31 3+4y —dlog/detg) +0( Y
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where the 1-form J corresponds to '/ := g"]"i , by index lowering, and where the 1-
form y is co-exact. On the other hand, the Kihler condition also implies that any 1-form
¢ satisfies

—1

wh = I A

(m— 1"

so it follows that

2
*(J+4y —dlog,/detg) = WB Aw™ ) 4 ﬂ{g_z?_l}_

M

Notice, moreover, that both sides are invariant under the isometric linear action of '
U(m). Setting tr = m — | + &, where £ = 0, we therefore have

f *{J—dlug,fdﬂg}+4[ ay L] 0 A ™!+ 0~ %).
5/T 5/T

Saf T T m—1!

However, since xy = d « [}, the second integral on the left vanishes by Stokes’ theorem,
and we therefore deduce that

f *(1—dlog/detg) = 2 f A+ 0.
5 5

EETY]
o/ T (m—D!Jsr

But since 1 —d log ./det g = O(g—""), and since « differs from the Euclidean Hodge
star by O(p~"), this implies that

ot o ' 2
f [j.f - {log dﬂg}j] [I‘ri.fl'.'IE = _[ g mm—l + O{g—'le}.
S/ T S/

(m— 1)!
However,
J__IH } . _ N — 0. _ 1 .+ 0 —2r—1
=28 Bkt Bk — Brej) = Bjek — 3B+ Ol0 )
and

(log/detg) j = %gexj + Ol "),

and we therefore have

- 2 ,
Bkjk — Bkk.j njdﬂg - _f 8 A r].im_l = O{Q__E}f
fsm*r[ ot m—1)1 Js,/r

as claimed. O
This now implies our coordinate-invariant reformulation of the mass:

Theorem 3.2. Let (M>™, g, J) be an ALE Kdahler manifold of any complex dimension
m = 2. Suppose only that g is a C* metric whose scalar curvature s belongs to L', and
that, in some real asymptotic coordinate system (x', ..., x™) on a given end M, the
metric g has fall-off

gk =8k + O(x|"™™=%),  gjee = O(Ix|7™F)



208 H.-J. Hein, C. LeBrun

for some g = 0. Then the mass at the given end, expressed as the limit of an infegral
computed in these coordinates, is well-defined, and satisfies

|
M - a m—1
m(M, g} = E‘—PWE{Em—]}n fsq;r Mo
forany 1-form 8 with d8 = p on the end M ., where p is the Ricci form of g. Moreover,
the mass, determined in this manner, is coordinate independent; computing it in any other
asymptotic coordinate system in which the metric satisfies this weak fall-off hypothesis
will produce exactly the same answer.

Proaf. By Proposition 3.1, there is a particular 1-form & with 48 = p such that

f A wm!

(m—1)! _ i — —
EI_',“;G 43!(2m-|}fﬂfr [gejk — g j |0 dag = E'_'}ﬂgﬂ so/r 22 — 1) (3.7)

provided either limit exists. The left-hand side of equation (3.7) is of course the coor-
dinate definition of the mass associated with the given asymptotic chart. On the other
hand, the last paragraph of the proof of Proposition 2.6 shows that, when s = L', the
limit on the right-hand side of (3.7) exists and actually coincides with the limit obtained
by instead performing the relevant mlegm]s on the level sets of an arbitrary exhaustion
function for M. But since T is finite, HMq iMo) = Hom(I", ) = 0, and any other
primitive £ for the Ricci form can be expressed as § = # +d; thus, choosing a different
primitive # would just change the integrand by an exact form, and so leave the right-hand-
side of (3.7) unchanged. This shows that the right-hand limit is coordinate-independent.
Consequently, the limit on the left-hand side of (3.7) exists and is also independent of
the choice of coordinates, provided we restrict ourselves to asymptotic charts in which
£ satisfies the above weak fall-off hypothesis. O

Note that we obtain something stronger if (M, g, J) is a scalar-flat Kihler manifold.
Indeed, when s = 0, the differential form # A &™~! is closed, and the integral [ 8 A
@™~ then only depends on the homology class of the compact hypersurface & M.
One can thus replace the limit on the right-hand side of (3.7) with the integral on a single
hypersurface! This remarkable fact played a central role in the process of discovery that
led to the present results.

In order to extend our proof of Theorem C to the m = 2 case, we now lack only one
last ingredient: the fact that an ALE Kihler surface can only have one end. In the next
section, we will show that this is indeed true. In the process, we will also discover other
interesting and useful results governing the complex-analytic behavior of ALE Kihler
surfaces.

4. Complex Asymptotics: The Surface Case

Aswe saw in Lemma 2.3, the complex structure of any ALE Kihler manifold of complex
dimension m = 3 is standard af infinify, in the sense that the complement of a suitable
compact set is biholomorphic to (C™ —D*™) / T, where D*™ — C™ is the closed unit ball.
However, concrete examples show [19,27] that this is not generally true when m = 2.
MNonetheless, many of our high-dimensional results still have workable analogs in the
complex surface case. For example, here is an m = 2 version of Lemma 2.1:
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Lemma 4.1. Let M, be an end of an ALE Kahler surface (M*, g, ), where we just
assume that, in some asymptotic chart, the metric either has fall-off

gjk— 8 € CL,
for some v = 3/2, or else that
gk —djk € C2¢
for some © = 1. Then there is a (non-compact) complex surface 2 containing an

embedded holomorphic curve ¥ = CP, with self-intersection +1, such that the universal
cover Mo, of Mo is biholomorphic to & — E.

Progf. If r = 32, the proof of Lemma 2.1 goes through with only minor improvements.
Indeed, suppose © = | + ¢ for some & € (1/2, 1). Then the almost-complex structure
J constructed by our previous method will still be of Holder class C%*. Since we
have assumed that £ = 1,2, the Hill-Taylor version [24] of Newlander—Nirenberg thus
says that J is integrable, in the sense of the existence of complex coordinate charts,
iff its Nijenhuis tensor vanishes in the distributional sense. However, our J belongs to
WP N C" forany p € (4, 2/(1 — &), and its Nijenhuis tensor thus has components
of class LP. But since the Nijenhuis tensor of J vanishes in the classical sense on
M., = % — ¥, it therefore vanishes almost everywhere; and since its components
belong to L7, this means they also vanish as distributions. The Hill-Taylor theorem then
tells us that (27, J) can be covered with local complex coordinate charts, and that these
will be at least C'-* with respect to the original atlas.

However, when t < (1, 3/2], this argument breaks down, and we instead need to
assume that gz —djx € CE: in order to obtain the desired conclusion. We proceed by
an argument exactly parallel to that given in [22, Section 3.2]. The key idea is to first
change coordinates on C* — D* in such a manner that all the complex lines through
the origin in C* become J-holomorphic curves. The reason for doing this is that, when
passing from C™ to CPy, by inverting a coordinate, the worst loss of regularity in our
previous construction occurred in the radial directions. Improving the radial behavior
of J by imposing this gauge choice will allow us to overcome this difficulty. Indeed,
assuming that g — 8 € C‘E‘f,, Picard iteration [22, Section 3.2, Step 1] allows one to
construct such a change of coordinates & : C* — B — C? — D*, outside a sufficiently
large ball B, such that the components of & — id belong to C ffr . (One does gain control
of an extra derivative only along radial complex lines, where the problem we are solving
is elliptic, but, due to the lack of ellipticity in the transverse directions, this is all that

we can expect.) Thus ($*J) — Jp is now of class C l:' , and moreover vanishes in radial
complex directions. Thus, our previous fall-off analysis shows that J induces a complex
structure on a neighborhood of a projective line CP) < CP; that is actually of Holder
class C'*, where ¢ = min(e, T —1). In particular, the resulting almost-complex structure
has vanishing Nijenhuis tensor by continuity, and so, by standard versions [40,42] of
Newlander-Nirenberg, becomes standard in complex charts that are at least C>* with
respect to our original atlas. O

We remark that this Lemma was first discovered in the special case of scalar-flat
Kihler metrics [ 14,35-37], where, at the outset, one can arrange for g to have much better
fall-off, and where the relevant complex surface 2 actually arises as a hypersurface in
a twistor space. Lemma 4.1 thus allows us to peneralize various proofs from the narrow
world of scalar-flat Kihler surfaces to the present, broader context. In particular, an
argument used in [36] now yields an analog of Proposition 2.5:
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Proposition 4.2. Any ALE Kahler surface (M*, g, J) has only one end.

Progf. Lemma 4.1 allows us to construct an orbifold compactification X of M by adding
aquotient of CI*; to each end. After blowing up, this produces a smooth compactification
X of M which is a non-singular complex surface. Moreover, the closure of each end of
M contains smoothly immersed rational curves of positive normal bundle, and each such
curve has positive self-intersection. Grauert’s criterion therefore guarantees [6] that X
is projective, and so in particular is of Ki#hler type. The Hodge index theorem therefore
tells us that the intersection form on H'-'(X, R) must be of Lorentz type. However, the
curves arising from two different ends of M would necessarily be disjoint, and therefore
would be orthogonal with respect to the intersection form. Since this would contradict
the Hodge index theorem if there were two or more ends, we are therefore forced to
conclude that M can only have oneend. 0O

Similarly, an argument from [35,37] proves the following:
Proposition 4.3. Any AE Kahler surface is biholomorphic to an iterated blow-up of C*.

Progf. In the asymptotically Euclidean case, the compactification X is actually a com-
plex manifold, obtained by adding a CIP; of self-intersection +1 to M. Grauert’s criterion
[6] thus implies that X is projective, and in particular is K#hler. However, we must have
H'%(X) = 0, since the Kodaira deformations [31] of this CP; sweep out an open
subset of X, and since A"°X must be isomorphic to @{—2) & @(—1) on any one
of these smoothly embedded copies of CIP). Hodge symmetry therefore tells us that
H®'(X) = 0, and it therefore follows that all of these rational curves actually belong to
the same linear system. Since the intersection of all these rational curves is empty, this
linear system has no base locus. Since Kodaira's theorem [31] moreover tells us that the
dimension of this family is 2, this linear system defines a non-singular holomorphic map
X — CP, which sends a neighborhood of £ < X biholomorphically to a neighborhood
of a projective line CI"; < CIP;. Since bimeromorphic maps between compact surfaces
always factor into blow-ups and blow-downs, it follows that X is obtained from CP; by
blowing up points away from this CPy. Deleting the line at infinity, we thus see that M
is simply a blow-up of C2. O

In particular, Proposition 4.3 tells us that the complex structure of an AE Kihler
surface is always standard at infinity, just as it was in higher dimensions. We emphasize,
however, that the corresponding statement is generally false for ALE Kihler surfaces.
Here it is perhaps worth emphasizing that the proof of Proposition 4.3 is global in nature.
This should be contrasted with the local type of rigidity displayed by Lemma 2.2, the
proof of which fails in a crucial respect when m = 2.

Indeed, if £ — 2 is an embedded CP) of self-intersection +1 in a non-compact
complex surface, the Kodaira family @ of its deformations still carries a holomorphic
projective structure, but now any holomorphic projective structure on a complex surface
locally arises in this fashion [26,32]. While the Weyl curvature always vanishes for a
2-dimensional projective structure, most such structures are certainly not flat. Indeed,
the obstruction to projective flatness in dimension m = 2 is actually measured by the
prajective Cofton tensor, which can locally be expressed as Cypuy = Viurop, where V
is any torsion-free holomorphic connection that both represents the projective structure
and induces a flat connection on the canonical line bundle of %, and where r denotes the
Ricci tensor of V. The Cotton tensor of % at the base-point ¢ is actually the obstruction
to the triviality of the fourth infinitesimal neighborhood . Nonetheless, one can still
prove the following:
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Lemma 4.4. Let 2 be a (possibly non-compact) complex surface, and let T © &
be an embedded CIP) of self-intersection +1. Then the third infinitesimal neighborhood
0 of T ¢ 2 is isomorphic to the third infinitesimal neighborhood of a projective
line CPy  CP,.

Combining this with the proof of Proposition 2.3 then yields

Proposition 4.5. Let (M*, g, J) be an ALE Kahler surface. Then there is an asymptotic
coordinate system (x', ..., x*) on the universal cover of the end M, of M in which

g=8+0(xI"""%), vg=0(x|"*)
and
J=nhh+0(x™, vi=0(x™

where ¥ is the coordinate (Euclidean) derivative, and Jy is the familiar constant-
coefficient almost complex structure tensor on C* = R*.

Thus, while one cannot always arrange for J to be standard at infinity, it is at least
asymptotic to the standard complex structure to a higher order than the fall-off of the met-
ric would natvely lead one to expect. In the asymptotic coordinates provided by Propo-
sition 4.5, the proof of Proposition 3.1 then simplifies dramatically, because the 1-forms
J and y become negligible error terms. Assuming the Bartnik—Chrusciel coordinate-
invariance of the mass, a variant of the demonstration of Proposition 2.6 thus suffices to
prove the m = 2 case of the result. This was how we first obtained the asymptotic mass
formula in the complex-surface case.

While Lemma 4.4 cannot be improved in general, one can still do systematically
better in many cases of interest. Indeed, notice the action of ' on M, always extends
to a holomorphic action on 27, and that this then induces an action on % preserving
both the holomorphic projective structure and the base-point 0 € #. Moreover, the
induced action of " on T'-°% = C? is just given by the tautological 2-dimensional
representation of I' < U(2). Since the Cotton tensor at ¢ must be invariant under the
action of T, it either vanishes, or else the action of T on [C2 @ AZ(C?)]* must have
a trivial 1-dimensional sub-representation. In our context, this will force £ to be
standard, allowing one to osculate J bg Jp to higher order at infinity, unless I" is a cyclic
group &y, where £ is odd, acting on C- with generator

E.Zm'f! 0
[ 0 E—4JTI;'£:| -

However, the £ = 3 examples of Honda [27] show that Proposition 4.5 is actually optimal
for certain ALE scalar-flat Kihler surfaces.

5. The Mass Formula for Complex Surfaces

All the pieces needed to finish the proofs of Theorems A and C are now in place. Of
course, the remaining step is to demonstrate the m = 2 case of the mass formula. Once
this is done, we will then obtain Theorem B by simply re-examining some off-the-shelf
examples using these new instruments.
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Theorem 5.1. The mass of any ALE Kithler surface (M*, g, J) is given by

1 1
m(M, g) = —E{*{fl.‘h [ew]) + ﬁj‘; 5p dptg.

Progf. Theorem 3.2 shows that the asymptotic mass formula of Proposition 2.6 also
holds in the m = 2 case. Meanwhile, Proposition 4.2 shows that the m = 2 version of
Proposition 2.5 also holds. With these minor substitutions, the proof of Theorem 2.9,
with m set now equal to 2, then proves the desired cohomological mass formula. o

In conjunction with Theorem 2.9, Theorem 5.1 now implies Theorem C. We also
obtain the following corollary:

Theorem 5.2. The mass of any ALE scalar-flat Kathler surface (M*, g, J) is given by

|
m(M, g) = ——(&(c1). [w]).

In particular, the mass is a topological invariant in this seiting, and depends only on the
underlying manifold M, together with the cohomology classes c)(M, J) and [w].

Theorem A is now an immediate consequence of Theorems 2.10 and 5.2.

Let us now recast Theorem 5.2 in a more concrete form by identifying H2(M, R)
with the homology group H>( M, B) via Poincaré duality. In this setting, the intersection
pairing on H2(M) becomes the geometric pairing on Hy(M) obtained by counting
intersection numbers of compact (real) surfaces in M. Note that Lemma 2.7 implies that
this pairing

H:iM . B) x HhiM.R) - R

is non-degenerate on any ALE 4-manifold M.

Theorem 5.3. Let (M, g, J) be an ALE scalar-flat Kithler surface. Let E|, .. . Ep bea
basis for H:(M, R), and let Q = [Q ji] = [E; - Ex] be the corresponding intersection
matrix. If we define ay, ..., ap by

[il = —1 [IE{CI (3.1}
Q

[”‘f-" LIE;. 1

then the mass of (M, g) is given by

b
1
m=—z—2 ajj;j[a.-l (5.2)

i=l1
where [w] denotes the Kdhler class of (M, g, J).
Proof. The cycle > a; E; is exactly determined by the requirement that

(ZasEs)-p= [ e
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for any D € Ha(M). However, since H.(M,R) = H2(M) by Poincaré duality, this is
equivalent to saying that

Zﬂj U= l:cls U}
Ej

for any U € H2(M). However, for any Q € H*(M), we have

{*{El}s ﬂ} = {*{El}s *{ﬂ}} = {Ch *{ﬂ}}
so that, setting {§ = &(£2), we have

wen9=3a [ 40=3q [ a
E_li _EJ:

Setting £2 = [w], we therefore have
1 1
m(M..0) = =) lo) =—- Fa; [ To

by Theorem 5.1. O
Recalling Proposition 4.3, we thus obtain the following:

Corollary 5.4. Let (M, g, J) be an AE scalar-flat Kdthler surface. We may then choose
a homology basis Ey, . .., Ey € Ha(M, Z) with intersection matrix Q = —1I in which
c1(M) is Poincaré dual to — %" E ;. Consequently,

]
1
M,g)=—
mOp =53 [ e

where [w] is the Kdhler class of (M, g, J).

Proof. By Proposition 4.3, (M, J) is an iterated blow-up of C? at b points, and so has
a small deformation which is a blow-up of C? at distinct points. One can then take the
E; to be the homology classes of the exceptional divisors of these distinct points. 0O

When C? is blown-up at distinct points, the expression for the mass provided by
Corollary 5.4 is obviously a sum of areas of holomorphic curves, and so is certainly
positive if b = 0. However, ZF‘LI E; is always homologous to a sum of holomorphic
curves with positive integer coefficients, even in the degenerate cases, so this expression
for the mass will actually always be positive whenever M + C2. We will return to this
point in Theorem 6.1 below.

Corollary 5.5. Let (M, g, J) be an ALE scalar-flat Kdhler surface, where (M, J) is
obtained from the total space of the O(—£) line bundle over CIPy by blowing up b — 1
distinct points that do not lie on the zero section. Let F be the homology class of the
zero section, and let Ey, ..., Ey_, be the homology classes of the exceptional divisors
of the blown-up points. Then

b—1
1 |2-¢
m{M,g}:E[Tﬁw+gﬁjm].
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Progf. Inthe homology basis F, Ey, ..., Ep_j, the intersection form is represented by
the matrix

Q=

while

J[F €1 2—f
£ 0 [ 1
fEb—] (9] L 1

and the result therefore follows from Theorem 5.3. O

In particular, one sees that the mass is negative when £ = 3 and no points are blown-
up. This was laboriously discovered by hand for specific explicit examples in [33], but
now we see that this phenomenon occurs as a matter of peneral principle.

Of course, the mass formula we have discovered is purely topological, and thus
insensitive to deformations of complex structure. As an application, we immediately
now see the following:

Corollary 5.6. Let (M, g, J) be an ALE scalar-flat Kdhler surface, where (M, J) is
obtained from the total space of the O(—£) line bundle over CIPy by blowing up b — 1
distinct points that lie on the zero section. Let F be the homology class of the proper
transform of the zero section, and let Ey, ..., Ep_y be the homology classes of the
exceptional divisors aof the blown-up points. Then

1 b—1
m{Mfg}:m[{Z—f}j;w+2-§j;jm:|.

Progf. This example is diffeomorphic to the previous one, in a manner that preserves
the first Chern class. The mass formula therefore follows from Corollary 5.5, together
with the observation that F + E; +---+ Ep_; is homologous to F. 0O

Applying Corollary 5.6 to some examples constructed in [34], we now immediately
obtain Theorem B:

Theorem 5.7. There are infinitely many topological types of ALE scalar-flat Kithler
surfaces that have zero mass, but are not Ricci-flat. Indeed, for any £ = 3, the blow-up
of the O(—£) line bundle on CIFy at any non-empty collection of distinct points on the
zero section admits such metrics.

Proof. Let py, py, ..., pp— bedistinct points in hyperbolic 3-space H?, chosen so that
the geodesic rays pppi., . .., PoPp_ all have distinct initial tangent directions at py. Let
t;, j =0,..., b — 1, denote the hyperbolic distance from p;. considered as a function
on H*. Let X = H*—{po. P1.-... Pp_1 ). and let P — X be the principal U(1)-bundle
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with ¢y = —f on a small 2-sphere around pg and c; = —1 on a small 2-sphere around
any other p;. Set

b—1
£ 1
F.=I+gzm_|_+z€2'fj_lf

on X, and let # be a connection 1-form on P — X with curvature
dit ==dV,

where the Hodge star is computed with respect to the hyperbolic metric Aon X — H?
and standard orientation. Finally, let

1

~ 4sinh’¢g
on P, and let (M, g) be the metric completion of (P, g). Then (M, g) is an ALE scalar-
flat Kihler surface, and (M, J) is obtained [34, p. 244] from the ((—¥£) line bundle on
CP; by blowing up b — 1 distinct points on the zero section. The proper transform F
of the zero section is represented in this picture by the sphere at infinity of 74>, and the
restriction of g to F is just the standard Fubini—-Study metric, with total area 7. On the
other hand, the exceptional curve Ej is the closure in M of the inverse image in P of the
geodesic ray in {* which starts at p; and points diametrically away from pg; its total
area is given by 2 /(™™ — 1), where a; = vp(p;) is the hyperbolic distance from py
to p;. By Corollary 5.6, the mass of the resulting metric is therefore given by

g [Vi+v-197]

b1

1 1
m(M.g) = 5 [2—£+4Z£mj - ]]
i=1

and so, if £ = 3and b — 1 = 1, this obviously changes sign as we let the a; range
over all of B*. To be more concrete and specific, we in particular obtain a non-Ricci-flat
example with zero mass if wetake b —1 =£ -2 = 1l and 5; = log +/5 for every
j=L....,b—1 1o

Interestingly, though, the above construction depends in practice on a choice of
(M, J) which is non-minimal, in the sense of being the blow-up of another complex
surface. This appears to be essential. Indeed, the following consequence of Theorem
5.3, which was graciously pointed out to us by Cristiano Spotti, offers a systematic
result along these lines:

Corollary 5.8. Let (M*, g, 1) be an ALE scalar-flat Kithler surface, and suppose that
(M, 1) is the minimal resolution of a surface singularity. Then m(M, g) < 0, with
equality iff g is Ricci-flat.

Progf. Choose a basis for H; that is represented by a collection of smooth rational curves
E ;. Because the resolution is assumed to be minimal, each E; has self-intersection <= —2,
and adjunction therefore tells us that || E;€1= 0 for every j. However, it is also known

[1, Remark 3.1.2] that every entry in the inverse ! of the intersection matrix of such

a minimal resolution is non-positive. Thus, the coefficients defined by equation (5.1) all
satisfy a; = (0, and the mass formula (5.2) therefore produces a non-positive answer.
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Moreover, if the mass is zero, thena; = O forall j, so that (Ja vanishes and ¢y = 0. But
Lemma 2.7 tells us that ¢, is represented by a unique L? harmonic 2-form, and, since
g is scalar-flat Kihler, one such representative is p /27, where p is the Ricci-form of
(M, g, J). The mass therefore vanishes for such a manifold if and only if the metric is
Ricci-flat. o

Lock and Viaclovsky [39] have recently given a systematic construction of ALE
scalar-flat K#hler metrics on minimal resolutions of surface singularities, thereby putting
the earlier examples of Calderbank and Singer [12] into a broader context. The above
Corollary now shows that all of these examples actually have negative mass.

6. The Positive Mass Theorem

We conclude this article by proving the positive mass theorem for Kihler manifolds,
along with our related Penrose-type inequality.

Suppose that (M™™, g, J) is an AE Kihler manifold. Then, as we saw in Proposi-
tion 2.12, there is a proper holomorphic map F : M — C™ which has degree 1, and
which is a biholomorphism outside a compact set. We now consider the holomorphic
m-form

T =Frdz' Ao ndz™,

which is a holomorphic section of the canonical line bundle of M, and which exactly
vanishes at the set of critical points of F. Because this zero set is locally the zero
set of a non-trivial holomorphic function, it is purely of complex codimension 1, and
we moreover know this locus is compact because F is a biholomorphism outside of a
compact set. Breaking up the locus T = 0 as a finite union of its irreducible components
D, and assigning each of these an integer multiplicity n; given by the order of vanishing
of T along [};, we can thus express the divisor I? as

D= Zﬂjﬂj.
i

Since T is a holomorphic section of the canonical line bundle Ky, the homology class
[D] = ¥ n;[D;] is then Poincaré dual to &(ci(Kay)) = —&(ci (M, J)). The mass
formula of Theorem C therefore can be rewritten as

— 1
m(M, g) = ol (D) + [u sodpig,

(2m — Dyz™= 42m — l)z™
and we therefore obtain the Penrose inequality promised by Theorem E:

Theorem 6.1. Suppose that (M>™, g, J) is an AE Kahler manifoldwith scalar curvature
5 = (. Then, in terms of the complex hypersurfaces D ; and positive integer multiplicities
n; described above,

m—1})!
m(M,g) = WZMWHD}L
j

with equality iff (M, g, J) is scalar-fiat Kathler Moreover, | J; D; # @if (M, J) # C™
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Proaf. Since we have assumed that 5 = (0, the scalar curvature integral in the mass
formula is non-negative, and equals zero only if g is scalar-flat. Since the volume form
induced by g on the regular locus of D is just @™ ! /(m—1)!, we can therefore transform
[w]™ (D) into (m — 1)! times a sum of volumes, weighted by multiplicities, and the
stated inequality now follows from the mass formula.

Finally, L,,I;- D; can only be empty if T = F*dz' A -.- A dz™ is everywhere non-
zero. But this happens iff F has no critical points, or in other words iff F is a local
diffeomorphism. However, F is a degree | proper holomorphic map. Thus the fact that
f is a local diffeomorphism implies that it is actually a global biholomorphism. o

With this in hand, we can now easily read off our Positive Mass Theorem, announced
in the introduction as Theorem D

Theorem 6.2. Suppose that (M™™, g, J) isan AE Kahler manifold with scalar curvature
5 = (. Then its mass m{M, g) is non-negative, and equals zero only if (M, g, J) is flat.

Proof. By Theorem 6.1, the mass is positive unless g is scalar-flat Kihler, | J; D; = @,
and (M, J) = C™. However, the Ricci form p of an ALE scalar-flat Kihler metric is an
L? harmonic form, and so, by Lemma 2.7, must vanish if the cohomology class 2w ¢ it
represents vanishes. Thus, g would necessarily be a Ricci-flat AE metric on C™. But the
AE condition implies that a metric's volume growth is asymptotically exactly Euclidean,
and the Bishop—Gromov inequality thus implies that a complete Ricci-flat metric with
this property is necessarily flat. o
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Appendix A. Normalization of the Mass

In this appendix, we provide a “physical” explanation of our normalization of the mass
integral. We work throughout in units where G =c = 1.

In the absence of matter, tidal forces in Newtonian gravitation distort the shape of a
cloud of test particles without changing its volume, to lowest order in time. Thus, the
acceleration vector field due to gravitation should be divergence-free in empty space. If
we assume that an isolated object generates an acceleration field that points towards the
object, with magnitude only depending on the distance g from the source, the acceleration
field in dimension n must therefore take the form

“=v (;f?)

for some constant &4 which we now declare to be the mass of the source. In the classical
case of n = 3, this of course reproduces Newton's law of gravitation. Since a test particle
following a circular orbit of radius g and angular frequency « about the origin exhibits
an in-pointing radial acceleration of magnitude pw?, this acceleration can be ascribed
to our gravitational field iff

M
2
=(n—2)—.
L] Er"
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This is a crude generalization of Kepler's third law of planetary motion.

Einstein's vacuum equations state that the Ricci curvature of the space-time metric
should vanish in the absence of matter; inspection of Jacobi's equation reveals that this
is again equivalent to requiring that tidal forces distort the shape of a cloud of test
particles without changing its volume, to lowest order in time. In space-time dimension
n + 1, the general spherically symmetric solution of these equations is the generalized
Schwarzschild metric

A AN
J=- (] — QH—Z) dfz+ (] — F) d@z-l'gzh

where h denotes the standard unit-radius metric on ! and A is a real constant. Notice
that

d d

E=ﬁ+mﬁ

is a Killing field for this metric, where 3 /38 is the usual generator of rotation of §" ' —

R" around R"~2 c R". Now a flow line of a Killing field is a geodesic iff it passes
through a critical point of g(£, £): indeed, Killing's equation V4&5 = 0 tells us that

1 |
(Ve&), = &7Vakp = —ETVpt, = _E?b'f‘w:a‘fa = —Evbﬂﬁf-‘;'l,

and the claim therefore follows from the fact that g(%, £) is constant along the flow.
However, restricting to the great circle in $"~! where 3/3# has maximal length,

"'q' T 3
AEE) =— (1 - Q,._z) +o'e’,

and the critical-point condition then reduces to
d A — A
= — _(l_ 7)_'_&;2@2 =_u+2ﬂ;2Q‘
do "2 o"!

5 (m—2) A
W = 5 Q‘_”

a flow-line is a space-time peodesic, and represents a test particle moving in a circular
orbit at constant angular velocity . Comparison with circular orbits in the Newtonian
model discussed above therefore leads us to interpret the Schwarzschild metric as rep-
resenting the gravitational field of an object of mass

A

7
The spatial slice t = 0 of the Schwarzschild metric

"4- -1 T T
g= (1 - Q,_z) dp”+p7h
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is totally geodesic, and provides the prototype for defining the mass of an ALE manifold.
If we interpret o as the Euclidean radius in B", this metric takes the form

A 1
Ejk = E_,l'k + Q—nxj.xk + GIF}

s0 that

XjXpXg
2
o

A 1
Bike ==—(8jpXg +dpgx; — 0 )+ =
J o J i o

Thus

A 1 A 1
8iji — 8iij = Q_nwji-xi +diiXj — 8ijX; — Bijxi) + O{E} =m—1)—=n; +0(=)

g" o"

and

lim f [E:‘j.:‘ _gi‘:u’-] [I"I-du.g =(n— I}AVDHSH_I}
Sa

g—=o0

= 2(n — 1)aVol(5"
_ A(n—x"?
- T®

Thus, defining the mass of an n-dimensional ALE manifold (at a given end) to be

L =1 P S . = Imfd
m{M, g) . im TR fsp; " [2ij.i — gii.j]n'dag

will result in a mass of m = a{ for the ¢ = 0 spatial slice of the Schwarzschild metric.
In particular, when n = 3, the normalizing constant simplifies to 1 /16, which is the
well-established value found throughout the literature.
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