
OpenUVR: an Open-Source System Framework for
Untethered Virtual Reality Applications

Alec Rohloff§

Applied Research Associates
Zackary Allen§

Red Hat, Inc.
Kung-Min Lin§

University of California, Berkeley
Joshua Okrend§

Riverside Technology, Inc.

Chengyi Nie§

Stony Brook University, New York
Yu-Chia Liu

University of California, Riverside
Hung-Wei Tseng

University of California, Riverside

Abstract—Advancements in heterogeneous computing tech-
nologies enable the significant potential of virtual reality (VR)
applications. To offer the best user experience (UX), a system
should adopt an untethered, wireless-network-based architecture
to transfer VR content between the user and the content
generator. However, modern wireless network technologies make
implementing such an architecture challenging, as VR applica-
tions require superior video quality—with high resolution, high
frame rates, and very low latency.

This paper presents OpenUVR, an open-source framework
that uses commodity hardware components to satisfy the de-
mands of interactive, real-time VR applications. OpenUVR signif-
icantly improves UX through a redesign of the system stack and
addresses the most time-sensitive issues associated with redun-
dant memory copying in modern computing systems. OpenUVR
presents a cross-layered VR datapath to avoid redundant data op-
erations and computation among system components, OpenUVR
customizes the network stack to eliminate unnecessary memory
operations incurred by mismatching data formats in each layer,
and OpenUVR uses feedback from mobile devices to remove
memory buffers.

Together, these modifications allow OpenUVR to reduce VR
application delays to 14.32 ms, meeting the 20 ms minimum la-
tency in avoiding motion sickness. As an open-source system that
is fully compatible with commodity hardware, OpenUVR offers
the research community an opportunity to develop, investigate,
and optimize applications for untethered, high-performance VR
architectures.

I. INTRODUCTION

With high-performance graphics processing units (GPUs)
and hardware accelerators, modern heterogeneous personal
computers already have the computing power needed for
virtual reality (VR) applications. But latency and mobility are
still a problem; to provide the best user experience (UX),
a system must be enabling the user to move around freely
and able to deliver VR content to the user in 20 ms to avoid
motion sickness in real-time gaming [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]. Unfortunately, existing commercialized VR
solutions adopt either a tethered architecture that limits user

The authors would like to thank the anonymous reviewers for their helpful
comments. We also owe a debt of gratitude to Christopher Fraser for his
excellent copyediting skills. This work was partially sponsored by the two
National Science Foundation (NSF) awards, 1940048 and 2007124. This work
was also supported by new faculty start-up funds from North Carolina State
University and University of California, Riverside.

§Alec Rohloff, Zackary Allen and Joshua Okrend are former undergraduate
researchers at North Carolina State University advised by Hung-Wei Tseng.
Kung-Min Lin is a former summer intern at University of California, River-
side advised by Hung-Wei Tseng. Chengyi Nie is a former undergraduate
researcher at University of California, Riverside advised by Hung-Wei Tseng.

mobility [11], [12] or an untethered architecture (using mobile
devices) that limits visual effects [13], [14], [15], [16].

The major obstacle in developing effective untethered VR
(UVR) systems lies with a mismatch between the bandwidth
demand for high-quality visual content and the sustainable
bandwidth provided by the underlying wireless VR links.
Though compression helps lower the bandwidth demand to
tens of Mbps, the increased visual latency is unacceptable to
latency-sensitive VR applications. Recent research projects
have promoted millimeter-wave (mmWave) wireless technolo-
gies to avoid the trade-off between latency and bandwidth [17],
[18], [19]. However, such technologies severely limit user
mobility because they depend on line-of-sight signaling. As a
result, currently available UVR products can offer only mildly
entertaining novelty titles.

This paper presents OpenUVR, a fully open-source, open-
architecture VR system framework that resolves the three-
way trade-off between latency, bandwidth, and UX. Rather
than treating a VR application as a type of video streaming
with bandwidth issues, as is often done, OpenUVR improves
the end-to-end latency that is critical to real-time, interactive
action titles. OpenUVR also builds on an important lesson
from modern high-performance I/O systems—that redundant
memory copies comprise the most significant part of data-
exchange latency [20], [21]. We have found memory copies
from three sources to be especially problematic for UVR
architectures: (1) data exchanges between memory spaces, (2)
data transformations between system modules/stacks, and (3)
data buffering between system components.

OpenUVR’s design revisits the complete datapath (including
graphics/video libraries and the network stack), and accounts
for application demands in order to minimize the number of
memory copies in delivering VR content. The OpenUVR API
and kernel modules work with commodity hardware compo-
nents to eliminate redundant memory buffers/operations and
avoid context switches before data is sent to or received from
network stacks. OpenUVR further simplifies the network stack
by using peer-to-peer network architecture and abandoning
the traditional multilayer network-stack delivery design that
regenerates packets to accommodate the headers of each layer.

Eliminating unnecessary memory copies allows OpenUVR
to achieve an imperceptible delay of just 14.32 ms in real-time
VR applications—and this is done with affordable compo-
nents and current-generation Wi-Fi technologies. And because
the OpenUVR mobile user device (MUD) performs minimal

試用版

computations, it can be powered by a simple Raspberry Pi
single-board computer that costs only USD 35.

By exploring the unique properties, challenges, and trade-
offs inherent in the design of a UVR system, this paper makes
several contributions.
(1) The paper reveals the inefficiencies of system stacks
and the need for cross-layer optimizations in wireless VR
systems. As an experimental system, OpenUVR shows that
the latency overhead from each layer in the system stack
can be remedied through optimal buffering, memory copying,
transcoding, and data exchange. Our observations suggest that
an efficient VR system must present local optimizations in all
layers instead of focusing on a single-point design.
(2) The paper presents a general design philosophy for
wireless networking applications that require low la-
tency and high throughput. OpenUVR’s holistic, latency-
mitigating system framework bypasses the inefficiencies of
network stacks and uses existing hardware accelerators to yield
a robust wireless VR infrastructure. The same efficient design
can easily be applied to wireless systems with similar demands
as an alternative to expensive, throughput-oriented wireless
network technologies.
(3) The paper advances research by providing a pub-
licly available, open-source solution to VR system chal-
lenges. OpenUVR’s hardware components and wireless
technologies are widely available and relatively low-cost, and
its software may be freely inspected and modified. As a fully
open-source solution, OpenUVR will help researchers extend
and optimize VR architectures. §

II. BACKGROUND

We now describe the basic architecture of a VR system and
the challenges of building a VR system that promotes UX.
We also discuss existing VR solutions and their associated
drawbacks.

A. Basic operations and challenges of VR systems
A typical VR system needs to accomplish three main types

of tasks:
User input collection The system must gather all user
inputs from the commands that users explicitly send through
a device (e.g., a keyboard, microphone, or controller) and data
from sensors that detect the user’s motions.
Content generation The system must process user inputs,
select the elements to appear in the VR content, and render the
content according to application specifications. Rendering VR
content requires high-performance computing resources and
data retrieval from either local storage or a cloud service.
Content presentation The system must display the VR con-
tent to the user, usually as video frames and sound effects. The
user then reacts to the VR content and generates corresponding
inputs that initiate another task loop.

To deliver the best UX, a system needs to address three
challenges when completing the aforementioned VR tasks:
Visual effects The system must render video frames that
provide immersive views of virtual scenes. Such rendering

§You may find our source code and instructions to set up an OpenUVR
system through the following GitHub repository.
https://github.com/escalab/OpenUVR

Gaming PC
VR application

Rendering

User Device

Cloud Server
InternetSynchronization

User Inputs

Wired
connection

Content
Presentation

Gaming PC User Device

(a)

User Device

VR application

Rendering

Cloud Server
InternetSynchronization

User Inputs
Wireless

Connection
Content

Presentation

User Device

(b)

Gaming PC
VR application

Rendering

User Device

Cloud Server
InternetSynchronization

User Inputs

Wireless
Connection

Content
Presentation

Gaming PC User Device

(c)
Fig. 1. The VR task allocations in different VR system architectures

requires high resolutions and high frame rates (on the order
of 60 frames per second [FPS] in 1080p resolution for both
eyes) [22].
Response latency A delayed response in immersive VR
applications can cause motion sickness, so a VR system must
complete all task loops with reasonably low latency (20 ms).
Physical comfort In many VR applications, especially
games, the user can move about to perform VR actions, so the
MUD, which sends/receives inputs and displays visual effects,
must be lightweight and untethered to maximize comfort and
minimize constraints.

Unfortunately, no existing commercial VR system rises to
meet all of the above challenges.

B. Existing VR systems
Since the release of Facebook’s Oculus Rift VR headset in

2016 [11], VR systems have steadily gained market share as
companies have introduced improved designs. Figure 1 depicts
the three most common designs for modern VR systems and
how these systems allocate VR tasks among their components.
Tethered device Figure 1(a) illustrates the system architec-
ture of a VR system that uses a tethered device. A VR system
relying on a tethered device consists of a high-performance PC
and a low-performance wearable device. These two compo-
nents are connected by wires that power the wearable device,
transmit audio-visual output to the device, and carry user input
back to the PC from the device. The Oculus Rift and the
HTC Vive [12] are examples of such systems. The Rift only
tracks the orientation of the headset, and the Vive uses room
sensors to track the motion of the user in 3D space. In both
systems, wires connected to the interactive device limit the
user’s movements, create a tripping hazard, and undermine
the immersive experience at the heart of VR.
Untethered device without a host PC Figure 1(b) il-
lustrates the concept behind this type of VR system. All-
in-one devices place all VR tasks on the MUD, with the
exception of social-synchronization tasks or leverage the cloud
for rendering. MUDs fall into two main categories: MUDs

試用版

powered by smartphones and MUDs powered by standalone
devices.

Smartphone-powered headsets such as the Google Day-
dream [13] and the Samsung Gear VR [14] rely on a smart-
phone’s computing power to render images, the phone’s screen
to display the images, and the phone’s accelerometers to track
the user’s motions. Since the Google and Samsung systems are
limited by the capabilities of the user’s smartphone, highly
detailed VR games and experiences available on a PC are
unavailable to users with low-end phones.

Standalone VR systems like the Oculus Go [15], the Ocu-
lus Quest, and the Lenovo Mirage Solo [16] are similar
to smartphone-dependent VR devices, except that the Go
and Solo have their own screens, sensors, and smartphone-
grade processors to render and display images. As with the
smartphone-dependent devices, the Go and Solo are unable to
render highly detailed, complex VR experiences because the
processors in their devices are so limited.

To enable complex VR experiences while maintaining the
simplicity of MUDs, the recent cloud services including
Google Stadia [23], Steam Remote Play [24], and NVIDIA’s
Geforce Now, adopts the system architecture of using the
GPUs on cloud servers for rendering. To address the high
latency due to the distance and unpredictable traffic condiction
between cloud servers and the MUD, the system intensively
employs techniques including post-render warp [25], [26] that
render only informative parts of the upcoming frames on the
remote cloud. However, doing this requires significantly tuning
on the game engine and the visual library, increasing the
overhead of game development while the MUD still suffers
from the long latency with cloud servers.
Untethered device with a host PC The most promising
approach to creating a fully immersive wireless experience on
par with that of wired VR is to render visuals on a separate,
powerful computer and stream the visuals to a wearable device
using a fast wireless network (e.g., a network based on IEEE
802.11ac or 60 GHz mmWave solutions).

A few startup companies like Amimon, KwikVR, and
TPCAST (and some research groups as well) are developing
such UVR systems using 60 GHz mmWave wireless networks;
however, the systems haven’t yet reached the wider market
due to the limitations of mmWave wireless technologies.
TPCAST advertises a latency of less than 10 ms using a
60 GHz wireless connection, but a 60 GHz signal suffers
from very high attenuation. Furthermore, a 60 GHz signal may
rely on beam focusing to overcome attenuation, so users can
easily lose the wireless connection for a VR application when
they move the head-mounted display (HMD) outside of the
transmission beam. MoVR [19] tries to address the limitation
of 60 GHz mmWave with a specially designed antenna and
mirrors carefully positioned in the VR environment; this is
far from ideal, as MoVR still requires special environment to
work. Zhong et. al. [27] and Liu et. al. [18] investigate the use
of 60 GHz wireless networks and rendering pipelines placed
between the host PC and the receiver, but 60 GHz wireless
networks require a high decoding rate and have a severely
limited range. These UVR systems also rely on laptop PCs
that fail to match the power, weight, and budget limitations of
a MUD.

As with OpenUVR, Furion [2] leverages mature com-
modity IEEE 802.11ac technology to transmit content from
the host PC. By parallelizing the video codec and splitting
background/foreground rendering, Furion minimizes latency
to the same level as OpenUVR. However, Furion’s approach
requires multiple fully active processor cores on both the host
PC and MUD. As a result, a UVR system with Furion still
needs a smartphone as a MUD. GamingAnywhere [28] is an
earlier open-source game-streaming system design that can be
used directly with an IEEE 802.11ac wireless network. Like
Furion, GamingAnywhere requires a MUD with significant
computing power. Nonetheless, GamingAnywhere is an open-
source project, and the system’s inefficiencies have benefitted
OpenUVR’s design.

III. PERFORMANCE OF MODERN UVR SYSTEMS

In this section, we evaluated the performance, particularly
the visual latency between the host PC and the MUD. of
system frameworks that can carry VR content untetheredly
without relying on proprietary hardware components. Our
evaluation shows that all existing system frameworks fail to
meet the desired 20 ms deadline in avoiding motion sickness.
We further investigated the latency in each component of
the fully open-sourced GamingAnywhere platform [28] and
figured out the performance bottleneck in existing systems.

A. Experimental methodology
This section describes the hardware platforms that we used

to build the host PC and the MUD for selected frameworks
as well as the proposed OpenUVR that this paper will intro-
duce later. We also explain how we measured latency in all
evaluated systems.

1) Evaluated system platforms: We evaluated three plat-
forms that can generate VR content on a desktop gaming
PC and communicate with an MUD through wireless links.
We selected these platforms as they (1) rely on modern,
commercialized wireless technologies, (2) all support Unreal
engine to enable fair comparisons , and (3) at least allow the
server software installed on a custom-built gaming desktop.

These three platforms are (1) NVIDIA’s Moonlight [29] that
can use either a laptop or a RPi 4b as MUD with only the
client software open-sourced. (2) SteamLink [30] that uses
a dedicated wireless end-user device with an open-accessed
API. (3) GamingAnywhere [28] that can use either a laptop
or RPi 4b as MUD, but fully open-sourced on both desktop PC
server and MUD clients. In addition to the above three, we also
evaluated (4) HWA-GamingAnywhere, an improved version
of GamingAnywhere that we modified to leverage NVIDIA’s
hardware accelerated NVENC on the host PC/laptop. On the
RPi4b MUD, HWA-GamingAnywhere uses the OpenMAX
Bellagio IL on [31] to write an H.264 packet into GPU
memory and use the on-chip VideoCore IV accelerator to
decode and directly render frames to the screen.

2) Experimental platform/target hardware architecture: In
all evaluated UVR architectures, the host PC uses a middle-
class CPU and a high-performance GPU, an assembly similar
to most gaming desktop computers, to generate VR content.
The MUD of HWA-GamingAnywhere and OpenUVR, by
contrast, consists of only a Raspberry Pi computer with a

試用版

Fig. 2. The prototype MUD

wireless network-interface card (NIC). The wireless network
uses IEEE 802.11ac technology. When we tested each UVR
framework, we found that some interference from other wire-
less networks was unavoidable; each use case operated within
an environment that included 12 competing access points.

a) The host PC: We built a host PC with a quad-
core Intel processor based on the Coffee Lake architecture.
The processor runs at a maximum clock rate of 4.6 GHz
and dynamically adjusts the voltage between 0.8 GHz and
4.6 GHz. The system has 16 GB DDR4 DRAM for main
memory and an NVIDIA RTX 2080 GPU attached to the host
machine via 16× PCIe Gen.3 lanes. The NVIDIA RTX 2080
GPU provides hardware-accelerated NVENC encoder that
evaluted UVR frameworks can leverage. To provide wireless
network capabilities, we installed a PCIe wireless card with
a Qualcomm Atheros chip and a 2×5dBi omni-directional,
external, detachable, dual-band antenna supporting the IEEE
802.11ac standard at 867 Mbps. The host PC applies the
default power saving mode in the installed Ubuntu system.

b) The MUD: The target MUD architecture in OpenUVR
uses a Raspberry Pi 4 Model B (RPi4b) single-board computer
that costs only USD 35 [32]. RPi4b runs a simplified Linux
distribution (Raspbian) on a Broadcom BCM2711. The SoC
runs at 1.5 GHz with built-in GPU cores and has hardware
accelerators for decoding H.264 video/audio. The RPi4b wire-
less NIC supports the IEEE 802.11ac standard. The MUD can
output VR content to a wearable display like the VISIONHMD
Bigeyes H1 584PPI 2.5K Screen 3D Video Glasses we used to
test HWA-GamingAnywhere and OpenUVR. The MUD uses
Raspbian’s default power saving mode. We also installed
gyroscopes and accelerometers on the MUD and wrote our
own programs to translate sensed signals into meaningful
movements and operations inside games. Figure 2 shows the
resulting MUD prototype.

Although this work targets at system frameworks using
ultra-light-weight MUD based on small and simple devices
like RPi 4bs, we also tested the performance on a Dell Inspiron

Fig. 3. A side-by-side comparison of terminal output from the host PC
(orange) and the MUD (pink)

15 7559 laptop that uses an Intel Quad Core i7-6700HQ
processor with a dedicated NVIDIA Geforce GTX 960M GPU
as a reference design on MUD with intensive computing
power.

3) Performance measurements: In evaluating the perfor-
mance of VR systems, the most important metric is the end-
to-end latency between VR-content generation and VR-content
presentation. Unfortunately, fine-grain synchronization (e.g., in
µs) of clocks on different machines is impossible, so simply
comparing the received packet timestamp with the time on a
different machine is not a feasible solution.

We addressed the difficulty of measuring the latency be-
tween the host PC and the MUD (or the set top box) by
using photography (Figure 3). We first turned on the timestamp
feature in each game so that each rendered image would
contain a timestamp when generated on the host PC. We
then displayed each image on a monitor connected to the
host PC and a separate monitor connected to the MUD, with
the displays from the two devices presented side-by-side. By
using high-speed photography to compare timestamps shown
on each display, we were able to calculate the latency between
different nodes. As shown in Figure 3, the host PC’s timestamp
is 03:43.67, but the timestamp from the MUD is 03:43.41,
reflecting a latency of 260 ms. These photos also helped
us assess the quality of delivered picture frames; for each
framework being tested, we randomly sampled 1,000 frames.

By default, we tested the performance of these frameworks
using Unreal Tournament [33], an open-source, first-person
shooter game. Though Unreal Tournament is not, strictly
speaking, designed for VR, the game is by far the best choice
for testing a VR system for the following reasons: (1) Unreal
Tournament’s first-person shooter gameplay allows the user to
easily perceive visual delays. (2) Unreal Tournament runs on
an open-source game engine (Unreal Engine), which makes
optimization and code instrumentation easy. (3) Many popular
VR systems like the Oculus and HTC Vive use Unreal Engine.

To guarantee that motion was encoded when performance
was measured, we used scripts that emulate player input by
causing a character to spin counterclockwise at a constant rate
while standing in place and keep moving around in the scene
for 10 minutes. This virtual action effectively simulates the
user behavior commonly found in VR applications.

試用版

Vi
su

al
 L

at
en

cy
 (m

s)

0

40

80

120

160

200

240

NVIDIA

Moo
nlig

ht

(RPi4b
)
Stea

mBox

(ded
ica

ted

dev
ice

)

Gam
ing

Any
whe

re

(RPi4b
)

HWA-G
am

ing
Any

whe
re

(RPi4b
)

NVIDIA

Moo
nlig

ht

(la
ptop

)

Gam
ing

Any
whe

re

(la
ptop

)

HWA-G
am

ing
Any

whe
re

(la
ptop

)

Fig. 4. Visual latency of evaluated platforms

B. The Performance of Existing Systems

Figure 4 shows the visual latency of evaluated platforms. In
general, platforms using laptops performs significantly better
visual latency than using RPi 4bs due to the more powerful
computing power on laptops. The original GamingAnywhere
uses software video codec and the latency is 1.96× longer
than Moonlight (i.e., 52 ms v.s. 26.5 ms) with the same client
laptop. With the help of NVENC, HWA-GamingAnywhere
delivers almost similar visual latency as Moonlight, at 28 ms
on average, when using a laptop as the MUD. Steamlink’s
dedicated device sometimes outperforms the visual latency of
using laptops. but still longer than Moonlight with a laptop
MUD at 35 ms on average. When Moonlight and HWA-
GamingAnywhere use RPi 4bs as MUDs, the visual latency
of both platforms increases compared with using laptops.
Moonlight achieves an average of 36 ms and HWA-Gaming-
Anywhere achieves around 39.41 ms. Without NVENC’s
hardware acceleration, GamingAnywhere’s latency on RPi 4b
is as high as 1.2 sec. However, no matter using what type
of MUD, all platforms’ average visual latency failed the
recommended 20 ms threshold to prevent motion sickness
in real-time gaming. As a reference, the average latency of
tethered systems like Oculus Rift [34] is around 4 ms.

C. The Sources of Latency

To figure out the sources of failed end-to-end latency for
real-time VR applications, we instrumented code of HWA-
GamingAnywhere system in (a) the host game application,
(b) the game engine and the underlying library functions
and system stack modules, and (c) the software stack on the
MUD. We only investigated HWA-GamingAnywhere in deep
and believe that a detailed analysis of the latency in HWA-
GamingAnywhere is valuable for designing UVR systems
that lack laptop-class computing power on the mobile user
side as (1) none of the platforms have reference designs that
are fully open-sourced, (2) HWA-GamingAnywhere delivers
the same-level performance as other counterparts, and (3) we
investigated the Moonlight’s MUD code and the system imple-
mentation resembles HWA-GamingAnywhere, showing HWA-
GamingAnywhere’s system architecture is representative.

1) Datapath of a frame in HWA-GamingAnywhere: Fig-
ure 5 illustrates the datapath of a picture frame and the frame’s
audio streaming from the host PC to the mobile device. UVR
Frameworks with a host PC that Section II-B describes [2],
[19], [27], [18], [28] all use the same datapath. (Note that
circled numbers in subsequent paragraphs correspond to the
steps in Figure 5.)

When a VR application generates a picture frame 1 , the
application signals 2 a gaming capturing/streaming daemon
(usually a separate process that is allowed to access a shared
frame buffer within the GPU) to retrieve the generated content

3 . To reduce the volume of encoded content, UVR frame-
works convert the captured content from RGB format into
YUV color space and place the converted content into an input
buffer 4 ; this is typically done in GPU device memory to
exploit the on-GPU hardware codec (e.g., NVIDIA’s GPU-
accelerated NVENC video/audio encoder).

Next, the UVR framework invokes the video/audio codec
library to encode the transcoded content 5 and places the
result into another buffer 6 . Though modern GPUs support
4K resolutions, we chose the default 1080p resolution that
modern VR systems use, as prior work suggests that 1080p
resolution is sufficient for HMD [22]. Further, our empirical
study and work by Bao et al. [1] show that a 20 Mbps
bitrate effectively balances video/audio quality with bandwidth
demand.

To deliver the encoded content to the destination mobile
device, the UVR framework uses a streaming library to feed
content into the network stack’s transport layer (7 and 8)
and signals the network stack to take over 9 . Data must then
pass through the network layer (10 and 11) and the link layer
(12 and 13) before reaching the network-interface hardware
(steps 14 through 17). Each network layer attaches its own
protocol-specific header and checksum and repartitions the
data into the layer’s own protocol-specific format and packet
size. For example, UDP specifies a 65,507-byte packet size,
IPv4 specifies a 2,480-byte packet size, and IEEE 802.11ac
specifies a 2,304-byte packet size. Consequently, CPU pro-
cessing and multiple main-memory buffers are needed between
steps 8 and 15 .

Once the network-interface hardware on the mobile device
has captured the transmitted content 18 , data move back up
the network stack to the transport layer (19 through 23).
Content then moves from the transport-layer buffer to the user-
end application, and the user-end daemon receives a signal to
take over processing (19 — 24 and 25). The user-end daemon
uses its own computing resource (typically a system-on-chip
[SoC] with combined CPU and GPU cores) to decode the
content (26 and 27). The daemon then hands off the decoded
framework and audio 28 to an HMD-accessible buffer 28 .

To improve the throughput and utilization of system com-
ponents, modern UVR systems like our own exploit pipeline
parallelism (Figure 5). But pipelining does not eliminate the
need for each frame to go through every step in the datapath
outlined above. Rather, pipelining increases latency due to the
overhead of synchronizing pipeline stages.

試用版

Mobile
User
Device

Main
memory

Host
Computer

GPU
Shared Frame

Buffer
Encoder Input

Buffer

Main
memory

Transport
Layer Buffer

Network
Layer Buffer

Link Layer
Buffer

Phy

Wireless Channel

Decoder
buffer

Frame
Buffer

Encoded
Frame Buffer

CPU

VR Game
Application Game Capturing/Streaming Daemon

Video/Audio
Capture Module

Video/Audio
Encoding Module

Video/Audio
Streaming Module

System Network Stack

Phy

NIC

NIC

SoC

Transport
Layer Buffer

Network
Layer Buffer

Link Layer
Buffer

System Network Stack Game Display Application /
Input Capturing Daemon

1 3

2

4 5 6 7

9

8

10 11 12 13 14

15 16

17

18

19

20 21 22 23
25

24

26 27 28

Fig. 5. The datapath in our baseline, a modern UVR system

HWA-GamingAnywhere

(RPi4b)

Latency (ms)

0 4 8 12 16 20 24 28 32 36 40

video encoding (host PC) network stack (host PC) wireless network transfer
network stack (MUD) video decoding (MUD)

Fig. 6. Latency breakdown in HWA-GamingAnywhere

Kernel SpaceUser Space

Wireless network

User SpaceKernel Space

VR Engine / Graphics Library

Host PC

VR Application

OpenUVR Host API

OpenUVR Content Capturing Module

Mobile User Device

OpenUVR MUD
Prgram

OpenUVR MUD API

OpenUVR Network
Module

OpenUVR Content Presentation/User Input
Module

OpenUVR Network
Module

Fig. 7. The OpenUVR system architecture

2) Latency analysis of HWA-GamingAnywhere: Figure 6
breaks down the latency in each stage of the VR system
pipeline. The most significant source of latency comes from
the network stack on the host PC, which includes the transport-
layer protocol (i.e., RTP/RTSP), the network-layer protocol
(i.e., IPv4), and the link-layer soft MAC firmware. The net-
work stack on the host PC contributes 17.63 ms to the end-to-
end latency on our testbed. The video encoding latency, which
contributes 13.94 ms to the total latency, ranks in second place.
The aggregate latency measured in the host PC software stack
is 31.57 ms.

On the other hand, the fixed cost in the network subsystem
is only 3.2 ms; this includes propagation delay, physical mod-
ulation/demodulation, and link-layer control. The total latency
on the MUD is only 3.64 ms, as HWA-GamingAnywhere
requires minimal computation from the MUD while utilizing
accelerators on the highly optimized SoC.

In summary, our measurements indicate that if we can
minimize software latency, we can reduce end-to-end latency
and prevent motion sickness in the user—and this can be done
with existing wireless network technologies and a simple, low-
cost MUD.

IV. OPENUVR SYSTEM DESIGN

With lessons learned from implementing HWA-Gaming-
Anywhere, we identified the potential of fulfilling the 20 ms
threshold that prevents motion sickness through simply reduc-
ing datapath software latency. In response to the potential
points of optimizations, this paper presents the OpenUVR
system. Figure 7 shows the system stack of OpenUVR. On
the host-PC side, OpenUVR receives data from an application
through the OpenUVR API, uses the OpenUVR content-
capturing module to encode VR content, and delivers the
encoded content to the MUD via the OpenUVR network
module. Once the network module has receives data on the
MUD side, the OpenUVR content-presentation module will
decodes the content and allows the user-space MUD program
to display the decoded data to the user. If the user experiences
any feedback through sensors or a joystick, the MUD program
captures the input and sends it to the host PC in reverse order.

In designing each OpenUVR module, we carefully op-
timized the software latency to eliminate (1) unnecessary
data transcoding, (2) unnecessary memory copies, and (3)
system-level control overhead. The system-stack architecture
allows each framework to flow through the datapath shown
in Figure 8—a datapath that is significantly more streamlined
than the datapath in Figure 5. The following sections describe
our design and the techniques we used to reduce latency.

A. OpenUVR content-capturing module
Because the OpenUVR content-capturing module runs on

the host PC, the module can intercept VR-application content
while working closely with real-time video/audio-compression
hardware accelerators before delivering the encoded content to
the network module. The OpenUVR content-capturing module
includes three sources of optimization to minimize unnec-
essary operations and reduce latency: transcoding avoidance,
plug-in modules, and kernel-space functions.

1) Transcoding avoidance: In HWA-GamingAnywhere, the
largest contributor to latency in the game-streaming daemon
arises from converting the GPU-generated VR content from
RGB format to YUV format. (YUV format is generally
preferred for video-compression applications because it al-
lows efficient lossy compression to reduce video size without
having an appreciable effect on perceived video quality.)
HWA-GamingAnywhere, Furion and GamingAnywhere use
YUV420, which splits an image into its components of luma

試用版

Host
Computer

NIC

Mobile
User
Device

Main
memory

GPU
Shared Frame

Buffer

Main
memory

OpenUVR
Network Buffer

Phy

Wireless Channel

Decoder
buffer

Frame
Buffer

Encoded
Frame Buffer

CPU

VR Game
Application OpenUVR

Video/Audio
Encoding Module

Video/Audio
Streaming Module

OpenUVR
Network

PhyNIC

SoC

OpenUVR
Network Buffer

OpenUVR
Network

Game Display Application /
Input Capturing Daemon

1 3

2

4 5

7

6

10

11

12

8

9

13 14 15 16

Fig. 8. The OpenUVR datapath

(black and white intensity) and 2-dimensional chrominance
(color). YUV420 downsamples both chrominance components
in the horizontal and vertical dimensions, thereby reducing the
data required for each component by 50%.

In spite of the advantages that YUV420 offers, conversion
between two different color spaces can incur considerable
overhead. YUV420 may therefore contribute to latency be-
tween content generation and content perception. Addition-
ally, color-space conversion not only consumes computing
resources and time, but also requires memory space and
memory access to accommodate the raw RGB content and the
converted YUV content (steps 4 and 5 in Figure 5). In con-
ventional video-streaming applications, the added latency from
color-space conversion and buffering is acceptable because
these applications can tolerate longer delays or do not require a
user to interact with the content generator. Such applications
compensate for the delays from color-space conversions by
relying on higher video quality and lower bandwidth usage as
well.

As VR applications are extremely latency sensitive,
OpenUVR avoids color-space conversions, and so also
avoids color-space transcoding. OpenUVR can leverages the
hardware-accelerated encoder in the graphics card to compress
VR content while the content is in native RGB format.
OpenUVR then relies on the hardware accelerator in the RPi4b
MUD’s SoC to decode the RGB data. In this way, OpenUVR
is able to simplifies the process of generating encoded content
from steps 3 through 6 in Figure 5 to just two steps—steps

3 and 4 in Figure 8.
2) Plug-in modules for VR applications: Unlike conven-

tional VR solutions that use a daemon to capture application
content, OpenUVR requires an application to either directly
invoke OpenUVR’s API functions or indirectly invoke them
through a plug-in module in the game engine. The OpenUVR
API functions do not create additional processes in the system.
Rather, the functions all work within the same process, so
they share the address space of the calling application. In this
way, OpenUVR avoids the context-switching overhead and
memory copies associated with inter-process communication
and makes the signaling between the VR application and
OpenUVR modules more efficient.

Because OpenUVR and the VR game share both the host OS
and GPU virtual memory space, the device memory locations

on hardware accelerators are visible to the OpenUVR content-
capturing module. OpenUVR takes advantage of this visibility
and avoids redundant memory copies by integrating hardware-
accelerated codecs. Since a VR application can associate a
GPU-device memory buffer with an OpenUVR context (which
allows the application to share the same memory space as
the context), OpenUVR can poll the GPU memory buffer
periodically and invoke the video-encoding library on the GPU
memory buffer directly; OpenUVR simply needs to move
the final encoded VR content into the main memory minus
the raw VR content that the GPU generates. Without this
optimization, the current GPU runtime would need to either
explicitly copy raw rendered data from the GPU memory
to a shared memory location (e.g., texture memory) or use
inter-process communication facilities (most likely the host
DRAM).

3) Kernel-space functions: The OpenUVR content-
capturing/presentation modules implement some of their
functions as system kernel modules. For instance, after
the API has initialized the OpenUVR context, the content-
capturing module acts as a kernel module when it remaps
the user-space main-memory locations to the same physical
memory locations as those accessed by the system wireless-
network stack (e.g., the NIC driver). This design allows the
application data to directly reach the network stack without
additional copies from user-space to kernel-space (steps 6

and 14 in Figure 8).

B. Wireless network subsystem
To tackle the most significant latency in the VR datapath,

the wireless network subsystem in OpenUVR applies several
design decisions that directly or indirectly lead to latency
reduction.

1) Direct peer-to-peer network topology: OpenUVR adopts
the peer-to-peer (P2P) network topology specified in IEEE
802.11ac—a topology that allows the host computer and MUD
to directly communicate with each other (unlike the conven-
tional infrastructure mode that relies on a base station/router
as an intermediary for wireless communication).

Using P2P mode provides three benefits. First, the mode
reduces the latency on wireless channels by eliminating the
one-hop delay on the wireless base station. Though this latency
is only 3.2 ms in HWA-GamingAnywhere, the latency can
double as OpenUVR generates RGB encoded data that can

試用版

increase the data size of each frame. Second, P2P mode
halves congestion on wireless channels because the host PC
and the MUD usually share the same access point in HWA-
GamingAnywhere and OpenUVR; using P2P mode eliminates
the need for a datagram to go through the wireless channels
within the same area twice. Third, direct communication
between node pairs using dedicated channels removes the
demands of the network-layer protocol; this, in turn, gets rid
of memory copies from packet reformatting (steps 10 and 11
in Figure 5). In the current OpenUVR implementation, peers
are connected on an 80-MHz-wide channel within the 5 GHz
spectrum, and hostapd is configured to select the channel
on which it detects the least interference from other radio
broadcasts.

2) Direct network I/O—OpenUVRDPP: The OpenUVR
data plane protocol (OpenUVRDPP) is customized to elim-
inate memory copies when data packets are reformed and
headers attached in each layer of data-plane traffic. As real-
time gaming is especially latency sensitive, the best transport-
layer protocol for data traffic should neither perform additional
operations nor use additional buffers (essentially a UDP pro-
tocol with no-ops). P2P network topology removes the need
for the network-layer protocol and for packet reformation,
allowing OpenUVR to bypass these two layers and minimize
latency.

So instead of using the port number abstraction of
UDP/RTP, OpenUVRDPP works with the OpenUVR kernel
module to map the physical memory location of the data-link-
layer buffer to the VR application’s memory space. Given
such access, OpenUVR can copy GPU data directly into
OpenUVRDPP’s data-link-layer buffer (step 8 in Figure 8)
and generate packets without going through any conventional
routing- and transport-layer protocols.

3) Connection/quality control—OpenUVRCP: To set up
an OpenUVR connection and provide basic quality con-
trol, OpenUVR uses an off-band control protocol (OpenU-
VRCP). OpenUVRCP is relatively less time critical and less
bandwidth-consuming than OpenUVRDPP. Thus, we did not
implement a transport-layer bypass. Instead, we adopted UDP
to carry OpenUVRCP control messages.

a) Connection setup: When a MUD launches its in-
stances and grants access to the host PC’s P2P network,
the MUD sends an OpenUVRCP message to the host PC to
request access. If the user chooses to grant the MUD’s access
request, the user adds the MUD’s MAC address to the whitelist
or goes through the host PC’s administrative user interface.

b) Quality control: As OpenUVR still relies on video
compression to reduce bandwidth demand, video-codec pa-
rameters play an important role in the trade-offs between
latency, visual quality, and network bandwidth. Among the
most important parameters is the size of a group of pictures
(GOP). In the H.264 format that OpenUVR currently adopts,
a GOP consists of an I-frame followed by a certain number
of P-frames, where an I-frame represents the encoding of a
standalone image and a P-frame encodes only the changes
between the current frame and the previous frame. (The
H.264 standard also defines a B-frame, which we don’t use
since it relies on the frame that comes after it, making a B-
frame unsuitable for live-streaming applications.) The GOP

size defines the number of P-frames between each I-frame.
P-frames are smaller than I-frames (about a quarter the size
of an I-frame), so at a given constant target bitrate, having a
larger GOP size should result in smaller data size; however, if
the client drops a frame, the display will be corrupted for all
following P-frames because each frame builds on the content
of a previous frame (and a dropped frame never arrives). This
dependency means that streams with larger GOP sizes will,
on average, be corrupted for a longer period of time when a
frame is dropped.

In general, a larger GOP size reduces bandwidth demand,
but the larger size also makes an encoded stream more vulner-
able to network packet loss. A smaller GOP size increases the
size of data transmissions and makes the encoded data more
tolerant of packet loss. However, smaller GOP sizes increase
encoding latency and bandwidth usage. Smaller GOP sizes
create higher demands on GPU-device memory and system
main memory.

In order to reduce latency while decreasing the disruption of
visual stuttering, OpenUVR allows the MUD to send feedback
to the host PC regarding dropped frames. When the MUD
video decoder drops a frame because it hasn’t received all
of the data within a certain time limit, the MUD program
triggers OpenUVRCP to send a short message to the host
PC requesting that the host PC generate an I-frame on the
next transmission. The MUD sends this control message after
every frame until it receives an I-frame. When the host fulfills
an I-frame request, it ignores additional requests from the
MUD for a predetermined period of time to prevent the
generation of consecutive large frames that would worsen
network conditions.

C. OpenUVR API
To enable OpenUVR in a VR application on the host PC,

a programmer need only add a few function calls in the
OpenUVR API or have a plug-in module invoke these API
functions (if supported by the application framework). To
collect inputs and display VR content, the system needs the
MUD daemon to invoke the OpenUVR MUD API. Table I
lists the basic functions necessary for the host PC and MUD
to initiate OpenUVR in an application.

Figure 9(a) shows an example of code that uses these
API functions in a VR application on the host PC. In
the initialization section, the code creates buffer objects for
OpenGL (or another graphics library) to store the generated
content. After these buffer objects are created, the code uses
the openuvr_alloc_context function to associate an
OpenUVR context with a buffer object; the function also
allows the programmer to specify both a video codec and a net-
work protocol for carrying the VR content. Once the program
has successfully set up an OpenUVR context, the program can
set features for the context using openuvr_set_feature.
The final portion of the code launches a thread that runs
concurrently with the VR application to deliver content and
handle signaling between the host PC and the MUD.

Figure 9(b) shows code that the MUD daemon runs. The
daemon first initiates an openuvr_mud_context using
the openuvr_alloc_mud_context function. Next, the
program registers each input device (using the corresponding

試用版

Synopsis Description
OpenUVR Host API
struct openuvr_context *openuvr_alloc_context
(enum OPENUVR_DECODER_TYPE dec_type,
enum * OPENUVR_NETWORK_TYPE net_proto,
void *ptr)

Initialize an OpenUVR context with the specified video encoder, the desired
network protocol, and an OpenGL pixel buffer.

int openuvr_set_feature(struct openuvr_context *context,
enum OPENUVR_FEATURE feature, int value)

Configure a feature of an existing openuvr context with the specified value.

void openuvr_init_thread(struct openuvr_context *context) Create an OpenUVR thread using the given OpenUVR context.
int openuvr_map_input_device(struct openuvr_mud_context

*context, int id, int fd);
Map a device registered with id on the OpenUVR MUD device to a local
device using its opened descriptor.

OpenUVR MUD API
struct openuvr_mud_context *openuvr_alloc_mud_context(enum
OPENUVR_DECODER_TYPE dec_type,
enum OPENUVR_NETWORK_TYPE net_proto);

Create an OpenUVR MUD context with the specified decoder and network
protocol.

int openuvr_init_mud_thread(struct openuvr_mud_context

*context);
Create a MUD thread that captures inputs and renders the received VR
content using a standard display device.

int openuvr_register_input_device(struct openuvr_mud_context

*context, int id, int fd);
Register an input device to a device id in OpenUVR using an opened
descriptor.

TABLE I
THE OPENUVR API

GLuint pbo;
// generate an OpenGL buffer
glGenBuffers(1, &pbo);
// bind the created OpenGL buffer as a target to
//store generated content
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo);
// initializes the buffer object's data store
glBufferData(GL_PIXEL_PACK_BUFFER, 1920*1080*4, 0,
 GL_DYNAMIC_COPY);
// read a block of pixels from the frame buffer
glReadPixels(0, 0, 1920, 1080, GL_RGB, GL_UNSIGNED_BYTE, 0);
// initialize the OpenUVR context
ouvr_ctx = openuvr_alloc_context(OPENUVR_ENCODER_H264_CUDA,
 OPENUVR_NETWORK_RAW, &pbo);
if(ouvr_ctx == NULL) {

 ri.Printf(PRINT_ALL, "couldn't allocate openuvr
 context\n”);

 exit(1);
}
// set the target FPS for OpenUVR
openuvr_set_feature(ouvr_ctx, TARGET_FPS, 60);
// map an OpenUVR MUD input to the OpenUVR context
int fd = open(“/dev/input/mice”, O_RDONLY);
openuvr_map_device(ouvr_ctx, SYS_MOUSE, fd);
// create an OpenUVR thread to send VR content and
// receive user inputs
openuvr_init_thread(ouvr_ctx);

(a)
// initialize the OpenUVR context
ouvr_ctx = openuvr_alloc_mud_context
 (OPENUVR_ENCODER_H264_CUDA,
 OPENUVR_NETWORK_RAW);
if(ouvr_ctx == NULL) {

 ri.Printf(PRINT_ALL, "couldn't allocate openuvr
 context\n”);

 exit(1);
}
// map an OpenUVR MUD input to the OpenUVR MUD context
int fd = open(“/dev/input/mice”, O_RDONLY);
openuvr_register_input_device(ouvr_ctx, SYS_MOUSE, fd);
// create an OpenUVR thread to send VR content and
// receive user inputs
openuvr_init_mud_thread(ouvr_ctx);

(b)
Fig. 9. The OpenUVR setup-initialization code in (a) the VR host application
and (b) the MUD daemon

descriptor) and associates each device with an ID known by
both the MUD and the host-PC application. The program then
invokes the openwvr_init_thread function to create a
thread that continually displays the received VR content and
polls for user inputs.

V. OPENUVR PERFORMANCE

Using the observations from Section III, we optimized the
OpenUVR system stacks to further reduce end-to-end latency.

0

15

30

45

60

NVIDIA

Moonlight

(RPi4b)

SteamBox

(dedicated

device)

HWA-GamingAnywhere

(RPi4b)

OpenUVR  
(RPi4b)

max
average
min

Fig. 10. The visual latencies of OpenUVR, HWA-GamingAnywhere, and
other VR systems

HWA-GamingAnywhere

(RPi4b)

OpenUVR (RPi4b)

Latency (ms)

0 4 8 12 16 20 24 28 32 36 40

video encoding (host PC) network stack (host PC) wireless network transfer
network stack (MUD) video decoding (MUD)

Fig. 11. The latency breakdown for HWA-GamingAnywhere and OpenUVR

We then used visual-latency performance assessments, a user
study, and differing hardware configurations to evaluate the
optimizations.

A. Latency

In this section, we evaluate the visual latency of OpenUVR
and describe how each optimization helps reduce latency.

1) Visual Latency: Figure 10 compares the visual latency
of OpenUVR with that of HWA-GamingAnywhere and other
VR systems. We used exactly the same environment as in
Section III-A. The average latency of OpenUVR is only
14.32 ms, which is 2.67× better than the average latency
of HWA-GamingAnywhere. OpenUVR’s latency is also lower
than the latency of the 60-FPS display that an RPi4b can
support. Of crucial importance is the fact that OpenUVR’s
latency falls below the threshold for motion-sickness onset.

2) Latency reductions from optimizations: Figure 11 com-
pares the latency breakdown of OpenUVR with HWA-
GamingAnywhere and Table IIsummarizes the effect of
each optimization discussed in Section IV and shows how

試用版

Latency difference on Latency difference on Latency difference on Cumulative
Optimization Host PC (µs) MUD (µs) Network (µs) difference (µs)
Transcoding avoidance (RGB encoding) -5,507 312 800 -4,395
Plug-in modules+ kernel-space functions -4,710 - - -9,105
Direct network I/O -13,672 -707 - -23,484
P2P Network - - -1,600 -25,084
Feedback control -10 -40 - -25,134
All optimizations -23,899 -435 -800 -25,134

TABLE II
THE IMPROVEMENT ACHIEVED BY EACH CUMULATIVE OPENUVR OPTIMIZATION, COMPARED WITH HWA-GAMINGANYWHERE

OpenUVR brings the average visual delay down to less than
one 60-FPS frame. The most significant reductions in latency
were produced on the host PC, with minor improvements
observed for the MUD. As Figure 11 depicts, OpenUVR
spends only 3.72 ms in video encoding on the host PC, 3.95 ms
on the network stack of the host PC, 2.4 ms on the network
medium, 2.86 ms on the network stack of RPi4b and 1.39 ms
on video decoding on RPi4b.

By avoiding the color-space conversion, OpenUVR removes
5.51 ms of end-to-end latency. Though using RGB encoding
increases data size, the increase is offset by the P2P network
topology, which reduces network-transfer latency by 0.8 ms.
As a reference, with P2P and YUV encoding transfer latency
reduced by 1.6 ms.

Data sharing between OpenUVR and the running applica-
tion reduces end-to-end latency by 4.71 ms. The data sharing
is made possible through use of the OpenUVR API for
applications and the plug-in module for the underlying game
engine). The direct-network I/O mechanism lowers network-
stack latency by 13.67 ms on the host PC and 0.7 ms on
the MUD. OpenUVRCP’s feedback control improves overall
latency by only 0.1 ms, but the resulting video quality is far
superior to the quality achieved without feedback control.

B. Energy consumption
We also evaluated the energy consumption of the OpenUVR

system. We used a single USB power bank with a maximum
capacity of 5,400 mAh to simultaneously supply the whole
MUD, the RPi4b, and the HMD (with RPi4b output connected
to the HMD). This single-power-supply setup allowed the
MUD to run for 6 hours and 20 minutes. As a reference, a fully
charged Oculus Quest running for 8 hours consumes 10,000
mAh —significantly more energy than OpenUVR needs [35].

C. Performance sensitivity of GPU architectures
As the main computation resource for generating VR con-

tent and encoding H.264 data, the GPU plays an important role
in a VR system. In addition to using the RTX 2080 GPU (men-
tioned in SectionIII-A) to analyze OpenUVR’s performance,
we used a mid-end NVIDIA GTX 1060 graphics card. The
GTX 1060 has smaller amount of memory than the RTX 2080
(6 GB v.s. 8GB) and uses an earlier Pascal microarchitecture.
Both cards run at about the same frequencies (1708 MHz vs.
1710 MHz).

Both cards can stably generate VR content at 90 FPS
on the host side; however, the GTX 1060 has an end-to-
end latency that is 2 ms higher than that of the RTX 2080.
OpenUVR still fulfills the 20 ms threshold even with a mid-
range video card. The source of increased latency is the

longer encoding time that the GTX 1060 requires. However,
even with the increased latency, OpenUVR still reduces the
video encoding latency by 8 ms from purely relying on the
computation power of CPUs. The performance of hardware-
accelerated video encoding for modern GPU architectures thus
has a significant impact on end-to-end latency in the current
version of OpenUVR and we argue that hardware accelerated
video encoding is necessary since future CPU architectures
are unlikely to close the performance gap.

D. Quality
To evaluate the quality of OpenUVR, we conducted two

types of experiments. A quantitative analysis and a series of
user study.

1) Quantitative analysis: To calculate the Structural Sim-
ilarity (SSIM), a quantitative measurement of loss in frame
quality between the original version and the user-perceived
version that the video processing community uses [36], we
instrumented code on both the OpenUVR content capturing
module and the MUD moudle to record the received frames on
both sides. The modified modules will record 150 successive
frames for every 10 seconds on both the host PC and the
MUD since the game starts. At the end of the experiment,
we the average SSIM score for each batch of 150 frames and
the average throughout the whole 10-minute experiment as
Section III-A3.

OpenUVR obtains the best SSIM value for a batch at
0.961 and an average of 0.918 among all batches in our
experiments. The average SSIM score indicates that OpenUVR
achieves “good” visual quality that surpasses the 0.9 SSIM
threshold [37]. The SSIM of the worst-case batch in our
experiments is 0.679. The worst-case scenario occurs when
the user avatar enters a new room that is significantly different
from the previous room. We found that the frame rate of the
host PC also drops at the same time, a potential source that
affects the efficiency of OpenUVR host system modules and
causes drops of the encoded frames.

2) User study: We also conducted a single-blind A/B user
study to identify perceived differences between an OpenUVR
experience and a native host-PC experience. We randomly
selected one hundred college participants across different
institutions. We asked the participants, aged 20–27, to play
two sessions of Unreal Tournament. For session A, each user
played on a direct HDMI connection to the host PC. For
session B, each user played on an RPi4b using OpenUVR.
Both connections were output to a single monitor. We used an
HDMI switcher to facilitate switching between the two inputs
and set the monitor resolutions to 1920x1080 for both sessions.
Whether the user started with session A or B was randomized

試用版

by flipping a coin. After completing both sessions, we asked
the user which session the user preferred in terms of latency
and video quality.

Whereas 51% of users preferred the OpenUVR-based ses-
sion on the RPi4b (session B), 49% preferred the session on
the host PC (session A). Most users stated that they could
not identify a difference between the two sessions, but 24%
of the participants were adamant about either the host PC
or the RPi4b providing a substantially better-quality gaming
experience. These results suggest that there is no perceivable
difference between the quality of a wired system and a well-
functioning OpenUVR system.

E. Synchronous OpenUVR
In its default configuration, OpenUVR initiates an indepen-

dent thread that uses a specific GPU-memory location to con-
tinually encode data and transmits the data to the MUD. This
design means that OpenUVR’s encoding and communication
processes can pipeline with VR-content generation, improving
the throughput of system resources.

The default OpenUVR configuration also allows the host
to generate content at high frame rates (90 FPS for Unreal
Tournament). But the Raspberry Pi MUD can only decode and
display video at 60 FPS, so generating VR content at 90 FPS
does not improve UX. An application that can render at 90 FPS
takes at most 1/90th of a second, or 11.1 ms, to execute its
game loop. If the application runs at 60 FPS instead, it has
16.7 ms to run its game loop, giving it 5.6 ms of slack time to
perform OpenUVR’s tasks, which only take around 3.72 ms.

OpenUVR can thus provide a synchronous API that a game
can use to trigger encoding and data-exchange tasks. The lack
of need for a separate thread also frees up the full CPU core,
potentially lowering power consumption and/or the cost of the
host PC. In our experiments, we did not observe any significant
change in visual latency or quality due to OpenUVR’s default
configuration.

F. Discussion on future technologies
With transcoding avoidance, plug-in modules and imple-

menting OpenUVR API backend as kernel-space functions,
the remaining latency of OpenUVR starting from generating a
picture frame before the encoded frame reaching the network
stack is still 3.72 ms, accouting for 26% of the total end-to-end
latency. The network stack on the host PC still consumes 28%
of the total latency. Therefore, techniques or more advanced
hardware accelerators (e.g., video codecs or network offload-
ing engines) in reducing the computation/software overhead
on the host PC are still effective as both accounts for more
than half of the latency.

High bandwidth wireless network technologies can poten-
tially offset video encoding latency only if the bandwidth
can carry uncompressed raw content with very low latency.
However, as the volume of a raw frame (i.e., 5.93 MB in
full HD resolution) is significantly larger than an encoded
frame (i.e., 0.5 MB in full HD resolution using H.264),
delivering raw content also increases the latency in the system
interconnect as well as the whole datapath on both the host
PC and the MUD. In our experimental platform, copying a
raw full HD frame from the GPU to the main memory takes

1.1 ms while an encoded frame takes only 250 µs. We expect
the similar amount of latency would occur when copying the
frame to the wireless NIC as well as receiving the frame from
the wireless NIC on the MUD side. Even without considering
the buffering and computation overhead that next generate
wireless technologies (e.g., mmWave and IEEE 802.11ad)
typically incur, the aggregated additional latency due to the
increased frame size is already near the amount of the latency
of encoding and decoding the frame. Therefore, we expect
techniques that OpenUVR exploits are still necessary even
when the next generation wireless network technologies are
presented.

VI. RELATED WORK

As we discussed in Section III, the two major bottlenecks of
datapath latency are the video codec and the network software
stack. To reduce video latency, parallel video codecs [38], [39],
[40], [41] divide an image into multiple segments to allow par-
allel encoding/decoding. Furion [2] goes further by examining
the characteristics of VR content to achieve segmentation more
efficiently. OpenUVR’s latency reduction techniques, which
avoid transcoding and virtual-memory overhead, complement
parallel video codecs and Furion’s enhancements of them.
In addition, OpenUVR reduces computational and energy
requirements for VR applications.

This paper did not explore optimizations for VR-content
generation because other researchers have already succeeded
in this area; however, the parallelization strategies of VR
graphics engines do offer opportunities for improvement, no-
tably with respect to picture-frame tiling. The graphics pipeline
can be optimized by detecting redundant, identical tiles [42],
[43], [44], by separating stable objects from frequently updated
objects [45], [46], or by prioritizing image areas that attract
user attention [47], [48]. Rollback-free value prediction [49],
Potluck [50], AxGames [51], and PATU [52] apply approx-
imate computing techniques to image elements that do not
significantly affect UX. OpenUVR can work with any of these
frameworks to reduce the encoded video-stream volume.

Slow-motion VR applications benefit from strategies that
use free bandwidth to aggressively predict, precompute, or
cache all possible images that a VR user might encounter.
As these strategies are hardware-independent, many VR sys-
tems use them to improve UX. Examples of such systems
include FlashBack [3], CoIC [53], Coterie [54], DeltaVR [55],
MUVR [56], and the system developed by Mahzari et. al [57].
Nonetheless, for fast-moving real-time VR games, such strate-
gies may not work well since the user’s motions continually
change. Problems are especially acute for VR games with
multiple players.

Placing computation-intensive tasks in the cloud provides
an alternative VR architecture for thin user clients [58], [59],
[60], [61], [28]. VisualCloud [58] tries to predict the user’s
orientation in order to reduce the latency associated with get-
ting data from the cloud, and VisualCloud reduces bandwidth
demand by appending video segments to the media stream.
Even this combined approach isn’t enough to overcome the
long propagation delay between cloud servers and the user
device, so state-of-the-art solutions still suffer from more than
a 70 ms delay (and Outatime is no exception). That being said,

試用版

some promise may be found among VR applications that use
edge nodes on 5G networks [62].

As network latency creates serious limitations for cloud-
based solutions, VR systems using edge-computing architec-
tures are attracting more attention [62], [63], [64], [65], [66].
But these architectures need to distribute workloads between
cloud and edge nodes, which creates task-scheduling issues.
Although communication-constrained mobile-edge computing
(MEC) [63] optimizes task scheduling to minimize high
communication costs and maximize system cache utilization,
and although MSVR [64] hides the long network round-trip
latency by processing delay-sensitive actions on the mobile
device, both architectures require the client or HMD to have
a certain degree of computation capability, which compli-
cates application design. (Note that Kahawai [37] presents
a novel way to distribute tasks between the host PC and
mobile devices in order to accelerate graphical rendering and
reduce bandwidth.) Since OpenUVR leaves a relatively small
workload to the client and uses a more powerful local host
PC to generate VR content, OpenUVR’s architecture better
addresses the network delay issue while keeping application
design simple. The demands that OpenUVR places on the
MUD are also the lowest among these frameworks.

OpenUVR builds upon previous research to bypass
operating-system overhead and avoid unnecessary memory
copies [67], [68], [69], [70], [44], [49] and adopts a minimum
layered datapath design as IO-Lite [71]. Accomplishments
from GPUnet can also help reduce latencies further [72], but
GPUnet’s reliance on RDMA hardware support in wireless
NICs limits GPUnet’s usefulness when it is used with existing
commodity hardware. Without OpenUVR’s full-stack design,
GPUnet’s optimizations can only impact the performance of a
single system component and so fail to eliminate functionality
in each stack layer. We expect OpenUVR’s latency reduction
techniques would apply to other latency-sensitive systems
sharing similar issues [73].

OpenUVR’s network stack resembles user-space Wi-Fi [74]
in that the stack exposes the device layer directly to the appli-
cation. OpenUVR adds a kernel module alongside the existing
network interface. This feature allows conventional latency-
insensitive applications to access the network stack and benefit
from optimizations in each protocol; only OpenUVRDPP
traffic goes through the direct network-access feature. Note
that OpenUVR preserves access to the network-device buffer
as a protected memory address in user-space and requires the
user program to grant such access. Consequently, OpenUVR
does not create security issues in VR systems.

Much potential still exists for architectural and system-
level optimizations in VR gaming applications. Atomic Quake,
which demonstrates the usefulness of transactional memory,
serves as one such example [75], [76]. Aside from Atomic
Quake, the previously mentioned graphical pipeline optimiza-
tions, and OpenUVR, we have found only limited discussion
of how to modify computer architectures to enhance the
performance of a complete VR system.

VII. CONCLUSION

Due to severe constraints in latency and bandwidth, modern
UVR systems do not provide excellent UX. In addition, exist-

ing VR-related research projects only take single-component
approaches to optimizing system design, which limits the
effectiveness of performance improvement. Moreover, a cross-
layer design is difficult to implement because many existing
VR systems use proprietary software/hardware components
with only partially accessible designs, thereby discouraging
or preventing the research community from completing a
thorough examination of whole systems.

This paper presents OpenUVR, the first full-system, open-
source UVR framework. OpenUVR works on top of com-
modity hardware components, making it easy to replicate the
OpenUVR system and study the impact of each architectural
element on the performance metrics to which VR applications
are sensitive. OpenUVR also allows the research community
to revisit and evaluate the interactions among different archi-
tectural and system components. Perhaps most importantly, the
UX resulting from OpenUVR’s optimized system architecture
is better than those of existing commercialized products.

Our research shows that (1) a significant amount of latency
resides in each layer of a modern VR system and (2) optimiz-
ing system software stacks and efficiently using architectural
components can improve end-to-end latency to 14.32 ms,
which is imperceptible to the user. We hope that OpenUVR’s
novel open-source design will enable more research in VR
system performance and modification.

REFERENCES

[1] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, “Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos,” in
2016 IEEE International Conference on Big Data (Big Data), pp. 1161–
1170, Dec 2016.

[2] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai, “Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices,” in
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, MobiCom ’17, (New York, NY, USA),
pp. 409–421, ACM, 2017.

[3] K. Boos, D. Chu, and E. Cuervo, “FlashBack: Immersive virtual reality
on mobile devices via rendering memoization,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’16, (New York, NY, USA), pp. 291–304, ACM,
2016.

[4] T. A. Stoffregen, E. Faugloire, K. Yoshida, M. B. Flanagan, and
O. Merhi, “Motion sickness and postural sway in console video games,”
Human Factors, vol. 50, no. 2, pp. 322–331, 2008. PMID: 18516842.

[5] T. J. Buker, D. A. Vincenzi, and J. E. Deaton, “The effect of apparent
latency on simulator sickness while using a see-through helmet-mounted
display: Reducing apparent latency with predictive compensation,” Hu-
man Factors, vol. 54, no. 2, pp. 235–249, 2012. PMID: 22624290.

[6] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, pp. 78–
84, March 2018.

[7] Michael Abrash, “What VR could, should, and almost certainly will
be within two years.” http://media.steampowered.com/apps/abrashblog/
Abrash%20Dev%20Days%202014.pdf, 2014.

[8] S. Davis, K. Nesbitt, and E. Nalivaiko, “A systematic review of cy-
bersickness,” in Proceedings of the 2014 Conference on Interactive
Entertainment, IE2014, (New York, NY, USA), pp. 1 —9, Association
for Computing Machinery, 2014.

[9] K. Raaen and I. Kjellmo, “Measuring latency in virtual reality systems,”
pp. 457–462, 09 2015.

[10] E. Cuervo, “Beyond reality: Head-mounted displays for mobile systems
researchers,” GetMobile: Mobile Comp. and Comm., vol. 21, pp. 9 —15,
Aug. 2017.

[11] D. Kushner, “Virtual reality’s moment,” IEEE Spectrum, vol. 51, pp. 34–
37, January 2014.

[12] HTC Corporation, “VIVE.” https://www.vive.com/us/.
[13] Google, “Daydream.” https://vr.google.com/daydream/.
[14] L. Samsung ELECTRONICS CO., “Gear VR.” https://www.samsung.

com/global/galaxy/gear-vr/.

試用版

[15] L. Oculus VR, “Oculus Go.” https://www.oculus.com/go/.
[16] Lenovo, “Lenovo Mirage Solo.” https://www.lenovo.com/us/en/

virtual-reality-and-smart-devices/virtual-and-augmented-reality/
lenovo-mirage-solo/Mirage-Solo/p/ZZIRZRHVR01.

[17] I. TPCAST U.S., “TPCAST.” https://www.tpcastvr.com.
[18] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and

M. Gruteser, “Cutting the cord: Designing a high-quality untethered VR
system with low latency remote rendering,” in Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’18, (New York, NY, USA), pp. 68–80, ACM, 2018.

[19] O. Abari, “Enabling high-quality untethered virtual reality,” in Pro-
ceedings of the 1st ACM Workshop on Millimeter-Wave Networks and
Sensing Systems 2017, mmNets ’17, (New York, NY, USA), pp. 49–49,
ACM, 2017.

[20] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “The IX operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane,”
ACM Trans. Comput. Syst., vol. 34, pp. 11:1–11:39, Dec. 2016.

[21] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson, “Providing safe, user space access to fast, solid state
disks,” in Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII, (New York, NY, USA), pp. 387–400, ACM,
2012.

[22] E. Bastug, M. Bennis, M. Medard, and M. Debbah, “Toward intercon-
nected virtual reality: Opportunities, challenges, and enablers,” IEEE
Communications Magazine, vol. 55, pp. 110–117, June 2017.

[23] Google, “Stadia.” https://github.com/googlestadia, 2020.
[24] STEAM, “Steam Remote Play.” https://store.steampowered.com/, 2020.
[25] W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering 3d warping,”

in Proceedings of the 1997 Symposium on Interactive 3D Graphics,
I3D ’97, (New York, NY, USA), p. 7?Vff., Association for Computing
Machinery, 1997.

[26] J. Kim, P. Knowles, J. Spjut, B. Boudaoud, and M. Mcguire, “Post-
render warp with late input sampling improves aiming under high latency
conditions,” Proc. ACM Comput. Graph. Interact. Tech., vol. 3, Aug.
2020.

[27] R. Zhong, M. Wang, Z. Chen, L. Liu, Y. Liu, J. Zhang, L. Zhang,
and T. Moscibroda, “On building a programmable wireless high-quality
virtual reality system using commodity hardware,” in Proceedings of
the 8th Asia-Pacific Workshop on Systems, APSys ’17, (New York, NY,
USA), pp. 7:1–7:7, ACM, 2017.

[28] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
“GamingAnywhere: The first open source cloud gaming system,” ACM
Trans. Multimedia Comput. Commun. Appl., vol. 10, pp. 10:1–10:25,
Jan. 2014.

[29] NVIDIA, “Moonlight: Open source nvidia gamestream client.” https:
//moonlight-stream.org/, 2020.

[30] V. Corporation., “Steam Link.” https://store.steampowered.com/app/
353380/Steam Link/.

[31] Khronos(R) Group, “OpenMAX Overview.” https://www.khronos.org/
openmax/, 2011.

[32] Raspberry Pi Foundation, “Raspberry Pi 4 Model B.”
https://www.raspberrypi.org/documentation/hardware/raspberrypi/
bcm2711/README.md, 2019.

[33] Epic Games, “Unreal Tournament.” https://www.epicgames.com/
unrealtournament/.

[34] K. Raaen and I. Kjellmo, “Measuring latency in virtual reality systems,”
in International Conference on Entertainment Computing, pp. 457–462,
Springer, 2015.

[35] Tatjana Vejnovic, “VR Power Review: Fixing The Oculus Quest
Weight Problems And Extending Battery Life.” https://uploadvr.com/
vr-power-review/, 2020.

[36] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[37] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, M. Musuvathi,
and S. Saroiu, “Kahawai: High-quality mobile gaming using GPU
offload,” Association for Computing Machinery, May 2015.

[38] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K. Keutzer,
“Efficient parallelization of h.264 decoding with macro block level
scheduling,” in 2007 IEEE International Conference on Multimedia and
Expo, pp. 1874–1877, July 2007.

[39] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,
and T. Schierl, “Parallel scalability and efficiency of hevc parallelization
approaches,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, pp. 1827–1838, Dec 2012.

[40] M. Alvarez-Mesa, C. C. Chi, B. Juurlink, V. George, and T. Schierl,
“Parallel video decoding in the emerging hevc standard,” in 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1545–1548, March 2012.

[41] M. Hosseini, “View-aware tile-based adaptations in 360 virtual reality
video streaming,” in 2017 IEEE Virtual Reality (VR), pp. 423–424,
March 2017.

[42] M. Anglada, E. Lucas, J.-M. Parcerisa, J. Aragóun, P. Marcuello, and
A. Gonzáhlez, “Rendering elimination: Early discard of redundant tiles
in the graphics pipeline,” 04 2019.

[43] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “PIM-VR: Erasing motion
anomalies in highly-interactive virtual reality world with customized
memory cube,” in 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 609–622, Feb 2019.

[44] J. Arnau, J. Parcerisa, and P. Xekalakis, “Eliminating redundant fragment
shader executions on a mobile GPU via hardware memoization,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp. 529–540, June 2014.

[45] F. A. Smit, R. van Liere, and B. Fröhlich, “An image-warping VR-
architecture: Design, implementation and applications,” in Proceedings
of the 2008 ACM Symposium on Virtual Reality Software and Technol-
ogy, VRST ’08, (New York, NY, USA), pp. 115 – 122, Association for
Computing Machinery, 2008.

[46] K. Bahirat, C. Lai, R. P. Mcmahan, and B. Prabhakaran, “Designing
and evaluating a mesh simplification algorithm for virtual reality,” ACM
Trans. Multimedia Comput. Commun. Appl., vol. 14, June 2018.

[47] S. Yang, Y. He, and X. Zheng, “FoVR: Attention-based VR streaming
through bandwidth-limited wireless networks,” in 2019 16th Annual
IEEE International Conference on Sensing, Communication, and Net-
working (SECON), pp. 1–9, June 2019.

[48] S. Park, A. Bhattacharya, Z. Yang, M. Dasari, S. R. Das, and D. Samaras,
“Advancing user quality of experience in 360-degree video streaming,”
in 2019 IFIP Networking Conference (IFIP Networking), pp. 1–9, May
2019.

[49] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh,
J. Park, G. Mururu, O. Mutlu, and T. Mowry, “Rollback-free value pre-
diction with approximate loads,” in 2014 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT), pp. 493–
494, Aug 2014.

[50] P. Guo and W. Hu, “Potluck: Cross-application approximate deduplica-
tion for computation-intensive mobile applications,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’18, (New
York, NY, USA), pp. 271–284, ACM, 2018.

[51] J. Park, E. Amaro, D. Mahajan, B. Thwaites, and H. Esmaeilzadeh,
“AxGames: Towards crowdsourcing quality target determination in ap-
proximate computing,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, (New York, NY, USA), pp. 623–636,
ACM, 2016.

[52] C. Xie, X. Fu, and S. Song, “Perception-oriented 3D rendering ap-
proximation for modern graphics processors,” in 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
pp. 362–374, Feb 2018.

[53] Z. Lai, Y. Cui, Z. Wang, and X. Hu, “Immersion on the edge: A
cooperative framework for mobile immersive computing,” pp. 39–41,
08 2018.

[54] J. Meng, S. Paul, and Y. C. Hu, “Coterie: Exploiting frame similarity
to enable high-quality multiplayer VR on commodity mobile devices,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’20, (New York, NY, USA), pp. 923 —937, Association for
Computing Machinery, 2020.

[55] Y. Li and W. Gao, “DeltaVR: Achieving high-performance mobile VR
dynamics through pixel reuse,” in Proceedings of the 18th International
Conference on Information Processing in Sensor Networks, IPSN ’19,
(New York, NY, USA), pp. 13 —24, Association for Computing Ma-
chinery, 2019.

[56] Y. Li and W. Gao, “MUVR: Supporting multi-user mobile virtual reality
with resource constrained edge cloud,” in 2018 IEEE/ACM Symposium
on Edge Computing (SEC), pp. 1–16, Oct 2018.

[57] A. Mahzari, A. Taghavi Nasrabadi, A. Samiei, and R. Prakash, “FoV-
aware edge caching for adaptive 360 video streaming,” in Proceedings of
the 26th ACM International Conference on Multimedia, MM’18, (New
York, NY, USA), pp. 173–181, Association for Computing Machinery,
2018.

[58] B. Haynes, A. Minyaylov, M. Balazinska, L. Ceze, and A. Cheung, “Vi-
sualCloud demonstration: A DBMS for virtual reality,” in Proceedings

試用版

of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, (New York, NY, USA), pp. 1615–1618, ACM, 2017.

[59] G. Illahi, M. Siekkinen, and E. Masala, “Foveated video streaming for
cloud gaming,” CoRR, vol. abs/1706.04804, 2017.

[60] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and P. Hui,
“A measurement study on achieving imperceptible latency in mobile
cloud gaming,” in Proceedings of the 8th ACM on Multimedia Systems
Conference, MMSys’17, (New York, NY, USA), pp. 88–99, ACM, 2017.

[61] K. Lee, D. Chu, E. C. Laffaye, J. Kopf, Y. Degtyarev, S. Grizan,
A. Wolman, and J. Flinn, “Outatime: Using speculation to enable low-
latency continuous interaction for mobile cloud gaming,” in MobiSys,
2015.

[62] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, pp. 78–
84, March 2018.

[63] X. Yang, Z. Chen, K. Li, Y. Sun, N. Liu, W. Xie, and Y. Zhao,
“Communication-constrained mobile edge computing systems for wire-
less virtual reality: Scheduling and tradeoff,” IEEE Access, vol. 6,
pp. 16665–16677, 2018.

[64] L. Zhang, L. Sun, W. Wang, and J. Liu, “Unlocking the door to mobile
social VR: Architecture, experiments and challenges,” IEEE Network,
vol. 32, pp. 160–165, Jan 2018.

[65] Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu, “Energy-efficient
video processing for virtual reality,” in Proceedings of the 46th Inter-
national Symposium on Computer Architecture, ISCA ’19, (New York,
NY, USA), pp. 91 —103, Association for Computing Machinery, 2019.

[66] S. Shi, V. Gupta, M. Hwang, and R. Jana, “Mobile VR on edge cloud:
A latency-driven design,” in Proceedings of the 10th ACM Multimedia
Systems Conference, MMSys ’19, (New York, NY, USA), pp. 222 —
231, Association for Computing Machinery, 2019.

[67] H.-k. J. Chu, “Zero-copy TCP in Solaris,” in Proceedings of the 1996
Annual Conference on USENIX Annual Technical Conference, ATEC
’96, (USA), p. 21, USENIX Association, 1996.

[68] Y. A. Khalidi, J. M. Bernabeu, V. Matena, K. Shirriff, and M. Thadani,
“Solaris MC: A multi computer OS,” in Proceedings of the 1996
Annual Conference on USENIX Annual Technical Conference, ATEC
’96, (USA), p. 16, USENIX Association, 1996.

[69] S. Kato, J. Aumiller, and S. Brandt, “Zero-copy I/O processing for low-
latency GPU computing,” in 2013 ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), pp. 170–178, April 2013.

[70] A. Maghazeh, U. D. Bordoloi, M. Villani, P. Eles, and Z. Peng,
“Perception-aware power management for mobile games via dynamic
resolution scaling,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 613–620, Nov 2015.

[71] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Io-lite: A unified i/o
buffering and caching system,” ACM Trans. Comput. Syst., vol. 18, no. 1,
pp. 37–66, 2000.

[72] S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel, A. Wated, and M. Sil-
berstein, “GPUnet: Networking abstractions for GPU programs,” in
Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, (Berkeley, CA, USA), pp. 201–
216, USENIX Association, 2014.

[73] R. Liu and F. X. Lin, “Understanding the characteristics of android
wear os,” in Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’16, pp. 151–
164, 2016.

[74] M. Backhaus, M. Theil, M. Rossberg, and G. Schaefer, “Towards
a flexible user-space architecture for high-performance IEEE 802.11
processing,” in 2018 14th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pp. 1–9,
Oct 2018.

[75] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Harris,
and M. Valero, “Atomic Quake: Using transactional memory in an
interactive multiplayer game server,” in Proceedings of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’09, (New York, NY, USA), pp. 25–34, ACM, 2009.

[76] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguade,
T. Harris, and M. Valero, “QuakeTM: Parallelizing a complex sequential
application using transactional memory,” in Proceedings of the 23rd
International Conference on Supercomputing, ICS ’09, (New York, NY,
USA), pp. 126–135, ACM, 2009.

試用版

