UNITARY ¢-GROUPS

EIICHI BANNAI, GABRIEL NAVARRO, NOELIA RIZO, AND PHAM HUU TIEP

ABSTRACT. Relying on the main results of [GT], we classify all unitary ¢-groups
for t > 2 in any dimension d > 2. We also show that there is essentially a unique
unitary 4-group, which is also a unitary 5-group, but not a unitary t-group for
any t > 6.

1. INTRODUCTION

Unitary t-designs have recently attracted a lot of interest in quantum information
theory. The concept of unitary t-design was first conceived in physics community as a
finite set that approximates the unitary group U, (C), like any other design concept.
It seems that works of Gross—Audenaert-Eisert [GAE|] and Scott [Sc] marked the
start of the research on unitary t-designs. Roy-Scott [RS] gives a comprehensive
study of unitary ¢-designs from a mathematical viewpoint.

It is known that unitary ¢-designs in Uy(C) always exist for any ¢ and d, but
explicit constructions are not so easy in general. A special interesting case is the
case where a unitary t-design itself forms a group. Such a finite group in Uy(C) is
called a wunitary t-group. Some examples of unitary 5-groups are known in Uy(C).
For d > 3, some unitary 3-groups have been known in Uy(C). But no example
of unitary 4-groups in dimensions d > 3 was known. It seems that the difficulty
of finding 4-groups in Uy(C) for d > 3 has been noticed by many researchers (see
e.g. Section 1.2 of [ZKGG]). The purpose of this paper is to clarify this situation.
Namely, we point out that this problem in dimensions > 4 is essentially solved in
the context of finite group theory by Guralnick—Tiep [GT]. We also show that the
classification of unitary 2-groups in Uy(C) for d > 5 is derived from |GT] as well.
Building on this, we provide a complete description of unitary t-groups in U,(C) for
all t,d > 2.

2. UNITARY t-GROUPS IN DIMENSION d > 5

We now recall the notion of unitary ¢-groups, following [RS|, Corollary 8]. Let
V = C? be endowed with standard Hermitian form and let H = U(V) = Uy(C)
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denote the corresponding unitary group. Then a finite subgroup G < H is called a
unitary t-group for some integer ¢t > 1, if
Dl = [ eopax. )
0] 2 e
Note that the right-hand-side in ([1]) is exactly the 2¢t-moment My, (H, V') as defined
in |[GT], whereas the left-hand-side is the 2¢t-moment My (G, V). Recall, see e.g.
[FH, §26.1], that the complex irreducible representations of the real Lie algebra suy
and the complex Lie algebra sl are the same. It follows that My, (H, V) = My (G, V)
for G = GL(V). Given these basic observations, we can recast the main results of
|[GT] in the finite setting as follows.

Theorem 1. Let V = C? with d > 5 and G = GL(V). Assume that G < G is a
finite subgroup. Then Mg(G,V) > Mg(G,V). In particular, ifd > 5 and t > 4, then
there does not exist any unitary t-group in Uy(C).

Proof. The first statement is precisely [GT), Theorem 1.4]. The second statement
then follows from the first and [GT), Lemma 3.1]. O

We note that [GT), Theorem 1.4] also considers any Zariski closed subgroups G of
G with the connected component G° being reductive. Then the only extra possibility
with Ms(G,V) = Ms(G,V) is when G > [G, G] = SL(V). In fact, [GT] also considers
the problem in the modular setting.

Combined with Theorem (10| (below), Theorem [1|yields the following consequence,
which gives the complete classification of unitary t-groups for any t > 4:

Corollary 2. Let G < Uy(C) be a finite group and d > 2. Then G is a unitary
t-group for some t > 4 if and only ifd =2, t =4 or 5, and G = Z(G)SLy(5).

Next, we obtain the following consequences of [GT), Theorems 1.5, 1.6], where
F*(G) = F(G)E(G) denotes the generalized Fitting subgroup of any finite group G
(respectively, F'(G) is the Fitting subgroup and E(G) is the layer of GG); furthermore,
we follow the notation of [Atlas| for various simple groups. If G is a finite group and
V is a CG-module, then V' |y denotes the restriction of V' to a subgroup H < G.
We also refer the reader to [GMST] and [TZ2] for the definition and basic properties
of Weil representations of (certain) finite classical groups.

Theorem 3. Let V = C? with d > 5 and let G = GL(V). For any finite subgroup
G < G, set S=S/Z(S) for S := F*(G). Then My(G,V) = My(G,V) if and only if
one of the following conditions holds.

(i) (Lie-type case) One of the following holds.

(a) S =PSp,,(3), n>2, G=3S8, and V |5 is a Weil module of dimension
(3" £1)/2.

b) S =U,(2),n>4,[G:S)=1o0r3, and V |g is a Weil module of
dimension (2™ — (—1)")/3.

(ii) (Extraspecial case) d = p* for some prime p and F*(G) = F(G) = Z(GQ)E,
where E = p™* is an extraspecial p-group of order p'*2* and type +. Fur-
thermore, G/Z(G)E is a subgroup of Sp(W) = Sp,,(p) that acts transitively
on W~ {0} for W = EJZ(E), and so is listed in Theorem [j (below). If

p > 2 then E <G, if p=2 then F*(G) contains a normal subgroup E; < G,
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where By = Cy* E is a central product of order 2**72 of Z(E,) = Cy < Z(G)
with E.

(iii) (Exceptional cases) S = Z(G)[G*, G*], and (dim(V),S,G*) is as listed in
Table 1. Furthermore, in all but lines 2-6 of Table I, G = Z(G)G*. In lines
2-6, either G = S or [G : S] = 2 and G induces on S the outer automorphism
listed in the fourth column of the table.

In particular, G < H = U(V) is a unitary 2-group if and only if G is as described

in (1) (iii).

TABLE 1. Exceptional examples in G = GL4(C) with d > 5

~ . The largest 2k with Moy i2(G, V) vs.
d o G Outer Map(G, V) = Mak(G,V) Moy42(G, V)
6 A7 6A7 4 21 vs. 6
6 || Ly(4) ™ | 6L3(4) -2, | 24 6 56 vs. 24
6 Ug(3)™ | 6,-Us(3) | 2 6 25 vs. 24
8 L3<4) 41 : L3(4) 23 4 17 vs. 6
10 Mo 2M;2 2 4 15 vs. 6
10 Moo 2Mas 2 4 7vs. 6
12 Suz® 6Suz 6 25 vs. 24
14 232(8) 232(8) -3 4 90 vs. 6
18| J3™ 3.J3 6 238 vs. 24
26 2F4(2)’ 2F4(2)’ 4 26 vs. 6
28 Ru 2Ru 4 7vs. 6
45 M23 M23 4 817 vs. 6
45 M24 M24 4 42 vs. 6
342 O'N 30'N 4 3480 vs. 6
1333 J4 J4 4 8vs. 6

Note that in Table I, the data in the sixth column is given when we take G = G*.

Proof. We apply [GT, Theorem 1.5] to (G,G). Then case (A) of the theorem is
impossible as G is finite, and case (D) leads to case (iii) as G = GL(V).

In case (B) of [GT), Theorem 1.5], we have that S = PSp,,(¢) with n > 2 and
q = 3,5, or S =PSU,(2) with n > 4, and V |g is irreducible. It is easy to see
that the latter condition implies that G/S has order 1 or 3. Next, L = E(G) is a
quotient of Sp,,(q) or SU,(2) by a central subgroup, and S = Z(S)L. Let x denote
the character of the G-module V. As d > 4, the condition M,(G,V) = M,(G,V) is
equivalent to that G act irreducibly on both Sym?(V') and A?(x) (see the discussion
in [GT], §2]). Hence, if x | is real-valued, then either Sym?(x lz) or A%(x 1)
contains 1z, whence either Sym?*(x J.g) or A%(x |s) contains a linear character. But
both Sym?(V') and A%(V') have dimension at least d(d — 1)/2 > 10 and [G : S] < 3,
so G cannot act irreducibly on them, a contradiction. We have shown that y | is
not real-valued. Now using Theorems 4.1 and 5.2 of [TZ1], we can rule out the case
S = PSp,,(5) and the case (S,dim(V)) = (PSU,(2), (2" + 2(=1)")/3), as x |1, is
real-valued in those cases.



4 E. BANNAI, G. NAVARRO, N. RIZO, AND P. H. TIEP

Case (C), together with [GT), Lemma 5.1], leads to case (ii) listed above, except
for the explicit description of F and E;. Suppose p > 2. Then at least one element
in E N\ Z(F) has order p, whence all elements in £ \ Z(E) have order p by the
transitivity of G/Z(G)E on W ~ {0}, i.e. E has type +. Also, note that E is
generated by all elements of order p in Z(G)FE, and so £ < G. Next suppose that
p =2 and let Ey < G be generated by all elements of order at most 4 in Z(G)E. If
|Z(G)| < 4, then F*(G) = E; = E is an extraspecial 2-group of order 2'72¢ of type
¢ for some € = £. In this case, G/Z(G)E — 05,(2) and so cannot be transitive on
W~ {0} (as a > 2), a contradiction. So |Z(G)| > 4. In this case, one can show that
E, = Cy x E with Z(E) < Cy < Z(G), and since Cy x 217°* = Oy % 2172 we may
choose F to have type +. 0

We note that the case of Theorem |3] where GG is almost quasisimple was also
treated in [M]. More generally, the classification of subgroups of a classical group
CI(V) in characteristic p that act irreducibly on the heart of the tensor square,
symmetric square, or alternating square of V' ®p, Fp, is of particular importance to
the Aschbacher-Scott program [A] of classifying maximal groups of finite classical

groups. See [Mag], [MM], [MMT] for results on this problem in the modular case.

Theorem 4. Let V = C% with d > 5 and let G = GL(V). Assume G is a finite
subgroup of G. Then Ms(G,V) = Ms(G,V) if and only if one of the following two
conditions holds.

(i) (Extraspecial case) d = 2% for some a > 2, and G = Z(G)E; - Sp2q(2), where
B = 2lt2 g extraspecial and of type + and Ey = Cy x E with Cy < Z(G).
(ii) (Exceptional cases) Let S = S/Z(S) for S = F*(G). Then

S & {L3(4), U4(3), SUZ, Jg},

and (dim(V), S, G*) is as listed in the lines marked by ® in Table 1. Fur-
thermore, either G = Z(G)G*, or S = Uy(3) and S = Z(G)G*.

In particular, G < H = U(V) is a unitary 3-group if and only if G is as described
in (i), (ii).
Proof. Apply [GT, Theorem 1.6] and also Theorem [3[(ii) to (G, G). O

The transitive subgroups of GL,(p) are determined by Hering’s theorem [He]
(see also [L, Appendix 1]), which however is not easy to use in the solvable case.
For the complete determination of unitary 2-groups in Theorem (ii), we give a
complete classification of such groups in the symplectic case that is needed for us.
The notations such as SmallGroup(48, 28) are taken from the SmallGroups library
in [GAP].

Theorem 5. Let p be a prime and let W = IF?)” be endowed with a non-degenerate
symplectic form. Assume that a subgroup H < Sp(W) acts transitively on W~ {0}.
Then (H,p,2n) is as in one of the following cases.

(A) (Infinite classes):
(i) n = bs for some integers b, s > 1, and Spy,(p®) << H < Spy(p®) x Cs.
(ii) p =2, n = 3s for some integer s > 2; and G2(2°) < H < G9(2°) x C;.
(B) (Small cases):
(i) (2n,p) =(2,3), and H = Q.
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(ii) (2n,p) =(2,5), and H = SLy(3).

(iii) (2n,p) = (2,7), and H = SLy(3).Cy = SmallGroup(48,28).

(iv) (2n,p) = (2,11), and H = SLy(5).

(v) (2n,p) = (4,3), and H = SmallGroup(160,199), SmallGroup(320, 1581),

2.S5, SL2(9), SLy(9) x Cy = SmallGroup(1440,4591), or

Cs.((Cy x Cy x Cy x Cy) %1 Ag) = SmallGroup(1920, 241003).
(vi) (2n,p) = (6,2), and H = SLy(8), SLa(8) x C3, SU3(3), SU3(3) x Cb.
(vii) (2n,p) = (6,3) and H = SLy(13).

Proof. We may assume that (2n,p) is not in one of the small cases listed in (B),
which are computed using [GAP]. We have that [H : Cy(v)] = p** — 1, for every
v € W~ {0}. Now we apply Hering’s theorem, as given in [L Appendix 1] and
analyze possible classes for H.

(a) Suppose that H < T'L;(p**), which is the semidirect product of Ty (the mul-
tiplicative field of F,2n) and the Galois automorphism o of order 2n. If n = 1, then
H < SLsy(p), which has order p(p — 1)(p + 1), and we may assume that p > 13. As
the smallest index of proper subgroups of SLy(p) is p+1 (see e.g. [TZ1, Table VI]),
we conclude that H = SLa(p). So we may assume that n > 1. We may also assume
that (2n,p) # (2,6). Hence, we can consider a Zsigmondy (odd) prime divisor r of
p?™ — 1 [Zs], and have that the order of p mod r is 2n. Thus 2n divides r — 1. Let
C' = H NTy. Note that r divides |C| (because r does not divide 2n), and hence C'
acts irreducibly on W. Since C' < Sp(W), by [Hul, Satz 11.9.23] we have that |C|
divides p™ + 1. Hence, |H| divides 2n(p"™ + 1), and thus p" — 1 divides 2n. This is
not possible.

(b) Aside from the possibilities listed in (A) and (B), we need only consider the
possibility 2n = as with a > 3, p" # 22, 3%, 23, 3%, and H > SLo(p®). Let d(X)
denote the smallest degree of faifthful complex representations of a finite group X.
Since H < Sp,,(p), by [TZ1, Theorem 5.2] we have that

2(X) < (" +1)/2= (" +1)/2

On the other hand, since H > SL,(p®), by [TZ1, Theorem 3.1] we also have that
o(X) > (b = p*)/(p° — 1) > p7 Y.

As a > 3, this is impossible. O

3. AN INFINITE FAMILY OF “ALMOST” UNITARY 3-GROUPS IN HIGH DIMENSIONS

As follows from Theorem [4] the Weil representations ® : G — GL(V) of dimen-
sions (3™=£1)/2 of the symplectic group Sp,,,(3), do not give rise to unitary 3-groups,
even though they yield unitary 2-groups (see Theorem [3(i)). However, we record
the following result, which shows that the failure is minimal: Mg(G/Ker(®),V) =7
whereas Mg(GL(V),V) = 6, and thus the Weil representations lead to “almost”
unitary 3-groups.

Theorem 6. Let m > 3 be an integer, and let  : G — GL(V') be an irreducible Weil
representation for G = Sp,,,(3) of degree (3™ £ 1)/2. Then Mg(G/Ker(®),V) =T.

Proof. Recall, see [GMT, §3], that G has four (distinct) irreducible Weil characters,
&, & of degree (3™ 4 1)/2, and 7,7 of degree (3™ — 1)/2. Now, by [GMT) Theorem
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1.3] and its proof,
& = (Sym*(€) — €) +2521() + A°(€) +¢€

is a decomposition of 3 into irreducible summands, and the listed irreducible sum-
mands are pairwise distinct. It follows that [£3,£3]¢ = 7, and so Mg (G /Ker(®), V) =
7 if @ affords the character ¢ or £&. (Here, Sy denotes the Schur functor labeled by
the partition (2, 1) of 3, see [F'H, (6.8), (6.9)].) Similarly,

n® = Sym®(n) +2S2,1(n) + (A*(n) — 7) + 7

is a decomposition of 1 into irreducible summands, and the listed irreducible sum-
mands are pairwise distinct. It follows that [n*, n*|¢ = 7, and so Mg(G/Ker(®),V) =
7 if @ affords the character n or 7. O

Note that Ker(®) = 1 if dim V' is even, and Ker(®) = Z(G) = C, if dim V' is odd.

4. UNITARY t-GROUPS IN DIMENSIONS AT MOST 4

In this section we complete the classification of unitary ¢-groups in dimension < 4.
First we introduce some key groups for this classification, where we use the notation
of [GAP] for SmallGroup(64,266) and PerfectGroup(23040,2).

Proposition 7. Consider an irreducible subgroup
Ey = Cy x 21" = SmallGroup(64, 266)

of order 2° of GL(V'), where V= C*, and let 'y := Ngr)(E4s). Then the following
statements hold.

(i) Ty induces the subgroup AT = Cy - Sg of all automorphisms of E, that act
trivially on Z(Ey) = Cy.

(ii) The last term T of the derived series of Ty is L = PerfectGroup(23040,2),
a perfect group of order 23040 and of shape Ey - Ag. Furthermore, Fffo) s a
unitary 3-group.

Proof. (i) It is well known, see e.g. [Gr, p. 404], that AT = Inn(E,) - S¢ with
Inn(E,) = C5. Certainly, I'y/Cr,(E;) — AT. Let ¢ denote the character of E,
afforded by V, and note that 1) and 1 are the only two irreducible characters of
degree 4 of E,, and they differ by their restrictions to Z(E;). Now for any o € A™,
Y = 1. Tt follows that there is some g € GL(V) such that grg™ = a(x) for all
x € Ey; in particular, g € I'y. We have therefore shown that I'y/Cr,(E,) = AT.

(ii) Using |GAP], one can check that L := PerfectGroup(23040,2) embeds in
GL(V), with a character say x, and F*(L) = E,;. So without loss we may identify
F*(L) with E, and obtain that L < I'y. Again using [GAP| we can check that
X3, X% = 6 = Mg(GL(V)), which means that L is a unitary 3-group. As L is
perfect, we have that L < Fffo). Next, L acting on F, induces the perfect subgroup
A+t = 04 Ag of index 2 in A+, and the same also holds for I'°™. Hence, for any
g€ I’Sloo), we can find A € L such that the conjugations by g and by h induce the same
automorphism of Ey. By Schur’s Lemma, gh™! € Z(T), whence Fioo) < Z(Ty)L.

(o0

Taking the derived subgroup, we see that I'; ) < L, and so Fioo) = L, as stated. [
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Next, we recall three complex reflection groups Gag, G371, and G32 in dimension 4,
namely, the ones listed on lines 29, 31, and 32 of [ST|, Table VII]. A direct calculation
using the computer packages GAP3 [Mi], [S+], and Chevie [GHMP], shows that each
of these 3 groups G, being embedded in H = Uy(C), is a unitary 2-group. Also,

F(Gy) = F(G31) = SmallGroup(64,266), F(Gs2) = Z(G32) = Cs,

and
GQg/F(GQg) = 557 G31/F(G31) = 567 G32 = C3 X Sp4(3)

In what follows, we will identify F'(Ga9) and F'(G31) with the subgroup £, defined in
Proposition m Let us denote the derived subgroup of Gy, by G, for k € {29, 31, 32}.
With this notation, we can give a complete classification of unitary 2-groups and
unitary 3-groups in the following statement.

Theorem 8. Let V = C*, G = GL(V), and let G < G be any finite subgroup. Then
the following statements hold.

(A) With Ey, Ty and L as defined in Proposition |7, we have that [[4,T'y] = L =
GYy and Ty = Z(T'4)Gs1. Furthermore, My(G, V) = My(G, V) if and only if
one of the following conditions holds

(Al) G =Z(G)H, where H = 2A; or H = Sp,(3) = G%,.
(A2) L =[G,G] <G < Ty
(A3) By <G < Ty, and, after a suitable conjugation in 'y,

Gy = [G,G] < G < Z(T4)Gay.

In particular, G < H = U(V) is a unitary 2-group if and only if G is as
described in (A1)—(A3).

(B) Mgs(G,V) = Mg(G,V) if and only if G is as described in (Al)—(A2). In
particular, G < U(V') is a unitary 3-group if and only if G is as described in
(A1)-(A2).

(C) Ms(G,V) > Ms(G,V). In particular, no finite subgroup of Us(C) can be a

unitary 4-group.

Proof. (A) First we assume that My(G,V) = M4(G,V), and let x denote the char-
acter of G afforded by V. The same proof as of [GT, Theorem 1.5] and Theorem
shows that one of the following two possibilities must occur.

e Almost quasisimple case: S<IG/Z(G) < Aut(S) for some finite non-abelian
simple group S. By the results of [M]|, we have that S = A; or PSp,(3). It is
straightforward to check that F(G) = 2A;, respectively Sp,(3), and furthermore
G cannot induce a nontrivial outer automorphism on S. Recall that in this case
we have F*(G) = Z(G)E(G) and so Ce(E(G)) = Cq(F*(G)) = Z(G). It follows
that G = Z(G)E(G), and (Al) holds. Moreover, using [GAP] we can check that
(a2, 0?] =2, [@?, &%) = 6, but [a*, a*] = 38, respectively 25, for o := x |g(q). Thus
we have checked in the case of (Al) that My (G, V) = My (G,V) for t < 3, but
Ms(G, V) > Mg(G, V), since Ms(G,V) = 24 by |GT) Lemma 3.2].

e Extraspecial case: F*(G) = F(G) = Z(G)E,; and E4 < G, in particular,
G < Ty; furthermore, G/Z(G)E, < Sp(W) satisfies conclusion (A)(i) of Theorem
for W = FE,/Z(E,) = F3. Suppose first that G/Z(G)E; > Spy(2)’ = Ag. In this
case, GG induces (at least) all the automorphisms of E4 that belong to the subgroup



8 E. BANNAI, G. NAVARRO, N. RIZO, AND P. H. TIEP

A™T in the proof of Proposition . As in that proof, this implies that Z(I'y)G > L.
Taking the derived subgroup, we see that

GGl = L, (2)
i.e. we are in the case of (A2). Moreover,
6:M6(Q,V) SM@(G,V) SMG(L7V)7

and Mg(L,V) = 6 as shown above. Hence My (G,V) = My (G,V) for t < 3.
Applying to G = G3; and recalling that |L| = |GY,|, we see that L = Gf;.
Next, G3; and I'y induce the same subgroup A1 of automorphisms of Ej, hence
I'y = Z(I'y)G3,. Taking the derived subgroup, we obtain that L = [I'y,T'4], and so
implies that [G,G] = L.

Next we consider the case where G/Z(G)Ey = SLg(4) = A5 or SLy(4) x Cy = Ss.
Using [Atlas], it is easy to check that Sp(W') = Sg has two conjugacy classes C o of
(maximal) subgroups that are isomorphic to Ss, and two conjugacy classes Cj , of
subgroups that are isomorphic to As. Any member of one class, say C;, is irreducible,
but not absolutely irreducible on W, that is, preserves an [F4-structure on W, and
is contained in a member of, say C;. Any member of the other class C, is absolutely
irreducible on W and preserves a quadratic form @) of type — on W; in particular,
it has two orbits of length 5 and 10 on W ~ {0} (corresponding to singular vectors,
respectively non-singular vectors, in W with respect to @), and is contained in a
member of Co. On the other hand, since G is transitive on W~ {0} by [GT) Lemma
5.1], the last term G of the derived series of G’ must have orbits of only one size
on W ~ {0}. Applying this analysis to K := Gag, we see that K/FE4 must belong
to C; and the derived subgroup of K/Z(K)E, as well as [K, K]/E, belong to Cj.
Hence, after a suitable conjugation in 'y, we may assume that

GQQ/E4 Z G/Z(G)E4 2 Glzg/E4;

in particular, the subgroup of automorphisms of F, induced by G is either the one
induced by Gag, or the one induced by Gby. In either case, we have that

G < Z(D))Ga, Gl < Z(T1)[G.G].

As Gy is perfect, taking the derived subgroup we obtain that [G,G] = Gy, i.c.
(A3) holds.

(B) We have already mentioned above that Mg(G,V) = Mg(G, V) for the groups
G satisfying (A1) or (A2). By [GT) Lemma 3.1], it remains to show that for the
groups G satisfying (A3), Mg(G, V') # Mg(G, V). Assume the contrary: Mg(G,V) =
Mg(G, V). By [GT], Remark 2.3], this equality implies that G is irreducible on all the
simple G-submodules of V' ® V ® V*, which can be seen using [Lul, Appendix A.7] to
decompose as the direct sum of simple summands of dimension 4 (with multiplicity
2), 20, and 36. Let 0 denote the character of G afforded by the simple G-summand
of dimension 36. Note that x vanishes on F(G) \ Z(G) and faithful on Z(G). It
follows that

XX dre)= 16X Lr@) -
As x lp(c) is irreducible, we see that 6 |r@)= 9(x {r@))- But x lp) obviously
extends to G > F(G). It follows by Gallagher’s theorem [Is, (6.17)] that G/F(G)
admits an irreducible character 5 of degree 9 (such that 6 o= (x {¢)58). This is a
contradiction, since G/F(G) = As or Ss.
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(C) Assume the contrary: Mg(G,V) = Mg(G, V). Then Ms(G,V') = Ms(G, V) by
[GT, Lemma 3.1]. By (B), we may assume that G satisfies (A1) or (A2). By [GT]
Remark 2.3|, the equality Mg(G, V') = Ms(G, V) implies that G is irreducible on the
simple G-submodule Sym*(V') (of dimension 35) of V®4. This in turn implies, for
instance by Ito’s theorem [Is, (6.15)] that 35 divides |G/Z(G)|. The latter condition
rules out (A2) since |G/Z(G)| divides 2* - [Sp,(2)| in that case. Finally, we already
mentioned above that Ms(G,V) > Mg(G,V) in the case of (Al). O

To handle the remaining cases d = 2, 3, we first note:
Lemma 9. Let G = SL(V) for V.= C2. Then the following statements hold.

(1) MG(Q, V) = 5, Mg(g, V) = 14, and Ml()(g, V) =42,
(i) Suppose May(G,V) = Moy (G, V) for a finite group G < G. Ift > 4 then 5
divides |G/Z(G)|. If t > 6 then 7 divides |G/Z(G)|.
(iii) Suppose SLa(5) = G < G. Then My (G, V) = My (G, V) for 1 <t <5 but
M2t<G, V) > MQt(g, V) fO?" t Z 6.

Proof. Note that the symmetric powers Sym*(V), k > 0, are pairwise non-isomorphic
irreducible CG-modules, with Sym®(V) =2 C = A%(V), and V ® V = Sym?*(V) @ C.
Now using |[FH| Exercise 11.11] we obtain for all @ > 1 that

Sym*(V) @ V = Sym*™ (V) @ Sym® (V)
as CG-modules. It follows that
Ve 2 Sym?(V) @ V&2,
Vet 2 Sym! (V) @ (Sym?(V))®* @ C*2,
V& =~ Sym®(V) @ (Sym?*(V))® @ V&
as CG-modules (with the superscripts indicating the multiplicities), implying (i).
For (ii), note by Remark 2.3 and Lemma 3.1 of [GT] that the assumption implies

that G is irreducible on Sym*(V) of dimension 5 if ¢+ > 4, and on Sym°(V) of
dimension 7 if ¢ > 6.

The first assertion in (iii) can be checked using (i) and [GAP], and the second
assertion follows from (ii). O

Now we recall three complex reflection groups G4 = Sls(3), G2 = GLy(3), and
G16 = Cs x SLy(5) in dimension d = 2, listed on lines 4, 12, and 16 of [ST, Table
VII], and three complex reflection groups Gay = Cy X SL3(2), Gos = 3172 % SLy(3),
and Gor = Cy x 3Ag in dimension d = 3, listed on lines 24, 25, and 27 of [ST), Table
VII]. As above, for any of these 6 groups Gy, G denotes its derived subgroup. A
direct calculation using the computer packages GAP3 [Mi], [S+], and Chevie [GHMP],
shows that each of these 6 groups G, being embedded in H = Uy(C), is a unitary
2-group; furthermore, G2, G'4, and G, are unitary 3-groups. One can check that
F(G,) = F(G12) is a quaternion group Qg = 2", and we will identify them with
an irreducible subgroup E, = Qg of GLy(C). Also, E3 := F(Ggs) = 3172 is an
extraspecial 3-group of order 27 and exponent 3, which is an irreducible subgroup
of GL3(C). Let I'y := Ngr,)(Eq) for d = 2,3. Now we can give a complete
classification of unitary t-groups in dimensions 2 and 3.

Theorem 10. Let V = C¢ with d = 2 or 3, G = GL(V), and let G < G be any
finite subgroup. Then the following statements hold.
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(A) Suppose d =2. Then My(G,V) = My(G,V) if and only if one of the follow-
ing conditions holds
(Al) G =Z(G)H, where H = G’ = SLa(5).
(A2) By <G < Ty and Z(G)G = Z(G)H, where H = G152 = GL»(3).
(A3) By <G < Ty and Z(G)G = Z(G)H, where H = G4 = SLy(3).
In particular, G < H = U(V) is a unitary 2-group if and only if G is as
described in (A1)—(A3). Furthermore, G < H = U(V) is a unitary 3-group
if and only if G is as described in (A1)—(A2). Moreover, such a subgroup G
can be a unitary t-group for some t > 4 if and only if 4 <t <5 and G s as
described in (Al).
(B) Suppose d = 3. Then My(G,V) = M4(G,V) if and only if one of the follow-
ing conditions holds
(Bl) G =Z(G)H, where H = GY; = 3A¢.
(B2) G =Z(G)H, where H = G, = SL3(2).
(B3) E5 < G < T's. Moreover, either Z(G)G = Z(G)GYy;, or Z(G)G =
Z(G)Gos.
In particular, G < H = U(V) is a unitary 3-group if and only if G is as
described in (B1), and no finite subgroup of U(V') can be a unitary 4-group.

Proof. Let G < G be any finite subgroup such that My, (G, V) = My (G, V) for some
t > 2; in particular,

First we note that if K < G is any finite subgroup that is equal to G up to scalars, i.e.
Z(G)G = Z(G)K, then by [GT, Remark 2.3] we see that My (K, V) = My(G, V).
So, instead of working with GG, we will work with the following finite subgroup

K:={)\g|ge G, X eC* det(\g) =1} < SL(V).

Next, we observe that G acts primitively on V. (Otherwise G contains a normal
abelian subgroup A with G/A < S,;. In this case, by Ito’s theorem G cannot act
irreducibly on the irreducible G-submodule of dimension d?> — 1 of V ® V*, and so
G violates (3]) by [GT), Remark 2.3].) Now, using the fact that d = dim(V) < 3 is a
prime number, it is straightforward to show that one of the following two possibilities
must occur.

e Almost quasisimple case: S <1G/Z(G) < Aut(S) for some finite non-abelian
simple group S. By the results of [M], we have that S = PSLy(5) if d = 2, and
S = SLs(2) or Ag if d = 3. Arguing as in the proof of Theorem [§ we see that
(A1), (B1), or (B2) holds. In the case of (Al), My (G,V) = Mx(G,V) if and only
if 2 <t <5by Lemma[9] In the case of (B2), G cannot act irreducibly on Sym®*(V')
of dimension 10, whence My (G, V) = My (G, V) if and only if ¢ = 2. Assume we
are in the case of (B1). As mentioned above, then we have My(G, V) = M (G, V)
for t = 2,3. However, if @y and wy denote the two fundamental weights of [G, G] =
SL3(C), then V®? @ (V*)®¥% contains an irreducible [G, G]-submodule with highest
weight 2w + 2wy of dimension 27 (see [Lu, Appendix A.6]). Clearly, G cannot act
irreducibly on this submodule, and so Mg(G, V) > Mg(G, V) by [GT, Remark 2.3].

e Extraspecial case: F*(G) = F(G) = Z(G)E; and E; < G, in particular,
G < Ty furthermore, G/Z(G)E,; < Sp(W) satisfies conclusion (A)(i) of Theorem
for W = E4/Z(E;) = F2. The latter condition is equivalent to require G/Z(G)FE;,
to contain the unique subgroup C3 of Spy(2) = S3 when d = 2 and the unique
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subgroup Qs of Sp,(3) = SL2(3) when d = 3. Note that G4 = SLy(3), respectively
G1a = GLy(3), induces the subgroup Cj3, respectively Ss, of outer automorphisms
of By 2 Qg. Similarly, G = 3172 x Qg, respectively Goz = 317 x SLy(3), induces
the subgroup Qs, respectively SLy(3), of outer automorphisms of F3 = 3?2 that
act trivially on Z(FE3). Now arguing as in the proof of Theorem , we see that (A2),
(A3), or (B3) holds. In the case of (A3), Ms(G,V) > Ms(G,V) by Lemmal9 and we
already mentioned above that Ms(G,V) = Mg(G, V). In the case of (A2), G cannot
act irreducibly on Sym?®(V) of dimension 4, so Mo, (G, V) = My (G, V) if and only if
t = 2. In the case of (B3), G cannot act irreducibly on Sym*(V) of dimension 10,

so My (G, V) = My (G, V) if and only if ¢ = 2. O
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