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Abstract: Page’s Einstein metric on CP,#CP, is conformally related to an extremal
Kihler metric. Here we construct a family of conformally Kihler solutions of the
Einstein—Maxwell equations that deforms the Page metric, while sweeping out the en-
tire Kihler cone of CP.#CP>. The same method also yields analogous solutions on
every Hirzebruch surface. This allows us to display infinitely many geometrically dis-
tinct families of solutions of the Einstein—Maxwell equations on the smooth 4-manifolds
52 A .SQ and '[‘.]P’z#ﬁz.

Let (M, k) be a connected, oriented Riemannian 4-manifold. We will say that & is an
Einstein—-Maxwell metric if there is a 2-form F on M such that the pair (h, F) satisfies
the Einstein—-Maxwell equations

dF =0 (1)

d«F =0 (2)

[r+FoF] —0, 3
1]

where r is the Ricci tensor of h, the subscript [ ]y indicates the trace-free part with
respect to &, and the symmetric tensor (F o F)j = F j" Fpyy is obtained by composing
F with itself as an endomorphism of T M. In physics terminology, Eqgs. (1) to (3) are
sometimes called the Euclidean Einstein—Maxwell equations with cosmological con-
stant. This terminology emphasizes two important points: we are taking h to be a Rie-
mannian metric rather than a Lorentzian one; and, while these equations imply that the
scalar curvature 5 of i must be constant, this constant is allowed to be non-zero.

These equations turn out to naturally arise in connection with many interesting geo-
metric questions, including some of the most active current research topics in Kihler
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geometry. For example, if M admits a complex structure, and if /i is a constant-scalar-
curvature Kihler (cscK) metric on M, then /& is Einstein—Maxwell. Indeed, if we set
F = ZT_“m + p, where @ and p are respectively the Kihler and Ricci forms of the
Kihler metric h, then (h, F) solves the Einstein—-Maxwell equations.

The existence of cscK metrics for a fixed complex structure and fixed Kihler class
is actually a difficult open problem, and is the subject of a great deal of current cutting-
edge research [14]. However, the problem becomes much more tractable [2,19,35] if
one instead just asks whether or not there is some complex structure in a given defor-
mation class and some compatible K#hler class for which a solution exists. Using this
observation in tandem with another recent development [11] in Ki#hler geometry, it is
then relatively easy to prove the following [26]:

Theorem. Let M be the underlying smooth compact 4-manifold of a compact com-
plex surface. If M is of Kihler type—i.e., if by (M) is even—then M admits Einstein—
Maxwell metrics. By contrast, if M is not of Kithler rype and has vanishing geometric
penus, then M does not admit Einstein—Maxwell metrics.

This surprising relationship between Einstein—-Maxwell metrics and the Kihler con-
dition immediately raises the following question: If M is the underlying smooth 4-
manifold of a compact complex surface, is every Einstein—Maxwell metric on M actu-
ally a Kihler metric? However, the answer turns out to be no. In fact, the proof of the
above theorem depends in part on the fact that the one-point blow-up of the complex
projective plane admits a non-Kihler Einstein metric discovered by Page [34]. On the
other hand, as pointed out by Derdziriski [12], the Page metric, while not Kihler, is
nonetheless conformal to a Kihler metric. Are there other Einstein—Maxwell metrics
on this same space that are conformally Kihler? The answer is yes!

Theorem A. Let M == CP.#CF; be the blow-up of the complex projective plane at a
point, equipped with its standard complex structure, and let £ be any Kahler class on
M. Then £ contains a Kdhler metric g which is conformal to a (non-Kihler) Einstein—
Maxwell metric h.

However, in contrast to the situation for cscK metrics [10, 13], conformally Einstein—
Maxwell metrics are generally not uniquely determined, up to complex automorphism,
by their Kihler classes. Indeed, the present author has elsewhere [29] shown that this
non-uniqueness phenomenon occurs on M = CPy x CPy, where certain Kihler class
contain both a cscK metric and a Kihler metric of non-constant scalar curvature that
is conformally Einstein—Maxwell. For the one-point blow-up of the complex projective
plane, the situation is analogous:

Theorem B. The metric g in Theorem A is not always unique. To make this more
precise, express an arbitrary Kihler class as

Q=ul —vE,

where L and  are respectively the Poincaré duals of a projective line and the excep-
tional curve, and where u and v are real numbers withu = v = 0. Ifufv = 9, then
£ contains two geometrically distinct, U(2)-invariant Kdhler metrics g that are con-
formal to Einstein—-Maxwell metrics h. For one of these metrics g, there are, moreover,
two distinct U(2)-invariant functions [ = 0, which give rise to two different Einstein—
Maxwell metrics h = f~g of the same volume; however, the two different h thus aris-
ing from this g are actually isometric, in an orientation-reversing manner. By confrast,
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when ufv = 9, there is, up to complex auiomorphisms, a unique Kdhler metric g in Q2
which is conformal to a Ui2)-invariant Einstein-Maxwell metric h.

We emphasize that our proof of the uniqueness assertion in Theorem B is entirely
dependent on the assumption of U(2)-invariance. An intriguing problem, which we
leave for the interested reader, is to determine if any such unicity persists in the absence
of this assumption. However, symmetry assumptions certainly could play a decisive
role here. For example, exactly one of the Kihler metrics g that we will construct in
each Kihler class £2 engenders an Einstein—Maxwell metric & which has an orientation-
reversing isometry in addition to its U(2) symmetry. If we had required h to also have
such an isometry from the outset, the bifurcation phenomenon described by Theorem B
would therefore have been eliminated, and we would then be left with exactly one
solution g in every Kihler class.

Of course, our definition of an Einstein—-Maxwell metric allows for the possibility
that the metric might actually be Einstein, corresponding to the possibility that the 2-
form might vanish. This does indeed occur on CPo#CFs, as the Pape metric is certainly
an example. On the other hand, the other solutions under discussion here are definitely
not Einstein:

Theorem C. There is a unique value of u /v, given by

)] 2
A3 )] ()

2= 3.1839334,

for which the Einstein—-Maxwell metric of Theorem B becomes a constant times Page's
Einstein metric [34]. For other values of u /v, these Einstein-Maxwell metrics are not
Bach-flat, and so are not even conformally Einstein.

The same framework used to prove the above results also produces solutions on
every Hirzebruch surface. Recall [4] that a Hirzebruch surface is a compact complex
surface which is a holomorphic CIFy-bundle over CP. Every Hirzebruch can be ex-
pressed as

Ep =FO & k)

for a unique non-negative integer &, where [P indicates the fiber-wise projectivization of
a holomorphic rank-2, and, by a standard abuse of notation, & and O(k) respectively
denotes the trivial line bundle and the holomorphic line bundle of degree k over CIP,.
The E; are mutually non-isomorphic as complex manifolds, but there are only two

diffeomorphism types:

T CE#CP,, ifkis odd; or
E 182 % 82, ifkiseven

In fact, up to biholomorphism, the Hirzebruch surfaces are the only complex surfaces
diffeomorphic to CP.#CP; or §7 x §°.
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For the Einstein—Maxwell metrics considered here, the behavior observed on most
Hirzebruch surfaces is simpler than that seen on £y = CPy x CIP; or on the one-point
blow-up X, of CP;:

Theorem D. Let M = & be the kth Hirzebruch surface, with its fived complex structure,
and lef £ be any Kithler class on M. Then £ contains a Kihler metric g which is con-
formal to an Einstein-Maxwell metric h. Moreover, if k = 2, there is a unigue such
Kethler metric g which is invariant under the standard action of U(2) on Ey.

However, every Hirzebruch surface is diffeomorphic to either 5% x 57 or CP.#CPPs,
50 Theorem D asserts the existence of an infinite number of families of solutions on
both of these smooth compact 4-manifolds. It seems plausible that these families may
actually belong to different connected components of the moduli space of solutions. In
any case, our construction certainly does imply an interesting result in this direction:

Theorem E. Let the smooth oriented 4-manifold M be either CP.#CP, or 5% x §7,
and, for any @ € HX(M, R) with Q% = 0, let

#q = {solutions (h, F) of (1-3) on M | F* € Q}/[Diff;(M) x B"]

be the moduli space of S2-compatible solutions of the Einstein-Maxwell equations on
M here Diff;(M) denotes the group of diffeomorphisms aof M which act trivially on
H*(M), and B* acts by compatibly rescaling h and F—. Then, for every positive infe-
ger N, there is a choice of §2 such that .#'q has at least N connected components.

1. Generalities

While the physical interest of the Einstein-Maxwell equations may seem self-evident,
these equations are also inherently interesting for reasons that are intrinsic to Rie-
mannian geometry. For example, there are several remarkable scalar-curvature esti-
mates [ 18,24, 26] in 4-dimensional Riemannian geometry that depend on the cohomol-
ogy class of a harmonic self-dual 2-form. Such estimates typically amount to assertions
about the volume-normalized Einstein—Hilbert functional

h S v f snd ey
M

on the space % of smooth Riemannian metrics on M, where s denotes the scalar curva-
ture of i, dpy is the metric volume measure, and V, is the total volume of (M, h). If M
is a smooth compact oriented 4-manifold, and if @ € H*(M, R) is a fixed cohomology
class with €2 = 0, it is therefore natural to consider the set % of smooth Riemannian
metrics i on M for which the harmonic representative « of £2 is self-dual. One can then
show that %, is a Fréchet manifold, and indeed is a closed submanifold of the space of
smooth Riemannian metrics, of finite codimension &_(M). This allows us to consider
the variational problem arising from the restriction

Slyy : %n — R )
Jag Sn i

WV fM dp

of the normalized Einstein—Hilbert functional to the £2-adapted metrics. The critical
points of this variational problems are then [26,29] just the solutions of the Einstein—
Maxwell equations which are appropriately related to £2:

h—
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Proposition 1. A metric h € %y, is a critical point of the variational problem (4) if and
only if there is a harmonic 2-form F with self-dual part F* e ©Q such that the pair
(h, F) solves (1)-(3).

One corollary is that an Einstein—Maxwell metric h on a 4-manifold must have con-
stant scalar curvature; indeed, if h belongs to %g, so does its entire conformal class,
and the restriction of & to a conformal class is exactly the variational problem used
by Yamabe to characterize metrics of constant scalar curvature [6]. At the other end of
things, the Einstein metrics are exactly the critical points of & on the space of all Rie-
mannian metrics, and this provides further explanation for the fact that Einstein metrics
are (rather special) solutions of the Einstein—-Maxwell equations. Yet another interesting
consequence is the following:

Proposition 2. Let M and £ be as above, and let
o = {solutions (h, F) of (1-3) on M | F* € Q}/[Diffy(M) x B"]

be the moduli space of S2-compatible solutions of the Einstein—-Maxwell equations. Here
Diff, (M) denotes the group of diffeomorphisms of M which act trivially on H* (M, R),
and B* acts by compatibly rescaling h and F~. If (h, F) and (h, F) are solutions such
that sy 'r’ﬁ” 2 # 5; 'r’E” %, then these solutions belong to different connected components
of Mq.

Proof. If (h, F) € % x I'(A?) is any smooth solution of (1)~(3), there is a finite-
dimensional smooth submanifold # < % = ['(A?) such that any other solution in a
neighborhood ¥ of (h, F) is the pull-back of an element of # via some diffeomor-
phism. To see this, let 5 be the set of metrics of the form A = h + h, where fi is a
symmetric and transverse traceless with respect to &, and consider the smooth map

# x T(A?) 5 T(@EAY) x T(AY)
(h, F) —> (F,; +[F o Flyj, (d+3; FF]

where F = F + F e T'(A?2). Because of our assumption that I is transverse-traceless,
we can modify the first term by adding (§*3p )p without altering the answer, but with
the effect [5] that the linearization of the equation at h becomes elliptic. Let .5 denote
image of the linearization & r), and let g : T(@FA") x T(A%) — F be the L2-
orthogonal projection. Then g o & is a submersion on some neighborhood (A, F), and
# = (oo &) (0) is a finite-dimensional manifold that contains a gaupe-fixed version
of any solution of {1)—3) in a neighborhood # of (h, F).

Now choose abasisay, ..., ap, for H2(M), and, foreachsubsetI — {1, ... b2(M)},
let mp : HY(M) — R™ denote the map that sends the deRham class a to the relevant
|1 components of a — £ relative to the chosen basis. Let [T : % — H?(M) be the
smooth map defined by th, F) — [ff"ﬁ*], let #; < % be the open subset of # on which
myp o I1 has derivative of rank |I|, and let 27 — %4 be the smooth submanifold defined by
(my o I)~1(0). If (A, F) € # then happens both to be a genuine solution of (1)~(3) and
to have the property that i € %5, then at least one of the smooth manifolds 2 will then
have the property that its image in % passes through fi, with T: 2y  T;%g: the value
of [I| for which this occurs is just the rank of the derivative of [T at (h, Fy. It follows
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that, for any Einstein—-Maxwell metric i € ¥ N%g, the real number 5; Vﬁlﬂ = S(h) is

a critical value of the pull-back of & to one of the manifolds 27 c & x T'(A?).

Now since % x ['(A?) is second countable, there is a countable collection ¥ of
such open sets, and an associated countable collection of finite-dimensional manifolds
Zj 1. such that every Einstein—-Maxwell metric h € %g is the pull-back via some dif-
feomorphism of an Einstein-Maxwell metric i € % through which passes some Fin
with T; 21 C T;%q. This expresses the set of real numbers occurring as sV'/* for
{2-compatible Einstein—Maxwell metrics as a subset of a countable union of the critical
values of specific smooth maps Z;; — R, where each & is a finite-dimensional
smooth manifold. But Sard’s theorem tells us that, for each (j, I), the set of these crit-
ical values has measure zero in B, and the countable union of these over all (j, I)
therefore has measure zero, too. In particular, the values of sV'/? occurring for -
compatible Einstein-Maxwell metrics cannot contain an open interval. Thus, if f; and
t; are distinct values of sV'/? that occur for two different 2-compatible Einstein—
Maxwell metrics, there is a number fp between t; and > which is not a value of sV1/2
for any £2-compatible Einstein—Maxwell metric. The open sets (&)sg, Y —oo, o) and
(& | )~'(fy, oc) thus provide a separation of .#¢ into two open disjoint sets, each of
which contains just one of the given metrics. This shows that the two given metrics
must belong to different connected components, as claimed. o

The above argument avoids having to show that the moduli space .#5 is locally
smoothly path-wise connected. However, the latter does appear to be true, and to follow
from a modification of the arpument given by Koiso [21] in the Einstein case. The
idea is to show that the manifold % appearing in the proof of Proposition 2 carries
a natural real-analytic structure, and that the Einstein—Maxwell equations then cut out
a real-analytic subset of %, thereby providing a real-analytic Kuranishi-type model
for the local pre-moduli space; cf. [6, Corollary 12.50]. Ultimately, this is related to
the fact that solutions of the Einstein—Maxwell equations are real-analytic in harmonic
coordinates. The proof of the latter, which we leave to the interested reader, merely
consists of combining [32, Theorem 6.7.6] with [29, Proposition 4].

The physical motivation for the Einstein—Maxwell equations (1)—(3) assigns a cen-
tral role to the 2-form F, which represents an electromagnetic field. It may therefore
seem strange that we will often simply refer to h as an Einstein—-Maxwell metric, without
explicitly mentioning F. There is good reason for this terminology, however. Indeed, in
our Riemannian setting, the metric i essentially determines the relevant 2-form:

Proposition 3. Suppose that (M, h) is an Einstein-Maxwell manifold, where the 4-
manifold is connected and oriented. If h is not actually Einstein, then the 2-form F
needed to make (h, F) solve the Einstein—-Maxwell equations (1}-3) is completely de-
termined by h, modulo substitutions of the type

F*weF*, F e 'F-
where ¢ &£ 0 is a real constant.
Proof. First notice that (3) can be rewritten as
F=-2F*ocF~, (3)

where F = r — (5/4)h is the trace-free part of the Ricci tensor, and where F* =
(F & «F)/2 are the self-dual and anti-self-dual parts of F. If we assume that f is not
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Einstein, then there exists an open ball 2 on which 7 £ 0, and (5) then algebraically
determines F on 48 up to substitutions of the form

F* s uF*, F wsu'F~

for a smooth non-vanishing function u Eiaﬁned on 8. However, Egs. (1) and (2) imply
that F* is closed, and reguiring that F* := uF* also be closed then results in the
condition that

O=duFy=dun Fr+udF* =du F*.

However, a self-dual form is non-degenerate on the set where it is non-zero, and F* is
non-zero on 2 by hypothesis. It therefore follows that du = 0 on 4, and hence that
i = c on this open ball. Thus, if i is not actually an Einstein metric, any other candidate
F* for F* would have to coincide with ¢ F*, for some constant ¢, on a non-empty open
set 8 c M. But since F* — cF* then belongs to the kernel of d + d* and vanishes on
an open set of our connected 4-manifold M, unigue continuation for harmonic forms
[3] then implies that F* = ¢F* on all of M. Applying the same argument to F—, we
thus see that if the Einstein—-Maxwell metric h is not actually Einstein, then the metric
h determines the closed and co-closed 2-form F = F* + F~ modulo changes of the
type

F* s eF*, F o 'F-
for a non-zero constant €. 0O

Because the physical electromagnetic field is known to actually be the curvature of
a principal Ui1) bundle, it might seem reasonable to also demand that F be chosen so
that [F/2x] HE.R{M ) is the Chern class of a circle bundle. Fortunately, however, this
condition can be satisfied, essentially “free of charge.” in the context that will concern
us here:

Proposition 4. Let h be an Einstein—-Maxwell metric on a smooth compact 4-manifold
M with b, (M) = b_(M) = 1. Then there is a constant multiple h of h and a 2-form F
such that (h, F) solves the Einstein-Maxwell equations, and such that F [2x represents
an integer class in deRham cohomology.

Proaf. Since one could simply take F = 0 in the Einstein case, we may assume that
is not Einstein. Now observe that if a is any positive constant, h ~~ a”h leaves the Ricci
tensor unchanged, but results in Fo F ~+ a—2Fo F. Thus, if (h, F) solves the Einstein—
Maxwell equations ( 1)—(3), then (a”h, aF) is also a solution. But if & is not Einstein, the
harmonic forms (acF* + ac—! F~)/2x then sweep out an open cone in HX(M) = R?,
and, because H*(M, Q) c H*(M,R) is dense, they thereby realize infinitely many
rational classes. By clearing denominators, this cone therefore also includes elements
of H*(M, ) /torsion. The claim therefore follows. 0

The present investigation will actually focus on a special class of solutions of the
Einstein—-Maxwell equations, first introduced in [29]:
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Definition 1. Let (M*, J) be a complex surface. A solution (h, F) of the Einstein—
Maxwell equations (1}—(3) on (M, J) will be called strongly Hermitian if both h and F
are invariant under the action of the integrable almost-complex structure J:

h= h{"r'f"r‘}f
F=F(J- 1.

When this happens, we will then say that h is a strongly Hermitian Einstein—-Maxwell
metric on (M, J).

The following is one of the principal results of [29]:

Proposition 5. Let (M*, J) be a compact complex surface. Then h is a strongly Her-
mitian Einstein—Maxwell metric on (M, J) iff there is a Kithler metric % on (M, ) and
a real holomorphy potential f #£ 0 on (M, g, J) such that h = ¢ has constant
scalar curvature.

Here a real holomorphy potential f is a real-valued function whose gradient with re-
spect to the Kihler metric g is the real part of a holomorphic vector field; this is equiv-
alent to requiring either that J grad f be a Killing field of g, or that the Riemannian
Hessian Vd f of f be J-invariant. The harmonic 2-form F needed to solve (1)}—(3) in
conjunction with A = f—2g can then be taken to be

F= g +f2 [p + sz—'aéf]_

where w = g(J-,-) and p = rg(J-, -} are respectively the Kihler and Ricci forms of
£ and where the final superscript indicates projection to the anti-self-dual part of a 2-
form. However, this choice of F is of course not quite unique, and can be modified in
the manner described by Proposition 3.

2. Solutions on Spherical Shells

In this section, we describe an essentially local construction of Einstein—Maxwell met-
rics on a spherical shell §* x I, where I — R is an open interval. We assume from the
outset that the metrics in question are cohomogeneity one [17], with an isometric action
of U(2) whose generic orbit is the 3-sphere §* = U(2)/U(1). The metric on such an
orbit then submerses onto a homogeneous metric on 5%, which must be some number
o” /4 times the standard unit-sphere metric. At least generically, we can then use the
positive function p as a coordinate, and so write our metric in so-called Bianchi IX form

do*
(o)

where ay, o2, o3 is a left-invariant co-frame on 5> which is orthonormal with respect
to the usual metric on §* = SU(2) = Sp(1). The fact that the metric coefficients of &
and o are equal reflects the fact that U(2) acts on §° with isotropy subgroup U(1), and
the latter acts on a cotangent space by rotations in o) and 2. On the other hand, & and
& are for the moment completely arbitrary positive functions.

The structure equations for SU{2) tell us that our co-frame satisfies

g = 5o +0° [oF +oF + B(0)o? ]

doy =202 Aoz, doy =203 Aoy, dos = 2oy A oa.
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Motice, in particular, that &y A o7 is closed. In fact, this closed 2-form is simply the
pull-back of the area 2-form of the curvature-4 metric on §°.

This picture automatically provides us with a g-compatible almost-complex struc-
ture J, characterized by

dp

T
y Ple)dio)

This actually turns our spherical shell into a complex manifold.

o] = a2,

Lemma 1. The almost-complex structure J is integrable, and so makes g into a Her-
mitian metric.

Proaf. With respect to the given J, the (1, 0)-forms are spanned by
__do
V@(@d@)

Let .# denote the differential ideal generated by these two 1-forms. Because

+igy and o +ioa.

d (L + f@) — 2ioy A gy = (oy +ioa) A (ian)

V@ @)d0)

and
d (o) + ioa) = 203 Aoz + 2o Aoy = (o) +ioa) A (—2ia3),

we have d# c #. Thus & is a closed differential ideal, and [T%!, T®!] < TOI.
Hence J is integrable, in the sense of the Newlander—Nirenberg theorem [33]. o

Imposing the Kihler condition now gives us a simple constraint.
Lemma 2. The metric g is Kahler with respect to 1 if and only if
b=
Progf. The associated 2-form of (g, J) is

w=1|'%gdg.-\a3+g2a|naz.

| &
dw = — Egdgnda;+2gdgna.Aaﬂg+gzd{al,—\a§}

= (l—\/_)zgdgﬁcrp\az,

showing that (g, J) is Kihleriff b= &. o

Thus

S| S
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We will henceforth assume that g is Kihler, and so given by

g= % +@*[oF +0F + d(o)] (6)
with K#hler form
w=pdp roz+p7c A,
In this context, the Killing field £ defined by
o3(f) =1, do)=01()=0(8)=0

acquires considerable interest, as it preserves w, and is generated by the Hamiltonian

I = 7
This observation immediately gives o a more global and intrinsic meaning than our
previous provisional definition might indicate. In particular, the fact that the symplectic
reductions have area 2wf now becomes a special case of the Duistermaat—Heckman
formula [15].

Treating the Hamiltonian ¢t as a coordinate now allows us to put our K#hler metric g
into the standard form [23]

g=wg+wdt®+w'6?,

where § is w—! times the usual metric on the symplectic reduction, and where #(£) = 1.
Comparing this with (6), we now immediately see that # = &3 and that w—! = p?®. It
then follows that

g=w! [g;llzl.fr:rl2 +r:r?}] = 9411’{0"2 +a3)

is a metric of Gauss curvature

4 1
K = — =
g*d 2

and Kihler form

oy = Q"iﬁm Aoy =47 Doy Ao
on the 2-sphere 5°. The formalism of [23] therefore allows us to calculate the scalar
curvature 5 or g, using the general formula [23,28, 30]

. d?
sd;;:[?f{cb—ﬁ&:]ﬁdrﬁﬁ,

where dpu = @ /2 is the volume form of g. In our case, the latter is explicitly given by
du=g’dorney Aca Aoy =2tdl Aoy Aoz Aas,

s0 we have

2 d?
42 — —{mzm] o1 Aoy Adt A s,

Ztsdrncr“\aﬂzna-;:[rzd’ I
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and hence

4 24, 247,
oo 1-}:?@[: {l-@}]. 0,

As a simple illustration of this formula, let us now use this to determine when g is
an extremal Kihler metric, in the sense of Calabi [8,9].

Lemma 3. The Kdahler metric (g, J) defined by (6) is extremal iff
s=aft+b
for real constants a and b, where t = p? /2.

Progf. Let n = JVs, where 5 is the scalar curvature of g. Then g is extremal iff n
is a Killing field. However, s is invariant under the isometry group, and is therefore a
function of g, or equivalently, a function of f. Thus, we automatically have 5 = uk,
where u = ds/df, and where £ = JV1 is already known to be a Killing field. If u is
constant, then # is a Killing field, and 5 is an affine-linear function of f. Conversely, if
n is a Killing field, then

0= ?(Enb) = ‘F("ugb} = ﬂ?{afm +$"~b?“}u = f{“"?b]uf

and it follows that Vu must vanish, since the symmetric tensor product of two non-
zero vectors is always non-zero. This shows that 4 must be constant, and that 5 must
therefore be an affine-linear function of ¢, as claimed. o

Proposition 6. The Kahler metric (g, J) defined by (6) is extremal iff

d=A"+Bi+1+Ct '+ Dt

B 1
= —g + g+ +F+—

for real constants A, B, C, and D, subject only to the constraint that & = 0 in the
region of interest. Moreover, the scalar curvature of g is then piven by

s =—12(2At + B) = —12(Ag* + B).
Proof. By Lemma 3 and Eq. (7), the extremal condition is equivalent to

d® [, ot
F[I (b — 1}] = —5(at+b)

and integrating twice therefore yields

a b
Pid—-1)=——t*——rP+Ct+D.
(@ =D=—gt —pt +t+

Setting a = —244 and b = —12 B then yields the result. O
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These metrics coincide, in principle, with those discovered by Eugenio Calabi in his
remarkable first paper on extremal Kihler metrics [8]. Calabi's approach to the prob-
lem, however, took the independent variable to be the radius in complex coordinates,
and took the unknown to be a Kihler potential; by contrast, we have used the Hamil-
tonian f as our independent variable, and solved directly for the metric rather than for
a potential. We emphasize that our Bianchi IX approach allows one to display the gen-
eral solution explicitly, whereas Calabi was instead forced to prove his transformative
results using only an indirect understanding of the solutions. Notice that g has constant
scalar curvature iff A = 0, and is scalar-flat iff A = B = 0. ALE metrics of this
type were first introduced in [22], where the reader can also find a direct comparison
between the Bianchi IX formalism and Calabi’s approach. The metric is Ricci-flat if
A = B = C = 0, in which case g becomes the Eguchi-Hanson metric [16], unless
A=B=0C=D=0,when it is flat.

We now turn to the problem of constructing strongly Hermitian solutions of the
Einstein—-Maxwell equations. By [29, Theorem A], such metrics are exactly those of
the form h = f—2g, where g is a Kihler metric, f = 0 is a real holomorphy potential,
and h = f—2g has constant scalar curvature, except in the exceptional case that i
is anti-self-dual and Einstein. Here a real holomorphy potential means a real-valued
function f such that JV f is a Killing field.

Ouwr eventual goal is to construct strongly Hermitian Einstein-Maxwell metrics which
are U(2)-invariant and live on a compact complex surface (M*, J). In this setting, the
Kihler form @ of g will be harmonic with respect to hi, and will necessarily be the
unique harmonic form in its deRham class. This means that o will be U(2)-invariant,
and hence that f = 2~'/#|w|,;”* will also necessarily be U(2)-invariant. The Kahler
metric g = f2h will therefore be U{2)-invariant, too, and so can locally be expressed
in the form (6). Since f is a function on the space of U(2)-orbits, it must, in our lo-
cal picture, be a function of f. However, both + and f are then Hamiltonians whose
symplectic gradients are Killing fields, and the same argument used to prove Lemma 3
therefore implies that f must be an affine function of . Since we are only interested in
solutions which are not cscK, this means that f must take the form cf + o, where ¢ £ (.

However, multiplying f by a non-zero constant just rescales ki into another solution of
the same problem, so we can henceforth take f to be of the form

f=t—uw

for some real constant o.
Requiring that h = f—2g have constant scalar curvature then amounts to saying that

(6A +5)f ' =uf 3,
or equivalently as
s=xfr—6fAf7", (8)

where A = —V .V = —xd»d is the geometer's Laplacian, and « is some real constant.
Rewriting (6) as

2
g=%+2t af+a§+¢a§]f

and thereby re-expressing the associated 2-form as

w=dt A o3+ 2o Ao,
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the fact that
dt
—, W 2thay, v 2oy, v 2o
J2ud : ?

is an oriented orthonormal basis tells us that
xdt = 47 bay Aoy A o3,

s0 that, for any function @(f),

*do(t) = 42 dg (1)oy Aoz A aa.
Thus

dxdp = -‘-1-[!2@01@;];&'1. AT AT A T3,

and

Ap=—+dxdp = —%[Izd’fp']'
for any function of f, where primes denote derivatives with respect to ¢. Setting

W= 124,

and setting f =t — o, we can thus rewrite (&) as

o K 12“ }[ W }'
Tt—a? 10 YNe—a?|-
However, (7) tells us that

2 n
S:T[E—"-I"' ]f

and equating these two expressions thus tells us that

v wt _ _ W '
20— 5 6 —a) [—(:—uyﬂ] .

In other words, we will obtain a conformally Kihler solution of the Einstein—-Maxwell
equations iff ¥ solves the linear inhomogeneous equation

Ko

5 )

(t — )W — 6(f — )’ + 120 = 2(f — ) — %{t —a)—
However, the linear operator
W s (t — o) 0" — 6(f — )" + 120
acts on powers of (f — a) by

it —a) — [E(F — 1) —&F + 12](t —a)t = (£ —d)(F — D)t — )",
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so the general solution of (9) is
Ko
24
:ﬁx“+£ﬂx3+12+?jx+% (11)

where, for clarity, we have set ¥ = { — o and & = —x/12. Notice that (10} is not
quite the general quartic function of t, because the five coefficients only depend on the
four constants N, B, ¢, and «. Also notice that the polynomial (11} in x completely
determines « when & £ 0, thereby allowing one to reconstruct (10) from a generic
quartic polynomial in x for which the coefficient of x% is 1.

Making systematic use of the new variable x = f = f — « now allows us to put
the above results in a simple, concise form. In these terms, the general solution of our
problem is provided by the Kihler metric

1[::'EI{I—E}4+'EB{I—a}3+{t—u}2—%{t—u}— (10)

.l

dx? 2w
g=(x+a) [i +2{D'|2+a:,2}] + a3 (12)
- X 4o

20

associated to a quartic polynomial I of the special form (11). The associated Einstein—
Maxwell metric is then given by

h— % (13)

Proposition 7. Let & be a quartic polynomial in x of the special form (11), with 2
and ¢ both non-zero. Let g and h be the corresponding Kihler and Einstein—-Maxwell
metrics defined by (12) and (13) on a spherical shell where x, x + o, and \V are all
positive. Then the following are equivalent:

(1) The Hermitian metric h is Einstein.

(ii) The conformal class [g] = [h] is Bach-flat.
(iii) The Kithler metric g is extremal.
(iv) B = 2w,

Proof. By Proposition 6, with & = t>&, the metric g is extremal iff
U=+ B+t At BP 4
After making the substitution x = t — o and then comparing the coefficients of 17, we
obtain
A(6ee?) + B(—3a) =0,

and, since we have assumed that | and « are non-zero, this happens iff
_3B

22°
thus showing that (iii) <= (iv). Similarly, by comparing the coefficients of * and 1°,

wealsohave A = A and B = B—4Aw. In the extremal case, Eqg. (14) and Proposition 6
therefore tell us that

(14)

B B
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which is to say that 5 is a non-zero constant times x = { — «. However, a result of
Derdrirski [12, Proposition 4] asserts that if g is an extremal Kihler metric in real
dimension 4, with non-constant scalar curvature s, then s—g is Einstein iff the latter
metric has constant scalar curvature. But i = x—2g has constant scalar curvature 5, = x
by construction, so this shows that (iii) = (i). On the other hand, in real dimension 4,
any Einstein metric is Bach-flat, and any Bach-flat Ki#hler metric is extremal. Hence (i)
= (ii) = (iii), and we are done. 0O

Proposition 8. Let h be any Einstein—-Maxwell metric on a spherical shell arising by
rescaling the Kihler metric associated with a quartic polynomial W(t). Then h is also
obtained by rescaling a second Kahler metric §, which is instead compatible with an
oppositely oriented complex structure on the shell. Moreover, in inverted coordinates,
B is associated with the quartic polynomial

() = e
Proaf. 1f a U(2)-invariant K#ihler metric g is expressed as

AT
I{ 10_32

—t dfz 2 2 2
2= m+ (o] +o3) |+

then the substitution t = 1/f yields

1 dt* 2. 2] 2
2= f_z (t[m +2{51 +52}i| +fﬂ3)

5 -
= l,’ fl:—ajt +2{JF+J§}] + Zw“}a}z
t= 2dr(t) t

where T(t) := t*(t"). This shows that the metric § = g = g/t? is also Kihler,
although instead compatible with an oppositely oriented complex structure. Moreover,
when W is a quartic polynomial, U(t) = *¥(t!) is once again a guartic
polynomial. o

In other words, in the terminology of [1], these metrics are ambi-Kdahler. We note in
passing that if h = (t —a)2g forsome o = 0, then h = (1 —a/t) 28 = & (t—a) 28,
where & := |/e. Requiring that i have constant scalar curvature is thus equivalent
either to stipulating that W take the form (10), or to requiring that the expansion of ¥ in
it — @) be analogously constrained. We leave it as an exercise for the interested reader
to verify by direct calculation that these algebraic constraints on the quartics W and I
are indeed equivalent.

3. Solutions on Compact 4-Manifolds

In the previous section, we produced a family of Einstein—Maxwell metrics on spherical
shells (a, b) x §*. For simplicity, we will henceforth systematically use x = f — as the
“radial” variable on our shell, so that g is given by (12), with x = (a, b), and h is given
by (13). We will now next seek to ascertain when some g -quotient of (a, b) x (57 /)
of such a shell has a metric-space completion which is a compact Riemannian manifold,
where the Fy-action is generated by exp(2x £/ k).
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Proposition 9. Let W (x) be a quartic polynomial of the form (11). Suppose that % £ 0,
that a and b have the same sign, that x + « > 0 for x € [a, b], and that W(x) = 0 for
x e {a,b)If

Wa)y=0(h) =0, W|—g==Fka+c), and 1["'I|,_-=b = —k(b + o),

then the metric g defined on (a, b) x (52 /Zy) by (12) extends to a Kithler metric on a
compact complex manifold (M, J) obtained by adding twe copies of CPPy, oneatx = a
and one at x = b. This metric is invariant under an isometric action of U(2) on (M, g),
and (13) defines a strongly Hermitian Einstein—-Maxwell metric h on (M, J).

Proof. Under the composition of the Hopf map S /Z; — CIP; and the factor projection
{a,b) x (8/Z) — (5%/Z;), our metric g lives on an annulus bundle over CP;.
However, if we now choose to view each fiber annulus as a twice-punctured 2-sphere,
our hypotheses then puarantee that fiber-wise metric extends smoothly to a smooth
metric on this 52. Indeed, the fiber-wise metric takes the form

_a:!'_:c2 2 dxt M) 4,
Bl = T +T(x)dd? = T * 03 df

where T = 20/(x + @), d? = o3|y.. and # = k. Our hypotheses guarantee that
Tix) = 2ki(x —a)+ Oi(x —a)®) and that Y’ = 2k + O(x — a) = 2k + O(T), where
the error terms are rational functions of x — a which are repular at x — a = 0, and so
are real-analytic functions of T in a neighborhood of 0. On an interval x € (a,a + &)
where T is increasing, let us therefore choose

H=—

k

as a new “radial” coordinate. We then have da = [T’d:]f{?kﬁ ), 50 the fiber metric
becomes

2\ 2 - .
e = (F) da” + 22d B = (1 + J(a"))da” + s d i

for some real-analytic function JI{u) which vanishes at u = 0. It follows that the fiber
metric is a real-analytic Riemannian metric in a neighborhood of the puncture x = a.
The same argument with x — a replaced by b — x, similarly shows that the fiber metric
extends real-analytically across the puncture x = b.

Regularity of the remaining components of the metric g is now straightforward.
Indeed, notice that x is a real-analytic function of s, where = is the local radial fiber
coordinate introduced above. Since o + o7 is the standard curvature-4 metric on CPy,
the terms in the metric gotten by multiplying o7 + o3 by 2(x + ) are therefore real-
analytic. The rest of the metric is then just obtained by extending the fiber metric to T M
by taking it to annihilate the horizontal space of the standard homogeneous connection
on the Chern class £k disk bundle over CIPy, so the resulting metric g is actually real-
analytic on M. By the same argument, the Kihler form

w=dx Aoy + 20X +a)og Ao,

of g also extends real-analytically to M; and since Vo = 0 on an open set of M, it
follows that e is a parallel form on (M, g). Thus g is actually a Kihler metric on M.
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Moreover, the fiber 2-spheres are holomorphic curves on an open dense set, and hence
everywhere by continuity. Their Riemannian normal bundles are therefore J-invariant,
and we therefore see that the two copies of CIPy we have added at x = @ and x = b are
now actually holomorphic curves. The original isometric action of U{2) on the shell also
acts isometrically along these added curves, and so defines a global isometric action on
(M, g). Finally, the real-analytic function x on M is a holomorphy potential on a dense
set, and hence everywhere, while the globally defined Hermitian metric A = x~2g has
constant scalar curvature on an open dense set, and hence everywhere. It follows that i
is a strongly Hermitian Einstein—-Maxwell metricon (M, J). o

Let us now construct the most general quartic polynomial W{x) with the required
properties. We begin by choosing two real numbers b > a. We will then try to arrange
for x = a and x = b to be two successive zeros of I by setting

V=(b—-x)x—a)Qix)

for some quadratic polynomial () which is positive on [a, b]. In order to ensure that
these zeros merely correspond to coordinate singularities, though, Proposition 9 insists
that we stipulate that

Ve =kia+a), V|—p = —kib+a)
and this now becomes the requirement that

kix +a)+ E(b —x)x —a)

Q(x) = P

for some positive integer k and some real constant E. Since h = g/x?, we must also, in
keeping with Proposition 9, require that a and b have the same sign, so as to guarantee
that x* will be positive on [a, b]. Our challenge is now to arrange for the resulting
quartic

B (b—x)¥x—a

W P ) [kix+a)+ E(b —x)(x —a)] (15)

to take the form

g :ﬂx"+'!Bx3+xz+Ex+%
required by (11), while still remaining positive on the interval (a, b). Along the way,
we must also remember to verify that f = x + « is strictly positive on [a, b], so that
Egs. (12) and (13) will actually give rise to a positive definite metric g.
Expanding (15) in powers of x and setting the coefficient of x egual to 1, asin (11),
we obtain the equation

kia+b —a)+ E(a® +dab + b%)
bh—a

which is equivalent to the requirement that

ke —i(k+a—(k—Lb
E= a? + dab + b? ) (16)
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The other constraint imposed by requiring that (15) take the form (11) is that the ratio
between the constant term and the coefficient of x should be e /2:

a abE — wk
27 wkiag '+ D —(2ia+E+k)

This is equivalent to
k@' +b~")a® — (2(a + b)E — k)a — 2abE = 0.
After using the linear substitution (16) for E, this becomes the quadratic equation

[(a +b)e + ab][(a + b)*ke + 2a”b(k + 1) + 2ab*(k — 1)]
ab(a® + dab + b%)

=0

for «. Thus, there are precisely two possible choices for «; either

ab
= — 17
“ a+b a7

or else

2ablalk + 1) + bik — 1)]

kia+b)? (18)

Each of these choices then determines a value for E via (16), and thus a polynomial
Prix) via(15).

Of course, f = x + o must be positive on [a, b] for (12) to give rise to a metric
on a compact manifold. But this requirement is simply equivalent to the condition that
a+a = 0. If (17) holds,

ab a?

aib—a:p " "

a+o =d4a—

and, since a and b have the same sign, this condition is satisfied if and only if b = a = 0,
independent of the value of k. By contrast, if (18) holds, we then have

lablatk + 1)+ bk —1)] _ (b —a)l(k — 2)ab + ka?]

dra=a- kia + b)? - kia +b)?

L]

and, because a and b have the same sign, this is positive if and only if £ = 1 and
b = g = 0. From now on, we may thus assume that b = a = 0. When k = 2, we will
also only need to consider the choice of « given by (17). On the other hand, if £ = 1,
both (17) and (18) remain viable candidates.

The final condition required for (12) to yield a solution on a compact manifold is
that ¥ must be positive on the open interval (a, b). This will happen if and only if
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ib —a)Q(x) is positive on the closed interval [a, b] — B*. For the choice (17), this
function can be expressed in terms of the variable y = x — a as
ib—a)Qix) =kix +a)+ E(b — x)ix —a)
kab
=i:(x— ab )+—ﬁ—{k+1}a—{k—l}b
a+hb a? +dab + b2

ab —kab _ k+ ya—(k— Db
=.i:(}‘+a—a+b)+ a+h (b—a—yy

(b —x)a—x)

a® +4ab + b?
_ k& PP+Gk—Dat? + Tk — Da?b+Qk+ e
= a+bh (a+b)(a® +4ab + b?) !

(k — 1)b* + 3kab + (k + Da? ,
(a+bya+4ab+ b A

which is strictly positive when vy = x —a = (0, and so is positive for x € [a, b], for any
k = 1. For the choice (18), with k = 1, we instead have

(b—a)Qix)=(x+a)+ E(b—x)(x —a)
1% \ —oi-2a
- (x C(a+ b}?) N a2{++::lb+b? (b—n—a)
da’b da’b + 2aia + b)?
- (}1 - (@ + b}z) ~ (a+b)2(a® +4ab + b%)
a(b —a)* + (3a* + %)y + 2ay*
- (a+b)?

(b—a—y)y

¥

which is apain positive for y = x —a = (, and so, in particular, for x € [a, b].
Thus, when & = 1, both (17) and (18) give us a compact solution for each choice of
b = a = 0. When k = 2, only (17) works, but this choice in any case provides us with
a compact solution for each b > a > 0. To summarize:

Proposition 10. Equations (12) and (13) give rise to a strongly Hermitian Einstein—
Maxwell metric h on a compact complex surface (M, J) if, for some b = a = (,
v is given by (15), (16), and either (17) or the k = 1 case of (18). Moreover, any
metric thus constructed is invariant under an action of U(2) on M such that the generic
orbit of SU(2) has fundamenial gproup &y, where k = 0 is the integer occurring in the
expression for .

4. Geometry of the Solutions

We have now constructed some interesting families of Einstein—Maxwell metrics on
compact complex surfaces. It remains to completely understand the differential and
algebraic peometry of these solutions. We begin with the following global characteri-
zation:

Theorem 1. Let h be a strongly Hermitian Einstein—-Maxwell metric on a compact com-
plex surface (M*, J) with b_ # 0. Suppose that h is not a Kithler metric, and is in-
variant under an SU(2)y-action on M which has a 3-dimensional orbit. Then (M, J) is
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the kth Hirzebruch surface Xy for some k = 0, and (M, k) contains an open dense
set 4 which is isometric to a shell (a, b) x (5 /), equipped with a metric given by
(12) and (13), for U defined by (15), (16), and either (17) or the k = 1 case of (18).
The set % < Ty = F(OKk) & O) is exactly the complement of the two holomorphic
sections of Ty — CIPy arising from the two sub-bundles O(k) and O of Ok) & O,
while the restriction of the projection Ty — CPy to % = (a, b) x (5°/Zy) is just the
composition of the factor projection (a, b) = (5% /Zx) — (5°/Zy) and the Hopf map
(53 /Fy) — CPy.

Progf. Recall that h is said to be a strongly Hermitian Einstein—Maxwell metric on
(M, J) iff there is a 2-form F such that both # and F are both J-invariant, and such
that (h, F) is a solution of the Einstein—-Maxwell equations (1}—-3). Since (M, J) is
a compact complex surface, this is equivalent [29, Theorem B] to saying that & has
constant scalar curvature, and can be expressed as h = f~2g, where g is a Kihler
metric on (M, J), and [ # 0 is a real holomorphy potential. In particular, this implies
that (M, J) is of Kihler type. Since h is assumed to be non-Kihler, f must be non-
constant, thereby making £ := J grad; f a nontrivial Killing field of g. Moreover,

since &£ f = 0, it follows that £ is also a Killing field of h = f—2g.

Let £y, £2, £3 be infinitesimal generators of the SU(2)-action, where [, &] = &3
and its cyclic permutations all hold. Since SU(2) acts by isometries of i which are ho-
motopic to the identity, it preserves any 2-form which is harmonic with respect to h,
and therefore preserves the Kihler form w of g. Consequently, it therefore preserves
the holomorphy potential f = +2-'/4|w|,”*, and therefore preserves g = f2h. Since
the action preserves both « and g, it follows that it also preserves J. Thus, the real
vector fields ¢; represent infinitesimal symplectomorphisms of (M, @), and the com-
plex vector fields Z; = n; —iJn;, j = 1,2, 3, are holomorphic vector fields on
(M, J). Moreover, the commutation relation [y, £2] = £3 guarantees that w(f), £3) is
a Hamiltonian for ¢3. and so, by taking cyclic permutations, we thus see that the ¢; are
all globally Hamiltonian vector fields. However, a Hamiltonian vector field is zero at
a minimum of the Hamiltonian, and, since M is compact by hypothesis, such minima
must in fact exist. This shows that the Killing fields ¢; and the associated holomorphic
vector fields Z; all have zeros somewhere on M.

If 2 is a 3-dimensional orbit of SU(2), then T,M = T, 2 + J(T,.2) at any
p € %, and some pair of the Z; spans T'-°M in a neighborhood of any p € .27; by
renumbering, we may take these vector fields to be Z; and Z5. If « is a holomorphic 1-
form on M, then « is completely determined in a neighborhood of p by the holomorphic
functions «(Z,) and «(Z5), which are its components in the holomorphic co-frame
dual to (Zy, Z2). But w(Z;) is a globally defined holomorphic function on M. and so
is constant; and since Z; has a zero somewhere on M, this constant must be zero. Thus
o = () in a neighborhood of p, and therefore on all of M by uniqueness of analytic
continuation. In other words, h'-?(M) = dim H*(M, 2"y = 0. But since (M, J) is of
Kshler type, the Hodge decomposition therefore tells us that by (M) = 2h"%(M) = 0.
In particular, M has Euler characteristic y(M) =2 —2by +b: =2+ b, +b_ = 4,
since the non-triviality of the Kihler class [w] shows that b, (M) £ 0, and we have
b_{M) # 0 by hypothesis.

Since &£ = J grad f is a Killing field, the zero set of £ is a union of totally geodesic
submanifolds [20]; moreover, every normal derivative of & at such a submanifold must
be non-zero, because the restriction of £ to any normal geodesic must be a Jacobi field
which is not identically zero. This implies that f is a generalized Morse function in the
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sense of Bott [7]. On the other hand, since & — i J£ is holomorphic,
"E"ﬁ"i';f = glﬁ?ﬂvlf =1,

and since f is real, it therefore follows that the Riemannian Hessian Vd f, computed rel-
ative to g, is J-invariant. Consequently, the natve Hessian of f is J-invariant at any crit-
ical point. Thus, the critical set of f is a union of totally geodesic holomorphic curves
and isolated, non-degenerate critical points. However, since f is SU{2)-invariant, any
isolated critical point g would have to be fixed by the SU(2}-action, and since the ac-
tion, being isometric, commutes with the exponential map at g, the Hessian would also
have to be invariant under a non-trivial representation of SU(2) on T, M = 2, and
would therefore have to be a non-zero multiple of g. This shows that any isolated crit-
ical point must be a non-degenerate local maximum or local minimum. However, the
J-invariance of the Hessian also implies that any critical submanifold of real dimension
2 is also a local maximum or minimum of f. In particular, there are no critical points
where the Hessian has index 1. Since M is connected, the set of local minima must
therefore be connected, because this excludes any way to join two components by pass-
ing a critical point. Similarly, the set of local maxima must also be connected. If we use
C_ and C; to denote the sets of local minima and local maxima, respectively, it follows
that each of these two sets is either a point or a compact connected Riemann surface. In
particular, these sets have Euler characteristic ¥ (C+) = 2, with equality iff Ty = CP,.
However, since £ is a Killing field, the Euler characteristic of M coincides [20] with
the Euler characteristic of its fixed point set. But, since we have already observed that
x(M)y=2+b,(M)+b_(M) = 4, we therefore have

4<x(M)=x(Cs)+x(C_)<2+2=4,

and it therefore follows that ¥ (Cy) = 2, that C, = C_ = CIPy, and that b.(M) =
b_(M) =1

Because f is invariant under the action of SU(2), and because the level sets of f are
all connected, any 3-dimensional orbit 2 must coincide with some non-critical level
set of f. However, the flow of grad f = —JE& carries one such level set to any other,
and because the action of this flow commutes with that of SU(2), every non-empty non-
critical level set is conversely an SU(2)-orbit. On the other hand, since the action also
preserves the Riemannian distance from either critical level set C1, some, and hence
any, 3-dimensional orbit 2 of SU(2) is diffeomorphic to the unit normal bundle of
C; or C_. In particular, the unit normal bundle of C1 has finite fundamental group, so
the normal bundle of Cy is necessarily non-trivial. Moreover, if we set k = |7 ({27}
for some 3-dimensional orbit .2, then & coincides with the absolute value |Ci| of the
self-intersection numbers of these complex curves. However, b, (M) = b_(M) = 1,
and C_ - C; = 0 because C_ N, = & thus, only one of the curves C,, C_ can have
positive self-intersection, and only one of them can have negative self-intersection. At
the price of possibly replacing f with — f, we can thus arrange that C3 = £k, where
k= 0.

Because SU(2) acts transitively and isometrically on each level set 2" = f~'(1),
the function u = | grad f| is constant on each level setof f,and ¢ = u~'df is therefore
a closed 1-form on the set % where it is defined. The unit vector field y = u—! grad f
therefore satisfies

1
gac?rﬂ]‘c s ribvbliﬂa = nbvaiﬂ'b = nb?agbcnr = Evalnlz =0,
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and r is therefore a geodesic vector field. Hence J& = —uy is tangent to the normal
geodesic sprays of C, and C_. On the other hand, we have already observed that £
corresponds, under the normal exponential maps, to a rotation vector field in the fibers
of both these normal bundles. If i denotes the Riemannian distance from C_ to C,, the
Morse-theoretic picture of f : M — B thus amounts to saying that M is the union of
the normal disk bundles of radius ™ /2, glued together along their boundaries in such
a manner that the boundary of every fiber disk is sent to the boundary of a fiber disk
on the opposite side via a reflection. This displays M as the total space of a smooth
2-sphere bundle == : M — 5°. However, the fiber 2-spheres of the submersion o
must be holomorphic curves, because their tangent spaces are spanned by £ and J&
on a dense set. Moreover, the restriction of = to % = M — (C_ U Cy) becomes a
holomorphic submersion % — CIP) for a unique choice of complex structure on the
target 52, since the fibers are the orbits of a free holomorphic C*-action on % . Our
submersion thus becomes a smooth map &= : M — CP; which is holomorphic on an
open dense set, and therefore holomorphic everywhere. Thus (M, J) is the total space
of a holomorphic CP)-bundle over a complex curve. On the other hand, one can show
[4, Proposition V.4.1] that any such CP,-bundle is the projectivization {#") of a rank-2
holomorphic vector bundle ¥'. The two curves Cy in M now determine a pair of line
sub-bundles 2% of ¥ — CP; such that ¥ = 27 & #,. Hence

M=PF%¥ @ %) =P0a (¥ e %)) =B0a D)

for some integer £. But since £ = CE = k, this shows that (M, J) is biholomorphic to
the kth Hirzebruch surface Ty = B & Q).

The exponential-map model shows that £ is periodic, and generates a free circle
action on % = M — (C_ U C,). Moreover, this same model also reveals that any 3-
dimensional SU(2)-orbit .2 is a non-critical level set f—!(x) of the Hamiltonian f of £,
and that the circle bundle 2~ — 2 /S! over any symplectic quotient f—'(x)/S§' =~ §°
is isomorphic to the unit normal bundle of C_, which has Chern class —k&. On the other
hand, at the price of replacing g with cg, for a positive constant ¢, while simultaneously
replacing f with cf, we can now replace & with c—'£. We can thus arrange for £ to
have minimal period 2 /k. On the universal cover % of M — (C_ U C,), this then
implies that £ has period 2, and the symplectic reduction quotient f—!(x) — 57 thus
becomes the circle bundle of Chern class —1, with & generating the standard action of
5!, The Duistermaat-Heckman formula [15] thus asserts that the area of the symplectic
reduction of f~!(x) must therefore be 2 (x + &) for some real constant «. Moreover,
if we adopt the convention that SU(2) acts from the left, the £ becomes a lefi-invariant
vector field on each SU(2)-orbit in %, and so generates a right action of U{1) which
enriches the SU(2)-action into a U{2)-action. This now puts g in the form (12) on
4, while simultaneously putting ki in the form (13). But since g(&, £) = 2U0/(x + )
must tend to zero as we approach Cy, it follows that I must vanish at a = x(C_) and
b = x(C;). Moreover, since £ has minimal period 2x /& on M, the derivative of ||£||
along unit-speed geodesics orthogonal to Cs must tend to =k as we approach Cy, so

W Vg2 1M 14 29 w7
il -2 — —s 4k
X+ao dx | x+a 2dx | x4+ X+a

as x — a* or b, and hence

Wa)y="wkh =0 wia==ka+a) b =-—kib+a).
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Our previous discussion of the ODE for W then shows that it must be defined by (15),
(16), and either (17) orthe £ = 1 case of (18). 0O

In particular, the constructed solutions give us Einstein—-Maxwell metrics on all the
Hirzebruch surfaces £y = BP(O & O(k)) — TP for £ = 0. Of course, this list omits
the Hirzebruch surface ¥y = CPFy x CIPy, but £y does carry obvious solutions provided
by cscK metrics. Our construction therefore proves the following:

Theorem 2. Let Xy be any Hirzebruch surface, and let @ € H*(Eg, R) be any Kahler
class. Then £ can be represented by a Kahler metric g which is conformally related to
an Einstein—-Maxwell metric h. Moreover, ifk = 2, there is, up to isometry, exactly one
such g in 2 such that h is imvariant under the standard action of U(2) on Ey.

Progf. If k = 0, we obtain such a metric on £y = P{O & O(k)) forany b = a = 0
by letting o« be given by (17). From the symplectic point of view, the resulting manifold
is obtained by applying symplectic cutting [31] to B* x (5% /%), equipped with the
symplectic form

w=dl no3+ 2oy Ao

where the cut has been carried out at the level sets t = a +« and # = b + o, where ¢ is
a Hamiltonian for the periodic vector field £. These level sets become the holomorphic
curves Cy of self-intersection £k arising from the two summands of @ & (k). The
symplectic form on these curves is just 2fo) A o2, 50 their areas are given by w(C_) =
2mia + o) and w(C,) = 2x (b + ). Plugging in the value for « given by (17) therefore
tells us that

2wa? 2xb*

o) =" and wC)=—".

a+b a+hb
However, the fiber F of X, — CP is also a holomorphic curve, with homology class
given by

1
F= T (C,—C_)
and J and C_ together generate Ha(Zy, E). Since
@(C_) = 2ma” and w(F) = M+
a+h k

our construction allows us to take the areas of C_ and JF to be any pair of positive
numbers by choosing b = a = 0 appropriately. Since the area of any holomorphic
curve is certainly positive, every Kihler class on g, k = 0, is swept out taking o to be
given by (17).

On the other hand, when k = 0, every Kihler class on ¥y = CIP; » CIP contains a
cscK metric obtained by taking the Riemannian product of two round metrics on 52 of
appropriate radii. The claim therefore follows. o0

Theorems A and D now follow, as specializations of Theorem 2.

Next, let us notice that the family of Kihler metrics g on £, arising from (18), with
k = 1, behaves quite differently from the family arising from (17). As a matter of
notation, recall that ¥, is also the one-point blow-up of CF;; the curves C_ and C, are



644 C.LeBrun

therefore usually called € and £, because £ = C, corresponds to a generic projective
line in CP;, while the curve £ = C_ is exceptional, in the sense that its embedding in
%, is rigid. Since w(C_) = 2x(a +«) and @ (C;) = 2x(b +«), the value of o provided
by (18), with k = 1, yields

2 _ 2
WIE}:m{C_}:h(g 4a”b )_Emﬂb a)

" (a+h)? b+a)?
da’b 2mb(b + 3a)(b — a)
@(l) =€) =2= (b " a +b}?) - (a+h)? '

s0 that the K#hler metric g arising from the data b > a = 0 then belongs to the Kihler
class

2xbib + 3a)ib — a) 2ralb — a)?

Q=lol= (a+h)? (a+b)?
Writing this schematically as
Q=ul —vE,
we then have
u—uv="2x(b—a (19
2ot e

and these two pieces of information of course completely determine (u, v) as a function
of (a, b). However, this function is neither injective nor surjective. To clarify this point,
set

bfa=1+2;,
where 3 is an arbitrary positive real number. Then (20) may be rewritten as

1
E:5+2(3+—).
v 3

MNow notice that the right-hand side is invariant under 3 = 1/, tends to +00 as j —
+00, and has positive j-derivative when 3 = 1. It therefore follows that u/v = 9,
and that any u/v > 9 arises from exactly two values of 3, which are interchanged by
5 — 1/3. Also note that when 3 = 1, or in other words when b/a = 3, the k = 1 case
of (18) yields

B 4a’b _ 3a
o @+b) s 4
while plugging b/a = 3 into (17) similarly results in
___ab __Ja
~ a+b|, Ja—3 ]

Plugging either of these into (16) and (15), with k = 1, thus produces exactly the same
polynomial ¥ for a given pair with b = 3a = (. Thus, while we have three different
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solutions ¥ for any given Ki#hler class when u/v = 9, these solutions actually merge
into a single solution when u /v = 9.

While knowing a polynomial W is equivalent to knowing a pair (g, f) consisting of
a Kahler metric g and a holomorphy potential f such that i = f—g has constant scalar
curvature, it is not immediately clear whether the metrics g arising from different @rix)
are actually different. Let us therefore prove that a Kihler metric g arising from (17)
can never be isometric to one arising from (18), except in the case u/v = 9 discussed
above. To do this, first observe that, for any of the Kahler metrics on CP,#CF, under
discussion, the identity component of the isometry group must be exactly U(2), since
U2y < IsopiM, g), Isog(M, g) C AutgiM, J), and U(2) c Auty(M, J) is a2 maxi-
mal compact subgroup. Thus Isog( M, g) has exactly two 2-dimensional orbits, namely
(s, and the unordered pair consisting of the values of the scalar curvature s at the ex-
ceptional orbits Cy therefore constitutes a Riemannian invariant of g. Now the scalar
curvature of g is given by

2
sx)=——(2-¥"(x)),
X+o

and therefore takes the values

2 2
sf@)=——(2-""(a)) and s(b)=_—(2—¥"(b))
a+ao b+a
along C_ and C,, respectively. Substifuting the k¥ = 1 versions of (15) and (16), we thus
have

_ 12a(b? + a* + 2ba)
s(@) = (b —aya® +4dab + b2)a + @)
125(b? — 3a® + dab + 2aa)
S{b} =

(b —a)ya®+4dab +b2)b +a)
for these metrics. Plugging in the value for o given by (18), with k£ = 1, we then obtain

12
sla) = m = S{b},
50, for this family, the scalar curvature takes the same value along these two exceptional
orbits. By contrast, substituting the value for & given by (17) instead results in the values
12(6° + 5ab? — a?b — 3a¥)
b(b — a)(a® + dab+ B2y

_ 127 —ab? +a’b+a’)

T alb — aya? +4dab + b and  s(b) =

12(3a — b)(a + b)*
ab(a? + dab + b2 '

and hence 5(b) # s{a) except in the in the special case bfa = 3, u/v = 9 discussed
above. When u/v = 9, the Kihler metrics g arising from (17) are thus never isometric
to any metric arising from (18).

By contrast, as was pointed out to the author by Christina Tennesen-Friedman, the
pairs of metrics in a given K#hler class arising from (18) are actually isometric. To see

5(b) —s(a) =
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this most clearly, let us re-express the polynomial ¥ix) in terms of the more intrin-
sic variable t = x + o = p~/2 we first introduced in the context of the Bianchi IX
formalism; in these terms

dt? 20
s0 it will therefore suffice that the two choices of W actually become the same when
expressed in terms of t. However, if weseta =g +c and b = b+ o, the k£ = 1 version
of (15) then becomes
b—ft —
w=C"00"9 e ne—a)
b—a

where a = v/27 and b = u /27 encode the areas of the holomorphic curves Cs, and
s0 are obviously determined by the Kihler class; thus, we merely need to show that, for
two cohomologous Kihler forms arising from (18), the values of E given by (16) and
(18) actually agree. To see this, let us first parameterize the allowed values of a and b
by

a =

w | g

b ={

o
+23)—
3

for (1o, 3) € (B*)”. The k = 1 case of (18) then becomes

B _4{12& _ w(l+2)
T oa+h (14372
and the & = 1 case of (16) therefore becomes

22 3 L 1/3
T f@a+b? T 2w(l+3)? 0 Zw(l+1/37

which is manifestly invariant under 3 — 1/3. However, since

_ __my w3
T A T a1
b—b w(2+5(1+23) w2+ 1/5(1+2/3)
=0+ = =

(1+3)? B (1+1/3)*

we also see that (r, 3) — (m, 1/3) exactly interchanges the two solutions of type (18)
in a fixed K#hler class. The corresponding metrics are therefore isometric. On the other
hand, we emphasize that « is not invariant under (o, 3) ~ (o, 1/3); indeed,

_m{l+23}+m{]+2f3}_m(3—l)
T+~ A+1/p7 — \3+1)7

50 that the functions f = x =  — « associated with these two solutions are always
different whenever 3 # 1, or in other words whenever u /v = 9. To summarize:

|
ﬂ{m! 3} - ﬂ{m, ;} ==
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Theorem 3. Let M = &, be the blow-up of CIP; at a point, and let £ = ul — vE £
H*(M,R) be a Kithler class. Ifu/v € (1,9], then, up to isometry, 2 contains a unique
U(2)-irmvariant Kihler metric which is conformal fo an Einstein—-Maxwell metric. By
contrast, when ufv € (9, oo), there are, up to isometry, exactly two such Kahler met-
rics g, and these give rise to three distinct Einstein—-Maxwell metrics h via conformal
rescaling.

So far, we have been concentrating on geometric properties of the Kihler metric
g, with an emphasis on its Kihler class. However, Proposition 8 shows that different
Kihler metrics g can determine isometric Einstein-Maxwell metrics k. In the present
context, this means that, under the orientation-reversing diffeomorphisms isotopic to the
fiber-wise antipodal map of £; — CPP), conformally Kihler Einstein—Maxwell met-
rics pull back to conformally Kihler Einstein—Maxwell metrics. Moreover, Theorem 1
guarantees that these pull-backs continue to belong to the constructed families.

To understand the specifics of this phenomenon, let us now calculate the areas Ay of
certain holomorphic curves with respect to the constructed Hermitian metrics fi. Since
h = g/x?, and since the Hamiltonian x is constant on C_ and C,, we always have

2aib+ o)

2mia +a)
2 B2

Ap(C_) = and AL(C,) =

If & is given by (17), this then implies that

.2
Ap(C_) = An(C) = ==,
a+hb

no matter the value of k. By contrast, if £ = 1 and « is given by (18), then

2m(b — a)? 2x(b+3a)yb —a)
.H'-‘..I.{C_} — W: 3-“11 Af:l'{c+} — b{ﬂ T b}2 4
and we therefore have
An(Cy) atu
Ap(C) B2 o’

MNow recall that, if we set b/a = 1+23, the Kihler class, up to rescaling, is characterized
by the number

u _b{b+3ﬂ} B

2
;—m—“"‘lﬂ“*‘?’

so that 3 and 13 give rise to the same ray R*Q = B*(uLl — vE) in the Kihler cone. But
we now see that

A&{C+} _ ﬂ_ZE _ l+21"r3

An(CL)  B2v 142

s0 that interchanging these two solutions inverts the ratio of the areas of the holomor-
phic curves C, and C_ with respect to h.

By Proposition 8, all the Einstein-Maxwell metrics i we have constructed are ambi-
Kihler, meaning [1] that they are conformally related to both a K#hler metric g compat-
ible with the given orientation, and with a Kihler metric § compatible with the opposite
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orientation. If @ and & are the Kihler forms of g and g, then w spans the self-dual k-
harmonic 2-forms on M = E;, while & spans the anti-self-dual A-harmonic 2-forms.
Because baiM) = ba(E) = 2, the spans B[w] and B[®] therefore completely deter-
mine each other, since [w] - [@] = 0 with respect to the intersection pairing. If F is
the homology class of the fiber of £; — CIPy, the rays B¥[w] and B*[&] therefore
similarly determine each other, via the requirements [w] - [@] = 0, [w](F) = 0, and
[@](F) = 0. However, there is an orientation reversing diffeomorphism 7: M — M
which interchanges the two relevant complex structures, and interchanges C; and C_; in
fact, 7 is essentially the antipodal map on the fibers of &= : M — CPy, and in particular
satisfies 717 = idys. Now, since 7 reverses orientation, ( 7*A) - (T*B) = —A - B for any
A.B e HY(M). Hence

[w] - (T*[ew]) = (T Tle]) - (T[e]) = —(e]) - [e] = —[w] - (T [e])

and it therefore follows that [«] - (T*[@]) = 0. Since we also have {(T*[w])(F) < 0,
it follows that B*[@] = BE*("T*[x]), so that [&] is a positive constant times 7T*[a].
Thus, up to scale, i — “T*h must simply permute the solutions g in a given Kihler
class. Since the holomorphic curves C have equal areas with respect to the Einstein—
Maxwell metrics f arising from (17), but different areas with respect to the Einstein—
Maxwell metrics & arising from (18), we therefore deduce the following:

Proposition 11. Each of the Einstein-Maxwell metrics h arising from (17) admits an
orientation-reversing isometry which interchanges C, and C_. On the other hand, the
two different Einstein—-Maxwell metrics h on &y arising via (18) from a Kahler class
with u v = 9 are interchanged, up to overall scale, by an orientation-reversing diffeo-
morphism of M = I,.

Theorem B is now follows from Theorem 3 and Proposition 11.
Let us now re-examine the scalar curvature 5, of the metrics h = x—g. By Eqgs. (8),
(11), and (15),

24 24 ab
=k = —— W= — 2 ke — abE].
o o b—a

When « is defined by (17), this is given by

_ 2ab(b* —a* + kab)
T (b—a)a?+dab + by’

Ih

whereas, when « is given by (18), with k = 1, we instead have

12ab
b—a

5p =

In particular, the constant scalar curvature of any of the constructed metrics is necessar-
ily positive.

Of course, the scalar curvature is not invariant under multiplying i by a constant, so
it is far more interesting to instead compute the scale-invariant quantity

_ Jas Snddpen

Y fM dytp

v
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where Vj, = fd,u.,. is the total volume of (M, h). However, since h = x—g, we always
have

V,,:f 1 lx+w)dx Aoy Aoy Aoy
[a.b]x (5% (E)

2x? =P 1 +a)
= — dx
k Jiea x4

Az [x2 370
=% | 23 u

2711 1
“ % @ \GE W) |

If & is given by (17), we therefore have

Ve 272 (b — a)(a® + dab + b5
Tk 3a2b%(a + b)

and our previous calculation therefore tells us that

b? — a® + kab

= A o v @b
By contrast, when « is given by (18), with £ = 1, we have
V, = 2 (b — a)*[3b? + 4ab + 5a°]
3a2bta + b)?
and hence
VP — 4 V6(3b? +4ab+5az}‘ .

(a+h)

The curvature of the metrics determined by (17) thus behaves rather differently from
the curvature of those determined by (18). Indeed, when (22) holds, limp,q o0 55V, '~
coincides with the value of sV'/2 for the standard Fubini-Study metric on CP;. By
contrast, (21) tells us that the other families on the X have lim,,,_,, 5, V, '~ equal to
the value of sV''/2 for the standard orbifold metric on 5% /%, ; and this in turn tends to
0 as k — oo, even though limg _, o, 55 I-",,”E = +00 for any fixed value of b/a.

Let us now systematically compare the metrics & determined by (17) for a fixed

cohomology class @ € HX(M) on M = 52 x §2 or CP,#CIP,, as we change the
complex structure by letting k vary. To do this, we will need a fixed basis for H2(M)
that is independent of k. One such basis is provided by the classes

1
F=p€-C)

k
D:C_+L§JF.
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When k is even, these then correspond to the two factors of 57 x §7; for k odd, they
instead correspond to the fiber class and the exceptional curve E in CP#CP.. Now
recall that, with & given by (17), the self-dual harmonic form w then satisfies w(JF) =
2 (b —a) and w(C_) = 2wa’/(b +a), so that @ = [w] satisfies

QUD) 1 . k . k

Q(F)  (bfay*—1 |2 2|
In particular, this shows that a given cohomology class is only adapted to finitely many
of the constructed Einstein—Maxwell metrics h, although this number grows roughly
lincarly as £2(I)/2(F) — oo.

Now let some positive integer N = 2 be given. Let 2 € H>(M, R) be the cohomaol-
ogy class with (D) = 5N and ©2(F) = 1. Since

- 1y
a ]

we then have (b/a)® € (1,1+ 1/4N) for k = 1,..., 2N. Equation (21) now implies

that
Sf Vi k| 5N k 0,2k+2

and it thus follows that the values of 5, V,’* are increasing in both k even and k odd
for k € {1,...,2N}. This shows that, for M = CP,#CP; or §% x 52, the restriction
of the normalized Einstein—Hilbert functional to the Fréchet manifold %5 (M) has N
different critical levels for such a choice of £2. But since Proposition 2 shows that the
Einstein—Hilbert functional is constant on each component of the moduli space .# o of
2-compatible Einstein—Maxwell metrics, it follows that .# 5 has at least N connected
components. This proves Theorem E.

5. The Page Metric Revisited

While various known results [12,25,27] imply that Page’s Einstein metric [34] on
CP>#CP; and the product metric on CPy x CP are the only conformally Kihler,
Einstein metrics on compact 4-manifolds of signature zero, it is still interesting to see,
in detail, how this broad assertion manifests itself within the narrower context of the
present investigation. We will therefore wrap up our discussion by concretely locating
the Page metric among the Einstein—Maxwell metrics constructed in this paper.

By Proposition 7, the metric # is Einstein iff U satisfies

B =29

Since we have

o

{b—x}{x—a}[ ke —k+1a—(k—-1b
= —— | kx +a)+

b—a a® +4ab + b? {b—x}{x—a}]
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it follows that

ke —(k+1)a—(k—1)b
- (b —a)a® +dab + b1)
—2kia+ba + (k=22 +aX(2+k)
(b —a)a® +4dab + b2)
The Einstein—-Maxwell metric i constructed from W is therefore Einstein iff
2ka” +2(b — a)a — (k +2)a* — (k —2)b* = 0.
When « is given by (18), with k = 1, Eq. (23) becomes
5 2
2( da-b

dab
_{a+b}?) —E{b—a}(a + b2

B =

—3a*+b =0

and by dividing by a® and setting z = b/a, this can be rewritten as
(z—1)?
(z+1)*

(z3+7"z2 +13z +3) =0.
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(23)

Since we automatically have £ = 1, this shows that no Einstein—-Maxwell metric ki in

this family is Einstein—or even Bach-flat.
On the other hand, if « is instead given by (17), Eq. (23) becomes
PV b —ayab— (k+2a® — (k— 25 =0
fa+h? o

and, again dividing by a” and setting z = b/a, this can be rewritten as

k= 42k - D+ 2k + Dz +(k+2)

Q.
(1+z)?

The Einstein-Maxwell metric k is therefore Einstein if and only if z = b/a = | solves

the quartic equation
k—2)z* + 20k — D2 +2(k + Dz + (k+2) = 0.

When £ = 2, however, the coefficients are all non-negative, so such a solution cannot

exist. On the other hand, when k = 1, the equation becomes
-4z -3=0,

and this actually has a unique solution z > 1, because z* — 4z — 3 is negative when
z = 1, has positive derivative for z = 1, and tends to +oc for large z. In fact, this
solution can be expressed in terms of radicals by Ferrari’s method, and is explicitly

given by

b 1 1
E=Z=J§( ]+JE_TJ§)

[ )] )

== 1784358

(24)
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Since u/v = (b/a)® for the Kihler metrics in the family associated to the choice of o
given by (17), Theorem C therefore follows by squaring the right-hand side of (24) to
obtain u/v. We leave it as an exercise for the interested reader to directly compare the
resulting metric f, as defined by (12) and (13), with the expression discovered by Page.
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