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Abstract. Relying on the main results of [GT], we classify all unitary t-groups
for t ≥ 2 in any dimension d ≥ 2. We also show that there is essentially a unique
unitary 4-group, which is also a unitary 5-group, but not a unitary t-group for
any t ≥ 6.

1. Introduction

Unitary t-designs have recently attracted a lot of interest in quantum information
theory. The concept of unitary t-design was first conceived in physics community as a
finite set that approximates the unitary group Ud(C), like any other design concept.
It seems that works of Gross–Audenaert–Eisert [GAE] and Scott [Sc] marked the
start of the research on unitary t-designs. Roy–Scott [RS] gives a comprehensive
study of unitary t-designs from a mathematical viewpoint.

It is known that unitary t-designs in Ud(C) always exist for any t and d, but
explicit constructions are not so easy in general. A special interesting case is the
case where a unitary t-design itself forms a group. Such a finite group in Ud(C) is
called a unitary t-group. Some examples of unitary 5-groups are known in U2(C).
For d ≥ 3, some unitary 3-groups have been known in Ud(C). But no example
of unitary 4-groups in dimensions d ≥ 3 was known. It seems that the difficulty
of finding 4-groups in Ud(C) for d ≥ 3 has been noticed by many researchers (see
e.g. Section 1.2 of [ZKGG]). The purpose of this paper is to clarify this situation.
Namely, we point out that this problem in dimensions ≥ 4 is essentially solved in
the context of finite group theory by Guralnick–Tiep [GT]. We also show that the
classification of unitary 2-groups in Ud(C) for d ≥ 5 is derived from [GT] as well.
Building on this, we provide a complete description of unitary t-groups in Ud(C) for
all t, d ≥ 2.

2. Unitary t-groups in dimension d ≥ 5

We now recall the notion of unitary t-groups, following [RS, Corollary 8]. Let
V = Cd be endowed with standard Hermitian form and let H = U(V ) = Ud(C)
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denote the corresponding unitary group. Then a finite subgroup G < H is called a
unitary t-group for some integer t ≥ 1, if

1

|G|
∑
g∈G

|tr(g)|2t =

∫
X∈H
|tr(X)|2tdX. (1)

Note that the right-hand-side in (1) is exactly the 2t-moment M2t(H, V ) as defined
in [GT], whereas the left-hand-side is the 2t-moment M2t(G, V ). Recall, see e.g.
[FH, §26.1], that the complex irreducible representations of the real Lie algebra sud
and the complex Lie algebra sld are the same. It follows that M2t(H, V ) = M2t(G, V )
for G = GL(V ). Given these basic observations, we can recast the main results of
[GT] in the finite setting as follows.

Theorem 1. Let V = Cd with d ≥ 5 and G = GL(V ). Assume that G < G is a
finite subgroup. Then M8(G, V ) > M8(G, V ). In particular, if d ≥ 5 and t ≥ 4, then
there does not exist any unitary t-group in Ud(C).

Proof. The first statement is precisely [GT, Theorem 1.4]. The second statement
then follows from the first and [GT, Lemma 3.1]. �

We note that [GT, Theorem 1.4] also considers any Zariski closed subgroups G of
G with the connected component G◦ being reductive. Then the only extra possibility
with M8(G, V ) = M8(G, V ) is when G ≥ [G,G] = SL(V ). In fact, [GT] also considers
the problem in the modular setting.

Combined with Theorem 10 (below), Theorem 1 yields the following consequence,
which gives the complete classification of unitary t-groups for any t ≥ 4:

Corollary 2. Let G < Ud(C) be a finite group and d ≥ 2. Then G is a unitary
t-group for some t ≥ 4 if and only if d = 2, t = 4 or 5, and G = Z(G)SL2(5).

Next, we obtain the following consequences of [GT, Theorems 1.5, 1.6], where
F ∗(G) = F (G)E(G) denotes the generalized Fitting subgroup of any finite group G
(respectively, F (G) is the Fitting subgroup and E(G) is the layer of G); furthermore,
we follow the notation of [Atlas] for various simple groups. If G is a finite group and
V is a CG-module, then V ↓H denotes the restriction of V to a subgroup H ≤ G.
We also refer the reader to [GMST] and [TZ2] for the definition and basic properties
of Weil representations of (certain) finite classical groups.

Theorem 3. Let V = Cd with d ≥ 5 and let G = GL(V ). For any finite subgroup
G < G, set S̄ = S/Z(S) for S := F ∗(G). Then M4(G, V ) = M4(G, V ) if and only if
one of the following conditions holds.

(i) (Lie-type case) One of the following holds.
(a) S̄ = PSp2n(3), n ≥ 2, G = S, and V ↓S is a Weil module of dimension

(3n ± 1)/2.
(b) S̄ = Un(2), n ≥ 4, [G : S] = 1 or 3, and V ↓S is a Weil module of

dimension (2n − (−1)n)/3.
(ii) (Extraspecial case) d = pa for some prime p and F ∗(G) = F (G) = Z(G)E,

where E = p1+2a
+ is an extraspecial p-group of order p1+2a and type +. Fur-

thermore, G/Z(G)E is a subgroup of Sp(W ) ∼= Sp2a(p) that acts transitively
on W r {0} for W = E/Z(E), and so is listed in Theorem 5 (below). If
p > 2 then E �G; if p = 2 then F ∗(G) contains a normal subgroup E1 �G,
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where E1 = C4 ∗E is a central product of order 22a+2 of Z(E1) = C4 ≤ Z(G)
with E.

(iii) (Exceptional cases) S = Z(G)[G∗, G∗], and (dim(V ), S̄, G∗) is as listed in
Table I. Furthermore, in all but lines 2–6 of Table I, G = Z(G)G∗. In lines
2–6, either G = S or [G : S] = 2 and G induces on S̄ the outer automorphism
listed in the fourth column of the table.

In particular, G < H = U(V ) is a unitary 2-group if and only if G is as described
in (i)–(iii).

Table I. Exceptional examples in G = GLd(C) with d ≥ 5

d S̄ G∗ Outer
The largest 2k with

M2k(G,V ) = M2k(G, V )
M2k+2(G, V ) vs.
M2k+2(G, V )

6 A7 6A7 4 21 vs. 6
6 L3(4) (?) 6L3(4) · 21 21 6 56 vs. 24
6 U4(3) (?) 61 · U4(3) 22 6 25 vs. 24
8 L3(4) 41 · L3(4) 23 4 17 vs. 6

10 M12 2M12 2 4 15 vs. 6
10 M22 2M22 2 4 7 vs. 6
12 Suz (?) 6Suz 6 25 vs. 24
14 2B2(8) 2B2(8) · 3 4 90 vs. 6
18 J3

(?) 3J3 6 238 vs. 24
26 2F4(2)′ 2F4(2)′ 4 26 vs. 6
28 Ru 2Ru 4 7 vs. 6
45 M23 M23 4 817 vs. 6
45 M24 M24 4 42 vs. 6

342 O′N 3O′N 4 3480 vs. 6
1333 J4 J4 4 8 vs. 6

Note that in Table I, the data in the sixth column is given when we take G = G∗.

Proof. We apply [GT, Theorem 1.5] to (G,G). Then case (A) of the theorem is
impossible as G is finite, and case (D) leads to case (iii) as G = GL(V ).

In case (B) of [GT, Theorem 1.5], we have that S̄ = PSp2n(q) with n ≥ 2 and
q = 3, 5, or S̄ = PSUn(2) with n ≥ 4, and V ↓S is irreducible. It is easy to see
that the latter condition implies that G/S has order 1 or 3. Next, L = E(G) is a
quotient of Sp2n(q) or SUn(2) by a central subgroup, and S = Z(S)L. Let χ denote
the character of the G-module V . As d > 4, the condition M4(G, V ) = M4(G, V ) is
equivalent to that G act irreducibly on both Sym2(V ) and ∧2(χ) (see the discussion
in [GT, §2]). Hence, if χ ↓L is real-valued, then either Sym2(χ ↓L) or ∧2(χ ↓L)
contains 1L, whence either Sym2(χ ↓S) or ∧2(χ ↓S) contains a linear character. But
both Sym2(V ) and ∧2(V ) have dimension at least d(d− 1)/2 ≥ 10 and [G : S] ≤ 3,
so G cannot act irreducibly on them, a contradiction. We have shown that χ ↓L is
not real-valued. Now using Theorems 4.1 and 5.2 of [TZ1], we can rule out the case
S̄ = PSp2n(5) and the case (S̄, dim(V )) = (PSUn(2), (2n + 2(−1)n)/3), as χ ↓L is
real-valued in those cases.
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Case (C), together with [GT, Lemma 5.1], leads to case (ii) listed above, except
for the explicit description of E and E1. Suppose p > 2. Then at least one element
in E r Z(E) has order p, whence all elements in E r Z(E) have order p by the
transitivity of G/Z(G)E on W r {0}, i.e. E has type +. Also, note that E is
generated by all elements of order p in Z(G)E, and so E � G. Next suppose that
p = 2 and let E1 �G be generated by all elements of order at most 4 in Z(G)E. If
|Z(G)| < 4, then F ∗(G) = E1 = E is an extraspecial 2-group of order 21+2a of type
ε for some ε = ±. In this case, G/Z(G)E ↪→ Oε

2a(2) and so cannot be transitive on
W r {0} (as a ≥ 2), a contradiction. So |Z(G)| ≥ 4. In this case, one can show that
E1 = C4 ∗ E with Z(E) < C4 ≤ Z(G), and since C4 ∗ 21+2a

+
∼= C4 ∗ 21+2a

− , we may
choose E to have type +. �

We note that the case of Theorem 3 where G is almost quasisimple was also
treated in [M]. More generally, the classification of subgroups of a classical group
Cl(V ) in characteristic p that act irreducibly on the heart of the tensor square,
symmetric square, or alternating square of V ⊗Fp Fp, is of particular importance to
the Aschbacher-Scott program [A] of classifying maximal groups of finite classical
groups. See [Mag], [MM], [MMT] for results on this problem in the modular case.

Theorem 4. Let V = Cd with d ≥ 5 and let G = GL(V ). Assume G is a finite
subgroup of G. Then M6(G, V ) = M6(G, V ) if and only if one of the following two
conditions holds.

(i) (Extraspecial case) d = 2a for some a > 2, and G = Z(G)E1 · Sp2a(2), where
E ∼= 21+2a

+ is extraspecial and of type + and E1 = C4 ∗ E with C4 ≤ Z(G).
(ii) (Exceptional cases) Let S̄ = S/Z(S) for S = F ∗(G). Then

S̄ ∈ {L3(4),U4(3), Suz, J3},
and (dim(V ), S̄, G∗) is as listed in the lines marked by (?) in Table I. Fur-
thermore, either G = Z(G)G∗, or S̄ = U4(3) and S = Z(G)G∗.

In particular, G < H = U(V ) is a unitary 3-group if and only if G is as described
in (i), (ii).

Proof. Apply [GT, Theorem 1.6] and also Theorem 3(ii) to (G,G). �

The transitive subgroups of GLn(p) are determined by Hering’s theorem [He]
(see also [L, Appendix 1]), which however is not easy to use in the solvable case.
For the complete determination of unitary 2-groups in Theorem 3(ii), we give a
complete classification of such groups in the symplectic case that is needed for us.
The notations such as SmallGroup(48, 28) are taken from the SmallGroups library
in [GAP].

Theorem 5. Let p be a prime and let W = F2n
p be endowed with a non-degenerate

symplectic form. Assume that a subgroup H ≤ Sp(W ) acts transitively on W r {0}.
Then (H, p, 2n) is as in one of the following cases.

(A) (Infinite classes):
(i) n = bs for some integers b, s ≥ 1, and Sp2b(p

s)′ �H ≤ Sp2b(p
s) o Cs.

(ii) p = 2, n = 3s for some integer s ≥ 2; and G2(2s) �H ≤ G2(2s) o Cs.
(B) (Small cases):

(i) (2n, p) = (2, 3), and H = Q8.
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(ii) (2n, p) = (2, 5), and H = SL2(3).
(iii) (2n, p) = (2, 7), and H = SL2(3).C2 = SmallGroup(48, 28).
(iv) (2n, p) = (2, 11), and H = SL2(5).
(v) (2n, p) = (4, 3), and H = SmallGroup(160, 199), SmallGroup(320, 1581),

2.S5, SL2(9), SL2(9) o C2 = SmallGroup(1440, 4591), or
C2.((C2 × C2 × C2 × C2) o A5) = SmallGroup(1920, 241003).

(vi) (2n, p) = (6, 2), and H = SL2(8), SL2(8) o C3, SU3(3), SU3(3) o C2.
(vii) (2n, p) = (6, 3) and H = SL2(13).

Proof. We may assume that (2n, p) is not in one of the small cases listed in (B),
which are computed using [GAP]. We have that [H : CH(v)] = p2n − 1, for every
v ∈ W r {0}. Now we apply Hering’s theorem, as given in [L, Appendix 1] and
analyze possible classes for H.

(a) Suppose that H ≤ ΓL1(p2n), which is the semidirect product of Γ0 (the mul-
tiplicative field of Fp2n) and the Galois automorphism σ of order 2n. If n = 1, then
H ≤ SL2(p), which has order p(p− 1)(p + 1), and we may assume that p ≥ 13. As
the smallest index of proper subgroups of SL2(p) is p+ 1 (see e.g. [TZ1, Table VI]),
we conclude that H = SL2(p). So we may assume that n > 1. We may also assume
that (2n, p) 6= (2, 6). Hence, we can consider a Zsigmondy (odd) prime divisor r of
p2n − 1 [Zs], and have that the order of p mod r is 2n. Thus 2n divides r − 1. Let
C = H ∩ Γ0. Note that r divides |C| (because r does not divide 2n), and hence C
acts irreducibly on W . Since C < Sp(W ), by [Hu, Satz II.9.23] we have that |C|
divides pn + 1. Hence, |H| divides 2n(pn + 1), and thus pn − 1 divides 2n. This is
not possible.

(b) Aside from the possibilities listed in (A) and (B), we need only consider the
possibility 2n = as with a ≥ 3, pn 6= 22, 32, 23, 33, and H � SLa(p

s). Let d(X)
denote the smallest degree of faifthful complex representations of a finite group X.
Since H ≤ Sp2n(p), by [TZ1, Theorem 5.2] we have that

d(X) ≤ (pn + 1)/2 = (pas/2 + 1)/2.

On the other hand, since H � SLa(p
s), by [TZ1, Theorem 3.1] we also have that

d(X) ≥ (pas − ps)/(ps − 1) > ps(a−1).

As a ≥ 3, this is impossible. �

3. An infinite family of “almost” unitary 3-groups in high dimensions

As follows from Theorem 4, the Weil representations Φ : G → GL(V ) of dimen-
sions (3m±1)/2 of the symplectic group Sp2m(3), do not give rise to unitary 3-groups,
even though they yield unitary 2-groups (see Theorem 3(i)). However, we record
the following result, which shows that the failure is minimal: M6(G/Ker(Φ), V ) = 7
whereas M6(GL(V ), V ) = 6, and thus the Weil representations lead to “almost”
unitary 3-groups.

Theorem 6. Let m ≥ 3 be an integer, and let Φ : G→ GL(V ) be an irreducible Weil
representation for G = Sp2m(3) of degree (3m ± 1)/2. Then M6(G/Ker(Φ), V ) = 7.

Proof. Recall, see [GMT, §3], that G has four (distinct) irreducible Weil characters,
ξ, ξ̄ of degree (3m + 1)/2, and η, η̄ of degree (3m − 1)/2. Now, by [GMT, Theorem
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1.3] and its proof,

ξ3 = (Sym3(ξ)− ξ̄) + 2S2,1(ξ) + ∧3(ξ) + ξ̄

is a decomposition of ξ3 into irreducible summands, and the listed irreducible sum-
mands are pairwise distinct. It follows that [ξ3, ξ3]G = 7, and so M6(G/Ker(Φ), V ) =
7 if Φ affords the character ξ or ξ̄. (Here, S2,1 denotes the Schur functor labeled by
the partition (2, 1) of 3, see [FH, (6.8), (6.9)].) Similarly,

η3 = Sym3(η) + 2S2,1(η) + (∧3(η)− η̄) + η̄

is a decomposition of η3 into irreducible summands, and the listed irreducible sum-
mands are pairwise distinct. It follows that [η3, η3]G = 7, and so M6(G/Ker(Φ), V ) =
7 if Φ affords the character η or η̄. �

Note that Ker(Φ) = 1 if dimV is even, and Ker(Φ) = Z(G) ∼= C2 if dimV is odd.

4. Unitary t-groups in dimensions at most 4

In this section we complete the classification of unitary t-groups in dimension ≤ 4.
First we introduce some key groups for this classification, where we use the notation
of [GAP] for SmallGroup(64, 266) and PerfectGroup(23040, 2).

Proposition 7. Consider an irreducible subgroup

E4 = C4 ∗ 21+4
+ = SmallGroup(64, 266)

of order 26 of GL(V ), where V = C4, and let Γ4 := NGL(V )(E4). Then the following
statements hold.

(i) Γ4 induces the subgroup A+ ∼= C4
2 · S6 of all automorphisms of E4 that act

trivially on Z(E4) = C4.

(ii) The last term Γ
(∞)
4 of the derived series of Γ4 is L = PerfectGroup(23040, 2),

a perfect group of order 23040 and of shape E4 · A6. Furthermore, Γ
(∞)
4 is a

unitary 3-group.

Proof. (i) It is well known, see e.g. [Gr, p. 404], that A+ ∼= Inn(E4) · S6 with
Inn(E4) ∼= C4

2 . Certainly, Γ4/CΓ4(E4) ↪→ A+. Let ψ denote the character of E4

afforded by V , and note that ψ and ψ are the only two irreducible characters of
degree 4 of E4, and they differ by their restrictions to Z(E4). Now for any α ∈ A+,
ψα = ψ. It follows that there is some g ∈ GL(V ) such that gxg−1 = α(x) for all
x ∈ E4; in particular, g ∈ Γ4. We have therefore shown that Γ4/CΓ4(E4) ∼= A+.

(ii) Using [GAP], one can check that L := PerfectGroup(23040, 2) embeds in
GL(V ), with a character say χ, and F ∗(L) ∼= E4. So without loss we may identify
F ∗(L) with E4 and obtain that L < Γ4. Again using [GAP] we can check that
[χ3, χ3]L = 6 = M6(GL(V )), which means that L is a unitary 3-group. As L is

perfect, we have that L ≤ Γ
(∞)
4 . Next, L acting on E4 induces the perfect subgroup

A++ ∼= C4
2 · A6 of index 2 in A+, and the same also holds for Γ

(∞)
4 . Hence, for any

g ∈ Γ
(∞)
4 , we can find h ∈ L such that the conjugations by g and by h induce the same

automorphism of E4. By Schur’s Lemma, gh−1 ∈ Z(Γ4), whence Γ
(∞)
4 ≤ Z(Γ4)L.

Taking the derived subgroup, we see that Γ
(∞)
4 ≤ L, and so Γ

(∞)
4 = L, as stated. �
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Next, we recall three complex reflection groups G29, G31, and G32 in dimension 4,
namely, the ones listed on lines 29, 31, and 32 of [ST, Table VII]. A direct calculation
using the computer packages GAP3 [Mi], [S+], and Chevie [GHMP], shows that each
of these 3 groups G, being embedded in H = U4(C), is a unitary 2-group. Also,

F (G29) ∼= F (G31) ∼= SmallGroup(64, 266), F (G32) = Z(G32) ∼= C6,

and

G29/F (G29) ∼= S5, G31/F (G31) ∼= S6, G32
∼= C3 × Sp4(3).

In what follows, we will identify F (G29) and F (G31) with the subgroup E4 defined in
Proposition 7. Let us denote the derived subgroup of Gk by G′k for k ∈ {29, 31, 32}.
With this notation, we can give a complete classification of unitary 2-groups and
unitary 3-groups in the following statement.

Theorem 8. Let V = C4, G = GL(V ), and let G < G be any finite subgroup. Then
the following statements hold.

(A) With E4, Γ4 and L as defined in Proposition 7, we have that [Γ4,Γ4] = L =
G′31 and Γ4 = Z(Γ4)G31. Furthermore, M4(G, V ) = M4(G, V ) if and only if
one of the following conditions holds

(A1) G = Z(G)H, where H ∼= 2A7 or H ∼= Sp4(3) ∼= G′32.
(A2) L = [G,G] ≤ G < Γ4.
(A3) E4 �G < Γ4, and, after a suitable conjugation in Γ4,

G′29 = [G,G] ≤ G ≤ Z(Γ4)G29.

In particular, G < H = U(V ) is a unitary 2-group if and only if G is as
described in (A1)–(A3).

(B) M6(G, V ) = M6(G, V ) if and only if G is as described in (A1)–(A2). In
particular, G < U(V ) is a unitary 3-group if and only if G is as described in
(A1)–(A2).

(C) M8(G, V ) > M8(G, V ). In particular, no finite subgroup of U4(C) can be a
unitary 4-group.

Proof. (A) First we assume that M4(G, V ) = M4(G, V ), and let χ denote the char-
acter of G afforded by V . The same proof as of [GT, Theorem 1.5] and Theorem 3
shows that one of the following two possibilities must occur.

• Almost quasisimple case: S�G/Z(G) ≤ Aut(S) for some finite non-abelian
simple group S. By the results of [M], we have that S ∼= A7 or PSp4(3). It is
straightforward to check that E(G) ∼= 2A7, respectively Sp4(3), and furthermore
G cannot induce a nontrivial outer automorphism on S. Recall that in this case
we have F ∗(G) = Z(G)E(G) and so CG(E(G)) = CG(F ∗(G)) = Z(G). It follows
that G = Z(G)E(G), and (A1) holds. Moreover, using [GAP] we can check that
[α2, α2] = 2, [α3, α3] = 6, but [α4, α4] = 38, respectively 25, for α := χ ↓E(G). Thus
we have checked in the case of (A1) that M2t(G, V ) = M2t(G, V ) for t ≤ 3, but
M8(G, V ) > M8(G, V ), since M8(G, V ) = 24 by [GT, Lemma 3.2].

• Extraspecial case: F ∗(G) = F (G) = Z(G)E4 and E4 � G, in particular,
G ≤ Γ4; furthermore, G/Z(G)E4 ≤ Sp(W ) satisfies conclusion (A)(i) of Theorem
5 for W = E4/Z(E4) ∼= F4

2. Suppose first that G/Z(G)E4 ≥ Sp4(2)′ ∼= A6. In this
case, G induces (at least) all the automorphisms of E4 that belong to the subgroup
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A++ in the proof of Proposition 7. As in that proof, this implies that Z(Γ4)G ≥ L.
Taking the derived subgroup, we see that

[G,G] ≥ L, (2)

i.e. we are in the case of (A2). Moreover,

6 = M6(G, V ) ≤M6(G, V ) ≤M6(L, V ),

and M6(L, V ) = 6 as shown above. Hence M2t(G, V ) = M2t(G, V ) for t ≤ 3.
Applying (2) to G = G31 and recalling that |L| = |G′31|, we see that L = G′31.
Next, G31 and Γ4 induce the same subgroup A+ of automorphisms of E4, hence
Γ4 = Z(Γ4)G31. Taking the derived subgroup, we obtain that L = [Γ4,Γ4], and so
(2) implies that [G,G] = L.

Next we consider the case where G/Z(G)E4 = SL2(4) ∼= A5 or SL2(4) o C2
∼= S5.

Using [Atlas], it is easy to check that Sp(W ) ∼= S6 has two conjugacy classes C1,2 of
(maximal) subgroups that are isomorphic to S5, and two conjugacy classes C ′1,2 of
subgroups that are isomorphic to A5. Any member of one class, say C ′1, is irreducible,
but not absolutely irreducible on W , that is, preserves an F4-structure on W , and
is contained in a member of, say C1. Any member of the other class C2 is absolutely
irreducible on W and preserves a quadratic form Q of type − on W ; in particular,
it has two orbits of length 5 and 10 on W r {0} (corresponding to singular vectors,
respectively non-singular vectors, in W with respect to Q), and is contained in a
member of C2. On the other hand, since G is transitive on W r{0} by [GT, Lemma
5.1], the last term G(∞) of the derived series of G must have orbits of only one size
on W r {0}. Applying this analysis to K := G29, we see that K/E4 must belong
to C1 and the derived subgroup of K/Z(K)E4 as well as [K,K]/E4 belong to C ′1.
Hence, after a suitable conjugation in Γ4, we may assume that

G29/E4 ≥ G/Z(G)E4 ≥ G′29/E4;

in particular, the subgroup of automorphisms of E4 induced by G is either the one
induced by G29, or the one induced by G′29. In either case, we have that

G ≤ Z(Γ4)G29, G
′
29 ≤ Z(Γ4)[G,G].

As G′29 is perfect, taking the derived subgroup we obtain that [G,G] = G′29, i.e.
(A3) holds.

(B) We have already mentioned above that M6(G, V ) = M6(G, V ) for the groups
G satisfying (A1) or (A2). By [GT, Lemma 3.1], it remains to show that for the
groups G satisfying (A3), M6(G, V ) 6= M6(G, V ). Assume the contrary: M6(G, V ) =
M6(G, V ). By [GT, Remark 2.3], this equality implies that G is irreducible on all the
simple G-submodules of V ⊗V ⊗V ∗, which can be seen using [Lu, Appendix A.7] to
decompose as the direct sum of simple summands of dimension 4 (with multiplicity
2), 20, and 36. Let θ denote the character of G afforded by the simple G-summand
of dimension 36. Note that χ vanishes on F (G) r Z(G) and faithful on Z(G). It
follows that

χ2χ ↓F (G)= 16χ ↓F (G) .

As χ ↓F (G) is irreducible, we see that θ ↓F (G)= 9(χ ↓F (G)). But χ ↓F (G) obviously
extends to G � F (G). It follows by Gallagher’s theorem [Is, (6.17)] that G/F (G)
admits an irreducible character β of degree 9 (such that θ ↓G= (χ ↓G)β). This is a
contradiction, since G/F (G) ∼= A5 or S5.
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(C) Assume the contrary: M8(G, V ) = M8(G, V ). Then M6(G, V ) = M6(G, V ) by
[GT, Lemma 3.1]. By (B), we may assume that G satisfies (A1) or (A2). By [GT,
Remark 2.3], the equality M8(G, V ) = M8(G, V ) implies that G is irreducible on the
simple G-submodule Sym4(V ) (of dimension 35) of V ⊗4. This in turn implies, for
instance by Ito’s theorem [Is, (6.15)] that 35 divides |G/Z(G)|. The latter condition
rules out (A2) since |G/Z(G)| divides 24 · |Sp4(2)| in that case. Finally, we already
mentioned above that M8(G, V ) > M8(G, V ) in the case of (A1). �

To handle the remaining cases d = 2, 3, we first note:

Lemma 9. Let G = SL(V ) for V = C2. Then the following statements hold.

(i) M6(G, V ) = 5, M8(G, V ) = 14, and M10(G, V ) = 42.
(ii) Suppose M2t(G, V ) = M2t(G, V ) for a finite group G < G. If t ≥ 4 then 5

divides |G/Z(G)|. If t ≥ 6 then 7 divides |G/Z(G)|.
(iii) Suppose SL2(5) ∼= G < G. Then M2t(G, V ) = M2t(G, V ) for 1 ≤ t ≤ 5 but

M2t(G, V ) > M2t(G, V ) for t ≥ 6.

Proof. Note that the symmetric powers Symk(V ), k ≥ 0, are pairwise non-isomorphic
irreducible CG-modules, with Sym0(V ) ∼= C ∼= ∧2(V ), and V ⊗ V ∼= Sym2(V )⊕ C.
Now using [FH, Exercise 11.11] we obtain for all a ≥ 1 that

Syma(V )⊕ V ∼= Syma+1(V )⊕ Syma−1(V )

as CG-modules. It follows that

V ⊗3 ∼= Sym3(V )⊕ V ⊕2,
V ⊗4 ∼= Sym4(V )⊕ (Sym2(V ))⊕3 ⊕ C⊕2,
V ⊗5 ∼= Sym5(V )⊕ (Sym3(V ))⊕4 ⊕ V ⊕5

as CG-modules (with the superscripts indicating the multiplicities), implying (i).

For (ii), note by Remark 2.3 and Lemma 3.1 of [GT] that the assumption implies
that G is irreducible on Sym4(V ) of dimension 5 if t ≥ 4, and on Sym6(V ) of
dimension 7 if t ≥ 6.

The first assertion in (iii) can be checked using (i) and [GAP], and the second
assertion follows from (ii). �

Now we recall three complex reflection groups G4
∼= SL2(3), G12

∼= GL2(3), and
G16
∼= C5 × SL2(5) in dimension d = 2, listed on lines 4, 12, and 16 of [ST, Table

VII], and three complex reflection groups G24
∼= C2 × SL3(2), G25

∼= 31+2
+ o SL2(3),

and G27
∼= C2 × 3A6 in dimension d = 3, listed on lines 24, 25, and 27 of [ST, Table

VII]. As above, for any of these 6 groups Gk, G
′
k denotes its derived subgroup. A

direct calculation using the computer packages GAP3 [Mi], [S+], and Chevie [GHMP],
shows that each of these 6 groups G, being embedded in H = Ud(C), is a unitary
2-group; furthermore, G12, G′16, and G′27 are unitary 3-groups. One can check that
F (G4) ∼= F (G12) is a quaternion group Q8 = 21+2

− , and we will identify them with
an irreducible subgroup E2

∼= Q8 of GL2(C). Also, E3 := F (G25) ∼= 31+2
+ is an

extraspecial 3-group of order 27 and exponent 3, which is an irreducible subgroup
of GL3(C). Let Γd := NGLd(C)(Ed) for d = 2, 3. Now we can give a complete
classification of unitary t-groups in dimensions 2 and 3.

Theorem 10. Let V = Cd with d = 2 or 3, G = GL(V ), and let G < G be any
finite subgroup. Then the following statements hold.
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(A) Suppose d = 2. Then M4(G, V ) = M4(G, V ) if and only if one of the follow-
ing conditions holds

(A1) G = Z(G)H, where H = G′16
∼= SL2(5).

(A2) E2 �G < Γ2 and Z(G)G = Z(G)H, where H = G12
∼= GL2(3).

(A3) E2 �G < Γ2 and Z(G)G = Z(G)H, where H = G4
∼= SL2(3).

In particular, G < H = U(V ) is a unitary 2-group if and only if G is as
described in (A1)–(A3). Furthermore, G < H = U(V ) is a unitary 3-group
if and only if G is as described in (A1)–(A2). Moreover, such a subgroup G
can be a unitary t-group for some t ≥ 4 if and only if 4 ≤ t ≤ 5 and G is as
described in (A1).

(B) Suppose d = 3. Then M4(G, V ) = M4(G, V ) if and only if one of the follow-
ing conditions holds

(B1) G = Z(G)H, where H = G′27
∼= 3A6.

(B2) G = Z(G)H, where H = G′24
∼= SL3(2).

(B3) E3 � G < Γ3. Moreover, either Z(G)G = Z(G)G′25, or Z(G)G =
Z(G)G25.

In particular, G < H = U(V ) is a unitary 3-group if and only if G is as
described in (B1), and no finite subgroup of U(V ) can be a unitary 4-group.

Proof. Let G < G be any finite subgroup such that M2t(G, V ) = M2t(G, V ) for some
t ≥ 2; in particular,

M4(G, V ) = M4(G, V ). (3)

First we note that if K < G is any finite subgroup that is equal to G up to scalars, i.e.
Z(G)G = Z(G)K, then by [GT, Remark 2.3] we see that M2t(K,V ) = M2t(G, V ).
So, instead of working with G, we will work with the following finite subgroup

K := {λg | g ∈ G, λ ∈ C×, det(λg) = 1} < SL(V ).

Next, we observe that G acts primitively on V . (Otherwise G contains a normal
abelian subgroup A with G/A ↪→ Sd. In this case, by Ito’s theorem G cannot act
irreducibly on the irreducible G-submodule of dimension d2 − 1 of V ⊗ V ∗, and so
G violates (3) by [GT, Remark 2.3].) Now, using the fact that d = dim(V ) ≤ 3 is a
prime number, it is straightforward to show that one of the following two possibilities
must occur.

• Almost quasisimple case: S�G/Z(G) ≤ Aut(S) for some finite non-abelian
simple group S. By the results of [M], we have that S ∼= PSL2(5) if d = 2, and
S ∼= SL3(2) or A6 if d = 3. Arguing as in the proof of Theorem 8, we see that
(A1), (B1), or (B2) holds. In the case of (A1), M2t(G, V ) = M2t(G, V ) if and only
if 2 ≤ t ≤ 5 by Lemma 9. In the case of (B2), G cannot act irreducibly on Sym3(V )
of dimension 10, whence M2t(G, V ) = M2t(G, V ) if and only if t = 2. Assume we
are in the case of (B1). As mentioned above, then we have M2t(G, V ) = M2t(G, V )
for t = 2, 3. However, if $1 and $2 denote the two fundamental weights of [G,G] ∼=
SL3(C), then V ⊗2 ⊗ (V ∗)⊗2 contains an irreducible [G,G]-submodule with highest
weight 2$1 + 2$2 of dimension 27 (see [Lu, Appendix A.6]). Clearly, G cannot act
irreducibly on this submodule, and so M8(G, V ) > M8(G, V ) by [GT, Remark 2.3].

• Extraspecial case: F ∗(G) = F (G) = Z(G)Ed and Ed � G, in particular,
G ≤ Γd; furthermore, G/Z(G)Ed ≤ Sp(W ) satisfies conclusion (A)(i) of Theorem 5
for W = Ed/Z(Ed) ∼= F2

d. The latter condition is equivalent to require G/Z(G)Ed
to contain the unique subgroup C3 of Sp2(2) ∼= S3 when d = 2 and the unique
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subgroup Q8 of Sp2(3) ∼= SL2(3) when d = 3. Note that G4
∼= SL2(3), respectively

G12
∼= GL2(3), induces the subgroup C3, respectively S3, of outer automorphisms

of E2
∼= Q8. Similarly, G′25

∼= 31+2
+ o Q8, respectively G25

∼= 31+2
+ o SL2(3), induces

the subgroup Q8, respectively SL2(3), of outer automorphisms of E3
∼= 31+2

+ that
act trivially on Z(E3). Now arguing as in the proof of Theorem 8, we see that (A2),
(A3), or (B3) holds. In the case of (A3), M8(G, V ) > M8(G, V ) by Lemma 9, and we
already mentioned above that M6(G, V ) = M6(G, V ). In the case of (A2), G cannot
act irreducibly on Sym3(V ) of dimension 4, so M2t(G, V ) = M2t(G, V ) if and only if
t = 2. In the case of (B3), G cannot act irreducibly on Sym3(V ) of dimension 10,
so M2t(G, V ) = M2t(G, V ) if and only if t = 2. �
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